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Foreword
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experience with the certification of railway software and with the Ada
and SPARK programming languages.
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1. Introduction


1.1. CENELEC safety-related railway standards

Railway projects are subject to a legal framework (laws, decrees, etc.)
and also a normative process based on certification standards.
In Europe, these standards are issued and maintained by CENELEC
(European Committee for Electrotechnical Standardization).
This document explains the usage of AdaCore's technologies in conjunction
with EN 50128:2011 [] —
Railway applications - Communication, signalling and processing systems
- Software for railway control and protection systems —
as modified by amendments
EN 50128/A1 [] and EN 50128/A2 [].
(For ease of exposition, the 2011 edition of the standard, as modified
by the A1 and A2 amendments, will simply be referred to as EN 50128.)

EN 50128 is concerned with the safety-related aspects of a railway
system, down to the hardware and/or software elements used.
This document will cover where AdaCore's technologies fit best and how they
can best be applied to meet various requirements in this standard.

EN 50128 is based on fundamentals described in other CENELEC railway
standards:


	EN 50126-1 []  —
Railway applications - The specification and demonstration of reliability,
availability, maintainability and safety (RAMS) - Part 1: Generic RAMS
process (subsequently modified by EN 50126-1/A1 [])


	EN 50126-2 []  —
Railway applications - The specification and demonstration of reliability,
availability, maintainability and safety (RAMS): Part 2: systems approach
to safety





	EN 50129 [] —
Railway applications - Communication, signalling and processing systems -
Safety related electronic systems for signalling




As noted in EN 50128, page 7:


EN 50126-1 addresses system issues on the widest scale, while EN 50129
addresses the approval process for individual systems which can exist
within the overall railway control and protection system.
... [EN 50128] concentrates on the methods which need to be used
in order to provide software which meets the demands of safety integrity
which are placed upon it by these wider considerations.




In addition to EN 50126 and EN 50129, several other CENELEC standards
relate to software's role in the safety of a railway system:


	EN 50657:2017 [] as modified by amendment
EN 50657/A1 [] —
Railways applications - Rolling stock applications - Software on Board
Rolling Stock

This standard extends the principles of EN 50128 into the rolling stock
domain, focusing on onboard systems such as braking, door control, and
driver interfaces.

It retains RAMS goals but tailors them for embedded systems in motion,
where environmental and operational variables are more dynamic.






	EN 50716:2023 [] —
Railway Applications - Requirements for software development

This standard is a successor to EN 50128 and EN 50657,
providing better alignment with EN 50126‑1 and EN 50126‑2.
As of 2025 it is at the early adoption stage but is intended to
supersede both EN 50128 and EN 50657.





Fig. 1 depicts the relationships among the various standards.
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Fig. 1 Relationships among the various standards





1.2. Safety Integrity Levels

A key concept in EN 50128 is the Safety Integrity Level
(SIL) of a software component, which reflects the risk of a hazard occurring
if the software fails. If there is no impact on safety, the level is referred
to as "Basic Integrity" (earlier known as SIL 0).
Otherwise the level has a value between 1 and 4, where 4 is the
most critical; i.e., with the highest risk of a hazard in case of software
failure.

EN 50128 defines the techniques/measures that need to be used
at various software life cycle stages, based on the applicable SIL.



1.3. AdaCore technologies for railway software

AdaCore's technologies revolve around programming activities, as well as the
closely related design and verification activities. This is the bottom of the
"V" cycle as defined in EN 50128, sub-clause 5.3, Figure 4
(see Fig. 2 below).
The company's tools exploit the features of the Ada language (highly
recommended by table A.15) and its formally verifiable SPARK subset.
In particular, the 2012 version of the Ada standard includes some significant
capabilities in terms of specification and verification.

AdaCore's technologies bring two main benefits to the software life cycle
processes defined by the CENELEC railway standards.


	Expressing software interface specifications and software component
specifications directly in the source code.

Interfaces can be precisely expressed through standard syntax for features
such as strong typing, parameter constraints, and subprogram contracts.
These help to clarify interface documentation, to enforce program
constraints and invariants, and to provide an extensive foundation for
software component and integration verification.



	Reducing the verification costs.

Bringing additional specification at the language level allows verification
activities to run earlier in the software life cycle, during the software
component implementation itself. Tools provided by AdaCore support this
effort and are designed to be equally usable by both the development team
and the verification team. Allowing developers to use verification tools
greatly reduces the number of defects found at the verification stage and
thus reduces costs related to change requests identified in the ascending
stages of the cycle.





AdaCore's technologies can be used at all Safety Integrity Levels, from
Basic Integrity to SIL 4. At lower levels, the full Ada language is suitable,
independent of platform. At higher levels, specific subsets will be needed,
for example the Ravenscar Profile ([],
[]) for concurrency support with analyzable
semantics and a reduced footprint, or the Light Profile
[] for a subset with no run-time library
requirements. At the highest level (SIL 4) the SPARK language
([], []) and its
verification toolsuite enable mathematical proof of properties including
correct information flow, absence of run-time exceptions, and, for the most
critical code, correctness of the implementation against a formally
defined specification.

The following technologies will be presented:


	Ada, a compilable programming language supporting imperative,
object-oriented, and functional programming styles and offering strong
specification and verification features. Unless otherwise indicated,
"Ada" denotes the 2012 version of the Ada language standard.





	SPARK, an Ada language subset and toolset supporting formal verification
of program properties such as Absence of Run-Time Errors





	GNAT Pro Assurance, a specialized edition of AdaCore's GNAT Pro
language development environments that is oriented towards projects with
long maintenance cycles or certification requirements





	The GNAT Static Analysis Suite ("GNAT SAS"), comprising several tools:


	A "bug finder" engine that identifies potential defects and
vulnerabilities in Ada code


	GNATmetric — a metric computation tool


	GNATcheck — a coding standard checker









	The GNAT Dynamic Analysis Suite ("GNAT DAS"), comprising several tools:


	GNATtest — a unit testing framework generator


	GNATemulator — a processor emulator


	GNATcoverage — a structural code coverage analyzer


	GNATfuzz — a fuzzing tool that helps uncover potential faults


	TGen — an experimental run-time library for automating test case
generation









	GNAT Pro for Rust, a professionally supported complete development
environment for the Rust programming language





	Several Integrated Development Environments (IDEs):


	GNAT Studio — a robust, flexible, and extensible IDE


	VS Code support — extensions for Ada and SPARK


	GNATbench — an Ada-knowlegeable Eclipse plug-in


	GNATdashboard — a metric integration and management platform









[image: ../_images/fig-2.png]

Fig. 2 Contributions of AdaCore technology to the "V" Cycle
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2. CENELEC EN 50128


2.1. Overview

EN 50128 governs software used in railway control and protection applications,
i.e., systems that ensure the safe and efficient movement of trains.
Examples include:


	Automatic Train Protection (ATP), which ensure automatic braking to avoid
collisions or overspeed;


	Interlocking Systems, which prevent conflicting train movements through
tracks, signals, and switches;


	Train Control Management Systems (TCMS), which coordinate control of
subsystems (doors, brakes, traction);


	Level Crossing Protection, which manages gates and warnings at road-rail
intersections; and


	Centralized Traffic Control (CTC), which oversee train routing and
dispatch across large regions.




The goal of the standard is to provide confidence that that the software
functions reliably and safely relative to its SIL. To this end it
specifies requirements in areas including the following:


	Software development lifecycle processes;


	Verification and validation;


	Tools, techniques, and documentation;


	Risk mitigation measures; and


	Assessment of compliance with the standard.




More specifically, EN 50128 identifies the procedures and prerequisites
(organization, independence and competencies management, quality management,
V&V team, etc.) applicable to the development of programmable electronic
systems used in railway control and protection applications. The standard
therefore may apply to some software applications in the rail sector but not
necessarily to all.

EN 50128 is used in both safety-related and non-safety-related applications
and applies exclusively to software and its interaction with the whole system.
(In light of its role in the certification of non-safety-related software,
the standard introduces the Safety Integrity Level "Basic Integrity", which
pertains to software that is not safety related.)

Although EN 50128 is targeted to the rail industry, it is not intrinsically
domain specific. The standard is basically a specification of sound
software engineering practices for long-lived large-scale high-assurance
systems in general and could in principle be applied in other domains.

One of the distinctive points of EN 50128 is its requirement to justify the
implementation of the resources. For this reason, it is said to be a
"resources standard".



2.2. Structure of the standard

Fig. 3 illustrates the structure of EN 50128 (note that chapters in
CENELEC standards are referred to as clauses, and individual sections and
sub-sections within a chapter are sub-clauses).


[image: ../_images/fig-3.png]

Fig. 3 Structure of CENELEC EN 50128



Clauses 1, 2, and 3 — Scope, Normative references, and
Terms, definitions and abbreviations, respectively —
provide context and basic information.

Clause 4, Objectives, conformance and software safety integrity levels,
identifies the five Safety Integrity Levels and states the criterion for
conformance to the standard:


To conform to this European standard it shall be shown that each of the
requirements has been satisfied to the software safety integrity
level defined and therefore the objective of the sub-clause in question
has been met.




This clause also specifies the role of normative Annex A in the selection of
techniques and measures for satisfying the requirements,
and the means for verifying compliance (inspection of the required documents,
augmented when appropriate by other evidence such as auditing and the
witnessing of tests).

Clauses 5 through 9 form the core of the standard, with sub-clauses providing
the following content:


	Objective: the purpose of meeting the requirements specified in the
sub-clause


	Input documents (if applicable)


	Output documents (if applicable)


	Requirements: Details on what the software supplier needs to do or
provide. In some cases the requirements reference the tables in
Annex A for specific techniques or measures to be used.




Clause 5, Software management and organization, covers three topics:


	Organization, roles and responsibilities (sub-clause 5.1);


	Personnel competence (sub-clause 5.2); and


	Lifecycle-related issues (sub-clause 5.3).




The standard does not dictate a specific lifecycle, but it cites the "V"
approach as a recommendation, from the software specification to the overall
software testing and integration, and also imposes some requirements.
For example, the chosen lifecycle model needs to account for potential
iterations between phases, and detailed documentation in the Software
Quality Assurance Plan as specified in sub-clause 6.5 has to be supplied.

Clause 6, Software assurance, has the goal of achieving a software package
with a minimum level of error and involves a variety of activities
and technologies:


	Software testing (sub-clause 6.1);


	Software verification (sub-clause 6.2) — defined in sub-clause 3.1.48
as "confirmation, through the provision of objective evidence, that specified requirements have been fulfilled";


	Software validation (sub-clause 6.3) — defined in sub-clause 3.1.46
as "confirmation, through the provision of objective evidence, that the requirements for a specific intended use or application have been fulfilled";


	Software assessment (sub-clause 6.4);


	Software quality assurance (sub-clause 6.5);


	Modification and change control (sub-clause 6.6); and


	Support tools and languages (sub-clause 6.7) — see
Tool qualification below.




As shown in [], for software applications the
assessment process involves demonstrating that the software application
achieves its associated safety objectives.

EN 50128 makes a clear separation between the application software,
referred to as the generic software (Clause 7),
and the data or algorithms that are used to configure the generic software
(Clause 8).

Clause 7, Generic software development, has the following sub-clauses:


	Lifecycle and documentation for generic software (sub-clause 7.1);


	Software requirements (sub-clause 7.2);


	Architecture and Design (sub-clause 7.3);


	Component design (sub-clause 7.4);


	Component implementation and testing (sub-clause 7.5);


	Integration (sub-clause 7.6); and


	Overall Software Testing / Final Validation (sub-class 7.7).




Clause 8, Development of application data or algorithms: systems configured
by application data or algorithms, ensures that the configuration parameters
are verified and validated with the same degree of assurance, based on the
relevant SIL, as is needed for the generic software that they configure.

An important part of the standard is Clause 9, Software deployment and
maintenance.
As stated in sub-clauses 9.1.1 and 9.2.1, the objectives of this clause
are, respectively:


To ensure that the software performs as required, preserving the
required software integrity level when it is deployed in the final
environment of the application.




and


To ensure that the software performs as required, preserving the
required software integrity level and dependability when making
corrections, enhancements or adaptations to the software itself.




Annex A (normative), Criteria for the Selection of Techniques and Measures,
contains a set of tables that correlate the artifacts and practices
(documentation, techniques, and measures) specified elsewhere in the
standard, with an indication of whether, and how strongly, they are
recommended based on the software's SIL:


	M: Mandatory. Must be used


	HR: Highly Recommended. If not used, need to explain rationale
for using alternative technique


	R: Recommended


	--: No recommendation either for or against usage


	NR: Not recommended. If used, need to explain rationale for decision




Annex A consists of two sub-clauses:


	Clauses tables (A.1); the table headings identify the
sub-clause(s) containing the relevant requirements:


	Table A.1 – Lifecycle Issues and Documentation (5.3)


	Table A.2 – Software Requirements Specification (7.2)


	Table A.3 – Software Architecture (7.3)


	Table A.4 – Software Design and Implementation (7.4)


	Table A.5 – Verification and Testing (6.2 and 7.3)


	Table A.6 – Integration (7.6)


	Table A.7 – Overall Software Testing (6.2 and 7.7)


	Table A.8 – Software Analysis Techniques (6.3)


	Table A.9 – Software Quality Assurance (6.5)


	Table A.10 – Software Maintenance (9.2)


	Table A.11 – Data Preparation Techniques (8.4)






	Detailed tables (A.2); these are lower-level tables
that expand on certain entries in the Clauses tables:


	Table A.12 – Coding Standards


	Table A.13 – Dynamic Analysis and Testing


	Table A.14 – Functional/Black Box Test


	Table A.15 – Textual Programming Languages


	Table A.16 – Diagrammatic Languages for Application Algorithms


	Table A.17 – Modeling


	Table A.18 – Performance Testing


	Table A.19 – Static Analysis


	Table A.20 – Components


	Table A.21 – Test Coverage for Code


	Table A.22 – Object Oriented Software Architecture


	Table A.23 – Object Oriented Detailed Design








As an example, Table A.4 contains a row for the programming language(s)
selection:












	Technique/Measure

	Ref

	Basic Integrity

	SIL 1

	SIL 2

	SIL 3

	SIL 4



	...

