

 [image: Cover image]

Guidelines for Safe and Secure Ada/SPARK

Release 2024-04

Apr 27, 2024

Copyright © 2024, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

This document provides a reasonable set of coding standards to be
applied to Ada/SPARK source code. The contents can be used as-is,
or customized for a particular project.

This document was originally written by Patrick Rogers, and modified by
Michael Frank.

	Introduction
	Scope

	Structure

	Enforcement

	About the Rules

	Definitions
	Level

	Remediation

	Dynamic Storage Management
	Common High Integrity Restrictions (DYN01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Traditional Static Allocation Policy (DYN02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Access Types Without Allocators Policy (DYN03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Minimal Dynamic Allocation Policy (DYN04)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	User-Defined Storage Pools Policy (DYN05)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Statically Determine Maximum Stack Requirements (DYN06)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Safe Reclamation
	No Multiple Reclamations (RCL01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Only Reclaim Allocated Storage (RCL02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Only Reclaim To The Same Pool (RCL03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Concurrency
	Use the Ravenscar Profile (CON01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use the Jorvik Profile (CON02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Avoid Shared Variables for Inter-task Communication (CON03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Robust Programming Practice
	No Use of "others" in Case Constructs (RPP01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Enumeration Ranges in Case Constructs (RPP02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Limited Use of "others" In Aggregates (RPP03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Unassigned Mode-Out Procedure Parameters (RPP04)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Use of "others" in Exception Handlers (RPP05)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Avoid Function Side-Effects (RPP06)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Functions Only Have Mode "in" (RPP07)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Limit Parameter Aliasing (RPP08)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use Precondition and Postcondition Contracts (RPP09)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Do Not Re-Verify Preconditions In Subprogram Bodies (RPP10)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Always Use the Result of Function Calls (RPP11)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Recursion (RPP12)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Reuse of Standard Typemarks (RPP13)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use Symbolic Constants For Literal Values (RPP14)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Exception Usage
	Do Not Raise Language-Defined Exceptions (EXU01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Unhandled Application-Defined Exceptions (EXU02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	No Exception Propagation Beyond Name Visibility (EXU03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Prove Absence of Run-time Exceptions (EXU04)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Object-Oriented Programming
	No Class-wide Constructs Policy (OOP01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Static Dispatching Only Policy (OOP02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Limit Inheritance Hierarchy Depth (OOP03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Limit Statically-Dispatched Calls To Primitive Operations (OOP04)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use Explicit Overriding Annotations (OOP05)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use Class-wide Pre/Post Contracts (OOP06)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Ensure Local Type Consistency (OOP07)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Software Engineering
	Use SPARK Extensively (SWE01)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Enable Optional Warnings and Treat As Errors (SWE02)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Use A Static Analysis Tool Extensively (SWE03)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	Hide Implementation Artifacts (SWE04)
	Reference

	Description

	Applicable Vulnerability within ISO TR 24772-2

	Noncompliant Code Example

	Compliant Code Example

	Notes

	References

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

Introduction

Ada is a general purpose, high-level programming language designed to support
the construction of long-lived, highly-reliable applications. Like all
general-purpose languages, only a subset of the full language is appropriate
for safety-critical applications because the full language includes facilities
that are difficult to analyze and verify to the degree required. This document
facilitates identification of subsets appropriate for the highest levels of
integrity, including safety-critical applications.

SPARK is a statically verifiable subset of Ada designed specifically for the
most critical applications. Ada constructs not amenable to verification are
precluded, such as arbitrary use of access types and full tasking. SPARK is
also a superset of Ada, with additional contracts for specifying and verifying
programs. Many of the guidelines (and more) are implicit in the design of
SPARK.

Therefore, this document defines guidelines for the development of
high-integrity, safety-critical applications in either the Ada or SPARK
programming languages, or both (because the two can be mixed).

Scope

This document provides guidelines for development decisions, both at the system
level and at the unit level, regarding the use of the programming languages Ada
and SPARK, as well as related tools, such as static analyzers and unit test
generators. It is not concerned with presentation issues such as naming, use of
whitespace, or the like.

Structure

Rather than defining a specific set of rules defining a single subset, this
document defines a set of criteria, in the form of guidelines, used by system
architects to identify project-specific subsets appropriate to a given project.

The guidelines are separated into related categories, such as storage
management, object-oriented programming, concurrency management, and so on.
Each guideline is in a separate table, specifying the rule name, a unique
identifier, and additional attributes common to each table.

Enforcement

Detection and enforcement mechanisms are indicated for each guideline. These
mechanisms typically consist of the application of a language standard pragma
named Restrictions, with policy-specific restriction identifiers given as
parameters to the pragma [AdaRM2016]. Violations of the given restrictions are
then detected and enforced by the Ada compiler.

Alternatively, the AdaCore GNATcheck utility program has rules precisely
corresponding to those restriction identifiers, with the same degree of
detection and enforcement. For example, the language restriction identifier
No_Unchecked_Deallocation corresponds to the GNATcheck
+RRestrictions:No_Unchecked_Deallocation rule.

The advantage of GNATcheck over the compiler is that all generated messages
will be collected in the GNATcheck report that can be used as evidence of the
level of adherence to the coding standard. In addition, GNATcheck provides a
mechanism to deal with accepted exemptions.

In some cases the enforcement mechanism is the SPARK language and analyzer.
Many of the guidelines (and more) are implicit in the design of SPARK and are,
therefore, automatically enforced.

In some (very) rare cases the enforcement mechanism is manual program
inspection, although alternatives (e.g., SPARK) are usually available and
recommended. These guidelines are included because they are considered
invaluable in this domain.

About the Rules

Although we refer to them as rules in the tables for the sake of brevity,
these entries should be considered guidance because they require both
thought and consideration of project-specific characteristics. For example, in
some cases the guidance is to make a selection from among a set of distinct
enumerated policies. In other cases a single guideline should be followed but
not without some exceptional situations allowing it to be violated. The project
lead should consider which guidelines to apply and how best to apply
each guideline selected.

Many of these rules can also be considered good programming practices. As
such, many of them can be directly correlated to the ISO/IEC Guidance to
Avoiding Vulnerabilities in Programming Languages [TR24772]. When a rule
addresses one of these vulnerabilities, it is listed in the appropriate
subsection.

Footnotes

Definitions

This section contains terms and values used in the definitions of the rules set
forth in this chapter.

Level

Level is the compliance level for the rule. Possible values are:

	Mandatory
	Non-compliance with a Mandatory recommendation level corresponds
to a high risk of a software bug. There would need to be a good
reason for non-conformity to a mandatory rule and, although it is
accepted that exceptional cases may exist, any non-conformance
should be accompanied by a clear technical explanation of
the exceptional circumstance.

	Required
	Non-compliance with a Required recommendation level corresponds
to a medium to high risk of a software bug. Much like a
Mandatory recommendation, there would need to be a good reason
for non-conformity to a required rule. Although it is accepted that
more exceptional cases may exist, non-conformance
should be accompanied by a clear technical explanation of the
exceptional circumstance.

	Advisory
	Failure to follow an Advisory recommendation does not necessarily
result in a software bug; the risk of a direct correlation between
non-conformance of an advisory rule and a software bug is low.
Non-compliance with an advisory recommendation level does not
require a supporting technical explanation, however, as the quality
of the code may be impacted, the reason for the non-conformance
should be understood.

Remediation

Remediation indicates the the level of difficulty to modify/update
code that does not follow this particular rule.

	High
	Failure to follow this rule will likely cause an unreasonable
amount of modifications/updates to bring the code base into compliance.

	Medium
	Failure to follow this rule will likely cause a large amount of
modifications/updates to bring the code base into compliance, but
those changes may still be cost-effective.

	Low
	Failure to follow this rule may cause a small amount of
modifications/updates to bring the code base into compliance, but
those changes will be minor compared to the benefit.

	N/A
	This rule is more of a design decision (as opposed to a coding
flaw) and therefore, if the rule is violated, it is done so
with a specific purpose.

Footnotes

Dynamic Storage Management (DYN)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

	Description
	Have a plan for managing dynamic memory allocation and deallocation.

	Rules
	DYN01, DYN02, DYN03, DYN04, DYN05, DYN06

In Ada, objects are created by being either declared or allocated.
Declared objects may be informally thought of as being created "on the stack"
although such details are not specified by the language. Allocated objects
may be thought of as being allocated "from the heap", which is, again, an
informal term. Allocated objects are created by the evaluation of allocators
represented by the reserved word new and, unlike declared objects, have
lifetimes independent of scope.

The terms static and dynamic tend to be used in place of declared and
allocated, although in traditional storage management terminology all storage
allocation in Ada is dynamic. In the following discussion, the term dynamic
allocation refers to storage that is allocated by allocators. Static object
allocation refers to objects that are declared. Deallocation refers to the
reclamation of allocated storage.

Unmanaged dynamic storage allocation and deallocation can lead to storage
exhaustion; the required analysis is difficult under those circumstances.
Furthermore, access values can establish aliases that complicate verification,
and explicit deallocation of dynamic storage can lead to specific errors (e.g.,
"double free", "use after free") having unpredictable results. As a result, the
prevalent approach to storage management in high-integrity systems is to
disallow dynamic management techniques completely. [SEI-C] [MISRA2013]
[Holzmann2006] [ISO2000]

However, restricted forms of storage management and associated feature usage
can support the necessary reliability and analyzability characteristics while
retaining sufficient expressive power to justify the analysis expense. The
following sections present possible approaches, including the traditional
approach in which no dynamic behavior is allowed. Individual projects may then
choose which storage management approach best fits their requirements and apply
appropriate tailoring, if necessary, to the specific guidelines.

	Realization
	There is a spectrum of management schemes possible, trading ease of analysis
against increasing expressive power. At one end there is no dynamic memory
allocation (and hence, deallocation) allowed, making analysis trivial. At the
other end, nearly the full expressive power of the Ada facility is available,
but with analyzability partially retained. In the latter, however, the user
must create the allocators in such a manner as to ensure proper behavior.

Rule DYN01 is Required, as it avoids problematic features whatever the strategy
chosen. Rules DYN02-05 are marked as Advisory, because one of them should be
chosen and enforced throughout a given software project.

	Common High Integrity Restrictions (DYN01)

	Traditional Static Allocation Policy (DYN02)

	Access Types Without Allocators Policy (DYN03)

	Minimal Dynamic Allocation Policy (DYN04)

	User-Defined Storage Pools Policy (DYN05)

	Statically Determine Maximum Stack Requirements (DYN06)

Footnotes

Common High Integrity Restrictions (DYN01)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

Ada Reference Manual: H.4 High Integrity Restrictions[#1]

Description

The following restrictions must be in effect:

	No_Anonymous_Allocators

	No_Coextensions

	No_Access_Parameter_Allocators

	Immediate_Reclamation

The first three restrictions prevent problematic usage that, for example, may
cause un-reclaimed (and unreclaimable) storage. The last restriction ensures
any storage allocated by the compiler at run-time for representing objects is
reclaimed at once. (That restriction does not apply to objects created by
allocators in the application.)

