

 [image: Cover image]

Learning Ada

Courses

	Introduction to Ada

	Advanced Journey With Ada

	Introduction to SPARK

	Introduction to Embedded Systems Programming

	What's New in Ada 2022

	Ada for the C++ or Java Developer

	Ada for the Embedded C Developer

	SPARK Ada for the MISRA C Developer

	Introduction to the GNAT Toolchain

Labs

	Introduction to Ada: Laboratories

	Bug Free Coding

Footnotes

Introduction to Ada

Release 2024-03

Mar 30, 2024

Copyright © 2018 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This course will teach you the basics of the Ada programming language and
is intended for those who already have a basic understanding of programming
techniques. You will learn how to apply those techniques to programming in
Ada.

This document was written by Raphaël Amiard and Gustavo A. Hoffmann, with
review from Richard Kenner.

Note

The code examples in this course use a 50-column limit, which
greatly improves the readability of the code on devices with a small
screen size. This constraint, however, leads to an unusual coding
style. For instance, instead of calling Put_Line in a single
line, we have this:

Put_Line
 (" is in the northeast quadrant");

or this:

Put_Line (" (X => "
 & Integer'Image (P.X)
 & ")");

Note that typical Ada code uses a limit of at least 79 columns.
Therefore, please don't take the coding style from this course as a
reference!

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

Contents:

	Introduction
	History

	Ada today

	Philosophy

	SPARK

	Imperative Language
	Hello world

	Imperative language - If/Then/Else

	Imperative language - Loops
	For loops

	Bare loops

	While loops

	Imperative language - Case statement

	Imperative language - Declarative regions

	Imperative language - conditional expressions
	If expressions

	Case expressions

	Subprograms
	Subprograms
	Subprogram calls

	Nested subprograms

	Function calls

	Parameter modes

	Subprogram calls
	In parameters

	In out parameters

	Out parameters

	Forward declaration of subprograms

	Renaming

	Modular Programming
	Packages

	Using a package

	Package body

	Child packages
	Child of a child package

	Multiple children

	Visibility

	Renaming

	Strongly Typed Language
	What is a type?

	Integers
	Operational semantics

	Unsigned types

	Enumerations

	Floating-point types
	Basic properties

	Precision of floating-point types

	Range of floating-point types

	Strong typing

	Derived types

	Subtypes
	Subtypes as type aliases

	Records
	Record type declaration

	Aggregates

	Component selection

	Renaming

	Arrays
	Array type declaration

	Indexing

	Simpler array declarations

	Range attribute

	Unconstrained arrays

	Predefined array type: String

	Restrictions

	Returning unconstrained arrays

	Declaring arrays (2)

	Array slices

	Renaming

	More About Types
	Aggregates: A primer

	Overloading and qualified expressions

	Character types

	Access Types
	Overview

	Allocation (by type)

	Dereferencing

	Other features

	Mutually recursive types

	More About Records
	Dynamically sized record types

	Records with discriminant

	Variant records

	Fixed-Point Types
	Decimal fixed-point types

	Ordinary fixed-point types

	Privacy
	Basic encapsulation

	Abstract data types

	Limited types

	Child packages & privacy

	Generics
	Introduction

	Formal type declaration

	Formal object declaration

	Generic body definition

	Generic instantiation

	Generic packages

	Formal subprograms

	Example: I/O instances

	Example: ADTs

	Example: Swap

	Example: Reversing

	Example: Test application

	Exceptions
	Exception declaration

	Raising an exception

	Handling an exception

	Predefined exceptions

	Tasking
	Tasks
	Simple task

	Simple synchronization

	Delay

	Synchronization: rendezvous

	Select loop

	Cycling tasks

	Protected objects
	Simple object

	Entries

	Task and protected types
	Task types

	Protected types

	Design by contracts
	Pre- and postconditions

	Predicates

	Type invariants

	Interfacing With C
	Multi-language project

	Type convention

	Foreign subprograms
	Calling C subprograms in Ada

	Calling Ada subprograms in C

	Foreign variables
	Using C global variables in Ada

	Using Ada variables in C

	Generating bindings
	Adapting bindings

	Object Oriented Programming
	Derived types

	Tagged types

	Classwide types

	Dispatching operations

	Dot notation

	Private & Limited

	Classwide access types

	Standard Library: Containers
	Vectors
	Instantiation

	Initialization

	Appending and prepending elements

	Accessing first and last elements

	Iterating

	Finding and changing elements

	Inserting elements

	Removing elements

	Other Operations

	Sets
	Initialization and iteration

	Operations on elements

	Other Operations

	Indefinite maps
	Hashed maps

	Ordered maps

	Complexity

	Standard Library: Dates & Times
	Date and time handling
	Delaying using date

	Real-time
	Benchmarking

	Standard Library: Strings
	String operations

	Limitation of fixed-length strings

	Bounded strings

	Unbounded strings

	Standard Library: Files & Streams
	Text I/O

	Sequential I/O

	Direct I/O

	Stream I/O

	Standard Library: Numerics
	Elementary Functions

	Random Number Generation

	Complex Types

	Vector and Matrix Manipulation

	Appendices
	Appendix A: Generic Formal Types
	Indefinite version

	Appendix B: Containers

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Introduction

History

In the 1970s the United States Department of Defense (DOD) suffered from an
explosion of the number of programming languages, with different projects using
different and non-standard dialects or language subsets / supersets. The DOD
decided to solve this problem by issuing a request for proposals for a common,
modern programming language. The winning proposal was one submitted by Jean
Ichbiah from CII Honeywell-Bull.

The first Ada standard was issued in 1983; it was subsequently revised and
enhanced in 1995, 2005 and 2012, with each revision bringing useful new
features.

This tutorial will focus on Ada 2012 as a whole, rather than teaching different
versions of the language.

Ada today

Today, Ada is heavily used in embedded real-time systems, many of which are
safety critical. While Ada is and can be used as a general-purpose language, it
will really shine in low-level applications:

	Embedded systems with low memory requirements (no garbage collector allowed).

	Direct interfacing with hardware.

	Soft or hard real-time systems.

	Low-level systems programming.

Specific domains seeing Ada usage include Aerospace & Defense, civil aviation,
rail, and many others. These applications require a high degree of safety: a
software defect is not just an annoyance, but may have severe consequences. Ada
provides safety features that detect defects at an early stage — usually at
compilation time or using static analysis tools. Ada can also be used to create
applications in a variety of other areas, such as:

	Video game programming[#1]

	Real-time audio[#2]

	Kernel modules[#3]

This is a non-comprehensive list that hopefully sheds light on which
kind of programming Ada is good at.

In terms of modern languages, the closest in terms of targets and level
of abstraction are probably
C++[#4] and
Rust[#5].

Philosophy

Ada's philosophy is different from most other languages. Underlying Ada's
design are principles that include the following:

	Readability is more important than conciseness. Syntactically this
shows through the fact that keywords are preferred to symbols, that no
keyword is an abbreviation, etc.