	...

	...

	...

	...

	...

	...



	10  Programming Language

	Table A.15

	R

	HR

	HR

	HR

	HR



	...

	...

	...

	...

	...

	...

	...






Table A.15 contains a row for Ada:












	Technique/Measure

	Ref

	Basic Integrity

	SIL 1

	SIL 2

	SIL 3

	SIL 4



	ADA

	D.54

	R

	HR

	HR

	HR

	HR



	...

	...

	...

	...

	...

	...

	...






Sub-clause D.54 (Suitable Programming languages) notes the features that a
suitable language should have (e.g., run-time array bound checking), and
features that it should encourage (e.g., definition of variable sub-ranges).
On the other side, D.54 also lists features that should be avoided because
they complicate verification (e.g., implicit variable initialization).

The entries in Tables A.4 and A.15 show that Ada is a Highly Recommended
language at SIL 1 through SIL 4 and a Recommended language at the
Basic Integrity level.
Features that should be avoided can be detected and prevented by using
AdaCore's GNATcheck tool in the GNAT Static Analysis Suite;
see GNAT Static Analysis Suite (GNAT SAS).

Annex B (normative), Key software roles and responsibilities, consists of
ten tables detailing the responsibilities and key competencies for the various
roles specified in the standard: Requirements Manager, Designer, Implementor,
Tester, Verifier, Integrator, Validator, Assessor, Project Manager, and
Configuration Manager.

Annex C (informative), Documents Control Summary, provides a table that
lists, for each project phase, its output documents and, for each
document, the responsible author and reviewer(s). The lifecycle phases
and their associated document count are:


	Planning: 5 documents


	Software requirements: 3 documents


	Architecture and design: 6 documents


	Component design: 3 documents


	Component implementation and testing: 3 documents


	Integration: 3 documents


	Overall software testing / Final validation: 4 documents


	Systems configured by application data/algorithms: 8 documents


	Software deployment: 5 documents


	Software maintenance: 4 documents


	Software assessment: 2 documents




Annex D (informative), Bibliography of techniques, details the aim and
description for seventy-one specific software engineering practices.
These are applicable at various lifecycle phases; for example:


	Coding Standards and Style Guide (sub-clause D.15) and Language Subset
(sub-clause D.35) at the design and implementation phase,


	Formal Methods and Formal Proof (sub-clauses D.28 and D.29) at the
implementation and verification phases, and


	Equivalence Classes and Input Partition Testing (sub-clause D.18) at the
testing phase.




Annex ZZ (Informative), Relationship between this European standard and the
essential requirements of EU Directive 2016/797/EU [2016 OJ L138] aimed to
be covered was introduced in EN 50128/A1. It contains a table
showing the relationship noted in the Annex title.



2.3. Tool qualification

An earlier edition of the standard, EN 50128:2001, introduced a requirement
that the compilers employed for a project be purpose-certified, but did not
give a clear indication of what precisely was expected.
Clause 6.7 in the 2011 revision formalizes this concept, which will be
referred to here as "tool qualification", and provides details on what
needs to be performed and/or supplied.
(The standard does not use a specific term for this process, but the
"tool qualification" terminology from the airborne software standards
DO ‑ 178C/ED ‑ 12C [] and DO ‑ 330/ED  ‑ 215 []
is appropriate.)


2.3.1. Tool classes

Tool qualification is based on the recognition that different tools need
different levels of confidence in their reliability, based on how a
tool error affects the application software. This is formalized in the
concept of a "tool class". As stated in sub-clause 6.7.1:


The objective is to provide evidence that potential failures of tools
do not adversely affect the integrated toolset output in a safety related
manner that is undetected by technical and/or organisational measures
outside the tool. To this end, software tools are categorised into three
classes namely, T1, T2 & T3 respectively.





	T1 is reserved for tools that affect neither the verification of the
software nor the final executable file.





	T2 applies to tools where a fault could lead to an error in the results
of the verification or validation. Examples include tools used for verifying
compliance with a coding standard, generating quantified metrics, performing
static analysis of the source code, managing and executing tests, etc.





	T3 applies to tools where a fault could have an impact on (and, for
example, introduce errors into) the final executable software.
This class includes compilers, code generators, etc.




Sub-clause 6.7 of EN 50128 defines a set of recommendations for each tool
class; these affect the content of the tool qualification report.
The standard identifies twelve requirements (numbered from 6.7.4.1 to
6.7.4.12) concerning tool qualification.
Requirement 6.7.4.12 is a mapping from each tool class to the applicable
sub-clauses in the standard.
It is shown here in the table below, which augments the version in the
standard by also specifying the lifecycle phase that is relevant for each
sub-clause.
The steps shown indicate the requirements to be met and reflect the additional
effort needed as the tool level increases; for further information, please see
[], Chapter 9.



	Tool class

	Applicable sub-clause(s)

	Lifecycle phase





	T1

	6.7.4.1

	Tool identification



	T2

	6.7.4.1

	Tool identification



	6.7.4.2

	Tool justification



	6.7.4.3

	Tool specification/manual



	6.7.4.10, 6.7.4.11

	Tool version management



	T3

	6.7.4.1

	Tool identification



	6.7.4.2

	Tool justification



	6.7.4.3

	Tool specification/manual



	(6.7.4.4 and 6.7.4.5) or 6.7.4.6

	Tool conformity evidence



	(6.7.4.7 or 6.7.4.8) and 6.7.4.9

	Tool requirement fulfillment



	6.7.4.10,  6.7.4.11

	Tool version management








2.3.2. AdaCore tool qualification support

As will be explained below, AdaCore supports EN 50128 compliance through
tools qualified for several purposes:


	Static and dynamic analysis;


	Code verification including formal proof; and


	Compilation with traceability and reproducibility guarantees.




These capabilities reduce certification risk while improving code quality and
lifecycle confidence.

AdaCore's qualification packages contain the information required by
EN 50128, such as documentation, history, infrastructure, user references,
recommended usage, validation strategy, configuration management and change
tracking.

Furthermore, tools can be provided through a subscription service
known as "sustained branches" (see Sustained Branches).
In this mode, a specific version of the tools can be put into special
maintenance, where AdaCore can investigate known problems
and provide repairs or work-arounds for potential issues on these branches
without unrelated updates that may risk regressions.

AdaCore's decades-long experience in software certification for embedded and
safety-critical domains, including rail and avionics, ensures that customers
have access to:


	Qualification material for EN 50128 and/or DO ‑ 330/ED  ‑ 215 tool assessment;


	A formally verifiable language (SPARK) for high-integrity use cases; and


	Lifecycle support aligned with the needs of long-term platform deployments







Footnotes



            

          

      

      

    

  

    
      
          
            
  
3. AdaCore Tools and Technologies Overview


3.1. Ada


3.1.1. Background

Ada is a modern programming language designed for large, long-lived
applications — and embedded systems in particular — where
reliability, maintainability, and efficiency are essential.
It was originally developed in the early 1980s (this version is
generally known as Ada 83) by a team led by Jean Ichbiah at
CII-Honeywell-Bull in France. The language was revised and
enhanced in an upward compatible fashion in the early 1990s,
under the leadership of Tucker Taft from Intermetrics in the U.S.

The resulting language, Ada 95, was the first internationally
standardized (ISO) object-oriented language. Under the auspices
of ISO, a further (minor) revision was completed as an amendment
to the standard; this version of the language is known as Ada 2005.
Additional features (including support for contract-based programming
in the form of subprogram pre- and postconditions and type invariants)
were added in the Ada 2012 version of the language standard, and a
number of features to increase the language's expressiveness were
introduced in Ada 2022 (see [],
[],
[],
[] for information about Ada).

The name "Ada" is not an acronym; it was chosen in honor of
Augusta Ada Lovelace (1815-1852), a mathematician who is
regarded as the world's first programmer because of her work with
Charles Babbage. She was also the daughter of the poet Lord Byron.

The Ada language is seeing significant usage worldwide in high-integrity /
safety-critical / high-security domains including railway systems,
commercial and military aircraft avionics, air traffic control, and
medical devices.

With its embodiment of modern software engineering principles, Ada
is an excellent teaching language for both introductory and advanced
computer science courses, and it has been the subject of significant
university research especially in the area of real-time technologies.
The so-called Ravenscar Profile — a subset of the language's
concurrency features with deterministic semantics — broke new ground
in supporting the use of concurrent programming in high assurance software.

AdaCore has a long history and close connection with the Ada programming
language. Company members worked on the original Ada 83 design and review
and played key roles in the Ada 95 project as well as the subsequent
revisions. AdaCore's initial GNAT compiler was essential to the growth of
Ada 95; it was delivered at the time of the language's standardization,
thus guaranteeing that users would have a quality implementation for
transitioning to Ada 95 from Ada 83 or other languages.



3.1.2. Language Overview

Ada is multi-faceted. From one perspective it is a classical stack-based
general-purpose language, not tied to any specific development methodology.
It has a simple syntax, structured control statements, flexible data
composition facilities, strong type checking, traditional features for code
modularization (subprograms), and a mechanism for detecting and responding
to exceptional run-time conditions (exception handling).
But it also includes much more:


3.1.2.1. Scalar Ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada allows the
programmer to simply and explicitly specify the range of values that are
permitted for variables of scalar types (integer, floating-point, fixed-point,
and enumeration types). The attempted assignment of an out-of-range value
causes a run-time error. The ability to specify range constraints makes
programmer intent explicit and makes it easier to detect a major source of
coding and user input errors. It also provides useful information to
static analysis tools and facilitates automated proofs of program properties.

Here's an example of an integer scalar range:

declare
   Score : Integer range 1..100;
   N     : Integer;
begin
   ... -- Code that assigns a value to N
   Score := N;
   -- A run-time check verifies that N is within the range 1..100
   -- If this check fails, the Constraint_Error exception is raised
end;







3.1.2.2. Contract-Based Programming

A feature introduced in Ada 2012 allows extending a subprogram specification
or a type/subtype declaration with a contract (a Boolean assertion).
Subprogram contracts take the form of preconditions and postconditions,
type contracts are used for invariants, and subtype contracts provide
generalized constraints (predicates). Through contracts the developer can
formalize the intended behavior of the application, and can
verify this behavior by testing, static analysis or formal proof.

Here's a skeletal example that illustrates contact-based programming; a
Table object is a fixed-length container for distinct Float
values.

package Table_Pkg is
   type Table is private;  -- Encapsulated type

   procedure Insert (T : in out Table; Item: in Float)
     with Pre  => not Is_Full(T) and not Contains(T, Item),
          Post => Contains(T, Item);

   procedure Remove (T : in out Table; Item: out Float);
     with Pre  => Contains(T, Item),
          Post => not Contains(T, Item);

   function Is_Full  (T : in Table) return Boolean;
   function Contains (T : in Table; Item: in Float) return Boolean;
   ...
private
   ... -- Full declaration of type Table
end Table_Pkg;

package body Table_Pkg is
   ... -- Implementation of Insert, Remove, Is_Full, and Contains
end Table_Pkg;





A compiler option controls whether the pre- and postconditions
are checked at run time. If checks are enabled,
any pre- or postcondition failure — i.e., the contract's
Boolean expression evaluating to False — raises the
Assertion_Error exception.



3.1.2.3. Programming in the large

The original Ada 83 design introduced the package construct,
a feature that supports encapsulation (information hiding) and
modularization, and which allows the developer to control the
namespace that is accessible within a given compilation unit. Ada 95
introduced the concept of child units, adding considerable flexibility
and easing the design of very large systems.
Ada 2005 extended the language's modularization facilities by allowing
certain kinds of mutual references between package specifications,
thus making it easier to interface with languages such as Java.



3.1.2.4. Generic Templates

A key to reusable components is a mechanism for parameterizing modules
with respect to data types and other program entities, for example a
stack package for an arbitrary element type. Ada meets this requirement
through a facility known as generics; since the parameterization is done
at compile time, run-time performance is not penalized.



3.1.2.5. Object-Oriented Programming (OOP)

Ada 83 was object-based, allowing the partitioning of a system into modules
corresponding to abstract data types or abstract objects.
Full OOP support was not provided since, first, it seemed not to be required
in the real-time domain that was Ada's primary target,
and, second, the apparent need for automatic garbage collection in an
Object-Oriented language would have interfered with predictable and efficient
performance.

However, large real-time systems often have components such as GUIs that do
not have real-time constraints and that could be most effectively developed
using OOP features. In part for this reason, Ada 95 supplies comprehensive
support for OOP, through its tagged type facility: classes, polymorphism,
inheritance, and dynamic binding. Ada 95 does not require automatic garbage
collection but rather supplies definitional features allowing the developer
to supply type-specific storage reclamation operations (finalization).
Ada 2005 brought additional OOP features including Java-like interfaces and
traditional obj.op(...) operation invocation notation.

Ada is methodologically neutral and does not impose a distributed overhead for
OOP. If an application does not need OOP, then the OOP features do not have
to be used, and there is no run-time penalty.
See [] or [] for more details..



3.1.2.6. Concurrent Programming

Ada supplies a structured, high-level facility for concurrency. The unit of
concurrency is a program entity known as a task. Tasks can communicate
implicitly via shared data or explicitly via a synchronous control mechanism
known as the rendezvous. A shared data item can be defined abstractly as a
protected object (a feature introduced in Ada 95), with operations executed
under mutual exclusion when invoked from multiple tasks.
Protected objects provide the functionality of semaphores and condition
variables but more clearly and reliably (e.g., avoiding subtle race
conditions).