Applicable Vulnerability within ISO TR 24772-2

	4.10 Storage Pool

Noncompliant Code Example

For No_Anonymous_Allocators:

X : access String := new String'("Hello");
...
X := new String'("Hello");

For No_Coextensions:

type Object (Msg : access String) is ...
Obj : Object (Msg => new String'("Hello"));

For No_Access_Parameter_Allocators:

procedure P (Formal : access String);
...
P (Formal => new String'("Hello"));

Compliant Code Example

For No_Anonymous_Allocators, use a named access type:

type String_Reference is access all String;
S : constant String_Reference := new String'("Hello");
X : access String := S;
...
X := S;

For No_Coextensions, use a variable of a named access type:

type Object (Msg : access String) is ...
type String_Reference is access all String;
S : String_Reference := new String'("Hello");
Obj : Object (Msg => S);

For No_Access_Parameter_Allocators, use a variable of a named access type:

procedure P (Formal : access String);
type String_Reference is access all String;
S : String_Reference := new String'("Hello");
...
P (Formal => S);

Notes

The compiler will detect violations of the first three restrictions. Note that
GNATcheck can detect violations in addition to the compiler.

The fourth restriction is a directive for implementation behavior, not subject
to source-based violation detection.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-H-4.html

Traditional Static Allocation Policy (DYN02)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

MISRA C Dir 4.12 "Dynamic memory allocation shall not be used"

Description

The following restrictions must be in effect:

	No_Allocators

	No_Task_Allocators

Under the traditional approach, no dynamic allocations and no deallocations
occur. Only declared objects are used and no access types of any kind appear
in the code.

Without allocations there is no issue with deallocation as there would be
nothing to deallocate. Heap storage exhaustion and fragmentation are clearly
prevented although storage may still be exhausted due to insufficient stack
size allotments.

In this approach the following constructs are not allowed:

	Allocators

	Access-to-constant access types

	Access-to-variable access types

	User-defined storage pools

	Unchecked Deallocations

Applicable Vulnerability within ISO TR 24772-2

	4.10 Storage Pool

Noncompliant Code Example

Any code using the constructs listed above.

Compliant Code Example

N/A

Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

Footnotes

Access Types Without Allocators Policy (DYN03)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

MISRA C Rule 21.3 "The memory allocation and deallocation functions of <stdlib.h>
shall not be used"

Description

The following restrictions must be in effect:

	No_Allocators

	No_Dependence => Ada.Unchecked_Deallocation

In this approach dynamic access values are only created via the attribute
'Access applied to aliased objects. Allocation and deallocation never
occur. As a result, storage exhaustion cannot occur because no dynamic
allocations occur. Fragmentation cannot occur because there are no
deallocations.

In this approach the following constructs are not allowed:

	Allocators

	User-defined storage pools

	Unchecked Deallocations

Aspects should be applied to all access types in this approach, specifying a
value of zero for the storage size. Although the restriction No_Allocators is
present, such clauses may be necessary to prevent any default storage pools
from being allocated for the access types, even though the pools would never be
used. A direct way to accomplish this is to use pragma Default_Storage_Pool
with a parameter of null like so:

pragma Default_Storage_Pool (null);

The above would also ensure no allocations can occur with access types that
have the default pool as their associated storage pool (per
Ada Reference Manual: 13.11.3 (6.1/3) Default Storage Pools[#1]).

Applicable Vulnerability within ISO TR 24772-2

	6.14 Dangling reference to heap [XYK]

Noncompliant Code Example

Any code using the constructs listed above.

Compliant Code Example

type Descriptor is ...;
type Descriptor_Ref is access all Descriptor;
...
Device : aliased Descriptor;
...
P : Descriptor_Ref := Device'Access;
...

Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-13-11-3.html

Minimal Dynamic Allocation Policy (DYN04)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

Power of Ten rule 3 "Do not use dynamic memory allocation after initialization"

Description

The following restrictions must be in effect:

	No_Local_Allocators

	No_Dependence => Ada.Unchecked_Deallocation

In this approach dynamic allocation is only allowed during "start-up" and no
later. Deallocations never occur. As a result, storage exhaustion should
never occur assuming the initial allotment is sufficient. This assumption is
as strong as when using only declared objects on the "stack" because in that
case a sufficient initial storage allotment for the stack must be made.

In this approach the following constructs are not allowed:

	Unchecked Deallocations

Note that some operating systems intended for this domain directly support this
policy.

Applicable Vulnerability within ISO TR 24772-2

	4.10 Storage Pool

Noncompliant Code Example

Any code using the constructs listed above.

Compliant Code Example

Code performing dynamic allocations any time prior to an arbitrary point
designated as the end of the "startup" interval.

Notes

The compiler, and/or GNATcheck, will detect violations of the restrictions.

Footnotes

User-Defined Storage Pools Policy (DYN05)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Code inspection

Reference

MISRA C Rule 21.3 "The memory allocation and deallocation functions of <stdlib.h>
shall not be used"

Description

There are two issues that make storage utilization analysis difficult: 1) the
predictability of the allocation and deallocation implementation, and 2) how
access values are used by the application. The behavior of the underlying
implementation is largely undefined and may, for example, consist of calls to
the operating system (if present). Application code can manipulate access
values beyond the scope of analysis.

Under this policy, the full expressive power of access-to-object types is
provided but one of the two areas of analysis difficulty is removed.
Specifically, predictability of the allocation and deallocation implementation
is achieved via user-defined storage pools. With these storage pools, the
implementation of allocation (new) and deallocation (instances of
Ada.Unchecked_Deallocation) is defined by the pool type.

If the pool type is implemented with fixed-size blocks on the stack, allocation
and deallocation timing behavior are predictable.

Such an implementation would also be free from fragmentation.

Given an analysis providing the worst-case allocations and deallocations, it
would be possible to verify that pool exhaustion does not occur. However, as
mentioned such analysis can be quite difficult. A mitigation would be the use
of the "owning" access-to-object types provided by SPARK.

In this approach no storage-related constructs are disallowed unless the SPARK
subset is applied.

Applicable Vulnerability within ISO TR 24772-2

	4.10 Storage Pool

Noncompliant Code Example

Allocation via an access type not tied to a user-defined storage pool.

Compliant Code Example

Heap : Sequential_Fixed_Blocks.Storage_Pool
 (Storage_Size => Required_Storage_Size,
 Element_Size => Representable_Obj_Size,
 Alignment => Representation_Alignment);
type Pointer is access all Unsigned_Longword with
 Storage_Pool => Heap;
Ptr : Pointer;
...
Ptr := new Unsigned_Longword; -- from Heap

Notes

Enforcement of this approach can only be provided by manual code review unless
SPARK is used.

However, the User-Defined Storage Pools Policy can be enforced statically by
specifying Default_Storage_Pool (null). This essentially requires all
access types to have a specified storage pool if any allocators are used with
the access type.

Footnotes

Statically Determine Maximum Stack Requirements (DYN06)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Static analysis tools

Reference

N/A

Description

Each Ada application task has a stack, as does the "environment task" that
elaborates library packages and calls the main subprogram. A tool to statically
determine the maximum storage required for these stacks must be used, per task.

This guideline concerns another kind of dynamic memory utilization. The
previous guidelines concerned the management of storage commonly referred to as
the "heap." This guideline concerns the storage commonly referred to as the
"stack." (Neither term is defined by the language, but both are commonly
recognized and are artifacts of the underlying run-time library or operating
system implementation.)

Applicable Vulnerability within ISO TR 24772-2

	4.10 Storage Pool

Noncompliant Code Example

N/A

Compliant Code Example

N/A

Notes

The GNATstack[#1] tool can statically determine
the maximum requirements per task.

Footnotes

[#1]
http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

Safe Reclamation (RCL)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

	Description
	Related to managing dynamic storage at the system (policy) level, these
statement-level rules concern the safe reclamation of access (pointer)
values.

	Rules
	RCL01, RCL02, RCL03

	No Multiple Reclamations (RCL01)

	Only Reclaim Allocated Storage (RCL02)

	Only Reclaim To The Same Pool (RCL03)

Footnotes

No Multiple Reclamations (RCL01)

Level \(\rightarrow\) Mandatory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) Code inspection

Reference

[CWE2019] CWE-415: Double Free

Description

Never deallocate the storage designated by a given access value more than once.

Applicable Vulnerability within ISO TR 24772-2

	6.39 Memory leak and heap fragmentation [XYL]

Noncompliant Code Example

 type String_Reference is access all String;
 procedure Free is new Ada.Unchecked_Deallocation
 (Object => String, Name => String_Reference);
 S : String_Reference := new String'("Hello");
 Y : String_Reference;
begin
 Y := S;
 Free (S);
 Free (Y);

Compliant Code Example

Remove the call to Free (Y).

Notes

Enforcement of this rule can be provided by manual code review, unless
deallocation is forbidden via No_Unchecked_Deallocation or SPARK is used, as
ownership analysis in SPARK detects such cases. Note that storage utilization
analysis tools such as Valgrind can usually find this sort of error. In
addition, a GNAT-defined storage pool is available to help debug such errors.

Footnotes

Only Reclaim Allocated Storage (RCL02)

Level \(\rightarrow\) Mandatory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) Code inspection

Reference

[SEI-C] MEM34-C: Only Free Memory Allocated Dynamically

Description

Only deallocate storage that was dynamically allocated by the evaluation of an
allocator (i.e., new).

This is possible because Ada allows creation of access values designating
declared (aliased) objects.

Applicable Vulnerability within ISO TR 24772-2

	6.39 Memory leak and heap fragmentation [XYL]

Noncompliant Code Example

 type String_Reference is access all String;
 procedure Free is new Ada.Unchecked_Deallocation
 (Object => String, Name => String_Reference);
 S : aliased String := "Hello";
 Y : String_Reference := S'Access;
begin
 Free (Y);

Compliant Code Example

Remove the call to Free (Y).

Notes

Enforcement of this rule can only be provided by manual code review, unless
deallocation is forbidden via No_Unchecked_Deallocation.

Footnotes

Only Reclaim to the Same Pool (RCL03)

Level \(\rightarrow\) Mandatory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) Code inspection

Reference

N/A

Description

When deallocating, ensure that the pool to which the storage will be returned
is the same pool from which it was allocated. Execution is erroneous
otherwise, meaning anything can happen
(Ada Reference Manual: 13.11.2 (16) Unchecked Storage Deallocation[#1]).

Each access type has an associated storage pool, either implicitly by default,
or explicitly with a storage pool specified by the programmer. The implicit
default pool might not be the same pool used for another access type, even an
access type designating the same subtype.

Applicable Vulnerability within ISO TR 24772-2

	6.39 Memory leak and heap fragmentation [XYL]

Noncompliant Code Example

 type Pointer1 is access all Integer;
 type Pointer2 is access all Integer;
 P1 : Pointer1;
 P2 : Pointer2;
 procedure Free is new Ada.Unchecked_Deallocation
 (Object => Integer, Name => Pointer2);
begin
 P1 := new Integer;
 P2 := Pointer2 (P1);
 Call_Something (P2.all);
 ...
 Free (P2);

In the above, P1.all was allocated from Pointer1'Storage_Pool,
but, via the type conversion, the code above is attempting to return it to
Pointer2'Storage_Pool, which may be a different pool.

Compliant Code Example

 type Pointer1 is access all Integer;
 type Pointer2 is access all Integer;
 P1 : Pointer1;
 P2 : Pointer2;
 procedure Free is new Ada.Unchecked_Deallocation
 (Object => Integer, Name => Pointer1);
begin
 P1 := new Integer;
 P2 := Pointer2 (P1);
 Call_Something (P2.all);
 ...
 Free (P1);

Notes

Enforcement of this rule can only be provided by manual code review, unless
deallocation is forbidden via No_Unchecked_Deallocation.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-13-11-2.html

Concurrency (CON)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	

	Description
	Have a plan for managing the use of concurrency in high-integrity
applications having real-time requirements.

	Rules
	CON01, CON02, CON03

The canonical approach to applications having multiple periodic and aperiodic
activities is to map those activities onto independent tasks, i.e., threads of
control. The advantages for the application are both a matter of software
engineering and also ease of implementation. For example, when the different
periods are not harmonics of one another, the fact that each task executes
independently means that the differences are trivially represented. In
contrast, such periods are not easily implemented in a cyclic scheduler, which,
by definition, involves only one (implicit) thread of control with one frame
rate.