	Very strong typing. It is very easy to introduce new types in Ada, with the
benefit of preventing data usage errors.

	It is similar to many functional languages in that regard, except that the
programmer has to be much more explicit about typing in Ada, because there
is almost no type inference.

	Explicit is better than implicit. Although this is a
Python[#6] commandment, Ada takes it way further
than any language we know of:

	There is mostly no structural typing, and most types need to be
explicitly named by the programmer.

	As previously said, there is mostly no type inference.

	Semantics are very well defined, and undefined behavior is limited
to an absolute minimum.

	The programmer can generally give a lot of information about
what their program means to the compiler (and other programmers).
This allows the compiler to be extremely helpful (read: strict)
with the programmer.

During this course, we will explain the individual language features that
are building blocks for that philosophy.

SPARK

While this class is solely about the Ada language, it is worth mentioning that
another language, extremely close to and interoperable with Ada, exists: the
SPARK language.

SPARK is a subset of Ada, designed so that the code written in SPARK is
amenable to automatic proof. This provides a level of assurance with regard to
the correctness of your code that is much higher than with a regular
programming language.

There is a dedicated
course for the SPARK language
but keep in mind that every time we speak about the specification power of Ada
during this course, it is power that you can leverage in SPARK to help proving
the correctness of program properties ranging from absence of run-time errors
to compliance with formally specified functional requirements.

Footnotes

[#1]
https://github.com/AdaDoom3/AdaDoom3

[#2]
http://www.electronicdesign.com/embedded-revolution/assessing-ada-language-audio-applications

[#3]
http://www.nihamkin.com/tag/kernel.html

[#4]
https://en.wikipedia.org/wiki/C%2B%2B

[#5]
https://www.rust-lang.org/en-US/

[#6]
https://www.python.org

Imperative language

Ada is a multi-paradigm language with support for object orientation
and some elements of functional programming, but its core is a simple, coherent
procedural/imperative language akin to C or Pascal.

In other languages

One important distinction between Ada and a language like C is that
statements and expressions are very clearly distinguished. In Ada, if you
try to use an expression where a statement is required then your program
will fail to compile. This rule supports a useful stylistic principle:
expressions are intended to deliver values, not to have side effects. It
can also prevent some programming errors, such as mistakenly using the
equality operator = instead of the assignment operation := in
an assignment statement.

Hello world

Here's a very simple imperative Ada program:

greet.adb

1with Ada.Text_IO;
2
3procedure Greet is
4begin
5 -- Print "Hello, World!" to the screen
6 Ada.Text_IO.Put_Line ("Hello, World!");
7end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet
MD5: cba89a34b87c9dfa71533d982d05e6ab

Runtime output

Hello, World!

which we'll assume is in the source file greet.adb.

There are several noteworthy things in the above program:

	A subprogram in Ada can be either a procedure or a function. A
procedure, as illustrated above, does not return a value when called.

	with is used to reference external modules that are needed in
the procedure. This is similar to import in various languages or
roughly similar to #include in C and C++.
We'll see later how they work in detail. Here, we are requesting a
standard library module, the Ada.Text_IO package,
which contains a procedure to print text on the screen: Put_Line.

	Greet is a procedure, and the main entry point for our first
program. Unlike in C or C++, it can be named anything you prefer. The
builder will determine the entry point. In our simple example,
gprbuild, GNAT's builder, will use the file you passed as
parameter.

	Put_Line is a procedure, just like Greet, except it is
declared in the Ada.Text_IO module. It is the Ada equivalent
of C's printf.

	Comments start with -- and go to the end of the line. There is
no multi-line comment syntax, that is, it is not possible to start a
comment in one line and continue it in the next line. The only way to
create multiple lines of comments in Ada is by using -- on each
line. For example:

-- We start a comment in this line...
-- and we continue on the second line...

In other languages

Procedures are similar to functions in C or C++ that return void.
We'll see later how to declare functions in Ada.

Here is a minor variant of the "Hello, World" example:

greet.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Greet is
4begin
5 -- Print "Hello, World!" to the screen
6 Put_Line ("Hello, World!");
7end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_2
MD5: a58a1193207df44aa6edaa4fe1c14280

Runtime output

Hello, World!

This version utilizes an Ada feature known as a use clause, which has
the form use package-name. As illustrated by the call on
Put_Line, the effect is that entities from the named package can be
referenced directly, without the package-name. prefix.

Imperative language - If/Then/Else

This section describes Ada's if statement and introduces several other
fundamental language facilities including integer I/O, data declarations,
and subprogram parameter modes.

Ada's if statement is pretty unsurprising in form and function:

check_positive.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 3
 4procedure Check_Positive is
 5 N : Integer;
 6begin
 7 -- Put a String
 8 Put ("Enter an integer value: ");
 9
10 -- Read in an integer value
11 Get (N);
12
13 if N > 0 then
14 -- Put an Integer
15 Put (N);
16 Put_Line (" is a positive number");
17 end if;
18end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive
MD5: 2e8b4b2f3f258fd9e02c2d65846af101

The if statement minimally consists of the reserved word if, a
condition (which must be a Boolean value), the reserved word then and a
non-empty sequence of statements (the then part) which is executed if the
condition evaluates to True, and a terminating end if.

This example declares an integer variable N, prompts the user for an integer,
checks if the value is positive and, if so, displays the integer's value
followed by the string " is a positive number". If the value is not positive,
the procedure does not display any output.

The type Integer is a predefined signed type, and its range depends on the
computer architecture. On typical current processors Integer is 32-bit signed.

The example illustrates some of the basic functionality for integer input-output.
The relevant subprograms are in the predefined package
Ada.Integer_Text_IO and include the Get procedure (which reads in
a number from the keyboard) and the Put procedure (which displays an
integer value).

Here's a slight variation on the example, which illustrates an if statement
with an else part:

check_positive.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 3
 4procedure Check_Positive is
 5 N : Integer;
 6begin
 7 -- Put a String
 8 Put ("Enter an integer value: ");
 9
10 -- Reads in an integer value
11 Get (N);
12
13 -- Put an Integer
14 Put (N);
15
16 if N > 0 then
17 Put_Line (" is a positive number");
18 else
19 Put_Line (" is not a positive number");
20 end if;
21end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive_2
MD5: 28fca0d7840d06d478e5933e8182d1db

In this example, if the input value is not positive then the program
displays the value followed by the String " is not a positive number".