Ada supports asynchronous task interactions for timeouts, software event
notifications, and task termination. Such asynchronous behavior is deferred
during certain operations, to prevent the possibility of leaving shared data
in an inconsistent state. Mechanisms designed to help take advantage of
multi-core architectures were introduced in Ada 2012.



3.1.2.7. Systems Programming

Both in the core language and the Systems Programming Annex, Ada supplies
the necessary features for hardware-specific processing.
For example, the programmer can specify the bit layout for fields in a record,
define alignment and size properties, place data at specific machine
addresses, and express specialized code sequences in assembly language.
Interrupt handlers can be written in Ada, using the protected type facility.



3.1.2.8. Real-Time Programming

Ada's tasking facility and the Real-Time Systems Annex support common idioms
such as periodic or event-driven tasks, with features that can help avoid
unbounded priority inversions. A protected object locking policy is defined
that uses priority ceilings; this has an especially efficient implementation
in Ada (mutexes are not required) since protected operations are not allowed
to block. Ada 95 defined a task dispatching policy that basically requires
tasks to run until blocked or preempted. Subsequent versions of the language
standard introduced several other policies, such as Earliest Deadline First.



3.1.2.9. High-Integrity Systems

With its emphasis on sound software engineering principles, Ada supports the
development of high-integrity applications, including those that need to be
certified against safety standards such EN 50128 for rail systems,
DO ‑ 178C/ED ‑ 12C [] for avionics, and security standards
such as the Common Criteria [].
Key to Ada's support for high-assurance software is the language's
memory safety; this is illustrated by a number of features, including:


	Strong typing

Data intended for one purpose will not be accessed via inappropriate
operations; errors such as treating pointers as integers (or vice versa)
are prevented.



	Array bounds checking

A run-time check guarantees that an array index is within the bounds of
the array.
This prevents buffer overflow vulnerabilities that are common in C and C++.
In many cases a a compiler optimization can detect statically that the
index is within bounds and thus eliminate any run-time code for the check.



	Prevention of null pointer dereferences

As with array bounds, pointer dereferences are checked to make sure that
the pointer is not null.
Again, such checks can often be optimized out.



	Prevention of dangling references

A scope accessibility checks ensures that a pointer cannot reference an
object on the stack after exit/return from the scope (block or subprogram)
in which the object is declared. Such checks are generally static,
with no run-time overhead.





However, the full language may be inappropriate in a safety-critical
application, since the generality and flexibility could interfere
with traceability / certification requirements. Ada addresses this issue by
supplying a compiler directive, pragma Restrictions, that
allows constraining the language features to a well-defined subset
(for example, excluding dynamic OOP facilities).

The evolution of Ada has seen the continued increase in support for
safety-critical and high-security applications. Ada 2005
standardized the Ravenscar Profile, a collection of concurrency
features that are powerful enough for real-time programming but
simple enough to make certification and formal analysis practical.

Ada 2012 introduced contract-based programming facilities, allowing the
programmer to specify preconditions and/or postconditions for subprograms,
and invariants for encapsulated (private) types. These can serve both
for run-time checking and as input to static analysis tools.

The most recent version of the standard, Ada 2022, has added several
contract-based programming constructs inspired by SPARK
(Contract_Cases, Global, and Depends aspects) and,
more generally, has enhanced the language's expressiveness. For example,
Ada 2022 has introduced some new syntax in its concurrency support and has
defined the Jorvik tasking profile, which is more
inclusive than Ravenscar.



3.1.2.10. Summary

In brief, Ada is an internationally standardized language combining
object-oriented programming features, well-engineered concurrency
facilities, real-time support, and built-in reliability through both
compile-time and run-time checks. As such it is an appropriate
language for addressing the real issues facing software developers
today. Ada has a long and successful history and is used throughout
a number of major industries to design software that protects
life and property.





3.2. SPARK

SPARK is a software development technology (programming language and
verification toolset) specifically designed for engineering
ultra-low defect level applications, for example where safety
and/or security are key requirements. SPARK Pro is AdaCore's
commercial-grade offering of the SPARK technology. The main component
in the toolset is GNATprove, which performs formal verification on
SPARK code.

SPARK has an extensive industrial track record. Since its inception
in the late 1980s it has been used worldwide in a range of
industrial applications such as railway signaling, civil and military
avionics, air traffic management / control, cryptographic
software, and cross-domain solutions.

The SPARK language has been stable over the years, with periodic
enhancements. The 2014 version of SPARK represented a major revision
[], []),
incorporating contract-based programming
syntax from Ada 2012, and subsequent upgrades included support for pointers
(access types) based on the Rust ownership model.


3.2.1. Flexibility

SPARK offers the flexibility of configuring the language on a per-project
basis. Restrictions can be fine-tuned based on the relevant coding
standards or run-time environments.
SPARK code can easily be combined with full Ada code or with C, so that
new systems can be built on and reuse legacy codebases.



3.2.2. Powerful Static Verification

The SPARK language supports a wide range of static verification techniques.
At one end of the spectrum is basic data and control flow analysis, i.e.,
exhaustive detection of errors such as attempted reads of uninitialized
variables, and ineffective assignments (where a variable is assigned a
value that is never read). For more critical applications, dependency
contracts can constrain the information flow allowed in an application.
Violations of these contracts — potentially representing violations of
safety or security policies — can then be detected even before the code
is compiled.

In addition, the language supports mathematical proof and can thus provide
high confidence that the software meets a range of assurance requirements:
from the absence of run-time errors (AORTE), to the enforcement of safety
or security properties, to compliance with a formal specification of the
program's required behavior.



3.2.3. Ease of Adoption

User experience has shown that the language and the SPARK Pro toolset do not
require a steep learning curve. Training material such as AdaCore's online
AdaLearn course for SPARK [] can quickly bring
developers up to speed; users are assumed to be experts in their own
application domain such as railway software and do not need to be familiar
with formal methods or the proof technology implemented by the toolset.
In effect, SPARK Pro is an advanced static analysis tool that will detect
many logic errors very early in the software life cycle. It can be smoothly
integrated into an organization's existing development and verification
methodology and infrastructure.

SPARK uses the standard Ada 2012 contract syntax, which both simplifies the
learning process and also allows new paradigms of software verification.
Programmers familiar with writing executable contracts for run-time assertion
checking can use the same approach but with additional flexibility: the
contracts can be verified either dynamically through classical run-time
testing methods or statically (i.e., pre-compilation and pre-test) using
automated tools.



3.2.4. Hybrid Verification

SPARK supports hybrid verification, which combines testing and
formal proofs.
As an example, an existing project in Ada and C can adopt SPARK to implement
new functionality for critical components. The SPARK units can be analyzed
statically to achieve the desired level of verification, with testing
performed at the interfaces between the SPARK units and the modules in the
other languages.



3.2.5. Reduced Cost and Improved Efficiency of Executable Object Code Verification

Software verification typically involves extensive testing, including unit
tests and integration tests. Traditional testing methodologies are a major
contributor to the high delivery costs for safety-critical software.
Furthermore, they may fail to detect errors. SPARK addresses this issue by
allowing automated proof to be used to demonstrate functional correctness
at the subprogram level, either in combination with or as a replacement
for unit testing.
In the high proportion of cases where proofs can be discharged automatically,
the cost of writing unit tests is completely avoided. Moreover, verification
by proofs covers all execution conditions and not just a sample.




3.3. GNAT Pro Assurance


3.3.1. Sustained Branches

GNAT Pro Assurance is a specialized version of the GNAT Pro development
environment, available for any of the products in the GNAT Pro family:
GNAT Pro for Ada, GNAT Pro for C, GNAT Pro for C++, and GNAT Pro for Rust.
It is targeted to projects
requiring customized support, including bug fixes and known problems
analyses, on a specific version of the toolchain. This service is
especially suitable for applications with long maintenance cycles or
certification requirements, since critical updates to the compiler or
other product components may become necessary years after the initial
release. Such customized maintenance of a specific version of the product
is known as a sustained branch.

A project on a sustained branch can monitor relevant known
problems, analyze their impact and, if needed, update to a newer version
of the product on the same development branch (i.e., not incorporating
changes introduced in later versions of the product).

Sustained branches are a practical solution to the problem of ensuring
toolchain stability while allowing flexibility in case an upgrade is
needed to correct a critical problem.



3.3.2. Language and Tool Support

GNAT Pro Assurance for Ada supports all versions of the Ada
language standard as well as multiple versions of C (C89, C99, and C11).
It provides an Integrated Development Environment
(see Integrated Development Environments (IDEs)), a comprehensive toolsuite
including a visual debugger, and an extensive set of libraries and bindings.
Details on the GNAT Pro for Ada toolchain may be found in
[].
AdaCore's GNAT project facility, based on a multi-language builder for
systems organized into subsystems and libraries, is documented in
[].



3.3.3. Configurable Run-Time Libraries

Two specific GNAT-defined run-time libraries have been designed with
certification in mind and are known as the Certifiable Profiles
(see []):


	Light Profile


	Light-Tasking Profile




The Light Profile provides a flexible Ada subset that is supported by a
certifiable Ada run-time library. Depending on application requirements,
this profile can be further restricted through the Restrictions pragma,
with the application only including run-time code that is used by the
application.

These run-time libraries can also be customized directly to suit
certification requirements: unneeded packages can be removed to allow for
self-certification of the runtime, while the -nostdlib linker
switch can be used to prevent the use of the runtime. Even when the run-time
library is suppressed, some run-time sources are still required to provide
compile-time definitions. While this code produces no object code, the
certification protocol may still require tests to ensure correct access
to these definitions.

The Light-Tasking Profile expands the Light Profile to include Ravenscar
tasking support, allowing developers to use concurrency in their certification
applications.

Although limited in terms of dynamic Ada semantics, all Certifiable Profiles
fully support static Ada constructs such as private types, generic templates,
and child units. Some dynamic semantics are also supported. For example,
these profiles allow the use of tagged types (at library level) and other
Object-Oriented Programming features, including dynamic dispatching.
The general use of dynamic dispatching at the application level can be
prevented through pragma Restrictions.

A traditional problem with predefined profiles is their inflexibility:
if a feature outside a given profile is needed, then it is the developer's
responsibility to address the certification issues deriving from its use.
GNAT Pro Assurance accommodates this need by allowing the developer to define
a profile for the specific set of features that are used. Typically this will
be for features with run-time libraries that require associated certification
materials. Thus the program will have a tailored run-time library supporting
only those features that have been specified.

More generally, the configurable run-time capability allows specifying support
for Ada's dynamic features in an à la carte fashion ranging from none
at all to full Ada.
The units included in the executable may be either a subset of
the standard libraries provided with GNAT Pro, or specially tailored to the
application. This latter capability is useful, for example, if one of the
predefined profiles implements almost all the dynamic functionality needed
in an existing system that has to meet new safety-critical requirements,
and where the costs of adapting the application without the additional
run-time support are considered prohibitive.



3.3.4. Full Implementation of Ada Standards

GNAT Pro provides a complete implementation of the Ada language from Ada 83
to Ada 2012, and support for selected features from Ada 2022.
Developers of safety-critical and high-security systems can thus take
advantage of features such as contract-based programming, which effectively
embed requirements in the source program text and simplify verification.



3.3.5. Source to Object Traceability

A compiler option can limit the use of language constructs that generate
object code that is not directly traceable to the source code.
As an add-on service, AdaCore can perform an analysis that demonstrates
this traceability and justifies any remaining cases of non-traceable code.



3.3.6. Safety-Critical Support and Expertise

At the heart of every AdaCore subscription are the support services that
AdaCore provides to its customers. AdaCore staff are recognized experts on
the Ada language, software certification standards in several domains,
compilation technologies, and static and dynamic verification.
They have extensive experience in supporting customers in railway, avionics,
space, energy, air traffic management/control, automotive, and military
projects. Every AdaCore product comes with front-line support provided
directly by these experts, who are also the developers of the technology.
This ensures that customers' questions (requests for guidance on feature
usage, suggestions for technology enhancements, or defect reports) are
handled efficiently and effectively.

Beyond this bundled support, AdaCore also provides Ada language and tool
training as well as on-site consulting on topics such as how to best deploy
the technology, and assistance on start-up issues. On-demand tool development
and ports to new platforms are also available.



3.3.7. Libadalang

Libadalang is a library included with GNAT Pro that gives applications access
to the complete syntactic and semantic structure of an Ada compilation unit.
This library is typically used by tools that need to perform some sort of
static analysis on an Ada program.

AdaCore can assist customers in developing libadalang-based tools to meet
their specific needs, as well as develop such tools upon request.

Typical libadalang applications include:


	Static analysis (property verification)


	Code instrumentation


	Design and document generation tools


	Metric testing or timing tools


	Dependency tree analysis tools


	Type dictionary generators


	Coding standard enforcement tools


	Language translators (e.g., to CORBA IDL)


	Quality assessment tools


	Source browsers and formatters


	Syntax directed editors






3.3.8. GNATstack

Included with GNAT Pro is GNATstack, a static analysis tool that enables an
Ada/C software developer to accurately predict the maximum size of the memory
stack required for program execution.

GNATstack statically predicts the maximum stack space required by each task
in an application. The computed bounds can be used to ensure that sufficient
space is reserved, thus guaranteeing safe execution with respect to stack
usage. The tool uses a conservative analysis to deal with complexities such
as subprogram recursion, while avoiding unnecessarily pessimistic estimates.

This static stack analysis tool exploits data generated by the compiler to
compute worst-case stack requirements. It performs per-subprogram stack usage
computation combined with control flow analysis.

GNATstack can analyze object-oriented applications, automatically determining
maximum stack usage on code that uses dynamic dispatching in Ada.
A dispatching call challenges static analysis because the identity of the
subprogram being invoked is not known until run time. GNATstack solves this
problem by statically determining the subset of potential targets (primitive
operations) for every dispatching call. This significantly reduces the
analysis effort and yields precise stack usage bounds on complex Ada code.

GNATstack's analysis is based on information known at compile time. When the
tool indicates that the result is accurate, the computed bound can never be
exceeded.