High integrity applications are subject to a number of stringent analyses,
including, for example, safety analyses and certification against rigorous
industry standards. In addition, high integrity applications with real-time
requirements must undergo timing analysis because they must be shown to meet
deadlines prior to deployment -- failure to meet hard deadlines is unacceptable
in this domain.

These analyses are applied both to the application and to the implementation of
the underlying run-time library. However, analysis of the complete set of
general Ada tasking features is not tractable, neither technically nor in terms
of cost. A subset of the language is required.

The Ravenscar profile [AdaRM2016] is a subset of the Ada concurrency
facilities that supports determinism, schedulability analysis, constrained
memory utilization, and certification to the highest integrity levels. Four
distinct application domains are specifically intended:

	Hard real-time applications requiring predictability,

	Safety-critical systems requiring formal, stringent certification,

	High-integrity applications requiring formal static analysis and
verification,

	Embedded applications requiring both a small memory footprint and low
execution overhead.

Those tasking constructs that preclude analysis at the source level or analysis
of the tasking portion of the underlying run-time library are disallowed.

The Ravenscar profile is necessarily strict in terms of what it removes so that
it can support the stringent analyses, such as safety analysis, that go beyond
the timing analysis required for real-time applications. In addition, the
strict subset facilitates that timing analysis in the first place.

However, not all high-integrity applications are amenable to expression in the
Ravenscar profile subset. The Jorvik profile [AdaRM2020] is an alternative
subset of the Ada concurrency facilities. It is based directly on the Ravenscar
profile but removes selected restrictions in order to increase expressive
power, while retaining analyzability and performance. As a result, typical
idioms for protected objects can be used, for example, and relative delays
statements are allowed. Timing analysis is still possible but slightly more
complicated, and the underlying run-time library is slightly larger and more
complex.

When the most stringent analyses are required and the tightest timing is
involved, use the Ravenscar profile. When a slight increase in complexity is
tolerable, i.e., in those cases not undergoing all of these stringent analyses,
consider using the Jorvik profile.

	Use the Ravenscar Profile (CON01)

	Use the Jorvik Profile (CON02)

	Avoid Shared Variables for Inter-task Communication (CON03)

Footnotes

Use the Ravenscar Profile (CON01)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) GNATcheck rule:
uses_profile:ravenscar

Mutually Exclusive \(\rightarrow\) CON02

Reference

Ada Reference Manual: D.13 The Ravenscar and Jorvik Profiles[#1]

Description

The following profile must be in effect:

pragma Profile (Ravenscar);

The profile is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (
 No_Abort_Statements,
 No_Dynamic_Attachment,
 No_Dynamic_CPU_Assignment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Protected_Objects,
 No_Local_Timing_Events,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Specific_Termination_Handlers,
 No_Task_Allocators,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers,
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Dependence => Ada.Asynchronous_Task_Control,
 No_Dependence => Ada.Calendar,
 No_Dependence => Ada.Execution_Time.Group_Budgets,
 No_Dependence => Ada.Execution_Time.Timers,
 No_Dependence => Ada.Synchronous_Barriers,
 No_Dependence => Ada.Task_Attributes,
 No_Dependence => System.Multiprocessors.Dispatching_Domains);

Applicable Vulnerability within ISO TR 24772-2

	6.59 Concurrency - Activation [GGA]

	6.60 Concurrency - Directed termination [CGT]

	6.61 Concurrent data access [CGX]

	6.62 Concurrency - Premature termination [CGS]

	6.63 Lock protocol errors [CGM]

Noncompliant Code Example

Any code disallowed by the profile. Remediation is high because use of the
facilities outside the subset can be difficult to retrofit into compliance.

 task body Task_T is
 begin
 loop
 -- Error: No_Relative_Delay
 delay 1.0;
 Put_Line ("Hello World");
 end loop;
 end Task_T;

Compliant Code Example

 task body Task_T is
 Period : constant Time_Span := Milliseconds (10);
 Activation : Time := Clock;
 begin
 loop
 delay until Activation;
 Put_Line ("Hello World");
 Activation := Activation + Period;
 end loop;
 end Task_T;

Notes

The Ada builder will detect violations if the programmer specifies this profile
or corresponding pragmas. GNATcheck also can detect violations of profile
restrictions.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

Use the Jorvik Profile (CON02)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) GNATcheck rule:
uses_profile:jorvik

Mutually Exclusive \(\rightarrow\) CON01

Reference

Ada Reference Manual: D.13 The Ravenscar and Jorvik Profiles[#1]

Description

The following profile must be in effect:

pragma Profile (Jorvik);

The profile is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (
 No_Abort_Statements,
 No_Dynamic_Attachment,
 No_Dynamic_CPU_Assignment,
 No_Dynamic_Priorities,
 No_Local_Protected_Objects,
 No_Local_Timing_Events,
 No_Protected_Type_Allocators,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Specific_Termination_Handlers,
 No_Task_Allocators,
 No_Task_Hierarchy,
 No_Task_Termination,
 Pure_Barriers,
 Max_Task_Entries => 0,
 No_Dependence => Ada.Asynchronous_Task_Control,
 No_Dependence => Ada.Execution_Time.Group_Budgets,
 No_Dependence => Ada.Execution_Time.Timers,
 No_Dependence => Ada.Task_Attributes,
 No_Dependence => System.Multiprocessors.Dispatching_Domains);

The following restrictions are part of the Ravenscar profile but not part
of the Jorvik profile.

No_Implicit_Heap_Allocations
No_Relative_Delay
Max_Entry_Queue_Length => 1
Max_Protected_Entries => 1
No_Dependence => Ada.Calendar
No_Dependence => Ada.Synchronous_Barriers

Jorvik also replaces restriction Simple_Barriers with Pure_Barriers (a weaker
requirement than the restriction Simple_Barriers).

Applicable Vulnerability within ISO TR 24772-2

	6.59 Concurrency - Activation [GGA]

	6.60 Concurrency - Directed termination [CGT]

	6.61 Concurrent data access [CGX]

	6.62 Concurrency - Premature termination [CGS]

	6.63 Lock protocol errors [CGM]

Noncompliant Code Example

Any code disallowed by the profile. Remediation is high because use of the
facilities outside the subset can be difficult to retrofit into compliance.

 task body Task_T is
 begin
 -- Error: Max_Task_Entries => 0
 accept Entry_Point do
 Put_Line ("Hello World");
 end Entry_Point;
 loop
 delay 1.0;
 Put_Line ("Ping");
 end loop;
 end Task_T;

Compliant Code Example

 task body Task_T is
 begin
 delay 1.0;
 Put_Line ("Hello World");
 loop
 delay 1.0;
 Put_Line ("Ping");
 end loop;
 end Task_T;

Notes

The Ada builder will detect violations. GNATcheck can also detect violations.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

Avoid Shared Variables for Inter-task Communication (CON03)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) GNATcheck rule:
Volatile_Objects_Without_Address_Clauses

Reference

Ada Reference Manual: D.13 The Ravenscar Profile[#1]

Description

Although the Ravenscar and Jorvik profiles allow the use of shared variables
for inter-task communication, such use is less robust and less reliable than
encapsulating shared variables within protected objects.

Applicable Vulnerability within ISO TR 24772-2

	6.56 Undefined behaviour [EWF]

Noncompliant Code Example

 Global_Object : Integer
 with Volatile;
 function Get return Integer is (Global_Object);

Note that variables marked as Atomic are also Volatile, per the
Ada Reference Manual: C.6 (8/3) Shared Variable Control[#2]

Compliant Code Example

When assigned to a memory address, a Volatile variable can be used to
interact with a memory-mapped device, among other similar usages.

 Global_Object : Integer
 with Volatile,
 Address => To_Address (16#1234_5678#);
 function Get return Integer is (Global_Object);

Notes

In additon to GNATcheck, SPARK and CodePeer can also detect conflicting access
to unprotected variables.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-D-13.html

[#2]
http://www.ada-auth.org/standards/12rm/html/RM-C-6.html

Robust Programming Practice (RPP)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

	Description
	These rules promote the production of robust software.

	Rules
	RPP01, RPP02, RPP03, RPP04, RPP05, RPP06, RPP07, RPP07, RPP08, RPP09, RPP10,
RPP11, RPP12, RPP13, RPP14

	No Use of "others" in Case Constructs (RPP01)

	No Enumeration Ranges in Case Constructs (RPP02)

	Limited Use of "others" In Aggregates (RPP03)

	No Unassigned Mode-Out Procedure Parameters (RPP04)

	No Use of "others" in Exception Handlers (RPP05)

	Avoid Function Side-Effects (RPP06)

	Functions Only Have Mode "in" (RPP07)

	Limit Parameter Aliasing (RPP08)

	Use Precondition and Postcondition Contracts (RPP09)

	Do Not Re-Verify Preconditions In Subprogram Bodies (RPP10)

	Always Use the Result of Function Calls (RPP11)

	No Recursion (RPP12)

	No Reuse of Standard Typemarks (RPP13)

	Use Symbolic Constants For Literal Values (RPP14)

Footnotes

No Use of "others" in Case Constructs (RPP01)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
OTHERS_In_CASE_Statements

Reference

[SEI-C] MSC01-C

Description

Case statement alternatives and case-expressions must not include use of the
others discrete choice option. This rule prevents accidental coverage
of a choice added after the initial case statement is written, when an explicit
handler was intended for the addition.

Note that this is opposite to typical C guidelines such as [SEI-C] MSC01-C.
The reason is that in C, the default alternative plays the role of
defensive
code to mitigate the switch statement's non-exhaustivity. In Ada, the
case construct is exhaustive:
the compiler statically verifies that for every possible value of the
case expression there is a branch alternative, and there is also
a dynamic check against invalid values which serves as implicit defensive code;
as a result, Ada's others alternative doesn't play C's defensive code
role and therefore a stronger guideline can be adopted.

Applicable Vulnerability within ISO TR 24772-2

	6.27 Switch statements and static analysis [CLL]

Noncompliant Code Example

 case Digit_T (C) is
 when '0' | '9' =>
 C := Character'succ (C);
 when others =>
 C := Character'pred (C);
 end case;

Compliant Code Example

 case Digit_T (C) is
 when '0' | '9' =>
 C := Character'succ (C);
 when '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' =>
 C := Character'pred (C);
 end case;

Notes

N/A

Footnotes

No Enumeration Ranges in Case Constructs (RPP02)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Enumeration_Ranges_In_CASE_Statements

Reference

Similar to RPP01

Description

A range of enumeration literals must not be used as a choice in a
case statement or a case
expression. This includes explicit ranges (A .. B),
subtypes, and the
'Range attribute. Much like the use of others in
case
statement alternatives, the use of ranges makes it possible for a new
enumeration value to be added but not handled with a specific alternative, when
a specific alternative was intended.

Applicable Vulnerability within ISO TR 24772-2

	6.5 Enumerator issues [CCB]

Noncompliant Code Example

 case Digit_T (C) is
 when '0' | '9' =>
 C := Character'succ (C);
 when '1' .. '8' =>
 C := Character'pred (C);
 end case;

Compliant Code Example

 case Digit_T (C) is
 when '0' | '9' =>
 C := Character'succ (C);
 when '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' =>
 C := Character'pred (C);
 end case;

Notes

N/A

Footnotes

Limited Use of "others" in Aggregates (RPP03)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
OTHERS_In_Aggregates

Reference

Similar to RPP01

Description

Do not use an others choice in an extension aggregate. In record
and array aggregates,
do not use an others choice unless it is used either
to refer to all components, or to all but one component.