Our final variation illustrates an if statement with elsif
sections:

check_direction.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 3
 4procedure Check_Direction is
 5 N : Integer;
 6begin
 7 Put ("Enter an integer value: ");
 8 Get (N);
 9 Put (N);
10
11 if N = 0 or N = 360 then
12 Put_Line (" is due north");
13 elsif N in 1 .. 89 then
14 Put_Line (" is in the northeast quadrant");
15 elsif N = 90 then
16 Put_Line (" is due east");
17 elsif N in 91 .. 179 then
18 Put_Line (" is in the southeast quadrant");
19 elsif N = 180 then
20 Put_Line (" is due south");
21 elsif N in 181 .. 269 then
22 Put_Line (" is in the southwest quadrant");
23 elsif N = 270 then
24 Put_Line (" is due west");
25 elsif N in 271 .. 359 then
26 Put_Line (" is in the northwest quadrant");
27 else
28 Put_Line (" is not in the range 0..360");
29 end if;
30end Check_Direction;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Direction
MD5: 7759d30c9bb0bfb88efdf12128f9c382

This example expects the user to input an integer between 0 and 360
inclusive, and displays which quadrant or axis the value corresponds
to. The in operator in Ada tests whether a scalar value is
within a specified range and returns a Boolean result.
The effect of the program should be self-explanatory; later we'll see an
alternative and more efficient style to accomplish the same effect,
through a case statement.

Ada's elsif keyword differs from C or
C++, where nested else .. if blocks would be used instead.
And another difference is the presence of the end if in Ada,
which avoids the problem known as the "dangling else".

Imperative language - Loops

Ada has three ways of specifying loops. They differ from the
C / Java / Javascript for-loop, however, with simpler syntax and semantics
in line with Ada's philosophy.

For loops

The first kind of loop is the for loop, which allows iteration through a
discrete range.

greet_5a.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet_5a is
 4begin
 5 for I in 1 .. 5 loop
 6 -- Put_Line is a procedure call
 7 Put_Line ("Hello, World!"
 8 & Integer'Image (I));
 9 -- ^ Procedure parameter
10 end loop;
11end Greet_5a;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5a
MD5: 7f588b67947126f789333adfaaf1b638

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

A few things to note:

	1 .. 5 is a discrete range, from 1 to 5 inclusive.

	The loop parameter I (the name is arbitrary) in the body of the
loop has a value within this range.

	I is local to the loop, so you cannot refer to I
outside the loop.

	Although the value of I is incremented at each iteration, from the
program's perspective it is constant. An attempt to modify its value
is illegal; the compiler would reject the program.

	Integer'Image is a function that takes an Integer and converts it to
a String. It is an example of a language construct known as an
attribute, indicated by the ' syntax, which will be covered in more
detail later.

	The & symbol is the concatenation operator for String values

	The end loop marks the end of the loop

The "step" of the loop is limited to 1 (forward direction) and -1 (backward).
To iterate backwards over a range, use the reverse keyword:

greet_5a_reverse.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Greet_5a_Reverse is
4begin
5 for I in reverse 1 .. 5 loop
6 Put_Line ("Hello, World!"
7 & Integer'Image (I));
8 end loop;
9end Greet_5a_Reverse;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5a_Reverse
MD5: a0d5dcfc471fb1a107477c934fa527c2

Runtime output

Hello, World! 5
Hello, World! 4
Hello, World! 3
Hello, World! 2
Hello, World! 1

The bounds of a for loop may be computed at run-time; they
are evaluated once, before the loop body is executed. If the value of the
upper bound is less than the value of the lower bound, then the
loop is not executed at all. This is the case also for reverse loops.
Thus no output is produced in the following example:

greet_no_op.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Greet_No_Op is
4begin
5 for I in reverse 5 .. 1 loop
6 Put_Line ("Hello, World!"
7 & Integer'Image (I));
8 end loop;
9end Greet_No_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_No_Op
MD5: 5070693fb0324d3e4e43a8c8c4f046e1

Build output

greet_no_op.adb:5:23: warning: loop range is null, loop will not execute [enabled by default]

The for loop is more general than what we illustrated here;
more on that later.

Bare loops

The simplest loop in Ada is the bare loop, which forms the foundation of
the other kinds of Ada loops.

greet_5b.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet_5b is
 4 -- Variable declaration:
 5 I : Integer := 1;
 6 -- ^ Type
 7 -- ^ Initial value
 8begin
 9 loop
10 Put_Line ("Hello, World!"
11 & Integer'Image (I));
12
13 -- Exit statement:
14 exit when I = 5;
15 -- ^ Boolean condition
16
17 -- Assignment:
18 I := I + 1;
19 -- There is no I++ short form to
20 -- increment a variable
21 end loop;
22end Greet_5b;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5b
MD5: 5b218a64a07f64bd97774b574883c44a

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

This example has the same effect as Greet_5a shown earlier.

It illustrates several concepts:

	We have declared a variable named I between the is and the
begin. This constitutes a declarative region. Ada clearly
separates the declarative region from the statement part of a
subprogram. A declaration can appear in a declarative region but is
not allowed as a statement.

	The bare loop statement is introduced by the keyword loop on
its own and, like every kind of loop statement, is terminated by the
combination of keywords end loop. On its own, it is an infinite
loop. You can break out of it with an exit statement.

	The syntax for assignment is :=, and the one for equality is
=. There is no way to confuse them, because as previously noted,
in Ada, statements and expressions are distinct, and expressions are
not valid statements.

While loops

The last kind of loop in Ada is the while loop.

greet_5c.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet_5c is
 4 I : Integer := 1;
 5begin
 6 -- Condition must be a Boolean value
 7 -- (no Integers).
 8 -- Operator "<=" returns a Boolean
 9 while I <= 5 loop
10 Put_Line ("Hello, World!"
11 & Integer'Image (I));
12
13 I := I + 1;
14 end loop;
15end Greet_5c;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_5c
MD5: 5d1d099477795b226db43736c2810274

Runtime output

Hello, World! 1
Hello, World! 2
Hello, World! 3
Hello, World! 4
Hello, World! 5

The condition is evaluated before each iteration. If the result is false, then
the loop is terminated.

This program has the same effect as the previous examples.

In other languages

Note that Ada has different semantics than C-based languages with respect
to the condition in a while loop. In Ada the condition has to be a Boolean
value or the compiler will reject the program; the condition is not an
integer that is treated as either True or False depending on
whether it is non-zero or zero.

Imperative language - Case statement

Ada's case statement is similar to the C and C++ switch statement,
but with some important differences.

Here's an example, a variation of a program that was shown earlier
with an if statement:

check_direction.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 3
 4procedure Check_Direction is
 5 N : Integer;
 6begin
 7 loop
 8 Put ("Enter an integer value: ");
 9 Get (N);
10 Put (N);
11
12 case N is
13 when 0 | 360 =>
14 Put_Line
15 (" is due north");
16 when 1 .. 89 =>
17 Put_Line
18 (" is in the northeast quadrant");
19 when 90 =>
20 Put_Line
21 (" is due east");
22 when 91 .. 179 =>
23 Put_Line
24 (" is in the southeast quadrant");
25 when 180 =>
26 Put_Line
27 (" is due south");
28 when 181 .. 269 =>
29 Put_Line
30 (" is in the southwest quadrant");
31 when 270 =>
32 Put_Line
33 (" is due west");
34 when 271 .. 359 =>
35 Put_Line
36 (" is in the northwest quadrant");
37 when others =>
38 Put_Line
39 (" Au revoir");
40 exit;
41 end case;
42 end loop;
43end Check_Direction;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Direction_2
MD5: 1c758b76a2c3991cb4e2a0cf5e172ac3

This program repeatedly prompts for an integer value and then, if the value is
in the range 0 .. 360, displays the associated quadrant or axis. If the
value is an Integer outside this range, the loop (and the program) terminate
after outputting a farewell message.