On the other hand, there may be cases in which the results will not be
accurate (the tool will report such situations) because of some missing
information (such as the maximum depth of subprogram recursion, indirect
calls, etc.). The user can assist the tool by specifying missing call graph
and stack usage information.

GNATstack's main output is the worst-case stack usage for every entry point,
together with the paths that result in these stack sizes.
The list of entry points can be automatically computed (all the tasks,
including the environment task) or can be specified by the user (a list of
entry points or all the subprograms matching a given regular expression).

GNATstack can also detect and display a list of potential problems when
computing stack requirements:


	Indirect (including dispatching) calls. The tool will indicate the number
of indirect calls made from any subprogram.


	External calls. The tool displays all the subprograms that are reachable
from any entry point for which there is no stack or call graph information.


	Unbounded frames. The tool displays all the subprograms that are reachable
from any entry point with an unbounded stack requirement.
The required stack size depends on the arguments passed to the subprogram.
For example:

procedure P(N : Integer) is
   S : String (1..N);
begin
   ...
end P;







	Cycles. The tool can detect all the cycles (i.e., potential recursion) in
the call graph.




GNATstack allows the user to supply a text file with the missing information,
such as the potential targets for indirect calls, the stack requirements for
external calls, and the maximal size for unbounded frames.




3.4. GNAT Static Analysis Suite (GNAT SAS)


3.4.1. Defects and Vulnerability Analyzer

GNAT SAS features an Ada source code analyzer that detects run-time and logic
errors. It assesses potential bugs and vulnerabilities before program
execution, serving as an automated peer reviewer, helping to find errors
easily at any stage of the development life-cycle. It helps improve code
quality and makes it easier to perform safety and/or security
analysis.

The defects and vulnerability analyzer can detect several of the
"Top 25 Most Dangerous Software Errors" in the Common Weakness Enumeration.
It is a stand-alone tool that runs on Windows and Linux platforms and
may be used with any standard Ada compiler or fully integrated into the
GNAT Pro development environment.



3.4.2. GNATmetric

The GNATmetric tool analyzes source code to calculate a set of commonly used
industry metrics, thus allowing developers to estimate the size and better
understand the structure of the source code. This information also
facilitates satisfying the requirements of certain software development
frameworks.



3.4.3. GNATcheck

GNATcheck is a coding standard verification tool that is extensible and
rule-based. It allows developers to completely define a project-specific
coding standard as a set of rules, for example a subset of permitted
language features and/or code formatting and style conventions.
It verifies a program's conformance with the resulting rules and thereby
facilitates demonstration of a system's compliance with a certification
standard's requirements on language subsetting.

GNATcheck provides:


	An integrated "Ada Restrictions" mechanism for banning specific features
from an application. This can be used to restrict features
such as tasking, exceptions, dynamic allocation, fixed- or floating point,
input/output, and unchecked conversions.


	Restrictions specific to GNAT Pro, such as banning features that result
in the generation of implicit loops or conditionals
in the object code, or in the generation of elaboration code.


	Additional Ada semantic rules resulting from customer input, such as
ordering of parameters, normalized naming of entities, and
subprograms with multiple returns.


	An easy-to-use interface for creating and using a complete coding standard.


	Generation of project-wide reports, including evidence of the level of
compliance with a given coding standard.


	Over 30 compile-time warnings from GNAT Pro that detect typical error
situations, such as local variables being used before being
initialized, incorrect assumptions about array lower bounds, infinite
recursion, incorrect data alignment, and accidental hiding of names.


	Style checks that allow developers to control indentation, casing,
comment style, and nesting level.




AdaCore's GNATformat tool [], which
formats Ada source code according to the GNAT coding style
[], can help avoid having code that violates
GNATcheck rules. GNATformat is included in the GNAT Pro for Ada toolchain.

GNATcheck comes with a query language (LKQL, for Language Kit Query Language)
that lets developers define their own checks for any in-house rules that need
to be followed.
GNATcheck can thus be customized to meet an organization's specific
requirements, processes and procedures.




3.5. GNAT Dynamic Analysis Suite (GNAT DAS)


3.5.1. GNATtest

The GNATtest tool helps create and maintain a complete unit testing
infrastructure for complex projects. It captures
the simple idea that each public subprogram (these are known as
visible subprograms in Ada) should have at least one corresponding
unit test. GNATtest takes a project file as input, and produces two outputs:


	The complete harnessing code for executing all the unit tests under
consideration. This code is generated completely automatically.


	A set of separate test stubs for each subprogram to be tested.
These test stubs are to be completed by the user.




GNATtest handles Ada's Object-Oriented Programming features and can be used
to help verify tagged type substitutability (the Liskov Substitution
Principle) that can be used to demonstrate consistency of class hierarchies.

Testing a private subprogram is outside the scope of GNATtest but can be
implemented by defining the relevant testing code in a private child of the
package that declares the private subprogram.
Additionally, hybrid verification can help (see Hybrid Verification):
augmenting testing with the use of SPARK to formally prove relevant properties
of the private subprogram.



3.5.2. GNATemulator

GNATemulator is an efficient and flexible tool that provides integrated,
lightweight target emulation.

Based on the QEMU technology, a generic and open-source machine emulator
and virtualizer, GNATemulator allows software developers to
compile code directly for their target architecture and run it on their
host platform, through an approach that translates from the
target object code to native instructions on the host. This avoids the
inconvenience and cost of managing an actual board, while offering an
efficient testing environment compatible with the final hardware.

There are two basic types of emulators. The first can serve as a surrogate
for the final hardware during development for a wide range of verification
activities, particularly those that require time accuracy. However, they
tend to be extremely costly, and are often very slow. The second, which
includes GNATemulator, does not attempt to be a complete time-accurate
target board simulator, and thus it cannot be used for all aspects of
testing. But it does provide a very efficient and cost-effective way to
execute the target code very early in the development and verification
processes. GNATemulator thus offers a practical compromise between a native
environment that lacks target emulation capability, and a cross configuration
where the final target hardware might not be available soon enough or in
sufficient quantity.



3.5.3. GNATcoverage

GNATcoverage is a code coverage analysis tool. Its results are computed from
trace files that show which program constructs have been exercised by a given
test campaign. With source code instrumentation, the tool produces these files
by executing an alternative version of the program, built from source code
instrumented to populate coverage-related data structures.
Through an option to GNATcoverage, the user can specify the granularity of
the analysis: statement coverage, decision coverage, or Modified Condition /
Decision Coverage (MC/DC).

Source-based instrumentation brings several major benefits: efficiency of tool
execution (much faster than alternative coverage strategies using binary
traces and target emulation, especially on native platforms), compact-size
source trace files independent of execution duration, and support for coverage
of shared libraries.



3.5.4. GNATfuzz

GNATfuzz is a fuzzing tool; i.e., a tool that automatically
and repeatedly executes tests and generates new test cases at a very high
frequency to detect faulty behavior of the system under test. Such anomalous
behavior is captured by monitoring the system for triggered exceptions,
failing built-in assertions, and signals such as SIGSEGV.

Fuzz testing has proven to be an effective mechanism for finding corner-case
vulnerabilities that traditional human-driven verification mechanisms,
such as unit and integration testing, can miss.
Since such vulnerabilities can often lead to malicious exploitations,
fuzzing technology can help meet security verification
requirements.

However, fuzz-testing campaigns are complex and time-consuming to construct,
execute and monitor. GNATfuzz simplifies the process by analyzing a code base
and identifying subprograms that can act as fuzz-test entry points. GNATfuzz
then automates the creation of test harnesses suitable for fuzzing.
In addition, GNATfuzz will automate the building, executing and analyzing
of fuzz-testing campaigns.

GNATfuzz can serve a useful role as part of the software development
and verification life cycle processes. For example, by detecting
anomalous behavior such as data corruption due to
task or interrupt conflicts, GNATfuzz can help prevent defects from being
introduced into the source code.



3.5.5. TGen

TGen is an experimental run-time library / marshalling technology that can be
used by GNATtest and/or GNATfuzz to automate the production
of test cases for Ada code. It performs type-specific low-level processing to
generate test vectors for subprogram parameters, such as uniform value
distribution for scalar types and analogous strategies for unconstrained
arrays and record discriminants. A command-line argument specifies the number
of test values to be generated, and these can then be used as input to test
cases created by GNATtest.

TGen can also be used with GNATfuzz, to help start a fuzz-testing campaign
when the user supplies an initial set of test cases where some may contain
invalid data. GNATfuzz will utilize coverage-driven fuzzer mutations coupled
with TGen to convert invalid test cases into valid ones. TGen represents test
data values compactly, removing a large amount of memory padding that would
otherwise be present for alignment of data components. With its
space-efficient representation, TGen significantly increases the probability
of a successful mutation that results in a new valid test case.




3.6. GNAT Pro for Rust

The Rust language was designed for software that needs to meet stringent
requirements for both assurance and performance: Rust is a memory-safe
systems-programming language with software integrity guarantees (in both
concurrent and sequential code) enforced by compile-time checks. The language
is seeing growing use in domains such as automotive systems and is a viable
choice for railway software.

AdaCore's GNAT Pro for Rust is a complete development environment for the
Rust programming language, supporting both native builds and cross compilation
to embedded targets. The product is not a fork of the Rust programming
language or the Rust tools. Instead, GNAT Pro for Rust is a professionally
supported build of a selected version of rustc and other core Rust development
tools that offers stability for professional and high-integrity Rust projects.
Critical fixes to GNAT Pro for Rust are upstreamed to the Rust community,
and critical fixes made by the community to upstream Rust tools are backported
as needed to the GNAT Pro for Rust code base.
Additionally, the Assurance edition of GNAT Pro for Rust includes the
"sustained branch" service (see Sustained Branches) that strikes the
balance between tool stability and project flexibility.



3.7. Integrated Development Environments (IDEs)


3.7.1. GNAT Studio

GNAT Studio is a powerful and simple-to-use IDE that streamlines software
development from the initial coding stage through testing, debugging, system
integration, and maintenance. It is designed to allow programmers to get the
most out of GNAT Pro technology.

Tools

GNAT Studio's extensive navigation and analysis tools can generate a variety
of useful information including call graphs, source dependencies,
project organization, and complexity metrics, giving a thorough understanding
of a program at multiple levels. It allows interfacing with third-party
version control systems, easing both development and maintenance.

Robust, Flexible and Extensible

Especially suited for large, complex systems, GNAT Studio can import existing
projects from other Ada implementations while adhering to their
file naming conventions and retaining the existing directory organization.
Through the multi-language capabilities of GNAT Studio, components
written in C and C++ can also be handled. The IDE is highly extensible;
additional tools can be plugged in through a simple scripting
approach. It is also tailorable, allowing various aspects of the program's
appearance to be customized in the editor.

Easy to learn, easy to use

GNAT Studio is intuitive to new users thanks to its menu-driven interface
with extensive online help (including documentation on all the
menu selections) and tool tips. The Project Wizard makes it simple to get
started, supplying default values for almost all of the project properties.
For experienced users, it offers the necessary level of control for
advanced purposes; e.g., the ability to run command scripts. Anything that
can be done on the command line is achievable through the menu interface.

Remote Programming

Integrated into GNAT Studio, Remote Programming provides a secure and
efficient way for programmers to access any number of remote servers
on a wide variety of platforms while taking advantage of the power and
familiarity of their local PC workstations.



3.7.2. VS Code Extensions for Ada and SPARK

AdaCore's extensions to Visual Studio Code (VS Code) enable Ada and SPARK
development with a lightweight editor, as an alternative to the full
GNAT Studio IDE. Functionality includes:


	Syntax highlighting for Ada and SPARK files


	Code navigation


	Error diagnostics (errors reported in the Problems pane)


	Build integration (execution of GNAT-based toolchains from within VS Code)


	Display of SPARK proof results (green/red annotations from GNATprove)


	Basic IntelliSense (completion and hover information for known symbols)






3.7.3. Eclipse Support – GNATbench

GNATbench is an Ada development plug-in for Eclipse and Wind River's Workbench
environment. The Workbench integration supports Ada development on a variety
of VxWorks real-time operating systems. The Eclipse version is primarily
for native applications, with some support for cross development. In both
cases the Ada tools are tightly integrated.



3.7.4. GNATdashboard

GNATdashboard serves as a one-stop control panel for monitoring and improving
the quality of Ada software. It integrates and aggregates the results of
AdaCore's various static and dynamic analysis tools (GNATmetric, GNATcheck,
GNATcoverage, SPARK Pro, among others) within a common interface, helping
quality assurance managers and project leaders understand or reduce
their software's technical debt, and eliminating the need for manual input.

GNATdashboard fits naturally into a continuous integration environment,
providing users with metrics on code complexity, code coverage,
conformance to coding standards, and more.




Footnotes



            

          

      

      

    

  

    
      
          
            
  
4. AdaCore Contributions to the Software Quality Assurance Plan

This chapter identifies AdaCore's tools and technologies that support the
techniques and measures defined in the EN 50128 Annex A tables
and that can be cited accordingly in the Software Quality Assurance Plan.
The information is presented in the form of annotations on the
relevant tables in Annex A. These annotations indicate whether a technique
or measure is covered by an AdaCore tool or technology and, if so, a
comment on how the tool or technology contributes is provided.

Summary of abbreviations:


	M   → Mandatory


	HR  → Highly Recommended


	R   → Recommended


	--- → Optional (neither Recommended nor Not Recommended)


	NR  → Not Recommended





4.1. Table A.3 – Software Architecture (7.3)

The Ada language and AdaCore technology do not provide support for software
architecture per se, but rather are more targeted towards software component
design. However, the presence of some capabilities at the lower level may
enable certain design decisions at a higher level. This table offers some
guidance on how that can be done.