This guideline prevents accidental provision of a general value for a
record component or array
component, when a specific value was intended. This
possibility includes the case in which new components are added to an existing
composite type.

Applicable Vulnerability within ISO TR 24772-2

	6.5 Enumerator issues [CCB]

	6.27 Switch statements and static analysis [CLL]

Noncompliant Code Example

 type Record_T is record
 Field1 : Integer := 1;
 Field2 : Boolean := False;
 Field3 : Character := ' ';
 end record;
 type Array_T is array (Character) of Boolean;
 Rec : Record_T := (Field1 => 1,
 Field3 => '2',
 others => <>);
 Arr : Array_T := ('0' .. '9' => True,
 others => False);

Compliant Code Example

 type Record_T is record
 Field1 : Integer := 1;
 Field2 : Boolean := False;
 Field3 : Character := ' ';
 end record;
 type Array_T is array (Character) of Boolean;
 Rec : Record_T := (Field1 => 1,
 others => <>);
 Arr : Array_T := (others => False);

Notes

N/A

Footnotes

No Unassigned Mode-Out Procedure Parameters (RPP04)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) GNATcheck rule:
Unassigned_OUT_Parameters

Reference

MISRA C Rule 9.1 "The value of an object with automatic storage duration shall
not be read before it has been set"

Description

For any procedure, all formal parameters of mode out must be assigned a
value if the procedure exits normally. This rule ensures that, upon a normal
return, the corresponding actual parameter has a defined value. Ensuring a
defined value is especially important for scalar parameters because they are
passed by value, such that some value is copied out to the actual. These
undefined values can be especially difficult to locate because evaluation
of the actual parameter's value might not occur immediately after the call
returns.

Applicable Vulnerability within ISO TR 24772-2

	6.32 Passing parameters and return values [CSJ]

Noncompliant Code Example

for Value_T use
 (Alpha => 2#1#,
 Baker => 2#10#,
 Charlie => 2#100#,
 Dog => 2#1000#,
 Invalid => 2#1111#);

procedure Noncompliant (Register : Character;
 Registera : out Value_T;
 Registerb : out Value_T) is
begin
 if Register = 'A' then
 Registera := Alpha;
 end if;
end Noncompliant;

In the above example, some value is copied back for an output parameter as
specified by Register. The other parameter is not assigned, and
on return the value copied to the actual parameter may not be a valid
representation for a value of the type.
(We give the enumeration values a non-standard representation for the sake
of illustration, i.e., to make it more likely that the undefined value
is not valid.)

Compliant Code Example

procedure Compliant (Register : Character;
 Registera : out Value_T;
 Registerb : out Value_T) is
begin
 Registera := Invalid;
 Registerb := Invalid;
 if Register = 'A' then
 Registera := Alpha;
 end if;
end Compliant;

Notes

The GNATcheck rule specified above only detects a trivial case of an
unassigned variable and doesn't provide a guarantee that there is no
uninitialized access. It is not a replacement for a rigorous check
for uninitialized access provided by advanced static analysis tools
such as SPARK and CodePeer.

Note that the GNATcheck rule does not check function parameters (as
of Ada 2012 functions can have out parameters). As a result, the
better choice is either SPARK or CodePeer.

Footnotes

No Use of "others" in Exception Handlers (RPP05)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
OTHERS_In_Exception_Handlers

Reference

N/A

Description

Much like the situation with others in
case statements and case
expressions, the use of others in exception handlers makes it
possible to omit an intended specific handler for an exception, especially
a new exception added to an existing set of handlers. As a result, a
subprogram could return normally without having applied any recovery for
the specific exception occurrence, which is likely a coding error.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

procedure Noncompliant (X : in out Integer) is
begin
 X := X * X;
exception
 when others =>
 X := -1;
end Noncompliant;

Compliant Code Example

procedure Compliant (X : in out Integer) is
begin
 X := X * X;
exception
 when Constraint_Error =>
 X := -1;
end Compliant;

Notes

ISO TR 24772-2: 6.50.2 slightly contradicts this when applying exception
handlers around calls to library routines:

	Put appropriate exception handlers in all routines that call library
routines, including the catch-all exception handler when others =>

	Put appropriate exception handlers in all routines that are called by
library routines, including the catch-all exception handler
when others =>

ISO TR 24772-2 also recommends "All tasks should contain an exception handler
at the outer
level to prevent silent termination due to unhandled exceptions."

Footnotes

Avoid Function Side-Effects (RPP06)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Medium

Verification Method \(\rightarrow\) Code inspection

Reference

MISRA C Rule 13.2 "The value of an expression and its persistent side effects
shall be the same under all permitted evaluation orders"

Description

Functions cannot update an actual parameter or global variable.

A side effect occurs when evaluation of an expression updates an object. This
rule applies to function calls, a specific form of expression.

Side effects enable one form of parameter aliasing (see below) and evaluation
order dependencies. In general they are a potential point of confusion because
the reader expects only a computation of a value.

There are useful idioms based on functions with side effects. Indeed, a random
number generator expressed as a function must use side effects to update the
seed value. So-called "memo" functions are another example, in which the
function tracks the number of times it is called. Therefore, exceptions to this
rule are anticipated but should only be allowed on a per-instance basis after
careful analysis.

Applicable Vulnerability within ISO TR 24772-2

	6.24 Side-effects and order of evaluation [SAM]

Noncompliant Code Example

Call_Count : Integer := 0;
function F return Boolean is
 Result : Boolean;
begin
 ...
 Call_Count := Call_Count + 1;
 return Result;
end F;

Compliant Code Example

Remove the update to Call_Count, or change the function into a procedure
with a parameter for Call_Count.

Notes

Violations are detected by SPARK as part of a rule disallowing side effects on
expression evaluation.

Footnotes

Functions Only Have Mode "in" (RPP07)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
function_out_parameters

Reference

N/A

Description

Functions must have only mode in.

As of Ada 2012, functions are allowed to have the same modes as procedures.
However, this can lead to side effects and aliasing.

This rule disallows all modes except mode in for functions.

Applicable Vulnerability within ISO TR 24772-2

	6.24 Side-effects and order of evaluation [SAM]

Noncompliant Code Example

function Noncompliant (Value : in out Integer) return Integer is
begin
 if Value < Integer'last then
 Value := Value + 1;
 end if;
 return Value;
end Noncompliant;

Compliant Code Example

function Compliant (Value : Integer) return Integer is
begin
 return Value + 1;
end Compliant;

OR

procedure Compliant (Value : in out Integer) is
begin
 if Value < Integer'last then
 Value := Value + 1;
 end if;
end Compliant;

Notes

Violations are detected by SPARK.

Footnotes

Limit Parameter Aliasing (RPP08)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) Code inspection

Reference

Ada Reference Manual: 6.2 Formal Parameter Modes[#1]

SPARK Reference Manual: Anti-Aliasing[#2]

Description

In software, an alias is a name which refers to the same object as another
name. In some cases, it is an error in Ada to reference an object through a
name while updating it through another name in the same subprogram. Most of
these cases cannot be detected by a compiler. Even when not an error, the
presence of aliasing makes it more difficult to understand the code for both
humans and analysis tools, and thus it may lead to errors being introduced
during maintenance.

This rule is meant to detect problematic cases of aliasing that are introduced
through the actual parameters and between actual parameters and global
variables in a subprogram call. It is a simplified version of the SPARK rule
for anti-aliasing defined in SPARK Reference Manual section 6.4.2.

A formal parameter is said to be immutable when the subprogram cannot modify
its value or modify the value of an object by dereferencing a part of the
parameter of access type (at any depth in the case of SPARK). In Ada and SPARK,
this corresponds to either an anonymous access-to-constant parameter or a
parameter of mode in and not of an access type. Otherwise, the formal
parameter is said to be mutable.

A procedure call shall not pass two actual parameters which potentially
introduce aliasing via parameter passing unless either:

	both of the corresponding formal parameters are immutable; or

	at least one of the corresponding formal parameters is immutable and is
of a by-copy type that is not an access type.

If an actual parameter in a procedure call and a global variable referenced by
the called procedure potentially introduce aliasing via parameter passing,
then:

	the corresponding formal parameter shall be immutable; and

	if the global variable is written in the subprogram, then the corresponding
formal parameter shall be of a by-copy type that is not an access type.

Where one of the rules above prohibits the occurrence of an object or any of
its subcomponents as an actual parameter, the following constructs are also
prohibited in this context:

	A type conversion whose operand is a prohibited construct;

	A call to an instance of Unchecked_Conversion whose operand is a
prohibited construct;

	A qualified expression whose operand is a prohibited construct;

	A prohibited construct enclosed in parentheses.

Applicable Vulnerability within ISO TR 24772-2

	6.32 Passing parameters and return values [CSJ]

Noncompliant Code Example

 type R is record
 Data : Integer := 0;
 end record;

 procedure Detect_Aliasing (Val_1 : in out R;
 Val_2 : in R)
 is
 begin
 null;
 end Detect_Aliasing;

 Obj : R;

begin
 Detect_Aliasing (Obj, Obj);

Compliant Code Example

Do not pass Obj as the actual parameter to both formal parameters.

Notes

All violations are detected by SPARK. The GNAT compiler switch
-gnateA[1] enables detection of some cases, but not all.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-6-2.html

[#2]
https://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#anti-aliasing

Use Precondition and Postcondition Contracts (RPP09)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Code inspection

Reference

Power of Ten rule 5 "The assertion density of the code should average to a
minimum of two assertions per function."

Description

Subprograms should declare Pre and/or Post contracts. Developers should
consider specifying the Global contract as well, when the default does not
apply.

Subprogram contracts complete the Ada notion of a specification, enabling
clients to know what the subprogram does without having to know how it is
implemented.

Preconditions define those logical (Boolean) conditions required for the body
to be able to provide the specified behavior. As such, they are obligations on
the callers. These conditions are checked at run-time in Ada, prior to each
call, and verified statically in SPARK.

Postconditions define those logical (Boolean) conditions that will hold after
the call returns normally. As such, they express obligations on the
implementer, i.e., the subprogram body. The implementation must be such that
the postcondition holds, either at run-time for Ada, or statically in SPARK.

Not all subprograms will have both a precondition and a postcondition, some
will have neither.

The Global contract specifies interactions with those objects not local to the
corresponding subprogram body. As such, they help complete the specification
because, otherwise, one would need to examine the body of the subprogram itself
and all those it calls, directly or indirectly, to know whether any global
objects were accessed.

Applicable Vulnerability within ISO TR 24772-2

	6.42 Violations of the Liskov substitution principle or the contract model
[BLP]

Noncompliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element);

Compliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with
 Pre => not Full (This),
 Post => not Empty (This)
 and Top_Element (This) = Item
 and Extent (This) = Extent (This)'Old + 1
 and Unchanged (This'Old, Within => This),
 Global => null;

Notes

This rule must be enforced by manual inspection.

Moreover, the program must be compiled with enabled assertions
(GNAT -gnata switch) to ensure that the contracts are executed, or
a sound static analysis tool such as CodePeer or SPARK toolset should be used
to prove that the contracts are always true.