The effect of the case statement is similar to the if statement in an earlier
example, but the case statement can be more efficient because it does not involve
multiple range tests.

Notable points about Ada's case statement:

	The case expression (here the variable N) must be of a discrete type,
i.e. either an integer type or an enumeration type. Discrete types will
be covered in more detail later
discrete types.

	Every possible value for the case expression needs to be covered by a unique
branch of the case statement. This will be checked at compile time.

	A branch can specify a single value, such as 0; a range of values,
such as 1 .. 89; or any combination of the two (separated by a |).

	As a special case, an optional final branch can specify others,
which covers all values not included in the earlier branches.

	Execution consists of the evaluation of the case expression and then
a transfer of control to the statement sequence in the unique branch
that covers that value.

	When execution of the statements in the selected branch has completed,
control resumes after the end case. Unlike C, execution does
not fall through to the next branch. So Ada doesn't need (and doesn't
have) a break statement.

Imperative language - Declarative regions

As mentioned earlier, Ada draws a clear syntactic separation between
declarations, which introduce names for entities that will be used
in the program, and statements, which perform the processing.
The areas in the program where declarations may appear are known
as declarative regions.

In any subprogram, the section between the is and the begin is a
declarative region. You can have variables, constants, types, inner subprograms,
and other entities there.

We've briefly mentioned variable declarations in previous subsection. Let's look
at a simple example, where we declare an integer variable X in the
declarative region and perform an initialization and an addition on it:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 X : Integer;
 5begin
 6 X := 0;
 7 Put_Line ("The initial value of X is "
 8 & Integer'Image (X));
 9
10 Put_Line ("Performing operation on X...");
11 X := X + 1;
12
13 Put_Line ("The value of X now is "
14 & Integer'Image (X));
15end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Variable_Declaration
MD5: cbb08d5e382fbfcc28e986bea80cd253

Runtime output

The initial value of X is 0
Performing operation on X...
The value of X now is 1

Let's look at an example of a nested procedure:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 procedure Nested is
 5 begin
 6 Put_Line ("Hello World");
 7 end Nested;
 8begin
 9 Nested;
10 -- Call to Nested
11end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Nested_Procedure
MD5: 2e7fb267e31232196065febd5e35e6ef

Runtime output

Hello World

A declaration cannot appear as a statement. If you need to declare a local
variable amidst the statements, you can introduce a new declarative region with
a block statement:

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4begin
 5 loop
 6 Put_Line ("Please enter your name: ");
 7
 8 declare
 9 Name : String := Get_Line;
10 -- ^ Call to the
11 -- Get_Line function
12 begin
13 exit when Name = "";
14 Put_Line ("Hi " & Name & "!");
15 end;
16
17 -- Name is undefined here
18 end loop;
19
20 Put_Line ("Bye!");
21end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Greet_6
MD5: a9c0c14a1b3e2ebe07cd88f442787e3a

Attention

The Get_Line function allows you to receive input from the user, and
get the result as a string. It is more or less equivalent to the scanf
C function.

It returns a String, which, as we will see later, is an
Unconstrained array type. For now we
simply note that, if you wish to declare a String variable and do
not know its size in advance, then you need to initialize the variable
during its declaration.

Imperative language - conditional expressions

Ada 2012 introduced an expression analog for conditional statements
(if and case).

If expressions

Here's an alternative version of an example we saw earlier; the if
statement has been replaced by an if expression:

check_positive.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 3
 4procedure Check_Positive is
 5 N : Integer;
 6begin
 7 Put ("Enter an integer value: ");
 8 Get (N);
 9 Put (N);
10
11 declare
12 S : constant String :=
13 (if N > 0
14 then " is a positive number"
15 else " is not a positive number");
16 begin
17 Put_Line (S);
18 end;
19end Check_Positive;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Check_Positive
MD5: 01f23463b14774f750dbb21f6c65ea09

The if expression evaluates to one of the two Strings depending
on N, and assigns that value to the local variable S.

Ada's if expressions are similar to if statements. However,
there are a few differences that stem from the fact that it is an expression:

	All branches' expressions must be of the same type

	It must be surrounded by parentheses if the surrounding
expression does not already contain them

	An else branch is mandatory unless the expression following
then has a Boolean value. In that case an else branch
is optional and, if not present, defaults to else True.

Here's another example:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4begin
 5 for I in 1 .. 10 loop
 6 Put_Line (if I mod 2 = 0
 7 then "Even"
 8 else "Odd");
 9 end loop;
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Even_Odd
MD5: c89c3233ab8822c828f7a7bba8fd3f1c

Runtime output

Odd
Even
Odd
Even
Odd
Even
Odd
Even
Odd
Even

This program produces 10 lines of output, alternating between "Odd" and "Even".

Case expressions

Analogous to if expressions, Ada also has case expressions.
They work just as you would expect.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4begin
 5 for I in 1 .. 10 loop
 6 Put_Line
 7 (case I is
 8 when 1 | 3 | 5 | 7 | 9 => "Odd",
 9 when 2 | 4 | 6 | 8 | 10 => "Even");
10 end loop;
11end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Imperative_Language.Case_Expression
MD5: 6ce40efc987c2665960b1f08d30d780d

Runtime output

Odd
Even
Odd
Even
Odd
Even
Odd
Even
Odd
Even

This program has the same effect as the preceding example.

The syntax differs from case statements, with branches separated
by commas.

Footnotes

Subprograms

Subprograms

So far, we have used procedures, mostly to have a main body of code
to execute. Procedures are one kind of subprogram.

There are two kinds of subprograms in Ada, functions and procedures. The
distinction between the two is that a function returns a value, and a procedure
does not.

This example shows the declaration and definition of a function:

increment.ads

1function Increment (I : Integer) return Integer;

increment.adb

1-- We declare (but don't define) a function with
2-- one parameter, returning an integer value
3
4function Increment (I : Integer) return Integer is
5 -- We define the Increment function
6begin
7 return I + 1;
8end Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment
MD5: 582fe283730a130cec071c455a0ce3d4

Subprograms in Ada can, of course, have parameters. One syntactically important
note is that a subprogram which has no parameters does not have a parameter
section at all, for example:

procedure Proc;

function Func return Integer;

Here's another variation on the previous example:

increment_by.ads

1function Increment_By
2 (I : Integer := 0;
3 Incr : Integer := 1) return Integer;
4-- ^ Default value for parameters

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 5728b915789beee0b5546ea7b36a1cc2

In this example, we see that parameters can have default values. When calling the
subprogram, you can then omit parameters if they have a default value. Unlike
C/C++, a call to a subprogram without parameters does not include parentheses.