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Defensive Programming

	D.14

	HR

	HR

	Yes

	Defensive programming is more a component or a programming activity than an architecture activity per se, but as it is recorded in this table, it's worth mentioning that the Ada language provides several features addressing various objectives of defensive programming techniques (e.g., exception handling). In addition, the GNAT Static Analysis Suite and SPARK tools help identify pieces of code that should be protected by defensive code.



	Fault Detection & Diagnosis

	D.26

	R

	R

	No

	


	Error Correcting Codes

	D.19

	—

	—

	No

	


	Error Detecting Codes

	D.19

	R

	HR

	No

	


	Failure Assertion Programming

	D.24

	R

	HR

	Yes

	The Ada language allows formalizing assertions and contracts in various places in the code.



	Safety Bag Techniques

	D.47

	R

	R

	No

	


	Diverse Programming

	D.16

	R

	HR

	Yes

	Using Ada along with another language and a different code generation technology can be used to contribute to the diverse programming argument.



	Recovery Block

	D.44

	R

	R

	No

	


	Backward Recovery

	D.5

	NR

	NR

	No

	


	Forward Recovery

	D.30

	NR

	NR

	No

	


	Retry Fault Recovery Mechanisms

	D.46

	R

	R

	No

	


	Memorising Executed Cases

	D.36

	R

	HR

	No

	


	Artificial Intelligence – Fault Correction

	D.1

	NR

	NR

	No

	


	Dynamic Reconfiguration of software

	D.17

	NR

	NR

	No

	


	Software Error Effect Analysis

	D.25

	R

	HR

	No

	


	Graceful Degradation

	D.31

	R

	HR

	No

	


	Information Hiding / Encapsulation

	D.33

	HR

	HR

	Yes

	The Ada language provides the necessary features to separate the interface of a module from its implementation and enforce this separation.



	Fully Defined Interface

	D.38

	HR

	M

	Yes

	The Ada language provides the necessary features to separate the interface of a module from its implementation and enforce this separation.



	Formal Methods

	D.28

	R

	HR

	Yes

	SPARK can be used to formally define architectural properties, such as data flow, directly in the code and provides the means to verify them.



	Modeling

	Table A.17

	R

	HR

	Yes

	Ada and SPARK allow defining certain modeling properties in the code and provide means to verify them.



	Structured Methodology

	D.52

	HR

	HR

	Yes

	Structured Methodology designs can be implemented with Ada.



	Modeling supported by computer aided design and specification tools

	Table A.17

	R

	HR

	No

	







4.2. Table A.4 – Software Design and Implementation (7.4)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Formal Methods

	D.28

	R

	HR

	Yes

	Component requirements and interfaces can be written in the form of formal boolean properties, using the Ada or SPARK languages. These properties are verifiable.



	Modeling

	Table A.17

	HR

	HR

	Yes

	Ada and SPARK allow defining certain modeling properties in the code and provide means to verify them.



	Structured methodology

	D.52

	HR

	HR

	Yes

	Structured Methodology designs can be implemented with Ada.



	Modular Approach

	D.38

	M

	M

	Yes

	A module can be represented as an Ada package, with a cohesive and well-defined functionality, a clear external interface in the visible part of the package spec, a private part whose visibility is limited to to its child units, and a body containing the implementation (which is only visible to its subunits).



	Components

	Table A.20

	HR

	HR

	Yes

	A component can be defined as a set of Ada packages, which can clearly define the interface to access the internal data, and the interfaces can be fully and unambiguously defined. This set of packages is typically identified within a project file (GPR file) and can be put into a version control system.



	Design and Coding Standards

	Table A.12

	HR

	M

	Yes

	There are available references for the coding standard. Verification can be automated in different ways: the GNAT compiler can define base coding standard rules to be checked at compile-time, with GNATcheck implementing a wider range of rules.



	Analyzable Programs

	D.2

	HR

	HR

	Yes

	The Ada language provide native features to improve program analysis, such as type ranges, parameter modes, and encapsulation. Tools such as GNATmetric and GNATcheck can help monitor the complexity of the code and prevent the use of overly complex code. GNAT SAS allows making an assessment of program analyzability during its development. For higher SILs, the use of SPARK ensures that the subset of the language used is suitable for most the rigorous analysis.



	Strongly Typed Programming Language

	D.49

	HR

	HR

	Yes

	Ada is a strongly typed language.



	Structured Programming

	D.53

	HR

	HR

	Yes

	Ada supports all the usual paradigms of structured programming. In addition, GNATcheck can control additional design properties, such as explicit control flows, where subprograms have single entry and single exit points, and structural complexity is reduced.



	Programming Language

	Table A.15

	HR

	HR

	Yes

	Ada can be used for most of the development, while facilitating interfacing to other languages such as C or assembly.



	Language Subset

	D.35

	—

	HR

	Yes

	Ada is designed to support subsetting, possibly under the control of specific runtimes, GNATcheck, or with SPARK. Another possibility is to follow the recommendations in [].



	Object-Oriented Programming

	Table A.22, D.57

	R

	R

	Yes

	If needed, Ada supports all the usual paradigms of object-oriented programming, in addition to safety-related features such as the Liskov Substitution Principle.



	Procedural Programming

	D.60

	HR

	HR

	Yes

	Ada supports all the usual paradigms of procedural programming.



	Metaprogramming

	D.59

	R

	R

	No

	







4.3. Table A.5 – Verification and Testing (6.2 and 7.3)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Formal Proof

	D.29

	R

	HR

	Yes

	When Ada pre- and post-conditions are used, together with the SPARK subset of the language, formal methods can formally verify compliance of the implementation with these contracts.



	Static Analysis

	Table A.19

	HR

	HR

	Yes

	See Table A.19



	Dynamic Analysis and Testing

	Table A.13

	HR

	HR

	Yes

	See Table A.13



	Metrics

	D.37

	R

	R

	Yes

	GNATmetric can compute and report metrics, such as code size, comment percentage, cyclomatic complexity, unit nesting, and loop nesting. These can then be compared with standards.



	Traceability

	D.58

	HR

	M

	No

	


	Software Error Effect Analysis

	D.25

	R

	HR

	Yes

	GNAT Studio supports code display and navigation. GNAT SAS can identify likely error locations in the code. This supports potential software error detection and analysis throughout the code.



	Test Coverage for code

	Table A.21

	HR

	HR

	Yes

	See Table A.21



	Functional / Black-Box Testing

	Table A.14

	HR

	HR

	Yes

	See Table A.14



	Performance Testing

	Table A.18

	HR

	HR

	No

	


	Interface Testing

	D.34

	HR

	HR

	Yes

	Ada's strong typing, together with its contract-based programming support, provides increased assurance to demonstrate that the software interfaces are correct. This can help improve software-to-software integration testing.








4.4. Table A.6 – Integration (7.6)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Functional and Black-box testing

	Table A.14

	HR

	HR

	Yes

	GNATtest can generate a framework for testing.



	Performance Testing

	Table A.18

	R

	HR

	Yes

	Stack consumption can be statically computed using the GNATstack tool.








4.5. Table A.7 – Overall Software Testing (6.2 and 7.7)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Performance Testing

	Table A.18

	HR

	M

	Yes

	Stack consumption can be statically computed using the GNATstack tool.



	Functional and Black-box Testing

	Table A.14

	HR

	M

	Yes

	GNATtest can generate a testing framework for testing.



	Modeling

	Table A.17

	R

	R

	No

	







4.6. Table A.8 – Software Analysis Techniques (6.3)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Static Software Analysis

	D.13, D.37, Table A.19

	HR

	HR

	Yes

	See Table A.19.



	Dynamic Software Analysis

	Tables A.13, A.14

	R

	HR

	Yes

	See Tables A.13 and A.14.



	Cause Consequence Diagrams

	D.6

	R

	R

	No

	


	Event Tree Analysis

	D.22

	R

	R

	No

	


	Software Error Effect Analysis

	D.25

	R

	HR

	Yes

	GNAT Studio supports code display and navigation. GNAT SAS can identify likely error locations in the code. These tools support both detection of potential software errors and analysis throughout the code.








4.7. Table A.9 – Software Quality Assurance (6.5)

Although AdaCore doesn't directly provide services for ISO 9001
or configuration management, it follows standards to enable
tool qualification and/or certification. The following table
only lists items that can be useful to third parties.











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Accredited to EN ISO 9001

	7.1

	HR

	HR

	No

	


	Compliant with EN ISO 9001

	7.1

	M

	M

	No

	


	Compliant with ISO/IEC 90003

	7.1

	R

	R

	No

	


	Company Quality System

	7.1

	M

	M

	No

	


	Software Configuration Management

	D.48

	M

	M

	No

	


	Checklists

	D.7

	HR

	M

	No

	


	Traceability

	D.58

	HR

	M

	No

	


	Data Recording and Analysis

	D.12

	HR

	M

	Yes

	The data produced by tools can be written to files and placed under configuration management.








4.8. Table A.10 – Software Maintenance (9.2)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Impact Analysis

	D.32

	HR

	M

	Yes

	GNAT SAS contributes to identifying the impact of a code change between two baselines.



	Data Recording and Analysis

	D.12

	HR

	M

	Yes

	AdaCore tools can be invoked from the command line. They produce result files including the date and version of the tool used.








4.9. Table A.11 – Data Preparation Techniques (8.4)











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Tabular Specification Methods

	D.68

	R

	R

	Yes

	Tables of data can be expressed using the Ada language, together with type-wide contracts (predicates or invariants).



	Application specific language

	D.69

	R

	R

	No

	


	Simulation

	D.42

	HR

	HR

	No

	


	Functional testing

	D.42

	M

	M

	No

	


	Checklists

	D.7

	HR

	M

	No

	


	Fagan inspection

	D.23

	HR

	HR

	No

	


	Formal design reviews

	D.56

	HR

	HR

	Yes

	GNAT Studio can display code and navigate through the code as a support for walkthrough activities.



	Formal proof of correctness

	D.29

	—

	HR

	Yes

	When contracts are expressed within the SPARK subset, their correctness can be formally verified.



	Walkthrough

	D.56

	R

	HR

	Yes

	GNAT Studio can display code and navigate through the code as a support for walkthrough activities.








4.10. Table A.12 – Coding Standards

There are available references for coding standards. Their verification
can be automated through different ways: the GNAT compiler can define
base coding standard rules to be checked at compile time, and
GNATcheck implements a wider range of rules and is tailorable to support
project-specific coding standards.











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Coding Standard

	D.15

	HR

	M

	Yes

	GNATcheck allows implementing and verifying a coding standard.



	Coding Style Guide

	D.15

	HR

	HR

	Yes

	GNATcheck allows implementing and verifying a coding style guide.



	No Dynamic Objects

	D.15

	R

	HR

	Yes

	GNATcheck can forbid the use of dynamic objects.



	No Dynamic Variables

	D.15

	R

	HR

	Yes

	GNATcheck can forbid the use of dynamic variables.



	Limited Use of Pointers

	D.15

	R

	R

	Yes

	GNATcheck can forbid the use of pointers or force justification of their usage.



	Limited Use of Recursion

	D.15

	R

	HR

	Yes

	GNATcheck can forbid the use of recursion or force justification of their usage.



	No Unconditional Jumps

	D.15

	HR

	HR

	Yes

	GNATcheck can forbid the use of unconditional jumps.



	Limited size and complexity of Functions, Subroutines and Methods

	D.38

	HR

	HR

	Yes

	GNATmetric can compute complexity measures, and GNATcheck can report excessive complexity.



	Entry/Exit Point strategy for Functions, Subroutines and Methods

	D.38

	HR

	HR

	Yes

	GNATcheck can verify rules related to exit points.



	Limited number of subroutine parameters

	D.38

	R

	R

	Yes

	GNATcheck can limit the number of parameters for subroutines and report when that number is exceeded.



	Limited use of Global Variables

	D.38

	HR

	M

	Yes

	GNATcheck can flag global variable usage and enforce their justification. SPARK forbids function side effects and enforces documentation and verification of uses of global variables. GNAT Studio allows analyzing usage of global variables.








4.11. Table A.13 – Dynamic Analysis and Testing











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Test Case Execution from Boundary Value Analysis

	D.4

	HR

	HR

	Yes

	GNATtest can generate and execute a testing framework for tests written by developers from requirements.



	Test Case Execution from Error Guessing

	D.20

	R

	HR

	Yes

	GNAT fuzz can automate the generation of large numbers of test cases at a high frequency.



	Test Case Execution from Error Seeding

	D.21

	R

	HR

	No

	


	Performance Modeling

	D.39

	R

	HR

	No

	


	Equivalence Classes and Input Partition Testing

	D.18

	R

	HR

	Yes

	Ada and SPARK provide specific features for partitioning function input and verifying that this partitioning is well formed (i.e., no overlap and no gaps).



	Structure-Base Testing

	D.50

	R

	HR

	Yes

	See Table A.21



	
	
	
	
	
	







4.12. Table A.14 – Functional/Black Box Test

GNATtest can generate and execute a testing framework,
with the actual tests being written by developers from requirements.











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Test Case Execution from Cause Consequence Diagrams

	D6

	—

	R

	No

	


	Prototyping/ Animation

	D.43

	—

	R

	No

	


	Boundary Value Analysis

	D.4

	R

	HR

	Yes

	GNATtest can be used to implement tests coming from boundary value analysis.



	Equivalence Classes and Input Partitioning Testing

	D.18

	R

	HR

	Yes

	Ada and SPARK provide specific features for partitioning function input and verifying that this partitioning is well formed (i.e., no overlap and no gaps).



	Process Simulation

	D.42 R

	R

	No

	
	


	
	
	
	
	
	







4.13. Table A.15 – Textual Programming Language










	Technique/Measure

	SIL 2

	SIL 3/4

	Covered

	Comment





	Ada

	HR

	HR

	Yes

	GNAT Pro tools support all versions of the Ada language.