Footnotes

Do Not Re-Verify Preconditions in Subprogram Bodies (RPP10)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Static analysis tools

Reference

N/A

Description

Do not re-verify preconditions in the corresponding subprogram bodies. It is a
waste of cycles and confuses the reader as well.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with
 Pre => not Full (This),
 Post => ...
...
procedure Push (This : in out Stack; Item : Element) is
begin
 if Full (This) then -- redundant check
 raise Overflow;
 end if;
 This.Top := This.Top + 1;
 This.Values (This.Top) := Item;
end Push;

Compliant Code Example

type Stack is private;
procedure Push (This : in out Stack; Item : Element) with
 Pre => not Full (This),
 Post => ...
...
procedure Push (This : in out Stack; Item : Element) is
begin
 This.Top := This.Top + 1;
 This.Values (This.Top) := Item;
end Push;

Notes

This rule can be enforced by CodePeer or SPARK, via detection of dead code.

Footnotes

Always Use the Result of Function Calls (RPP11)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

MISRA C Rule 17.7 "The value returned by a function having
non-void return type shall be used" and directive 4.7 "If a function
returns error information, that error information shall be tested."

Description

In Ada and SPARK, it is not possible to ignore the object returned by a
function call. The call must be treated as a value, otherwise the compiler will
reject the call. For example, the value must be assigned to a variable, or
passed as the actual parameter to a formal parameter of another call, and so
on.

However, that does not mean that the value is actually used to compute some
further results. Although almost certainly a programming error, one could call
a function, assign the result to a variable (or constant), and then not use
that variable further.

Note that functions will not have side-effects (due to RPP06) so it is only the
returned value that is of interest here.

Applicable Vulnerability within ISO TR 24772-2

	6.47 Inter-language calling [DJS]

Noncompliant Code Example

N/A

Compliant Code Example

N/A

Notes

The GNAT compiler warning switch -gnatwu (or the more general
-gnatwa warnings switch) will cause the compiler to detect variables
assigned but not read. CodePeer will detect these unused variables as well.
SPARK goes further by checking that all computations contribute all the way
to subprogram outputs.

Footnotes

No Recursion (RPP12)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Recursive_Subprograms

Reference

MISRA C Rule 17.2 "Functions shall not call themselves, either directly or
indirectly"

Description

No subprogram shall be invoked, directly or indirectly, as part of its own
execution.

In addition to making static analysis more complex, recursive calls make static
stack usage analysis extremely difficult, requiring, for example, manual supply of call
limits.

Applicable Vulnerability within ISO TR 24772-2

	6.35 Recursion [GDL]

Noncompliant Code Example

function Noncompliant (N : Positive) return Positive is
begin
 if N = 1 then
 return 1;
 else
 return N * Noncompliant (N - 1); -- could overflow
 end if;
end Noncompliant;

Compliant Code Example

function Compliant (N : Positive) return Positive is
 Result : Positive := 1;
begin
 for K in 2 .. N loop
 Result := Result * K; -- could overflow
 end loop;
 return Result;
end Compliant;

Notes

The compiler will detect violations with the restriction No_Recursion in place.
Note this is a dynamic check.

The GNATcheck rule specified above is a static check, subject to the
limitations
described in
GNATcheck Reference Manual: Recursive Subprograms[#1].

Footnotes

[#1]
https://docs.adacore.com/live/wave/lkql/html/gnatcheck_rm/gnatcheck_rm/predefined_rules.html#recursive-subprograms

No Reuse of Standard Typemarks (RPP13)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
overrides_standard_name

Reference

N/A

Description

Do not reuse the names of standard Ada typemarks
(e.g. type Integer is range -1_000 .. 1_000;)

When a developer uses an identifier that has the same name as a standard
typemark, such as Integer, a subsequent maintainer might be unaware that
this identifier does not actually refer to Standard.Integer and might
unintentionally use the locally-scoped Integer rather than the original
Standard.Integer. The locally-scoped Integer can have different
attributes (and may not even be of the same base type).

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

 type Boolean is range 0 .. 1 with Size => 1;
 type Character is ('A', 'E', 'I', 'O', 'U');

Compliant Code Example

 type Boolean_T is range 0 .. 1 with Size => 1;
 type Character_T is ('A', 'E', 'I', 'O', 'U');

Notes

N/A

Footnotes

Use Symbolic Constants for Literal Values (RPP14)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Numeric_Literals

Reference

N/A

Description

Extensive use of literals in a program can lead to two problems. First,
the meaning of the literal is often obscured or unclear from the context.
Second, changing a frequently used literal requires searching the entire
program source for that literal and distinguishing the uses that must be
modified from those that should remain unmodified.

Avoid these problems by declaring objects with meaningfully named constants,
setting their values to the desired literals, and referencing the constants
instead of the literals throughout the program. This approach clearly
indicates the meaning or intended use of each literal. Furthermore, should
the constant require modification, the change is limited to the declaration;
searching the code is unnecessary.

Some literals can be replaced with attribute values. For example, when
iterating over an array, it is better to use
Array_Object'First .. Array_Object'Last
than using 1 .. Array_Object'Length.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

 type Array_T is array (0 .. 31) of Boolean;
 function Any_Set (X : Array_T) return Boolean is
 (for some Flag in 0 .. 31 => X (Flag));

Compliant Code Example

 Number_Of_Bits : constant := 32;
 type Array_T is array (0 .. Number_Of_Bits) of Boolean;
 function Any_Set (X : Array_T) return Boolean is
 (for some Flag in X'range => X (Flag));

Notes

N/A

Footnotes

Exception Usage (EXU)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

	Description
	Have a plan for managing the use of Ada exceptions at the application level.

	Rules
	EXU01, EXU02, EXU03, EXU04

Exceptions in modern languages present the software architect with a dilemma.
On one hand, exceptions can increase integrity by allowing components to signal
specific errors in a manner that cannot be ignored, and, in general, allow
residual errors to be caught. (Although there should be no unexpected errors in
high integrity code, there may be some such errors due, for example, to
unforeseeable events such as radiation-induced single-event upsets.) On the
other hand, unmanaged use of exceptions increases verification expense and
difficulty, especially flow analysis, perhaps to an untenable degree. In that
case overall integrity is reduced or unwarranted.

In addition, programming languages may define some system-level errors in terms
of language-defined exceptions. Such exceptions may be unavoidable, at least at
the system level. For example, in Ada, stack overflow is signalled with the
language-defined Storage_Error exception. Other system events, such as
bus error, may also be mapped to language-defined or vendor-defined exceptions.

Complicating the issue further is the fact that, if exceptions are completely
disallowed, there will be no exception handling code in the underlying run-time
library. The effects are unpredictable if any exception actually does occur.

Therefore, for the application software the system software architect must
decide whether to allow exceptions at all, and if they are to be used, decide
the degree and manner of their usage. At the system level, the architect must
identify the exceptions that are possible and how they will be addressed.

	Do Not Raise Language-Defined Exceptions (EXU01)

	No Unhandled Application-Defined Exceptions (EXU02)

	No Exception Propagation Beyond Name Visibility (EXU03)

	Prove Absence of Run-time Exceptions (EXU04)

Footnotes

Do Not Raise Language-Defined Exceptions (EXU01)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Raising_Predefined_Exceptions

Reference

[SEI-Java] ERR07-J

Description

In no case should the application explicitly raise a language-defined
exception.

The Ada language-defined exceptions are raised implicitly in specific
circumstances defined by the language standard. Explicitly raising these
exceptions would be confusing to application developers. The potential for
confusion increases as the exception is propagated up the dynamic call chain,
away from the point of the
raise statement, because this increases the number
of paths and thus corresponding language-defined checks that could have been
the cause.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

procedure Noncompliant (X : in out Integer) is
begin
 if X < Integer'last / 2
 then
 X := X * 2;
 else
 raise Constraint_Error;
 end if;
end Noncompliant;

Compliant Code Example

procedure Compliant (X : in out Integer) is
begin
 if X < Integer'last / 2
 then
 X := X * 2;
 else
 raise Math_Overflow;
 end if;
end Compliant;

Notes

N/A

Footnotes

No Unhandled Application-Defined Exceptions (EXU02)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Unhandled_Exceptions

Reference

N/A

Description

All application-defined exceptions must have at least one corresponding handler
that is applicable. Otherwise, if an exception is raised, undesirable behavior
is possible. The term applicable means that there is no dynamic call chain
that can reach the active exception which does not also include a handler that
will be invoked for that exception, somewhere in that chain.

When an unhandled exception occurs in the sequence of statements
of an application task and propagates to task's body, the task terminates
abnormally. No notification of some sort is required or defined by the
language, although some vendors' implementations may print out a log message or
provide some other non-standard response. (Note that such a notification
implies an external persistent environment, such as an operating system, that
may not be present in all platforms.) The task failure does not affect any
other tasks unless those other tasks attempt to communicate with it. In short,
failure is silent.

Although the language-defined package Ada.Task_Termination can be used to
provide a response using standard facilities, not all run-time libraries
provide that package. For example, under the Ravenscar profile, application
tasks are not intended to terminate, neither normally nor abnormally, and the
language does not define what happens if they do. A run-time library for a
memory-constrained target, especially a bare-metal target without an operating
system, might not include any support for task termination when the tasking
model is Ravenscar. The effects of task termination in that case are not
defined by the language.

When an unhandled exception occurrence reaches the main subprogram and is not
handled there, the exception occurrence is propagated to the environment task,
which then completes abnormally. Even if the main subprogram does handle the
exception, the environment task still completes (normally in that case).

When the environment task completes (normally or abnormally) it waits for the
completion of dependent application tasks, if any. Those dependent tasks
continue executing normally, i.e., they do not complete as a result of the
environment task completion. Alternatively, however, instead of waiting for
them, the implementation has permission to abort the dependent application
tasks, per
Ada Reference Manual: 10.2 (30) Program Execution[#1]
The resulting application-specific effect is undefined.

Finally, whether the environment task waited for the dependent tasks or aborted
them, the semantics of further execution beyond that point are undefined. There
is no concept of a calling environment beyond the environment task
(Ada Reference Manual: 10.2 (30) Program Execution[#2]).
In some systems there is no calling environment, such as bare-metal platforms
with only an Ada run-time library and no operating system.

Applicable Vulnerability within ISO TR 24772-2

	6.36 Ignored error status and unhandled exceptions [OYB]

Noncompliant Code Example

 procedure Main is
 begin
 if Argument_Count = 0 then
 raise Cli_Exception;
 else
 begin
 Start_Application (Argument (1));
 exception
 when Application_Exception =>
 Put_Line ("Application failed");
 end;
 end if;
 end Main;

Compliant Code Example

 procedure Main is
 begin
 if Argument_Count = 0 then
 raise Cli_Exception;
 else
 begin
 Start_Application (Argument (1));
 exception
 when Application_Exception =>
 Put_Line ("Application failed");
 end;
 end if;
 exception
 when Cli_Exception =>
 Put_Line ("Failure");
 end Main;

Notes

SPARK can prove that no exception will be raised (or fail to prove it and
indicate the failure).

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-10-2.html

[#2]
http://www.ada-auth.org/standards/12rm/html/RM-10-2.html

No Exception Propagation Beyond Name Visibility (EXU03)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Non_Visible_Exceptions

Reference

RPP05

Description

An active exception can be propagated dynamically past the point where the name
of the exception is visible (the scope of the declaration). The exception can
only be handled via others past that point. That situation prevents
handling the exception specifically, and violates RPP05.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

procedure Noncompliant (Param : in out Integer) is
 Noncompliant_Exception : exception;
begin
 Param := Param * Param;
exception
 when others =>
 raise Noncompliant_Exception;
end Noncompliant;

As a result the exception name cannot be referenced outside the body:

procedure Bad_Call (Param : in out Integer) is
begin
 Noncompliant (Param);
exception
 when Noncompliant_Exception => -- compile error
 null;
end Bad_Call;

Compliant Code Example

Compliant_Exception : exception;
procedure Compliant (Param : in out Integer) is
begin
 Param := Param * Param;
exception
 when others =>
 raise Compliant_Exception;
end Compliant;

procedure Good_Call (Param : in out Integer) is
begin
 Compliant (Param);
exception
 when Compliant_Exception =>
 null;
end Good_Call;

Notes

N/A

Footnotes

Prove Absence of Run-time Exceptions (EXU04)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

MISRA C Rule 1.3 "There shall be no occurrence of undefined or critical
unspecified behaviour"

Description

In many high-integrity systems the possible responses to an exception are
limited or nonexistent. In these cases the only approach is to prove
exceptions cannot occur in the first place. Additionally, the cost of proving
exceptions cannot happen may be less than the cost of analyzing code in which
they are allowed to be raised.