This is the implementation of the function above:

increment_by.adb

1function Increment_By
2 (I : Integer := 0;
3 Incr : Integer := 1) return Integer is
4begin
5 return I + Incr;
6end Increment_By;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 07c85e5c1272ea396bf4dbc0cefcdce7

In the GNAT toolchain

The Ada standard doesn't mandate in which file the specification or the
implementation of a subprogram must be stored. In other words, the standard
doesn't require a specific file structure or specific file name extensions.
For example, we could save both the specification and the implementation of
the Increment function above in a file called increment.txt.
(We could even store the entire source code of a system in a single
file.) From the standard's perspective, this would be completely acceptable.

The GNAT toolchain, however, requires the following file naming scheme:

	files with the .ads extension contain the specification, while

	files with the .adb extension contain the implementation.

Therefore, in the GNAT toolchain, the specification of the Increment
function must be stored in the increment.ads file, while its
implementation must be stored in the increment.adb file. This rule
always applies to packages, which we discuss
later. (Note, however, that it's possible to
circumvent this rule.) For more details, you may refer to the
Introduction to GNAT Toolchain
course or the
GPRbuild User’s Guide[#1].

Subprogram calls

We can then call our subprogram this way:

show_increment.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Increment_By;
 3
 4procedure Show_Increment is
 5 A, B, C : Integer;
 6begin
 7 C := Increment_By;
 8 -- ^ Parameterless call,
 9 -- value of I is 0
10 -- and Incr is 1
11
12 Put_Line ("Using defaults for Increment_By is "
13 & Integer'Image (C));
14
15 A := 10;
16 B := 3;
17 C := Increment_By (A, B);
18 -- ^ Regular parameter passing
19
20 Put_Line ("Increment of "
21 & Integer'Image (A)
22 & " with "
23 & Integer'Image (B)
24 & " is "
25 & Integer'Image (C));
26
27 A := 20;
28 B := 5;
29 C := Increment_By (I => A,
30 Incr => B);
31 -- ^ Named parameter passing
32
33 Put_Line ("Increment of "
34 & Integer'Image (A)
35 & " with "
36 & Integer'Image (B)
37 & " is "
38 & Integer'Image (C));
39end Show_Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: dcb501c8c6815b03c6841fc8b80d6911

Runtime output

Using defaults for Increment_By is 1
Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

Ada allows you to name the parameters when you pass them, whether they have a
default or not. There are some rules:

	Positional parameters come first.

	A positional parameter cannot follow a named parameter.

As a convention, people usually name parameters at the call site if the
function's corresponding parameters has a default value. However, it is also
perfectly acceptable to name every parameter if it makes the code clearer.

Nested subprograms

As briefly mentioned earlier, Ada allows you to declare one subprogram inside another.

This is useful for two reasons:

	It lets you organize your programs in a cleaner fashion. If you need a
subprogram only as a "helper" for another subprogram, then the principle of
localization indicates that the helper subprogram should be declared nested.

	It allows you to share state easily in a controlled fashion, because the
nested subprograms have access to the parameters, as well as any local
variables, declared in the outer scope.

For the previous example, we can move the duplicated code (call to
Put_Line) to a separate procedure. This is a shortened version with
the nested Display_Result procedure.

show_increment.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Increment_By;
 3
 4procedure Show_Increment is
 5 A, B, C : Integer;
 6
 7 procedure Display_Result is
 8 begin
 9 Put_Line ("Increment of "
10 & Integer'Image (A)
11 & " with "
12 & Integer'Image (B)
13 & " is "
14 & Integer'Image (C));
15 end Display_Result;
16
17begin
18 A := 10;
19 B := 3;
20 C := Increment_By (A, B);
21 Display_Result;
22 A := 20;
23 B := 5;
24 C := Increment_By (A, B);
25 Display_Result;
26end Show_Increment;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Increment_By
MD5: 23ec8ae3080c042123a9e82ee6b3d9e3

Runtime output

Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

Function calls

An important feature of function calls in Ada is that the return value at a
call cannot be ignored; that is, a function call cannot be used as a statement.

If you want to call a function and do not need its result, you will still need
to explicitly store it in a local variable.

quadruple.adb

 1function Quadruple (I : Integer)
 2 return Integer is
 3
 4 function Double (I : Integer)
 5 return Integer is
 6 begin
 7 return I * 2;
 8 end Double;
 9
10 Res : Integer := Double (Double (I));
11 -- ^ Calling the Double
12 -- function
13begin
14 Double (I);
15 -- ERROR: cannot use call to function
16 -- "Double" as a statement
17
18 return Res;
19end Quadruple;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Quadruple
MD5: 44326f12a9d797ea13ffe52ea48fc36f

Build output

quadruple.adb:14:04: error: cannot use call to function "Double" as a statement
quadruple.adb:14:04: error: return value of a function call cannot be ignored
gprbuild: *** compilation phase failed

In the GNAT toolchain

In GNAT, with all warnings activated, it becomes even harder to ignore the
result of a function, because unused variables will be flagged. For
example, this code would not be valid:

function Read_Int
 (Stream : Network_Stream;
 Result : out Integer) return Boolean;

procedure Main is
 Stream : Network_Stream := Get_Stream;
 My_Int : Integer;

 -- Warning: in the line below, B is
 -- never read.
 B : Boolean := Read_Int (Stream, My_Int);
begin
 null;
end Main;

You then have two solutions to silence this warning:

	Either annotate the variable with pragma Unreferenced , e.g.:

B : Boolean := Read_Int (Stream, My_Int);
pragma Unreferenced (B);

	Or give the variable a name that contains any of the strings discard
dummy ignore junk unused (case insensitive)

Parameter modes

So far we have seen that Ada is a safety-focused language. There are many ways
this is realized, but two important points are:

	Ada makes the user specify as much as possible about the behavior expected
for the program, so that the compiler can warn or reject if there is an
inconsistency.

	Ada provides a variety of techniques for achieving the generality and
flexibility of pointers and dynamic memory management, but without the
latter's drawbacks (such as memory leakage and dangling references).

Parameter modes are a feature that helps achieve the two design goals above. A
subprogram parameter can be specified with a mode, which is one of the
following:

	in

	Parameter can only be read, not written

	out

	Parameter can be written to, then read

	in out

	Parameter can be both read and written

The default mode for parameters is in; so far, most of the examples
have been using in parameters.

Historically

Functions and procedures were originally more different in philosophy.
Before Ada 2012, functions could only take in parameters.