	MODULA-2

	HR

	HR

	No

	


	PASCAL

	HR

	HR

	No

	


	C or C++

	R

	R

	Yes

	GNAT Pro for C and GNAT Pro for C++ support these languages



	PL/M

	R

	NR

	No

	


	BASIC

	NR

	NR

	No

	


	Assembler

	R

	R

	No

	


	C#

	R

	R

	No

	


	Java

	R

	R

	No

	


	Statement List

	R

	R

	No

	







4.14. Table A.17 – Modeling











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Data Modeling

	D.65

	R

	HR

	Yes

	Ada allows modeling data constraints, in the form of type predicates.



	Data Flow Diagram

	D.11

	R

	HR

	Yes

	SPARK allows defining data flow dependencies at subprogram specification.



	Control Flow Diagram

	D.66

	R

	HR

	No

	


	Finite State Machine or State Transition Programs

	D.27

	HR

	HR

	No

	


	Time Petri Nets

	D.55

	R

	HR

	No

	


	Decision/Truth Tables

	D.13

	R

	HR

	No

	


	Formal Methods

	D.28

	R

	HR

	Yes

	SPARK allows defining formal properties on the code that can be verified by the SPARK toolset.



	Performance Modeling

	D.39

	R

	HR

	No

	


	Prototyping/Animation

	D.43

	R

	R

	No

	


	Structure Diagrams

	D.51

	R

	HR

	No

	


	Sequence Diagrams

	D.67

	R

	HR

	No

	


	
	
	
	
	
	







4.15. Table A.18 – Performance Testing











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Avalanche/Stress Testing

	D.3

	R

	HR

	No

	Ada allows modeling data constraints, in the form of type predicates.



	Response Timing and Memory Constraints

	D.45

	HR

	HR

	Yes

	GNATstack can statically analyze stack usage.



	Performance Requirements

	D.40

	HR

	HR

	No

	


	
	
	
	
	
	







4.16. Table A.19 – Static Analysis











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Boundary Value Analysis

	D.4

	R

	HR

	Yes

	GNAT SAS can compute boundary values for variables and parameters from the source code. GNAT SAS and SPARK can verify various properties by analyzing potential values and boundary values of variables. This includes detecting errors such as dereferencing a pointer that could be null, generating a value outside the bounds of an Ada type or subtype, violating a memory safety constraint (buffer overrun), generating a numeric overflow or wraparound, and dividing by zero. GNAT SAS and SPARK also help to confirm expected boundary values of variables and parameters coming from the design.



	Checklists

	D.7

	R

	R

	No

	


	Control Flow Analysis

	D.8

	HR

	HR

	Yes

	GNAT SAS and SPARK can detect suspicious and potentially incorrect control flows, such as unreachable code, redundant conditionals, loops that either run forever or fail to terminate normally, and subprograms that never return. GNATstack can analyze control flow and compute the maximum amount of stack memory for each task. More generally, GNAT Studio provides visualization for call graphs and call trees.



	Data Flow Analysis

	D.10

	HR

	HR

	Yes

	GNAT SAS and SPARK can detect suspicious and potentially incorrect data flow, such as variables being read before they are written (uninitialized variables), and values that are written to variables without being read (redundant assignments).



	Error Guessing

	D.20

	R

	R

	Yes

	Although realized through dynamic rather than static analysis, GNAT fuzz can automatically generate test cases to support Error Guessing.



	Walkthroughs/Design Reviews

	D.56

	HR

	HR

	Yes

	GNAT Studio can display and navigate the code, supporting walkthrough activities.








4.17. Table A.20 – Components











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Information Hiding

	D.33

	—

	—

	Yes

	See Information Encapsulation below.



	Information Encapsulation

	D.33

	HR

	HR

	Yes

	Ada provides the necessary features to separate the interface of a module from its implementation, and enforce this separation.



	Parameter Number Limit

	D.38

	R

	R

	Yes

	GNATcheck can limit the number of parameters for subroutines, and report violations.



	Fully Defined Interface

	D.38

	HR

	M

	Yes

	Ada offers many features to support interface definition, including behavior specification through pre- and post-conditions.








4.18. Table A.21 – Test Coverage for Code











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Statement

	D.50

	HR

	HR

	Yes

	GNATcoverage provides statement-level coverage capabilities.



	Branch

	D.50

	R

	HR

	Yes

	GNATcoverage provides branch-level coverage capabilities.



	Compound Condition

	D.50

	R

	HR

	Yes

	GNATcoverage provides MC/DC (Modified Condition/Decision Coverage) capabilities, which can be used as an efficient alternative to Compound Condition coverage.



	Data Flow

	D.50

	R

	HR

	No

	


	Path

	D.50

	R

	NR

	No

	


	
	
	
	
	
	







4.19. Table A.22 – Object Oriented Software Architecture











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Traceability of the concept of the application domain to the classes of the architecture

	—

	R

	HR

	No

	


	Use of suitable frames, commonly used combinations of classes and design patterns

	—

	R

	HR

	Yes

	The conventional OO design patterns can be implemented in Ada.



	Object Oriented Detailed Design

	Table A.23

	R

	HR

	Yes

	See Table A.23



	
	
	
	
	
	







4.20. Table A.23 – Object Oriented Detailed Design











	Technique/Measure

	Ref

	SIL 2

	SIL 3/4

	Covered

	Comment





	Class should have only one objective

	—

	R

	HR

	Yes

	It's possible in Ada to write classes with a unique objective.



	Inheritance used only if the derived class is a refinement of its basic class

	—

	HR

	HR

	Yes

	Ada and SPARK can enforce respecting the Liskov Substitution Principle, ensuring inheritance consistency.



	Depth of inheritance limited by coding standards

	—

	R

	HR

	Yes

	GNATcheck can limit inheritance depth.



	Overriding of operations (methods) under strict control

	—

	R

	HR

	Yes

	Ada can enforce explicit syntax for overriding methods.



	Multiple inheritance used only for interface classes

	—

	HR

	HR

	Yes

	Ada only allows multiple inheritance from interfaces.



	Inheritance from unknown classes

	—

	—

	NR

	Yes

	Ada only allows inheritance from known classes.








Footnotes



            

          

      

      

    

  

    
      
          
            
  
5. Technology Usage Guide

This chapter explains how AdaCore's tools and technologies support a variety
of techniques from Annex D.


5.1. Analyzable Programs (D.2)

The Ada language has been designed to increase program specification
expressiveness and verification. Explicit constraints at the code level
can be used as the basis of both manual analysis (inspection), such as
code reviews, and automatic analysis, ranging from the compiler's
semantic consistency checks to the SPARK tools' formal proof of
program properties.

Examples of Ada language features supporting analysis include:


	type and subtype ranges and predicates


	parameter modes and subprogram contracts


	packages and private types (encapsulation)


	the Ravenscar concurrency profile


	minimal set of implicit or undefined behaviors




Tools such as GNATmetric and GNATcheck allow monitoring the complexity
and quality of the code and identifying potentially problematic constructs.
This is accomplished through techniques such as basic code size metrics,
cyclomatic complexity computation, and coupling analysis.

GNAT SAS identifies potential run-time errors in the code. The number of
false positive results depends on the code complexity. A high number of
false positives is often a symptom of overly-complicated code. Using GNAT SAS
during development allows finding locations in the code that are
overly complex and provides information on what needs to be improved.

The SPARK language is much more ambitious in analyzing programs, at the
extreme supporting full correctness proofs against formally specified
requirements.
It structurally forbids features such as exceptions, which complicate or
prevent formal analysis.
Code that is hard to analyze is often hard to understand and maintain,
and conversely.
Using SPARK as part of the development phase thus results in code that is
not only maximally analyzable but also clear and readable.

During code review phases, GNAT Studio offers a variety of features that can
be used for program analysis, in particular call graphs, reference searches,
and other code organization viewers.



5.2. Boundary Value Analysis (D.4)

The objective of this technique is to verify and test the behavior of a
subprogram at the limits and boundaries values of its parameters.
AdaCore's technologies can provide complementary assurance on the quality
of this analysis and potentially decrease the number of tests that need
to be performed.

Ada's strong typing allows refining types and variables boundaries.
For example:

type Temperature is new Float range -273.15 .. 1_000;
V : Temperature;





Additionally, it's possible to define the specific behavior of values at
various locations in the code. For example, it's possible to define
relationships between the input and output of a subprogram, in the form
of a partitioning of the input domain:

function Compute (J : Integer) return Integer
   with Contract_Cases => (J = Integer'First => Compute'Result = -1,
                           J = Integer'Last  => Compute'Result = 1,
                           others            => J - 1);





The above shows an input partition of one parameter (but it can also be a
combination of several parameters). The behavior on the boundaries of J
is specified and can then either be tested (for example, with enabled
assertions) or formally proven with SPARK. Further discussion of input
partitioning can be found in the context of
Equivalence Classes and Input Partition Testing (D.18).

Another possibility is to use GNAT SAS to identify possible values for
variables, and propagate those values from call to call, constructing
lists and/or ranges of potential values for each variable at each point
of the program. These are used as the input to run-time error analysis.
When used in full-soundness mode, GNAT SAS provides guarantees that the
locations it reports on the code are the only ones that may have run-time
errors, thus allowing a reduction of the scope of testing and review to
only these places.

However, it's important to stress that GNAT SAS is only performing this
boundary value analysis with respect to potential exceptions and robustness.
No information is provided regarding the correctness of the values
produced by subprograms.

GNAT SAS also has the capacity to display the possible values of variables
and parameters. This can be used as a mechanism to increase confidence
that testing has taken into account all possible boundaries for values.

SPARK has the ability to perform similar absence of run-time errors (AORTE)
analysis, thus reaching the same objectives. In addition to the above,
when requirements can be described in the form of boolean contracts,
SPARK can demonstrate correctness of the relation between input and output
on the entire range of values.



5.3. Control Flow Analysis (D.8)

Control flow analysis requires identifying poor and incorrect data structures,
including unreachable code and useless tests in the code (such as conditions
that are always true).

GNAT Studio can display call graphs between subprograms, allowing
visualization and analysis of control flow in the application.

GNAT SAS contributes to control flow analysis by identifying unreachable code,
as well as conditions being always true or always false. This analysis is
partial and needs to be completed with other techniques such as code review or
code coverage analysis, which together will allow reaching higher levels of
confidence.

GNATmetric can compute coupling metrics between units, helping to identify
loosely or tightly coupled units.

GNATstack computes worst-case stack consumption based on the application's
call graph. This can help identify poorly structured code which consumes
too much memory on some sequences of calls.



5.4. Data Flow Analysis (D.10)

The GNAT Pro toolchain can be configured to detect uninitialized variables
at run-time through the use of the pragma Initialize_Scalars.
With this pragma, all scalars are automatically initialized to either an
out-of-range value (if there is one) or to an unusual value (either
the largest or smallest).
This significantly improves detection at test time.

GNAT SAS can detect suspicious and potentially incorrect data
flows, such as variables that are read before they are written
(uninitialized variables), variables written more than once without being
read (redundant assignments), and variables that are written but never read.
This analysis is partial and needs to be completed with other techniques
such as formal proof, code review or code coverage analysis, which together
allow reaching higher levels of confidence.

SPARK performs this analysis and much more, allowing the specification
and verification of data flow. This is used in the following activities:


	verification that all inputs and outputs have been specified,
including possible side effects


	verification that all dependencies between inputs and outputs are specified


	verification that the implemented dataflow corresponds to the one specified




Here's an example:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)
   with Depends => (R1 => (A, B),
                    R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin
   R1 := A + B;
   R2 := A + B - C;
end Compute;





R1 is required to be computed from A and B, and R2
from B and C. However, in the procedure body, R2 also
depends on A. SPARK's formal proof detects this error.

The error is likewise detected in the presence of branches:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin
   R1 := A + B;
   if A = 0 then
      R2 := B + C;
   else
      R2 := B - C;
   end if;
end Compute;





Here R2 depends on the result of the expression A = 0,
so its value is actually computed from
A, B and C, and not just B and C.
As in the previous case, SPARK's formal analysis detects the error.

A similar result occurs when the dependence is indirect, through a subprogram
call.
Here's an example based on a logging procedure that has a global state,
Screen, which is written to by the procedure:

procedure Log (V : String)
   with Global  => (Output => Screen),
        Depends => (Screen => V)

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)
  with Depends => (R1 => (A, B),
                   R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin
   R1 := A + B;
   R2 := B + C;

   if A = 0 then
      Log ("A is 0");
   end if;
end Compute;





The data flow does not correspond to the specification: Compute should
specify that it modifies Screen. So the incorrect code is detected.
The error is detected whether or not a branch is present, serving as a useful
complement to structural code coverage in many cases.



5.5. Defensive Programming (D.14)

As stated in sub-clause D.14, the goal of defensive programming is to
"detect anomalous control flow, data flow, or data values ... and react to them in a predetermined and acceptable manner".

Ada's strong typing will avoid the need for many situations where constraints
would be expressed in the form of defensive code. However, in some situations
strong typing is not enough. This can be the case, for example, when accessing
an element of an array. In this case, Ada allows expressing constraints in the
specification, through preconditions, postconditions or predicates.

Beyond this, Ada provides specific support for a subset of what's specified
in the D.14 annex. GNAT SAS and SPARK will allow the development of defensive
programming in places where it makes the most sense.

Specific defensive code rules can also be defined in the coding standard and
their verification can then be automated through code analysis using,
for example, GNATcheck.


5.5.1. Data should be range checked

Ada offers types and subtypes that are naturally associated with ranges, e.g.:

subtype Percent is Integer range 0 .. 100;
-- Percent is the same type as Integer but with a run-time constraint on its range

X, Y : Integer;
V    : Percent;
...
V := X + Y; -- Raises exception Constraint_Error if X + Y is not in 0 .. 100
...





It's then the task of the developer to react to potential exceptions.
Alternatively, it's possible to write explicit verification in the code to
ensure that the expression is within its boundary:

V_Int : Integer;
V_Pct : Percent;
...
V_Int := X+Y;
if V_Int in Percent then
   V_Pct := V_Int;
else
  ... -- Respond to out-of-range result
end if;





Another way to proactively ensure the absence of range check failure is
to use tools such as GNAT SAS or SPARK, which statically identify the
only possible locations in the code where such failures can happen.

