

Bug Free Coding with SPARK Ada

Release 2024-04

Apr 27, 2024

Copyright © 2018 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: _images/ccheart_black.png]

Workshop project: Learn to write maintainable bug-free code with SPARK Ada.

This document was written by Robert Tice.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Contents:

	Let's Build a Stack
	Background

	Input Format

	Constraints

	Output Format

	Sample Input

	Sample Output

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

Let's Build a Stack

In this lab we will build a stack data structure and use the SPARK provers to
find the errors in the below implementation.

Background

So, what is a stack?

A stack is like a pile of dishes...

[image: ../_images/pile_of_dishes.png]

	The pile starts out empty.

	You add (push) a new plate (data) to the stack by placing
it on the top of the pile.

	To get plates (data) out, you take the one off the top of the pile
(pop).

	Out stack has a maximum height (size) of 9 dishes

Pushing items onto the stack

Here's what should happen if we pushed the string MLH onto the stack.

[image: ../_images/push_1.png]
[image: ../_images/push_2.png]
[image: ../_images/push_3.png]
[image: ../_images/push_4.png]
[image: ../_images/push_5.png]

The list starts out empty. Each time we push a character onto the stack,
Last increments by 1.

Popping items from the stack

Here's what should happen if we popped 2 characters off our stack & then
clear it.

[image: ../_images/pop_1.png]
[image: ../_images/pop_2.png]
[image: ../_images/pop_3.png]
[image: ../_images/pop_4.png]

Note that pop and clear don't unset the Storage array's
elements, they just change the value of Last.

Input Format

N inputs will be read from stdin/console as inputs, C to the stack.

Constraints

1 <= N <= 1000

C is any character. Characters d and p will be special characters corresponding
to the below commands:

p => Pops a character off the stack

d => Prints the current characters in the stack

Output Format

If the stack currently has the characters "M", "L", and "H" then the program
should print the stack like this:

[M, L, H]

Sample Input

M L H d p d p d p d

Sample Output

[M, L, H]
[M, L]
[M]
[]

stack.ads

 1package Stack with SPARK_Mode => On is
 2
 3 procedure Push (V : Character)
 4 with Pre => not Full,
 5 Post => Size = Size'Old + 1;
 6
 7 procedure Pop (V : out Character)
 8 with Pre => not Empty,
 9 Post => Size = Size'Old - 1;
10
11 procedure Clear
12 with Post => Size = 0;
13
14 function Top return Character
15 with Post => Top'Result = Tab(Last);
16
17 Max_Size : constant := 9;
18 -- The stack size.
19
20 Last : Integer range 0 .. Max_Size := 0;
21 -- Indicates the top of the stack. When 0 the stack is empty.
22
23 Tab : array (1 .. Max_Size) of Character;
24 -- The stack. We push and pop pointers to Values.
25
26 function Full return Boolean is (Last = Max_Size);
27
28 function Empty return Boolean is (Last < 1);
29
30 function Size return Integer is (Last);
31
32end Stack;

stack.adb

 1package body Stack with SPARK_Mode => On is
 2
 3 -----------
 4 -- Clear --
 5 -----------
 6
 7 procedure Clear
 8 is
 9 begin
10 Last := Tab'First;
11 end Clear;
12
13 ----------
14 -- Push --
15 ----------
16
17 procedure Push (V : Character)
18 is
19 begin
20 Tab (Last) := V;
21 end Push;
22
23 ---------
24 -- Pop --
25 ---------
26
27 procedure Pop (V : out Character)
28 is
29 begin
30 Last := Last - 1;
31 V := Tab (Last);
32 end Pop;
33
34 ---------
35 -- Top --
36 ---------
37
38 function Top return Character
39 is
40 begin
41 return Tab (1);
42 end Top;
43
44end Stack;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Stack; use Stack;
 4
 5procedure Main with SPARK_Mode => Off
 6is
 7
 8 -----------
 9 -- Debug --
10 -----------
11
12 procedure Debug
13 is
14 begin
15
16 if not Stack.Empty then
17
18 Put ("[");
19 for I in Stack.Tab'First .. Stack.Size - 1 loop
20 Put (Stack.Tab (I) & ", ");
21 end loop;
22 Put_Line (Stack.Tab (Stack.Size) & "]");
23 else
24 Put_Line ("[]");
25 end if;
26
27 end Debug;
28
29 S : Character;
30
31begin
32
33 ----------
34 -- Main --
35 ----------
36
37 for Arg in 1 .. Argument_Count loop
38 if Argument (Arg)'Length /= 1 then
39 Put_Line (Argument (Arg) & " is an invalid input to the stack.");
40 else
41 S := Argument (Arg)(Argument (Arg)'First);
42
43 if S = 'd' then
44 Debug;
45 elsif S = 'p' then
46 if not Stack.Empty then
47 Stack.Pop (S);
48 else
49 Put_Line ("Nothing to Pop, Stack is empty!");
50 end if;
51 else
52 if not Stack.Full then
53 Stack.Push (S);
54 else
55 Put_Line ("Could not push '" & S & "', Stack is full!");
56 end if;
57 end if;
58 end if;
59
60 end loop;
61
62end Main;

Footnotes

Index

 _images/push_5.png
Step 4:
Top()

v |h |wN |-
T

Last = 3
returns:
fH}

_images/push_3.png
Step 2:

Push(“L™)
1: M
2: L
3:
4:
5:

Last = 2

_images/push_4.png
Step 3:

Push(“H")
1: M
2:
3: H
4:
5:

Last = 3

_static/learn_meta_img.jpeg

_static/file.png

_static/logo.png
LEARN.

ADACORE.COM

_images/pop_4.png

_images/push_1.png
Step @:
Empty

v |h |wN |-

Last = @

_images/pop_2.png
Step 1:
Pop()

v |h |wN |-
T

Last = 2
returns:
(H}

_images/pop_3.png
Step 2:
Pop()

v |h |wN |-
T

Last = 1
returns:
(L}

_images/push_2.png
Step 1:
Push(“M”)

M

v |h |wN |-

Last = 1

nav.xhtml

 Table of Contents

 		
 Bug Free Coding with SPARK Ada

 		
 Let's Build a Stack

 		
 Background

 		
 Input Format

 		
 Constraints

 		
 Output Format

 		
 Sample Input

 		
 Sample Output

_images/pile_of_dishes.png

_images/pop_1.png
Step @:
Start

v |h |wN |-
T

Last = 3

_static/minus.png

_images/ccheart_black.png

_static/plus.png