Subprogram calls

In parameters

The first mode for parameters is the one we have been implicitly using so far.
Parameters passed using this mode cannot be modified, so that the following
program will cause an error:

swap.adb

 1procedure Swap (A, B : Integer) is
 2 Tmp : Integer;
 3begin
 4 Tmp := A;
 5
 6 -- Error: assignment to "in" mode
 7 -- parameter not allowed
 8 A := B;
 9
10 -- Error: assignment to "in" mode
11 -- parameter not allowed
12 B := Tmp;
13end Swap;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Swap
MD5: 478ac23f878934aae820e4b9c056d939

Build output

swap.adb:8:04: error: assignment to "in" mode parameter not allowed
swap.adb:12:04: error: assignment to "in" mode parameter not allowed
gprbuild: *** compilation phase failed

The fact that in is the default mode is very important. It
means that a parameter will not be modified unless you explicitly specify
a mode in which modification is allowed.

In out parameters

To correct our code above, we can use an in out parameter.

in_out_params.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure In_Out_Params is
 4 procedure Swap (A, B : in out Integer) is
 5 Tmp : Integer;
 6 begin
 7 Tmp := A;
 8 A := B;
 9 B := Tmp;
10 end Swap;
11
12 A : Integer := 12;
13 B : Integer := 44;
14begin
15 Swap (A, B);
16
17 -- Prints 44
18 Put_Line (Integer'Image (A));
19end In_Out_Params;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.In_Out_Params
MD5: 319358e479449c115cf2b3cbb4ff3a6b

Runtime output

 44

An in out parameter will allow read and write access to the object
passed as parameter, so in the example above, we can see that A is
modified after the call to Swap.

Attention

While in out parameters look a bit like references in C++, or regular
parameters in Java that are passed by-reference, the Ada language standard
does not mandate "by reference" passing for in out parameters except for
certain categories of types as will be explained later.

In general, it is better to think of modes as higher level than by-value
versus by-reference semantics. For the compiler, it means that an array
passed as an in parameter might be passed by reference, because it
is more efficient (which does not change anything for the user since the
parameter is not assignable). However, a parameter of a discrete type will
always be passed by copy, regardless of its mode (which is more efficient
on most architectures).

Out parameters

The out mode applies when the subprogram needs to write to a parameter
that might be uninitialized at the point of call. Reading the value of an
out parameter is permitted, but it should only be done after the
subprogram has assigned a value to the parameter. Out parameters behave a bit
like return values for functions. When the subprogram returns, the actual
parameter (a variable) will have the value of the out parameter at the point
of return.

In other languages

Ada doesn't have a tuple construct and does not allow returning multiple
values from a subprogram (except by declaring a full-fledged record type).
Hence, a way to return multiple values from a subprogram is to use out
parameters.

For example, a procedure reading integers from the network could have one of
the following specifications:

procedure Read_Int
 (Stream : Network_Stream;
 Success : out Boolean;
 Result : out Integer);

function Read_Int
 (Stream : Network_Stream;
 Result : out Integer) return Boolean;

While reading an out variable before writing to it should, ideally, trigger an
error, imposing that as a rule would cause either inefficient run-time checks
or complex compile-time rules. So from the user's perspective an out parameter
acts like an uninitialized variable when the subprogram is invoked.

In the GNAT toolchain

GNAT will detect simple cases of incorrect use of out parameters.
For example, the compiler will emit a warning for the following program:

outp.adb

 1procedure Outp is
 2 procedure Foo (A : out Integer) is
 3 B : Integer := A;
 4 -- ^ Warning on reference
 5 -- to uninitialized A
 6 begin
 7 A := B;
 8 end Foo;
 9begin
10 null;
11end Outp;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Out_Params
MD5: 36bdb4e541297d7fb0b075816cb6e73a

Build output

outp.adb:3:22: warning: "A" may be referenced before it has a value [enabled by default]

Forward declaration of subprograms

As we saw earlier, a subprogram can be declared without being fully defined,
This is possible in general, and can be useful if you need subprograms to be
mutually recursive, as in the example below:

mutually_recursive_subprograms.adb

 1procedure Mutually_Recursive_Subprograms is
 2 procedure Compute_A (V : Natural);
 3 -- Forward declaration of Compute_A
 4
 5 procedure Compute_B (V : Natural) is
 6 begin
 7 if V > 5 then
 8 Compute_A (V - 1);
 9 -- Call to Compute_A
10 end if;
11 end Compute_B;
12
13 procedure Compute_A (V : Natural) is
14 begin
15 if V > 2 then
16 Compute_B (V - 1);
17 -- Call to Compute_B
18 end if;
19 end Compute_A;
20begin
21 Compute_A (15);
22end Mutually_Recursive_Subprograms;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Mutually_Recursive_Subprograms
MD5: 5ee030cdecc6c4aea8916cbb763e8526

Renaming

Subprograms can be renamed by using the renames keyword and declaring a
new name for a subprogram:

procedure New_Proc renames Original_Proc;

This can be useful, for example, to improve the readability of your application
when you're using code from external sources that cannot be changed in your
system. Let's look at an example:

a_procedure_with_very_long_name_that_cannot_be_changed.ads

1procedure A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed
2 (A_Message : String);

a_procedure_with_very_long_name_that_cannot_be_changed.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3 procedure A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed
4 (A_Message : String) is
5 begin
6 Put_Line (A_Message);
7 end A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Proc_Renaming
MD5: 6d4952e9dee8ef69a9e3c3e185c635f1

As the wording in the name of procedure above implies, we cannot change its
name. We can, however, rename it to something like Show in our test
application and use this shorter name. Note that we also have to declare all
parameters of the original subprogram — we may rename them, too, in the
declaration. For example:

show_renaming.adb

 1with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;
 2
 3 procedure Show_Renaming is
 4
 5 procedure Show (S : String) renames
 6 A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;
 7
 8 begin
 9 Show ("Hello World!");
10 end Show_Renaming;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Proc_Renaming
MD5: 5b3b550f8a1cbeb7d9cfd3673f6d42b3

Runtime output

Hello World!

Note that the original name
(A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed) is still visible
after the declaration of the Show procedure.

We may also rename subprograms from the standard library. For example, we may
rename Integer'Image to Img:

show_image_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Image_Renaming is
 4
 5 function Img (I : Integer) return String
 6 renames Integer'Image;
 7
 8begin
 9 Put_Line (Img (2));
10 Put_Line (Img (3));
11end Show_Image_Renaming;

Code block metadata

Project: Courses.Intro_To_Ada.Subprograms.Integer_Image_Renaming
MD5: 9843b9d5967679c4fe8bd83a5213829f

Runtime output

 2
 3

Renaming also allows us to introduce default expressions that were not available
in the original declaration. For example, we may specify "Hello World!"
as the default for the String parameter of the Show procedure:

with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

procedure Show_Renaming_Defaults is

 procedure Show (S : String := "Hello World!")
 renames
 A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed;

begin
 Show;
end Show_Renaming_Defaults;

Footnotes

[#1]
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

Modular programming

So far, our examples have been simple standalone subprograms. Ada is helpful in
that regard, since it allows arbitrary declarations in a declarative part. We
were thus able to declare our types and variables in the bodies of main
procedures.

