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Workshop project: Learn to write maintainable bug-free code with SPARK Ada.
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Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.
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Let's Build a Stack

In this lab we will build a stack data structure and use the SPARK provers to
find the errors in the below implementation.


Background

So, what is a stack?

A stack is like a pile of dishes...

[image: ../_images/pile_of_dishes.png]

	The pile starts out empty.


	You add ( push ) a new plate ( data ) to the stack by placing
it on the top of the pile.


	To get plates ( data ) out, you take the one off the top of the pile
( pop ).


	Out stack has a maximum height ( size ) of 9 dishes




Pushing items onto the stack

Here's what should happen if we pushed the string MLH onto the stack.
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The list starts out empty. Each time we push a character onto the stack,
Last increments by 1.

Popping items from the stack

Here's what should happen if we popped 2 characters off our stack & then
clear it.
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Note that pop and clear don't unset the Storage array's
elements, they just change the value of Last.



Input Format

N inputs will be read from stdin/console as inputs, C to the stack.



Constraints

1 <= N <= 1000

C is any character. Characters d and p will be special characters corresponding
to the below commands:

p => Pops a character off the stack

d => Prints the current characters in the stack



Output Format

If the stack currently has the characters "M", "L", and "H" then the program
should print the stack like this:

[M, L, H]



Sample Input

M L H d p d p d p d



Sample Output

[M, L, H]
[M, L]
[M]
[]




stack.ads

 1package Stack with SPARK_Mode => On is
 2
 3   procedure Push (V : Character)
 4     with Pre  => not Full,
 5          Post => Size = Size'Old + 1;
 6
 7   procedure Pop (V : out Character)
 8     with Pre  => not Empty,
 9          Post => Size = Size'Old - 1;
10
11   procedure Clear
12     with Post => Size = 0;
13
14   function Top return Character
15     with Post => Top'Result = Tab(Last);
16
17   Max_Size : constant := 9;
18   --  The stack size.
19
20   Last : Integer range 0 .. Max_Size := 0;
21   --  Indicates the top of the stack. When 0 the stack is empty.
22
23   Tab  : array (1 .. Max_Size) of Character;
24   --  The stack. We push and pop pointers to Values.
25
26   function Full return Boolean is (Last = Max_Size);
27
28   function Empty return Boolean is (Last < 1);
29
30   function Size return Integer is (Last);
31
32end Stack;








stack.adb

 1package body Stack with SPARK_Mode => On is
 2
 3   -----------
 4   -- Clear --
 5   -----------
 6
 7   procedure Clear
 8   is
 9   begin
10      Last := Tab'First;
11   end Clear;
12
13   ----------
14   -- Push --
15   ----------
16
17   procedure Push (V : Character)
18   is
19   begin
20      Tab (Last) := V;
21   end Push;
22
23   ---------
24   -- Pop --
25   ---------
26
27   procedure Pop (V : out Character)
28   is
29   begin
30      Last := Last - 1;
31      V := Tab (Last);
32   end Pop;
33
34   ---------
35   -- Top --
36   ---------
37
38   function Top return Character
39   is
40   begin
41      return Tab (1);
42   end Top;
43
44end Stack;








main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO;      use Ada.Text_IO;
 3with Stack;            use Stack;
 4
 5procedure Main with SPARK_Mode => Off
 6is
 7
 8   -----------
 9   -- Debug --
10   -----------
11
12   procedure Debug
13   is
14   begin
15
16      if not Stack.Empty then
17
18         Put ("[");
19         for I in Stack.Tab'First .. Stack.Size - 1 loop
20            Put (Stack.Tab (I) & ", ");
21         end loop;
22         Put_Line (Stack.Tab (Stack.Size) & "]");
23      else
24         Put_Line ("[]");
25      end if;
26
27   end Debug;
28
29   S : Character;
30
31begin
32
33   ----------
34   -- Main --
35   ----------
36
37   for Arg in 1 .. Argument_Count loop
38      if Argument (Arg)'Length /= 1 then
39         Put_Line (Argument (Arg) & " is an invalid input to the stack.");
40      else
41         S := Argument (Arg)(Argument (Arg)'First);
42
43         if S = 'd' then
44            Debug;
45         elsif S = 'p' then
46            if not Stack.Empty then
47               Stack.Pop (S);
48            else
49               Put_Line ("Nothing to Pop, Stack is empty!");
50            end if;
51         else
52            if not Stack.Full then
53               Stack.Push (S);
54            else
55               Put_Line ("Could not push '" & S & "', Stack is full!");
56            end if;
57         end if;
58      end if;
59
60   end loop;
61
62end Main;
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