The restriction No_Exceptions can be used with pragma Restrictions
to enforce
this approach. Specifically, the restriction ensures that raise
statements and exception handlers do not appear in the source code and that
language-defined checks are not emitted by the compiler. However, a run-time
check performed automatically by the hardware is permitted because it typically
cannot be prevented. An example of such a check would be traps on invalid
addresses. If a hardware check fails, or if an omitted language-defined check
would have failed, execution is unpredictable. As a result, enforcement with
the restriction is not ideal. However, proof of the absence of run-time errors
is possible using the SPARK subset of Ada.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

N/A

Compliant Code Example

N/A

Notes

This restriction is detected by SPARK, in which any statements explicitly
raising an exception must be proven unreachable (or proof fails and the failure
is indicated), and any possibility of run-time exception should be proved not
to happen.

Footnotes

Object-Oriented Programming (OOP)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

	Description
	Have a plan for selecting the OOP facilities of the language to use.

	Rules
	OOP01, OOP02, OOP03, OOP04, OOP05, OOP06, OOP07

There are many issues to consider when planning the use of Object Oriented
features in a high-integrity application. Choices should be made based on the
desired expressive power of the OO features and the required level of
certification or safety case.

For example, the use of inheritance can provide abstraction and separation of
concerns. However, the extensive use of inheritance, particularly in deep
hierarchies, can lead to fragile code bases.

Similarly, when new types of entities are added, dynamic dispatching provides
separation of the code that must change from the code that manipulates those
types and need not be changed to handle new types. However, analysis of dynamic
dispatching must consider every candidate object type and analyze the
associated subprogram for appropriate behavior.

Therefore, the system architect has available a range of possibilities for the
use of OOP constructs, with tool enforcement available for the selections. Note
that full use of OOP, including dynamic dispatching, may not be unreasonable.

The following rules assume use of tagged types, a requirement for full OOP in
Ada.

	No Class-wide Constructs Policy (OOP01)

	Static Dispatching Only Policy (OOP02)

	Limit Inheritance Hierarchy Depth (OOP03)

	Limit Statically-Dispatched Calls To Primitive Operations (OOP04)

	Use Explicit Overriding Annotations (OOP05)

	Use Class-wide Pre/Post Contracts (OOP06)

	Ensure Local Type Consistency (OOP07)

Footnotes

No Class-wide Constructs Policy (OOP01)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) N/A

Verification Method \(\rightarrow\) Compiler restrictions

Mutually Exclusive \(\rightarrow\) OOP02

Reference

N/A

Description

In this approach, tagged types are allowed and type extension (inheritance) is
allowed, but there are no class-wide constructs.

This restriction ensures there are no class-wide objects or formal parameters,
nor access types designating class-wide types.

In this approach there are no possible dynamic dispatching calls because such
calls can only occur when a class-wide value is passed as the parameter to a
primitive operation of a tagged type.

Applicable Vulnerability within ISO TR 24772-2

	6.43 Redispatching [PPH]

Noncompliant Code Example

X : Object'Class := Some_Object;

Compliant Code Example

X : Object := Some_Object;

Notes

The compiler will detect violations with the standard Ada restriction
No_Dispatch applied.

Footnotes

Static Dispatching Only Policy (OOP02)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) N/A

Verification Method \(\rightarrow\) Compiler restrictions

Mutually Exclusive \(\rightarrow\) OOP01

Reference

N/A

Description

In this approach, class-wide constructs are allowed, as well as tagged types
and type extension (inheritance), but dynamic dispatching remains disallowed
(i.e., as in OOP01).

This rule ensures there are no class-wide values passed as the parameter to a
primitive operation of a tagged type, hence there are no dynamically dispatched
calls.

Note that this rule should not be applied without due consideration.

Applicable Vulnerability within ISO TR 24772-2

	6.43 Redispatching [PPH]

Noncompliant Code Example

Some_Primitive (Object'Class (X));

Compliant Code Example

Some_Primitive (X);

Notes

N/A

Footnotes

Limit Inheritance Hierarchy Depth (OOP03)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) GNATcheck rule:
Deep_Inheritance_Hierarchies:2

Reference

[AdaOOP2016] section 5.1

Description

A class inheritance hierarchy consists of a set of types related by
inheritance. Each class, other than the root class, is a subclass of other
classes, and each, except for "leaf" nodes, is a base class for those that are
derived from it.

Improperly designed inheritance hierarchies complicate system maintenance and
increase the effort in safety certification, in any programming language.

A common characteristic of problematic hierarchies is "excessive" depth, in
which a given class is a subclass of many other classes. Depth can be a problem
because a change to a class likely requires inspection, modification,
recompilation, and retesting/reverification of all classes below it in the
hierarchy. The extent of that effect increases as we approach the root class.
This rippling effect is known as the fragile base class problem. Clearly, the
greater the depth the more subclasses there are to be potentially affected. In
addition, note that a change to one class may cause a cascade of other
secondary changes to subclasses, so the effect is often not limited to a single
change made to all the subclasses in question.

Deep inheritance hierarchies also contribute to complexity, rather than
lessening it, by requiring the reader to understand multiple superclasses in
order to understand the behavior of a given subclass.

Applicable Vulnerability within ISO TR 24772-2

	6.41 Inheritance [RIP]

Noncompliant Code Example

The threshold for "too deep" is inexact, but beyond around 4 or 5 levels the
complexity accelerates rapidly.

 type Shape_T is tagged private;
 procedure Set_Name (Shape : Shape_T; Name : String);
 function Get_Name (Shape : Shape_T) return String;

 type Quadrilateral_T is new Shape_T with private;
 type Trapezoid_T is new Quadrilateral_T with private;
 type Parallelogram_T is new Trapezoid_T with private;
 type Rectangle_T is new Parallelogram_T with private;
 type Square_T is new Rectangle_T with private;

Compliant Code Example

 type Shape_T is tagged private;
 procedure Set_Name (Shape : Shape_T; Name : String);
 function Get_Name (Shape : Shape_T) return String;

 type Quadrilateral_T is new Shape_T with private;
 type Rectangle_T is new Quadrilateral_T with private;
 type Square_T is new Rectangle_T with private;

Notes

N/A

Footnotes

Limit Statically-Dispatched Calls to Primitive Operations (OOP04)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Medium (easy fix, but a difficult to detect
bug)

Verification Method \(\rightarrow\) GNATcheck rule:
Direct_Calls_To_Primitives

Reference

N/A

Description

This rule applies only to tagged types, when visibly tagged at the point of a
call from one primitive to another of that same type.

By default, subprogram calls are statically dispatched. Dynamic dispatching
only occurs when a class-wide value is passed to a primitive operation of a
specific type. Forcing an otherwise optional dynamic dispatching call in this
case is known as redispatching.

When one primitive operation of a given tagged type invokes another distinct
primitive operation of that same type, use redispatching so that an overriding
version of that other primitive will be invoked if it exists. Otherwise an
existing overridden version would not be invoked, which is very likely an
error.

This rule does not apply to the common case in which an overriding of a
primitive operation calls the "parent" type's version of the overridden
operation. Such calls occur in the overridden body when the new version is not
replacing, but rather, is augmenting the parent type's version. In this case
the new version must do whatever the parent version did, and can then add
functionality specific to the new type.

By default, this rule applies to another common case in which static calls from
one primitive operation to another make sense. Specifically, constructors
are often implemented in Ada as functions that create a new value of the tagged
type. As constructors, these functions are type-specific. They must call the
primitive operations of the type being created, not operations that may be
overridden for some type later derived from it. (Note that there is a GNATcheck
rule parameter to not flag this case.)

Typically constructor functions only have the tagged type as the result type,
not as the type for formal parameters, if any, because actual parameters of the
tagged type would themselves likely require construction. This specific usage
is the case ignored by the GNATcheck rule parameter.

Note that constructors implemented as procedures also call primitive operations
of the specific type, for the same reasons as constructor functions. This usage
is allowed by this rule and does not require the GNATcheck parameter. (The
difference between function and procedure constructors is that these procedures
will have a formal parameter of the tagged type, of mode out.)

Applicable Vulnerability within ISO TR 24772-2

	6.42 Violations of the Liskov substitution principle of the contract model
[BLP]

	6.43 Redispatching [PPH]

	6.44 Polymorphic variables [BKK]

Noncompliant Code Example

Class constructs

package Root is
 type Root_T is tagged null record;
 procedure Noncompliant (X : in out Root_T) is null;
 procedure Compliant (X : in out Root_T) is null;
 procedure Other_Prim (X : in out Root_T) is null;
end Root;

package Child is
 use Root;
 type Child_T is new Root_T with null record;
 procedure Noncompliant (X : in out Child_T);
 procedure Compliant (X : in out Child_T);
 procedure Other_Prim (X : in out Child_T);
end Child;

procedure Not_A_Primitive (X : in out Child.Child_T) is null;

Noncompliant Code

procedure Noncompliant (X : in out Child_T) is
begin
 Other_Prim (Root_T (X));
 Other_Prim (X);
end Noncompliant;

Compliant Code Example

procedure Compliant (X : in out Child_T) is
begin
 Compliant (Root_T (X)); -- constructor style is OK
 Not_A_Primitive (X);
end Compliant;

Notes

N/A

Footnotes

Use Explicit Overriding Annotations (OOP05)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule: Style_Checks:O

Reference

[AdaOOP2016] section 4.3

Description

The declaration of a primitive operation that overrides an inherited operation
must include an explicit overriding annotation.

The semantics of inheritance in mainstream object-oriented languages may result
in two kinds of programming errors: 1) intending, but failing, to override an
inherited subprogram, and 2) intending not to override an inherited subprogram,
but doing so anyway. Because an overridden subprogram may perform
subclass-specific safety or security checks, the invocation of the parent
subprogram on a subclass instance can introduce a vulnerability.

The first issue (intending but failing to override) typically occurs when the
subprogram name is misspelled. In this case a new or overloaded subprogram is
actually declared.

The second issue (unintended overriding) can arise when a new subprogram is
added to a parent type in an existing inheritance hierarchy. The new subprogram
happens to cause one or more inherited subprograms below it to override the new
superclass version. This mistake typically happens during program maintenance.

In Ada, much like other modern languages, one can annotate a subprogram
declaration (and body) with an indication that the subprogram is an overriding
of an inherited version. This is done with the overriding reserved word
preceding the subprogram specification.

Similarly, in Ada one can explicitly indicate that a subprogram is not an
overriding. To do so, the programmer includes the reserved words not
overriding immediately prior to the subprogram specification.

Of course, incorrect marking errors are flagged by the compiler. If a
subprogram is explicitly marked as overriding but is not actually overriding,
the compiler will reject the code. Likewise, if a primitive subprogram is
explicitly marked as not overriding, but actually is overriding, the compiler
will reject the code.

However, most subprograms are not overriding so it would be a heavy burden on
the programmer to make them explicitly indicate that fact. That's not to
mention the relatively heavy syntax required.