However, it is easy to see that this is not going to scale up for real-world
applications. We need a better way to structure our programs into modular and
distinct units.

Ada encourages the separation of programs into multiple packages and
sub-packages, providing many tools to a programmer on a quest for a perfectly
organized code-base.

Packages

Here is an example of a package declaration in Ada:

week.ads

 1package Week is
 2
 3 Mon : constant String := "Monday";
 4 Tue : constant String := "Tuesday";
 5 Wed : constant String := "Wednesday";
 6 Thu : constant String := "Thursday";
 7 Fri : constant String := "Friday";
 8 Sat : constant String := "Saturday";
 9 Sun : constant String := "Sunday";
10
11end Week;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: 0fa033dc8fe2b9741483de273354e7ee

And here is how you use it:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Week;
 3-- References the Week package, and
 4-- adds a dependency from Main to Week
 5
 6procedure Main is
 7begin
 8 Put_Line ("First day of the week is "
 9 & Week.Mon);
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: 03e17a75620de6a397b1d3c5a3e22f6a

Runtime output

First day of the week is Monday

Packages let you make your code modular, separating your programs into
semantically significant units. Additionally the separation of a package's
specification from its body (which we will see below) can reduce compilation
time.

While the with clause indicates a dependency, you can see in the example
above that you still need to prefix the referencing of entities from the Week
package by the name of the package. (If we had included a use Week clause,
then such a prefix would not have been necessary.)

Accessing entities from a package uses the dot notation, A.B, which is
the same notation as the one used to access record fields.

A with clause can only appear in the prelude of a compilation unit
(i.e., before the reserved word, such as procedure, that marks the
beginning of the unit). It is not allowed anywhere else. This rule is only
needed for methodological reasons: the person reading your code should be able
to see immediately which units the code depends on.

In other languages

Packages look similar to, but are semantically very different from, header
files in C/C++.

	The first and most important distinction is that packages are a language-level
mechanism. This is in contrast to a #include'd header file, which is a
functionality of the C preprocessor.

	An immediate consequence is that the with construct is a semantic
inclusion mechanism, not a text inclusion mechanism. Hence, when you
with a package, you are saying to the compiler "I'm depending on
this semantic unit", and not "include this bunch of text in place here".

	The effect of a package thus does not vary depending on where it has been
withed from. Contrast this with C/C++, where the meaning of the
included text depends on the context in which the #include appears.

This allows compilation/recompilation to be more efficient. It also
allows tools like IDEs to have correct information about the semantics
of a program. In turn, this allows better tooling in general, and code
that is more analyzable, even by humans.

An important benefit of Ada with clauses when compared to
#include is that it is stateless. The order of with and
use clauses does not matter, and can be changed without side
effects.

In the GNAT toolchain

The Ada language standard does not mandate any particular relationship
between source files and packages; for example, in theory you can put all
your code in one file, or use your own file naming conventions. In
practice, however, an implementation will have specific rules. With GNAT,
each top-level compilation unit needs to go into a separate file. In the
example above, the Week package will be in an .ads file (for Ada
specification), and the Main procedure will be in an .adb file
(for Ada body).

Using a package

As we have seen above, the with clause indicates a dependency on another
package. However, every reference to an entity coming from the Week
package had to be prefixed by the full name of the package. It is possible to
make every entity of a package visible directly in the current scope, using the
use clause.

In fact, we have been using the use clause since almost the beginning of
this tutorial.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2-- ^ Make every entity of the
 3-- Ada.Text_IO package
 4-- directly visible.
 5with Week;
 6
 7procedure Main is
 8 use Week;
 9 -- Make every entity of the Week
10 -- package directly visible.
11begin
12 Put_Line ("First day of the week is " & Mon);
13end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Week
MD5: ea54077d4ae165b28ae8facfe8ba2db7

Runtime output

First day of the week is Monday

As you can see in the example above:

	Put_Line is a subprogram that comes from the Ada.Text_IO
package. We can reference it directly because we have used the
package at the top of the Main unit.

	Unlike with clauses, a use clause can be placed either in the
prelude, or in any declarative region. In the latter case the use
clause will have an effect in its containing lexical scope.

Package body

In the simple example above, the Week package only has
declarations and no body. That's not a mistake: in a package specification,
which is what is illustrated above, you cannot declare bodies. Those have to be
in the package body.

operations.ads

 1package Operations is
 2
 3 -- Declaration
 4 function Increment_By
 5 (I : Integer;
 6 Incr : Integer := 0) return Integer;
 7
 8 function Get_Increment_Value return Integer;
 9
10end Operations;

operations.adb

 1package body Operations is
 2
 3 Last_Increment : Integer := 1;
 4
 5 function Increment_By
 6 (I : Integer;
 7 Incr : Integer := 0) return Integer is
 8 begin
 9 if Incr /= 0 then
10 Last_Increment := Incr;
11 end if;
12
13 return I + Last_Increment;
14 end Increment_By;
15
16 function Get_Increment_Value return Integer is
17 begin
18 return Last_Increment;
19 end Get_Increment_Value;
20
21end Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Operations
MD5: 2adfb64e825605c74fecf6c9d45c8437

Here we can see that the body of the Increment_By function has to be
declared in the body. Coincidentally, introducing a body allows us to put the
Last_Increment variable in the body, and make them inaccessible to the
user of the Operations package, providing a first form of encapsulation.

This works because entities declared in the body are only visible in the
body.

This example shows how Last_Increment is used indirectly:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Operations;
 3
 4procedure Main is
 5 use Operations;
 6
 7 I : Integer := 0;
 8 R : Integer;
 9
10 procedure Display_Update_Values is
11 Incr : constant Integer :=
12 Get_Increment_Value;
13 begin
14 Put_Line (Integer'Image (I)
15 & " incremented by "
16 & Integer'Image (Incr)
17 & " is "
18 & Integer'Image (R));
19 I := R;
20 end Display_Update_Values;
21begin
22 R := Increment_By (I);
23 Display_Update_Values;
24 R := Increment_By (I);
25 Display_Update_Values;
26
27 R := Increment_By (I, 5);
28 Display_Update_Values;
29 R := Increment_By (I);
30 Display_Update_Values;
31
32 R := Increment_By (I, 10);
33 Display_Update_Values;
34 R := Increment_By (I);
35 Display_Update_Values;
36end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Operations
MD5: 76190b1261a9652cfb7986ecec191e37

Runtime output

 0 incremented by 1 is 1
 1 incremented by 1 is 2
 2 incremented by 5 is 7
 7 incremented by 5 is 12
 12 incremented by 10 is 22
 22 incremented by 10 is 32

Child packages

Packages can be used to create hierarchies. We achieve this by using child
packages, which extend the functionality of their parent package. One example
of a child package that we've been using so far is the Ada.Text_IO
package. Here, the parent package is called Ada, while the child package
is called Text_IO. In the previous examples, we've been using the
Put_Line procedure from the Text_IO child package.