Note that run-time checks can be deactivated if needed for performance
reasons, for example once thorough testing or formal proof has been
performed.



5.5.2. Data should be dimension-checked

The GNAT Pro compiler provides a language extension for dimensional
consistency analysis, which ensures that variables are properly typed
according to their dimension. The system is implemented based on the
seven base dimensions (meter, kilogram, second, ampere, kelvin, mole,
candela), and will check that operations between these types are
consistent.
For example, a type Speed can be defined to represent time per
distance. Consistency between these types is checked at compile time
so that dimension errors will be reported as errors. For example:

D       : Distance := 10;
T       : Time     := 1;
S       : Speed    := D / T; -- OK
My_Time : Time     := 100;
...
Distance_Traveled := S / My_Time;
-- Error, resulting dimension is Distance / Time**2
-- The expression should be S * My_Time







5.5.3. Read-only and read-write parameters should be separated and their access checked

In Ada, the parameter mode is specified in parameter specifications and
is checked by the compiler. For example, a read-only parameter is passed as
mode in and may not be modified. A read-write parameter is passed
either as mode in out or as mode out and is modifiable.
(The out mode is appropriate if the parameter is written before being
read). The compiler will produce an error for
an attempted modification of in parameters and detect when an
in out or out parameter is not modified and so could have been
passed as in. For example:

procedure P (V : in Integer) is
begin
   V := 5; -- ERROR, V is mode "in"
end P;








5.6. Functions should treat all parameters as read-only

The original version of Ada required that functions could only have in
parameters.
This restriction was relaxed in a later version of the standard,
but the original behavior can be reverted through a GNATcheck rule.
The SPARK Ada subset forbids functions with writable (i.e., out or
in out parameters).


5.6.1. Literals and constants should not be write-accessible

Ada provides many kinds of literals (e.g. numeric, character, enumeration,
string) and allows declaring constants of any type
but ensures that their values can not be updated.

type Color is (Red, Blue, Green);
Answer    : constant Integer := 42;
One_Third : constant         := 1.0 / 3.0;
Greeting  : String           := "Hello";





The literals and constants are read-only as per language definition.
For example, trying to pass Red or Answer to a subprogram
as an out or in out parameter would be illegal.
Note that Greeting is a variable and can be assigned to, but
the literal "Hello" is immutable.



5.6.2. Using GNAT SAS and SPARK to drive defensive programming

GNAT SAS and SPARK identify locations where there are potential run-time
errors — in other words, places where code is either wrong or where
defensive programming should be deployed. This helps guide the writing
of defensive code. For example:

procedure P (S : String; V : Integer) is
   C : Character;
begin
   ...
   C := S (V);
   ...
end P;





In the above code, there's a use of V as an index into the
String S.
GNAT SAS and SPARK will detect the potential for a run-time error. Protection
of the code to prevent the error can take several forms:

Explicit test

The application code checks that V is in range before using its
value as an index into the String. If the check fails, the appropriate
recovery action can be taken (here the procedure simply returns).

procedure P (S : String; V : Integer) is
   C : Character;
begin
   ...
   if V not in S'Range then
      return;
   end if;
   C := S (V)
   ...
end P;





Precondition

Here the error is detected at call time. If assertion checking is
enabled and the check fails, the Assertion_Check exception
is raised.

procedure P (S : String; V : Integer)
   with Pre => V in S'Range
is
   C : Character;
begin
   ...
   C := S (V);
   ...
end P;





The main difference between GNAT SAS and SPARK is that GNAT SAS may miss some
potential run-time errors (except when run only on small pieces of code if
configured in "sound" mode), while SPARK requires the use of the appropriate
Ada subset but is a sound technology (i.e., it will detect all potential
run-time errors).

In general, the recommended Ada style is to use contracts instead of defensive
code.




5.7. Coding Standards and Style Guide (D.15)

A coding standard can be defined using a combination of predefined rules
(using GNAT options and GNATcheck rules) and appropriate arguments to
pragma Restrictions.



5.8. Equivalence Classes and Input Partition Testing (D.18)

This technique involves partitioning the various potential inputs to
subprograms and creating a testing and verification strategy based on
this partitioning.

Ada extensions included in GNAT Pro for Ada can support partitioning at the
source code level. The partition is a list of conditions for inputs together
with their associated expected output, verifying the following criteria:


	The full set of all potential values is covered


	There is no overlap between partitions




These criteria can be verified either dynamically, by verifying at
test time that all inputs exercised fall into one and only one partition,
or formally by SPARK, proving that the partition are indeed complete
and disjoint.

Here's a simple example of such partitioning with two input variables:

function ArcTan (X, Y : Float) return Float with
   Contract_Cases =>
      (X >= 0 and Y >= 0 => ArcTan'Result >= 0        and ArcTan'Result <= PI/2,
       X <  0 and Y >= 0 => ArcTan'Result >= PI/2     and ArcTan'Result <= PI,
       X <  0 and Y < 0  => ArcTan'Result >= PI       and ArcTan'Result <= 3 * PI/2,
       X >= 0 and Y < 0  => ArcTan'Result >= 3 * PI/2 and ArcTan'Result <= 2 * PI);





The presence of these contracts enable further verification. At run time,
they act as assertions and allow verification that the form of the output
indeed corresponds to the expected input. If SPARK is used, it's possible
to formally verify the correctness of the relation between the input and
properties.



5.9. Error Guessing (D.20)

The GNATfuzz tool for fuzz testing (part of the GNAT Dynamic Analysis Suite)
supports the Error Guessing technique and can provide evidence for a system's
robustness.
GNATfuzz exercises a program with a large number of automatically generated
test values, often random or malformed, and checks for crashes, hangs,
and other anomalous behavior.



5.10. Failure Assertion Programming (D.24)

Ada offers a large variety of assertions (contracts) that can be defined
in the code, either through pragmas or aspects.


	Pragma Assert

This pragma allows verification within a sequence of statements:

A := B + C;
pragma Assert (A /= 0);
D := X / A;







	Pre- and postcondition contracts

Pre- and postconditions can be defined as subprogram aspects:

procedure Double (X : in out Integer)
   with Pre  => X < 100,
        Post => X = X'Old * 2;







	Predicates and invariants

Predicate and invariant contracts can be defined on types:

type Even is new Integer
with Dynamic_Predicate => Even mod 2 = 0;









These contracts can be checked dynamically, for example, during testing.
The developer has fine control over which contracts can be removed
(e.g. for improved performance) and which should remain in the deployed
software.

The contracts can be used by the static analysis and formal proof tools.
GNAT SAS uses contracts to refine its analysis and exploits them as
assertions, even if it may not be able to demonstrate that they are correct.
In this manner, contracts provide the tool with additional information
on the code behavior. SPARK can go further and either prove their
correctness, or else report its inability to do so.  (In the latter case,
the issue is either that the contract or the code is incorrect, or that
the proof engine is not powerful enough to construct a proof.)



5.11. Formal Methods (D.28)

With SPARK, formal methods are used to define and check certain architectural
properties, in particular for data coupling specification and verification.
For example:

G : Integer;

procedure P (X, Y : Integer)
with Global => (Output => G),
     Depends => (G => (X, Y));





In the above example, the side effect of the subprogram is fully defined:
P is modifying G. SPARK will check that this side effect,
and no other, is present. G is specified as depending on the values
of X and Y. Again, SPARK will analyze the code to check that
the variable relationships specified are correct.

In this example, an actual variable is used to define data flow.
It's also possible to create an abstract state, implemented by a set of
variables. Generally speaking, although these notations and verifications
are quite useful on the lower levels of the architecture, they may not be
that pertinent at higher levels. SPARK is flexible with regard to where
this should be checked or and where it should not.

At the lower level of the design phases, some properties and requirements
can be refined or specified in the form of boolean expressions.
SPARK will allow expressing these properties, including the formalism of
first-order logic (quantifiers). These properties can be expressed in the
form of subprogram preconditions, postconditions, type invariants and type
predicates. For example:

-- P must have an input greater or equal to 10, and then has to modify V.
procedure P (V : in out Integer)
with Pre  => V     >= 10,
     Post => V'Old /= V;

-- Variables of type Even must be even
type Even is new Integer
with Dynamic_Predicate => Even mod 2 = 0;

-- Arrays of this type are always sorted in ascending order
type Sorted_Array is array (Integer range <>) of Integer
with Dynamic_Predicate =>
   Sorted_Array'Size <= 1 or else
   (for all I in Sorted_Array'First .. Sorted_Array'Last - 1 =>
       Sorted_Array (I) <= Sorted_Array (I + 1));





These properties can be formally verified through the SPARK toolset, using
state of the art theorem proving methodologies. Testing aimed at verifying
the correctness of these properties can then be simplified, if not entirely
removed.



5.12. Impact Analysis (D.32)

Identifying the effect of a change on entire software component requires
the combination of various techniques, including reviews, testing and static
analysis. GNAT SAS has specific features to identify the impact of a change
from the perspective of potential run-time errors. It can establish a baseline
with regard to potential failure analysis and filter only the potential
defects that have been introduced or repaired following a change in the code.

GNAT Studio can provide call graphs and call trees, allowing the developer
to see how a function is called in the software. This can be directly used
in impact analysis.



5.13. Information Encapsulation (D.33)

Information encapsulation is good software engineering practice,
enforcing access to data on a "need to know" basis and preventing
hard-to-detect bugs from erroneous updates to global variables.
Encapsulation has been intrinsic to the Ada design since the earliest
version of the language and is embodied in the syntax and semantics
of a variety of language features.

Ada's approach to encapsulation achieves similar methodological benefits to
Object-Oriented Programming, but with a different syntax.
In most OO languages, a class is both a type (which can be
instantiated to produce objects) and a module (which can
be separately compiled). Ada separates these concepts,
modeling a class by a type (typically a private type, as will
be shown below) defined with a package (the main unit of
modularization in Ada).

Separation of specification and body

The various program units in Ada — packages, tasks, subprograms,
generic templates — have a structure that supports the separation of
the unit's specification (its interface to other units) and its
implementation (inaccessible externally).
This physical separation not only supports encapsulation but also
facilitates independent development of the two parts. For example,
a package specification can be produced during the detailed design
phase, with the body fleshed out later, perhaps by a different
developer, during the implementation phase.

Package structure

A package comprises at least a specification and, if necessary,
a body that implements the subprograms and other entities whose
specifications are in the package specification.
The package specification in general consists of a visible part
and a private part. In a typical scenario, the visible part declares
a type as private, along with subprogram specifications
for the operations that are relevant to that type.
The type and operations form the interface for that type.
The private part of the package specification then provides
the full declaration of the type, and the package body supplies
the bodies for the subprograms defined for the type.

External to the package, the type name and the operations
defined for the type are accessible, but the representational details
for the full type declaration are hidden.
This allows the designer of the package to modify the representation
of the type during development or maintenance, without requiring
source code changes to client code.
This principle is sometimes referred to as data abstraction.
Here is an example:

package Counters is
   type Counter is private;
   --  We don't want to give access to the representation of the counter here

   procedure Increment (C : in out Counter);
   procedure Print (C : in out Counter);

private

   type Counter is new Integer;
    -- Here, Counter is an Integer, but it could change to something
    -- else if needed without disturbing the interface.
end Counters;

with Ada.Text_IO;
package body Counters is
   procedure Increment (C : in out Counter) is
   begin
      C := C + 1;
   end Increment;

   procedure Print (C : in out Counter) is
   begin
      Ada.Text_IO.Put_Line (C'Img);
   end Print;
end Counters;





As a variation on this example, Ada supports encapsulation through
getter and setter subprograms.
Rather than directly manipulating a global variable declared in a
package specification, the program can be structured to enforce
accesses through a procedural interface:

package Data is
   function Value return Integer;       -- "Getter" function
   procedure Set (New_Value : Integer); -- "Setter" procedure
end Data;

package body Data is
   Global : Integer := 0;

   function Value return Integer is
   begin
      return Global;
   end Value;

   procedure Set (New_Value : Integer) is
   begin
      Value := New_Value;
   end Set;
end Data;





Concurrency

Both of Ada's tasking constructs — the task and the protected object
— enforce encapsulation.


	A task object or task type specification defines its interface
(its entries, which are used for synchronization and communication), and its
body defines the implementation.


	A protected object or protected type specification defines its interface
(entries and procedures, which are executed with mutual exclusion),
and its body defines the implementation.
The private part of a protected object/type specification
encapsulates the data that is being protected: it can only be accessed
externally through the entries and procedures that it defines.




Representation clauses

As another form of encapsulation,
Ada's representation clause facility
separates an entity's logical properties —
its interface to client code — and its representation.
For example:

type Alert is (Low, Medium, High);

type Packet is record
  Flag :   Boolean;
  Danger : Alert;
  Data :   Interfaces.Unsigned_8;
end record;

Byte : constant := 8;

for Alert use (Low => 0, Medium => 5, High => 10);
for Alert'Size use 4;

for Packet use record
   Flag   at 0*Byte range 3 .. 3;  -- Bits 1..2 are unused
   Danger at 0*Byre range 4 .. 7;
   Data   at 1*Byte range 0 .. 7;
end Packet;
for Packet'Size use 2*Byte;







5.14. Interface Testing (D.34)

Ada allows extending the expressiveness of an interface specification
at the code level, allowing constraints such as:


	parameter passing modes


	pre- and postconditions


	input partitioning


	typing




These are each described in other sections of this document.
These specifications can help the development of tests around the interface,
formalize constraints on how the interface is supposed to be used,
and activate additional dynamic checking or formal proofs (through SPARK),
all ensuring that users are indeed respecting the expectations of the
interface designer.

In addition, GNATtest can generate a testing framework to implement
interface testing, and GNATfuzz can help by probing the robustness
of the system when interface requirements are violated.