In addition, both annotations are optional for the sake of compatibility with
prior versions of the language. Therefore, a subprogram without either
annotation might or might not be overriding. A legal program could contain some
explicitly annotated subprograms and some that are not annotated at all. But
because the compiler will reject explicit annotations that are incorrect, all
we require is that one of the two cases be explicitly indicated for all such
subprograms. Any unannotated subprograms not flagged as errors are then
necessarily not that case, they must be the other one.

Since overriding is less common and involves slightly less syntax to annotate,
the guideline requires explicit annotations only for overriding subprograms. It
follows that any subprograms not flagged as errors by the compiler are not
overriding, so they need not be marked explicitly as such.

This guideline is implemented by compiler switches, or alternatively, by a
GNATcheck rule (specified below the table). With this guideline applied and
enforced, the two inheritance errors described in the introduction cannot
happen.

Note that the compiler switches will also require the explicit overriding
indicator when overriding a language-defined operator. The switches also apply
to inherited primitive subprograms for non-tagged types.

Applicable Vulnerability within ISO TR 24772-2

	6.34 Subprogram signature mismatch [OTR]

	6.41 Inheritance [RIP]

Noncompliant Code Example

type Root_T is tagged null record;
procedure Primitive (X : in out Root_T) is null;

type Noncompliant_Child_T is new Root_T with null record;
procedure Primitive (X : in out Noncompliant_Child_T) is null;

Compliant Code Example

type Compliant_Child_T is new Root_T with null record;
overriding procedure Primitive (X : in out Compliant_Child_T) is null;

Notes

This rule requires the GNAT compiler switches -gnatyO and
-gnatwe in order for the compiler to flag missing overriding
annotations as errors. The first causes the compiler to generate the
warnings, and the second causes those warnings to be treated as errors.

Footnotes

Use Class-wide Pre/Post Contracts (OOP06)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) GNATcheck rule:
Specific_Pre_Post

Reference

[AdaOOP2016] section 6.1.4

SPARK User's Guide, section 7.5.2[#1]

Description

For primitive operations of tagged types, use only class-wide pre/post
contracts, if any.

The class-wide form of precondition and postcondition expresses conditions that
are intended to apply to any version of the subprogram. Therefore, when a
subprogram is derived as part of inheritance, only the class-wide form of those
contracts is inherited from the parent subprogram, if any are defined. As a
result, it only makes sense to use the class-wide form in this situation.

(The same semantics and recommendation applies to type invariants.)

Note: this approach will be required for OOP07 (Ensure Local Type Consistency).

Applicable Vulnerability within ISO TR 24772-2

	6.42 Violations of the Liskov substitution principle or the contract model
[BLP]

Noncompliant Code Example

 type Root_T is tagged null record;
 procedure Set_Name (X : Root_T;
 Name : String)
 with Pre => Name'length > 0;
 function Get_Name (X : Root_T) return String
 with Post => Get_Name'result'length > 0;

Compliant Code Example

 type Root_T is tagged null record;
 procedure Set_Name (X : Root_T;
 Name : String)
 with Pre'class => Name'length > 0;
 function Get_Name (X : Root_T) return String
 with Post'class => Get_Name'result'length > 0;

Notes

N/A

Footnotes

[#1]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_write_object_oriented_contracts.html#writing-contracts-on-dispatching-subprograms

Ensure Local Type Consistency (OOP07)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) N/A

Verification Method \(\rightarrow\) Software test

Reference

[AdaOOP2016] See section 4.2.

GNAT User's Guide, section 5.10.11[#1]

Description

Either:

	Formally verify local type consistency, or

	Ensure that each tagged type passes all the tests of all the parent types
which it can replace.

Rationale:

One of the fundamental benefits of OOP is the ability to manipulate objects in
a class inheritance hierarchy without "knowing" at compile-time the specific
classes of the objects being manipulated. By manipulate we mean invoking the
primitive operations, the methods defined by the classes.

We will use the words class and type interchangeably, because classes are
composed in Ada and SPARK using a combination of building blocks, especially
type declarations. However, we will use the term subclass rather than
subtype because the latter has a specific meaning in Ada and SPARK that is
unrelated to OOP.

The objects whose operations are being invoked can be of types anywhere in the
inheritance tree, from the root down to the bottom. The location, i.e., the
specific type, is transparent to the manipulating code. This type transparency
is possible because the invoked operations are dynamically dispatched at
run-time, rather than statically dispatched at compile-time.

Typically, the code manipulating the objects does so in terms of superclasses
closer to the root of the inheritance tree. Doing so increases generality
because it increases the number of potential subclasses that can be
manipulated. The actual superclass chosen will depend on the operations
required by the manipulation. In Ada and SPARK, subclasses can add operations
but can never remove them, so more operations are found as we move down from
the root. That is the nature of specialization. Note that the guarantee of an
invoked operations' existence is essential for languages used in this domain.

However, for this transparent manipulation to be functionally correct -- to
accomplish what the caller intends -- the primitive operations of subclasses
must be functionally indistinguishable from those of the superclasses. That
doesn't mean the subclasses cannot make changes. Indeed, the entire point of
subclasses is to make changes. In particular, functional changes can be either
introduction of new operations, or overridings of inherited operations. It is
these overridings that must be functionally transparent to the manipulating
code. (Of course, for an inherited operation that is not overridden, the
functionality is inherited as-is, and is thus transparent trivially.)

The concept of functional transparency was introduced, albeit with different
terminology, by Liskov and Wing in 1994 [LiskovWing1994] and is, therefore,
known as the Liskov Substitution Principle, or LSP. The substitution in LSP
means that a subclass must be substitutable for its superclass, i.e., a
subclass instance should be usable whenever a superclass instance is required.

Unfortunately, requirements-based testing will not detect violations of LSP
because unit-level requirements do not concern themselves with superclass
substitutability.

However, the OO supplement of DO-178C [DO178C] offers solutions, two of which
are in fact the options recommended by this guideline.

Specifically, the supplement suggests adding a specific verification activity
it defines as Local Type Consistency Verification. This activity ensures LSP is
respected and, in so doing, addresses the vulnerability.

Verification can be accomplished statically with formal methods in SPARK, or
dynamically via a modified form of testing.

For the static approach, type consistency is verified by examining the
properties of the overriding operation's preconditions and postconditions.
These are the properties required by Design by Contract, as codified by
Bertrand Meyer [Meyer1997]. Specifically, an overridden primitive may only
replace the precondition with one weaker than that of the parent version, and
may only replace the postcondition with one stronger. In essence, relative to
the parent version, an overridden operation can only require the same or less,
and provide the same or more. Satisfying that requirement is sufficient to
ensure functional transparency because the manipulating code only "knows" the
contracts of the class it manipulates, i.e., the view presented by the type,
which may very well be a superclass of the one actually invoked.

In Ada and SPARK, the class-wide form of preconditions and postconditions are
inherited by overridden primitive operations of tagged types. The inherited
precondition and that of the overriding (if any) are combined into a
conjunction. All must hold, otherwise the precondition fails. Likewise, the
inherited postcondition is combined with the overriding postcondition into a
disjunction. At least one of them must hold. In Ada these are tested at
run-time. In SPARK, they are verified statically (or not, in which case proof
fails and an error is indicated).

To verify substitutability via testing, all the tests for all superclass types
are applied to objects of the given subclass type. If all the parent tests
pass, this provides a high degree of confidence that objects of the new tagged
type can properly substitute for parent type objects. Note that static proof of
consistency provides an even higher degree of confidence.

Applicable Vulnerability within ISO TR 24772-2

	6.42 Violations of the Liskov substitution principle of the contract model
[BLP]

	6.43 Redispatching [PPH]

	6.44 Polymorphic variables [BKK]

Noncompliant Code Example

package P is
 pragma Elaborate_Body;
 type Rectangle is tagged private;
 procedure Set_Width (This : in out Rectangle;
 Value : Positive)
 with
 Post => Width (This) = Value and
 Height (This) = Height (This'Old);

 function Width (This : Rectangle) return Positive;

 procedure Set_Height (This : in out Rectangle;
 Value : Positive)
 with
 Post => Height (This) = Value and
 Width (This) = Width (This'Old);

 function Height (This : Rectangle) return Positive;

private
 ...
end P;

The postcondition for Set_Width states that the Height
is not changed.
Likewise, for Set_Height, the postcondition asserts that the Width
is not
changed. However, these postconditions are not class-wide so they are not
inherited by subclasses.

Now, in a subclass Square, the operations are overridden so that setting
the width also sets the height to the same value, and vice versa. Thus the
overridden operations do not maintain type consistency, but this fact is
neither detected at run-time, nor could SPARK verify it statically (and SPARK
is not used at all in these versions of the packages).

with P; use P;
package Q is
 pragma Elaborate_Body;
 type Square is new Rectangle with private;

 overriding
 procedure Set_Width (This : in out Square;
 Value : Positive)
 with
 Post => Width (This) = Height (This);

 overriding
 procedure Set_Height (This : in out Square;
 Value : Positive)
 with
 Post => Width (This) = Height (This);

private
 ...
end Q;

Compliant Code Example

package P with SPARK_Mode is
 pragma Elaborate_Body;
 type Rectangle is tagged private;

 procedure Set_Width (This : in out Rectangle;
 Value : Positive)
 with
 Post'Class => Width (This) = Value and
 Height (This) = Height (This'Old);

 function Width (This : Rectangle) return Positive;

 procedure Set_Height (This : in out Rectangle;
 Value : Positive)
 with
 Post'Class => Height (This) = Value and
 Width (This) = Width (This'Old);

 function Height (This : Rectangle) return Positive;

private
 ...
end P;

Now the postconditions are class-wide so they are inherited by subclasses. In
the subclass Square, the postconditions will not hold at run-time. Likewise,
SPARK can now prove that type consistency is not verified because the
postconditions are weaker than those inherited:

with P; use P;
package Q with SPARK_Mode is
 pragma Elaborate_Body;
 type Square is new Rectangle with private;

 overriding
 procedure Set_Width (This : in out Square;
 Value : Positive)
 with
 Post'Class => Width (This) = Height (This);

 overriding
 procedure Set_Height (This : in out Square;
 Value : Positive)
 with
 Post'Class => Width (This) = Height (This);

private
 type Square is new Rectangle with null record;
end Q;

Notes

Verification can be achieved dynamically with the GNATtest tool, using the
--validate-type-extensions switch. SPARK enforces this rule.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html

Software Engineering (SWE)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	

	Security:

	\(\checkmark\)

	Description
	These rules promote "best practices" for software development.

	Rules
	SWE01, SWE02, SWE03, SWE04

	Use SPARK Extensively (SWE01)

	Enable Optional Warnings and Treat As Errors (SWE02)

	Use A Static Analysis Tool Extensively (SWE03)

	Hide Implementation Artifacts (SWE04)

Footnotes

Use SPARK Extensively (SWE01)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High, as retrofit can be extensive

Verification Method \(\rightarrow\) Compiler restrictions

Reference

SPARK User's Guide, section 8: "Applying SPARK in Practice"[#1]

Description

SPARK has proven itself highly effective, both in terms of low defects, low
development costs, and high productivity. The guideline advises extensive use of
SPARK, especially for the sake of formally proving the most critical parts of
the source code. The rest of the code can be in SPARK as well, even if formal
proof is not intended, with some parts in Ada when features outside the SPARK
subset are essential.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

Any code outside the (very large) SPARK subset is flagged by the compiler.

Compliant Code Example

N/A

Notes

Violations are detected by the SPARK toolset.