5.15. Language Subset (D.35)

The Ada language has been designed to facilitate subsetting, since its
targeted domain — long-lived safety-critical embedded systems —
often involves small-footprint applications that need to be certified
under demanding software standards. The full language would be inappropriate
with such constraints, and Ada provides a general feature — pragma
Restrictions — to allow subsetting on a user-selectable basis.
For example, with pragma Restrictions (No_Abort_Statements)
the program will be rejected by the compiler if it contains an abort
statement.

Going one step further, the language standard has bundled a set of
restrictions into a so-called profile — the Ravenscar Profile —
that supports common concurrency idioms (e.g. periodic and sporadic tasks)
and can make a tasking program deterministic and statically analyzable.

SPARK is a natural Ada language subset, constraining the language so that
programs can be subject to formal analysis (e.g., safe pointers,
no aliasing, and no exceptions).

Other language subsets can be supplied by the implementation, such as
the features implemented by the GNAT Pro Certifiable Profiles.
And with GNATcheck the user can in effect define a subset in an à la carte
fashion, to specify prohibited constructs and verify that they are
not present in the code.



5.16. Metrics (D.37)

The GNATmetric tool reports various metrics on the code, from simple
structural metrics such as lines of code or number of entities to more
complex computations such as cyclomatic complexity or coupling.

Custom metrics can be computed based on these first-level metrics.
In particular, the GNATdashboard environment allows gathering all metrics
into a database that can then accessed through Python or SQL.

These metrics can be viewed through various interfaces.



5.17. Modular Approach (D.38)


5.17.1. Connections between modules shall be limited and defined, coherence shall be strong

Ada allows the developer to define group of packages that have different
levels of coupling, through the notions of child packages and
private packages as described below.
In addition, the GNAT Pro technology provides the notion of a project,
which defines a group of packages, possibly with a defined interface.
These constructs can be used to define a tool-supported notion of component
or module at the software level.

There are three main types of dependence between compilation units:


	Loose coupling through with clauses. If unit Q
withs unit P, then Q can only access
the entities in the visible part of P.


	Medium coupling through public child units.
If P is a package,
then child P.Q has visibility privileges that would
not be available to a unit that only withs P.
More specifically, P.Q, which is said to be a public
child, can access the entities in the visible part of P.
However, only the private part and body of P.Q can
access the entities in the private part of P.
And the entities declared in the body of P are
only accessible in the package body itself.


	Tight coupling through private child units.
As a generalization of public child units,
if P.Q is declared as a private child, then
the visible part of P.Q can also access the entities
in the private part of P.
This does not compromise encapsulation; the only units that
can with a private child are units that otherwise would
have access to the entities that the private child can see.




Ada's expressiveness makes it easier to develop large software systems, with
precise control over the coupling between modules, and guaranteeing
that data are only accessed by the intended units.

A typical example is the implementation of a complex system that needs to be
spread across several packages.
For example, suppose that packages Communication and Interfaces,
contribute to the implementation of a signaling protocol.
In Ada, this design can be implemented in three (or more) distinct files:

package Signaling is ...
private package Signaling.Communication is .
private package Signaling.Interfaces is ...





The two private packages are defined in separate files. They are private
children of Signaling, which means they can only be used by the
implementation of Signaling, and not by any module outside of the
hierarchy.

In addition, tools can provide metrics on coupling between packages.
GNATmetric has built-in support for retrieving these numbers.

At a coarser granularity, packages can be grouped together into a
GNAT Project file (GPR), with a clear interface.
An application architecture can be defined as a combination of project files.



5.17.2. Collections of subprograms shall be built providing several level of modules

Following the above example, it's possible to create public sub-modules
as well, creating a hierarchy of services.
Public child units are accessible to client code.



5.17.3. Subprograms shall have a single entry and single exit only

The GNATcheck tool has specific rules to verify this property
on any Ada code.



5.17.4. Modules shall communicate with other modules via their interface

This is built-in to the Ada language. It's not possible to circumvent
a package's interface.
If a module is implemented using a coarser granularity, e.g. as a group of
packages or at project level, then the project file description allows
identifying those packages that are part of the interface and those packages
that are not.



5.17.5. Module interfaces shall be fully documented

Although this is mostly the responsibility of the developer,
Ada contracts can be used to formalize part of the documentation
associated with a package interface, using a formal notation that can be
checked for consistency by the compiler.
This addresses the part of the documentation that can be
expressed through boolean properties based on the software-visible entities.



5.17.6. Interfaces shall contain the minimum number of parameters necessary

The GNAT Pro compiler will warn about parameters not used by a subprogram
implementation.



5.17.7. A suitable restriction of parameter number shall be specified, typically 5

GNATcheck allows specifying a maximum number of parameters per subprogram.



5.17.8. Unit Proof and Unit Test

GNATtest can be used to generate a unit testing framework for Ada
applications.

SPARK performs a modular formal verification: it proves the postcondition
of a subprogram according to its own precondition and the precondition
and postconditions of its callees, whether or not these callees are
themselves proven.

For a complete proof, all the subprograms of an application need
to be formally proven.
Where this is not possible, one subset can be proven
and the other can be assumed to be true.
These assumptions can then be verified using traditional testing methodology,
allowing for a hybrid test / proof verification system.




5.18. Strongly Typed Programming Languages (D.49)

Ada is, from its inception, a strongly typed language, which supports
both static and dynamic verification.

From a static verification point of view, each type is associated with a
representation and a semantic interpretation. Two types with similar
representations but different semantics will still be considered different
by the compiler. For example:

type Kilometers is new Float;
type Miles is new Float:





These are distinct types.
the compiler will not allow mixed operations, for example assigning a
Kilometers value to a Miles variable, or adding
a Kilometers value and a Miles value, unless explicit
conversions are used.
Mixing floating point and integer values is similar: the developer is
responsible for deciding where and how conversion should be made.

From a dynamic verification point of view, types can be associated with
constraints, such as value ranges or arbitrary boolean predicates.
These type ranges and predicates will be verified at specific points in
the application, allowing the early detection of inconsistencies.



5.19. Structure Based Testing (D.50)

AdaCore provides three tools to support structure based testing:


	GNATtest is a unit testing framework generator. It will run on Ada
specifications, and generate a skeleton for each subprogram.
The actual test can then be manually written into that skeleton.


	GNATemulator allows emulating code for a given target (e.g. PowerPC
and Leon) on a host platform such as Windows or Linux.
It's particularly well suited for running unit tests.


	GNATcoverage performs structural coverage analysis from an instrumented
platform (GNATemulator or Valgrind on Linux or directly on a board through
a Nexus probe).
It supports statement coverage and decision coverage as well as MC/DC.
Note that although EN 50128 requires compound condition coverage,
Modified Condition/Decision Coverage (MC/DC) is usually accepted as
a means of compliance.






5.20. Structured Programming (D.53)

The Ada language supports all the usual paradigms of structured programming.
Complexity can be controlled with various tools, see
Analyzable Programs (D.2) for more details.



5.21. Suitable Programming Languages (D.54)

Ada is noted as "Highly Recommended" in the list of programming
languages.
Some features may, however, not be suitable for the highest SIL.
To enforce the detection and rejection of specific features, the
developer can specify a language subset; see Language Subset (D.35).

One of the advantage of the Ada language is that it is precisely defined
in a international document, ISO/IEC 8652.
This document specifies the required effect as well as any
implementation-defined behavior for the core language, the standard Ada
libraries (known as the "predefined environment"), and the specialized needs
annexes.



5.22. Object Oriented Programming (D.57)

Ada supports the usual constructs for object-oriented programming, but, for
reasons of simplicity and reliability, with multiple inheritance limited to
interface types.
In addition, the Liskov Substitution Principle can be verified
through class-wide contracts and SPARK formal verification, allowing the
verification of class hierarchy consistency and the safety of dispatching
operations.

Ada's OOP model is particularly well suited to safety-critical applications,
as it allows instantiating objects on the stack. For example:

type Base_Class is tagged ...; -- Base_Class is the root of a class hierarchy
procedure P (X : Base_Class);
...
type Subclass is new Base_Class with ...;
overriding procedure P (X : Subclass);

B : Base_Class := ... -- on the stack
S : Subclass   := ... -- on the stack

X : Some_Type'Class := (if .. then B else S):
P (X);  -- Dispatches to appropriate version of P





In the above code, X is a polymorphic object that can be initialized
with a value from any class in the hierarchy rooted at Base_Class;
here it will be a value from either Base_Class or Subclass.
Storage for X is reserved on the stack, and the invocation P (X)
will dispatch to the appropriate version of P.

The booklet [] provides additional information on how to use
object-oriented features in a certified context.



5.23. Procedural Programming (D.60)

Ada implements all the usual features of procedural programming languages,
with a general-purpose data type facility and a comprehensive set of control
constructs.
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6. Technology Annex

This annex summarizes how AdaCore's tools and technologies support the various
techniques and measures defined in  Annex D of EN 50128.
The qualification status for tools, and certifiability for run-time libraries,
are also noted.


6.1. Ada Programming Language

See Ada.


6.1.1. Qualification

Although there is no qualification of a language per se, the Ada language
is standardized through an official process managed by an ISO committee,
IEC/ISO 8652.
AdaCore's Ada compilers and tools have reference and user documentation
that precisely describes the expected behavior, including the effects
of implementation-defined features.



6.1.2. Annex D References


	D.2 Analyzable Programs


	D.4 Boundary Value Analysis


	D.14 Defensive Programming


	D.18 Equivalence Classes and Input Partition Testing


	D.24 Failure Assertion Programming


	D.33 Information Hiding / Encapsulation


	D.34 Interface Testing


	D.35 Language Subset


	D.38 Modular Approach


	D.49 Strongly Typed Programming Languages


	D.53 Structured Programming


	D.54 Suitable Programming Languages


	D.57 Object Oriented Programming


	D.60 Procedural Programming







6.2. GNAT Pro Assurance Toolsuite


6.2.1. Qualification

GNAT Pro compiler family

The GNAT Pro compilers for Ada and for C are qualified at class T3.
AdaCore can provide documentation attesting to various aspects such as
service history, development standard, and testing results.
This documentation has been submitted and accepted in past certification
activities.
T3 qualification material can also be developed for the GNAT Pro for C++ and
GNAT Pro for Rust compilers.

Since compilers are large and complex pieces of software, bugs can be
detected (and subsequently corrected) after a particular version has been
chosen. Following the requirements stated in 6.7.4.11, however, a corrected
version of the compiler cannot be deployed without specific justification.
AdaCore offers a dedicated service – GNAT Pro Assurance – on a
specified version of the technology, which provides critical problem fixes
(or workaround suggestions) as well as detailed descriptions of the changes.
Using GNAT Pro Assurance, a customer can integrate a corrected version of
a specific compiler release into their development infrastructure
without the risk of regressions from unwanted updates.

See GNAT Pro Assurance.

GNATstack

GNATstack can be qualified as a class T2 tool.



6.2.2. Run-Time Certification

Certification material up to SIL 4 can be developed for the Light and
Light-Tasking run-time libraries.

See Configurable Run-Time Libraries.



6.2.3. Annex D References


	D.10 Data Flow Analysis


	D.15 Coding Standards and Style Guide


	D.18 Equivalence Classes and Input Partition Testing


	D.35 Language Subset







6.3. SPARK Language and Toolsuite

See SPARK.


6.3.1. Qualification

The SPARK Pro toolsuite can be qualified at class T2.



6.3.2. Annex D References

The SPARK language and toolset can contribute to the deployment or
implementation of the following techniques:


	D.2 Analyzable Programs


	D.4 Boundary Value Analysis


	D.10 Data Flow Analysis


	D.14 Defensive Programming


	D.18 Equivalence Classes and Input Partition Testing


	D.24 Failure Assertion Programming


	D.28 Formal Methods


	D.29 Formal Proof


	D.34 Interface Testing


	D.35 Language Subset


	D.38 Modular Approach


	D.57 Object Oriented Programming







6.4. GNAT Static Analysis Suite

See GNAT Static Analysis Suite (GNAT SAS).


6.4.1. Defects and Vulnerability Analysis


6.4.1.1. Qualification

GNAT SAS's defects and vulnerability analysis tool can be qualified at
class T2.
It has a long cross-industry track record and has been qualified under other
standards in the past, such as DO-178B/C as a verification tool/TQL5.



6.4.1.2. Annex D References

GNAT SAS's defects and vulnerability analysis tool can contribute to the
deployment or implementation of the following techniques:


	D.2 Analyzable Programs


	D.4 Boundary Value Analysis


	D.8 Control Flow Analysis


	D.10 Data Flow Analysis


	D.14 Defensive Programming


	D.18 Equivalence Classes and Input Partition Testing


	D.24 Failure Assertion Programming


	D.32 Impact Analysis







6.4.2. Basic Static Analysis tools

The basic tools are GNATcheck and GNATmetric.


6.4.2.1. Qualification

These tools can be qualified at class T2.
GNATcheck has been qualified under other standards as well,
such as DO-178B/C as a verification tool/TQL5.



6.4.2.2. Annex D References


	D.2 Analyzable Programs


	D.14 Defensive Programming


	D.15 Coding Standard and Style Guide


	D.35 Language Subset


	D.37 Metrics








6.5. GNAT Dynamic Analysis Suite

This suite comprises GNATtest, GNATemulator, GNATcoverage, GNATfuzz, and TGEN.

See GNAT Dynamic Analysis Suite (GNAT DAS).


6.5.1. Qualification

GNATtest, GNATemulator and GNATcoverage can be qualified at class T2.
GNATcoverage has been qualified under other standards as well,
such as DO-178B/C as a verification tool/TQL5.



6.5.2. Annex D References


	D.50 Structure Based Testing
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Figure 1: Main safety-related standards applicable to railway systems






_images/fig-2.png
Figure 2: Contributions of AdaCore technologies to the "V" cycle
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