Footnotes

[#1]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/usage_scenarios.html

Enable Optional Warnings and Treat As Errors (SWE02)

Level \(\rightarrow\) Required

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) Low

Verification Method \(\rightarrow\) Compiler restrictions

Reference

Power of 10 rule #10: All code must be compiled, from the first day of
development, with all compiler warnings enabled at the most
pedantic setting available. All code must compile without warnings.

Description

The Ada compiler does a degree of static analysis itself, and generates many
warnings when they are enabled. These warnings likely indicate very real
problems so they should be examined and addressed, either by changing the code
or disabling the warning for the specific occurrence flagged in the source
code.

To ensure that warnings are examined and addressed one way or the other, the
compiler must be configured to treat warnings as errors, i.e., preventing
object code generation.

Note that warnings will occasionally be given for code usage that is
intentional. In those cases the warnings should be disabled by using
pragma Warnings with the parameter Off, and a string indicating
the error message to
be disabled. In other cases, a different mechanism might be appropriate, such
as aspect (or pragma) Unreferenced.

Applicable Vulnerability within ISO TR 24772-2

	6.18 Dead Store [WXQ]

	6.19 Unused variable [YZS]

	6.20 Identifier name reuse [YOW]

	6.22 Initialization of variables [LAV]

Noncompliant Code Example

procedure P (This : Obj) is
begin
 ... code not referencing This
end P;

The formal parameter controls dispatching for the sake of selecting the
subprogram to be called but does not participate in the implementation of the
body.

Compliant Code Example

procedure P (This : Obj) is
 pragma Unreferenced (This);
begin
 ... code not referencing This
end P;

The compiler will no longer issue a warning that the formal parameter This is
not referenced. Of course, if that changes and This becomes referenced, the
compiler will flag the pragma.

Notes

This rule can be applied via the GNAT -gnatwae compiler switch,
which both enables warnings and treats them as errors. Note that the switch
enables almost all optional warnings, but not all. Some optional warnings
correspond to very specific circumstances, and would otherwise generate too
much noise for their value.

Footnotes

Use a Static Analysis Tool Extensively (SWE03)

Level \(\rightarrow\) Mandatory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	\(\checkmark\)

	Performance:

	\(\checkmark\)

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High

Verification Method \(\rightarrow\) Static analysis tools

Reference

Power of 10 rule #10: All code must also be checked daily with at least one,
but preferably more than one, strong static source code analyzer and should
pass all analyses with zero warnings.

Description

If not using SPARK for regular development, use a static analyzer, such as
CodePeer, extensively. No warnings or errors should remain unresolved at the
given level adopted for analysis (which can be selected to adjust the false
positive ratio).

Specifically, any code checked into the configuration management system must be
checked by the analyzer and be error-free prior to check-in. Similarly, each
nightly build should produce a CodePeer baseline for the project.

Applicable Vulnerability within ISO TR 24772-2

	6.6 Conversion errors [FLC]

	6.18 Dead store [WXQ]

	6.19 Unused variable [YZS]

	6.20 Identifier name reuse [YOW]

	6.24 Side-effects and order of evaluation [SAM]

	6.25 Likely incorrect expression [KOA]

Noncompliant Code Example

N/A

Compliant Code Example

N/A

Notes

CodePeer is the recommended static analyzer. Note that CodePeer can detect
GNATcheck rule violations (via the --gnatcheck CodePeer switch and a
rules file).

Footnotes

Hide Implementation Artifacts (SWE04)

Level \(\rightarrow\) Advisory

	Category
	
	Safety:

	\(\checkmark\)

	Cyber:

	\(\checkmark\)

	Goal
	
	Maintainability:

	\(\checkmark\)

	Reliability:

	\(\checkmark\)

	Portability:

	

	Performance:

	

	Security:

	\(\checkmark\)

Remediation \(\rightarrow\) High, as retrofit can be extensive

Verification Method \(\rightarrow\) GNATcheck rule:
Visible_Components

Reference

MISRA C Rule 8.7 "Functions and objects should not be defined with external
linkage if they are referenced in only one translation unit"

Description

Do not make implementation artifacts compile-time visible to clients. Only make
available those declarations that define the abstraction presented to clients
by the component. In other words, define Abstract Data Types and use the
language to enforce the abstraction. This is a fundamental Object-Oriented
Design principle.

This guideline minimizes client dependencies and thus allows the maximum
flexibility for changes in the underlying implementation. It minimizes the
editing changes required for client code when implementation changes are made.

This guideline also limits the region of code required to find any bugs to the
package and child packages, if any, defining the abstraction.

This guideline is to be followed extensively as the design default for
components. Once the application code size becomes non-trivial, the cost of
retrofit is extremely high.

Applicable Vulnerability within ISO TR 24772-2

N/A

Noncompliant Code Example

package Noncompliant is
 type Content_T is array (Capacity_T range <>) of Integer;
 type Stack_T (Capacity : Capacity_T) is tagged record
 Content : Content_T (1 .. Capacity);
 Top : Capacity_T := 0;
 end record;
 procedure Push
 (Stack : in out Stack_T;
 Item : Integer);
 procedure Pop
 (Stack : in out Stack_T;
 Item : out Integer);
end Noncompliant;

Note that both type Content_T, as well as the record type components of
type Stack_T, are visible to clients. Client code may declare variables
of type Content_T and may directly access and modify the record
components.
Bugs introduced via this access could be anywhere in the entire client
codebase.

Compliant Code Example

package Compliant is
 type Stack_T (Capacity : Capacity_T) is tagged private;
 procedure Push
 (Stack : in out Stack_T;
 Item : Integer);
 procedure Pop
 (Stack : in out Stack_T;
 Item : out Integer);
private
 type Content_T is array (Capacity_T range <>) of Integer;
 type Stack_T (Capacity : Capacity_T) is tagged record
 Content : Content_T (1 .. Capacity);
 Top : Capacity_T := 0;
 end record;
end Compliant;

Type Content_T, as well as the record type components of type
Stack_T,
are no longer visible to clients. Any bugs in the stack processing code must be
in
this package, or its child packages, if any.

Notes

The GNATcheck rule specified above is not exhaustive.

Footnotes

References

[SEI-C]
The Software Engineering Institute. SEI CERT C Coding Standard.

[MISRA2013]
MISRA. 2015.
Guidelines for the Use of the C Language in Critical Systems

[Holzmann2006]
Holzmann, G. J. 2006.
The Power of 10: Rules for Developing Safety-Critical Code

[ISO2000]
ISO/IEC High Integrity Rapporteur Group. 2000. "ISO/IEC TR
15942:2000 Guide for the Use of the Ada Programming Language in High Integrity
Systems." ISO/IEC TR 15942:2000, July

[AdaRM2016]
ISO/IEC. 2016.
ISO/IEC JTC 1/SC 22/WG9 Ada Reference Manual -
Language and Standard Libraries-ISO/IEC 8652:2012/Cor 1:2016

[AdaRM2020]
ISO/IEC. 2020.
ISO/IEC JTC 1/SC 22/WG9 Ada Reference Manual -
Language and Standard Libraries-ISO/IEC 8652:2020

[AdaOOP2016]
AdaCore. 2016.
High-Integrity Object-Oriented Programming in Ada, Version 1.4[#1]

[LiskovWing1994]
Liskov, B. and Wing, J. 1994. "A Behavioral Notion of
Subtyping." ACM Transactions on Programming Languages and Systems (TOPLAS)
Vol. 16, Issue 6 (November): 1811-1841.

[DO178C]
RTCA DO-178C/EUROCAE ED-12C. 2011.
Software Considerations in Airborne Systems and Equipment Certification

[Meyer1997]
Meyer, B. 1997. "Object-Oriented Software Construction."
Prentice Hall Professional Technical Reference (2nd Edition)

[CWE2019]
MITRE. 2019. Common Weakness Enumeration (CWE)

[SEI-Java]
The Software Engineering Institute.
SEI CERT Oracle Coding Standard for Java

[TR24772]
ISO/IEC. 2022.
ISO/IEC TR 24772-2:20 Programming Languages -
Guidance to Avoiding Vulnerabilities in Programming Languages -
Part 2: Ada

	AdaCore.
SPARK 2014 User's Guide.[#2]

	Adacore.
GNAT User's Guide for Native Platforms[#3]

	AdaCore.
"GNATstack User's Guide"[#4]

Footnotes

[#1]
https://www.adacore.com/uploads/techPapers/HighIntegrityAda.pdf

[#2]
http://docs.adacore.com/spark2014-docs/html/ug/index.html

[#3]
http://docs.adacore.com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html

[#4]
http://docs.adacore.com/live/wave/gnatstack/html/gnatstack_ug/index.html

Index

 _static/plus.png

_static/minus.png

_static/learn_meta_img.jpeg

_static/logo.png
LEARN.

ADACORE.COM

_static/file.png

nav.xhtml

 Table of Contents

 		
 Guidelines for Safe and Secure Ada/SPARK

 		
 Introduction

 		
 Scope

 		
 Structure

 		
 Enforcement

 		
 About the Rules

 		
 Definitions

 		
 Level

 		
 Remediation

 		
 Dynamic Storage Management

 		
 Common High Integrity Restrictions (DYN01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Traditional Static Allocation Policy (DYN02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Access Types Without Allocators Policy (DYN03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Minimal Dynamic Allocation Policy (DYN04)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 User-Defined Storage Pools Policy (DYN05)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Statically Determine Maximum Stack Requirements (DYN06)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Safe Reclamation

 		
 No Multiple Reclamations (RCL01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Only Reclaim Allocated Storage (RCL02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Only Reclaim To The Same Pool (RCL03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Concurrency

 		
 Use the Ravenscar Profile (CON01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use the Jorvik Profile (CON02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Avoid Shared Variables for Inter-task Communication (CON03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Robust Programming Practice

 		
 No Use of â��othersâ�� in Case Constructs (RPP01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Enumeration Ranges in Case Constructs (RPP02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Limited Use of â��othersâ�� In Aggregates (RPP03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Unassigned Mode-Out Procedure Parameters (RPP04)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Use of â��othersâ�� in Exception Handlers (RPP05)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Avoid Function Side-Effects (RPP06)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Functions Only Have Mode â��inâ�� (RPP07)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Limit Parameter Aliasing (RPP08)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use Precondition and Postcondition Contracts (RPP09)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Do Not Re-Verify Preconditions In Subprogram Bodies (RPP10)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Always Use the Result of Function Calls (RPP11)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Recursion (RPP12)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Reuse of Standard Typemarks (RPP13)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use Symbolic Constants For Literal Values (RPP14)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Exception Usage

 		
 Do Not Raise Language-Defined Exceptions (EXU01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Unhandled Application-Defined Exceptions (EXU02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 No Exception Propagation Beyond Name Visibility (EXU03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Prove Absence of Run-time Exceptions (EXU04)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Object-Oriented Programming

 		
 No Class-wide Constructs Policy (OOP01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Static Dispatching Only Policy (OOP02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Limit Inheritance Hierarchy Depth (OOP03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Limit Statically-Dispatched Calls To Primitive Operations (OOP04)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use Explicit Overriding Annotations (OOP05)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use Class-wide Pre/Post Contracts (OOP06)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Ensure Local Type Consistency (OOP07)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Software Engineering

 		
 Use SPARK Extensively (SWE01)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Enable Optional Warnings and Treat As Errors (SWE02)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Use A Static Analysis Tool Extensively (SWE03)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 Hide Implementation Artifacts (SWE04)

 		
 Reference

 		
 Description

 		
 Applicable Vulnerability within ISO TR 24772-2

 		
 Noncompliant Code Example

 		
 Compliant Code Example

 		
 Notes

 		
 References

_static/cover.jpeg