Important

Ada also supports nested packages. However, since they can be more
complicated to use, the recommendation is to use child packages instead.
Nested packages will be covered in the advanced course.

Let's begin our discussion on child packages by taking our previous
Week package:

week.ads

 1package Week is
 2
 3 Mon : constant String := "Monday";
 4 Tue : constant String := "Tuesday";
 5 Wed : constant String := "Wednesday";
 6 Thu : constant String := "Thursday";
 7 Fri : constant String := "Friday";
 8 Sat : constant String := "Saturday";
 9 Sun : constant String := "Sunday";
10
11end Week;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 0fa033dc8fe2b9741483de273354e7ee

If we want to create a child package for Week, we may write:

week-child.ads

1package Week.Child is
2
3 function Get_First_Of_Week return String;
4
5end Week.Child;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: a7db38e772cf6153b5eb95069517e833

Here, Week is the parent package and Child is the child
package. This is the corresponding package body of Week.Child:

week-child.adb

1package body Week.Child is
2
3 function Get_First_Of_Week return String is
4 begin
5 return Mon;
6 end Get_First_Of_Week;
7
8end Week.Child;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 04dad82685ad9f0231c3084266b0af83

In the implementation of the Get_First_Of_Week function, we can use
the Mon string directly, even though it was declared in the parent
package Week. We don't write with Week here because all
elements from the specification of the Week package — such as
Mon, Tue and so on — are visible in the child package
Week.Child.

Now that we've completed the implementation of the Week.Child package,
we can use elements from this child package in a subprogram by simply writing
with Week.Child. Similarly, if we want to use these elements directly,
we write use Week.Child in addition. For example:

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Week.Child; use Week.Child;
3
4procedure Main is
5begin
6 Put_Line ("First day of the week is "
7 & Get_First_Of_Week);
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: e2f5c6ad3a92da4cb04ee7ec12293df4

Runtime output

First day of the week is Monday

Child of a child package

So far, we've seen a two-level package hierarchy. But the hierarchy that we
can potentially create isn't limited to that. For instance, we could extend
the hierarchy of the previous source code example by declaring a
Week.Child.Grandchild package. In this case, Week.Child would
be the parent of the Grandchild package. Let's consider this
implementation:

week-child-grandchild.ads

1package Week.Child.Grandchild is
2
3 function Get_Second_Of_Week return String;
4
5end Week.Child.Grandchild;

week-child-grandchild.adb

1package body Week.Child.Grandchild is
2
3 function Get_Second_Of_Week return String is
4 begin
5 return Tue;
6 end Get_Second_Of_Week;
7
8end Week.Child.Grandchild;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 03ee5932a68212b2e501370212508ab1

We can use this new Grandchild package in our test application in the
same way as before: we can reuse the previous test application and adapt the
with and use, and the function call. This is the updated code:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Week.Child.Grandchild;
 4use Week.Child.Grandchild;
 5
 6procedure Main is
 7begin
 8 Put_Line ("Second day of the week is "
 9 & Get_Second_Of_Week);
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 29ee409c8131bd9529c6bf6e366bb390

Runtime output

Second day of the week is Tuesday

Again, this isn't the limit for the package hierarchy. We could continue to
extend the hierarchy of the previous example by implementing a
Week.Child.Grandchild.Grand_grandchild package.

Multiple children

So far, we've seen a single child package of a parent package. However, a
parent package can also have multiple children. We could extend the example
above and implement a Week.Child_2 package. For example:

week-child_2.ads

1package Week.Child_2 is
2
3 function Get_Last_Of_Week return String;
4
5end Week.Child_2;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: bd3f63cacd142d9885600f4000b4573b

Here, Week is still the parent package of the Child package,
but it's also the parent of the Child_2 package. In the same way,
Child_2 is obviously one of the child packages of Week.

This is the corresponding package body of Week.Child_2:

week-child_2.adb

1package body Week.Child_2 is
2
3 function Get_Last_Of_Week return String is
4 begin
5 return Sun;
6 end Get_Last_Of_Week;
7
8end Week.Child_2;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: c2c03e4cb1daff02dd6076c2956ef2aa

We can now reference both children in our test application:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Week.Child; use Week.Child;
 3with Week.Child_2; use Week.Child_2;
 4
 5procedure Main is
 6begin
 7 Put_Line ("First day of the week is "
 8 & Get_First_Of_Week);
 9 Put_Line ("Last day of the week is "
10 & Get_Last_Of_Week);
11end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Child_Packages
MD5: 6a91f239fb2a2d8c702409c22467a424

Runtime output

First day of the week is Monday
Last day of the week is Sunday

Visibility

In the previous section, we've seen that elements declared in a parent package
specification are visible in the child package. This is, however, not the case
for elements declared in the package body of a parent package.

Let's consider the package Book and its child
Additional_Operations:

book.ads

 1package Book is
 2
 3 Title : constant String :=
 4 "Visible for my children";
 5
 6 function Get_Title return String;
 7
 8 function Get_Author return String;
 9
10end Book;

book-additional_operations.ads

1package Book.Additional_Operations is
2
3 function Get_Extended_Title return String;
4
5 function Get_Extended_Author return String;
6
7end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: a0d67cff9aeff288709391d16306df00

This is the body of both packages:

book.adb

 1package body Book is
 2
 3 Author : constant String :=
 4 "Author not visible for my children";
 5
 6 function Get_Title return String is
 7 begin
 8 return Title;
 9 end Get_Title;
10
11 function Get_Author return String is
12 begin
13 return Author;
14 end Get_Author;
15
16end Book;

book-additional_operations.adb

 1package body Book.Additional_Operations is
 2
 3 function Get_Extended_Title return String is
 4 begin
 5 return "Book Title: " & Title;
 6 end Get_Extended_Title;
 7
 8 function Get_Extended_Author return String is
 9 begin
10 -- "Author" string declared in the body
11 -- of the Book package is not visible
12 -- here. Therefore, we cannot write:
13 --
14 -- return "Book Author: " & Author;
15
16 return "Book Author: Unknown";
17 end Get_Extended_Author;
18
19end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: 68b7490da12bafae0aa6fe0ab76c6b1c

In the implementation of the Get_Extended_Title, we're using the
Title constant from the parent package Book. However, as
indicated in the comments of the Get_Extended_Author function, the
Author string — which we declared in the body of the Book
package — isn't visible in the Book.Additional_Operations
package. Therefore, we cannot use it to implement the
Get_Extended_Author function.

We can, however, use the Get_Author function from Book in the
implementation of the Get_Extended_Author function to retrieve this
string. Likewise, we can use this strategy to implement the
Get_Extended_Title function. This is the adapted code:

book-additional_operations.adb

 1package body Book.Additional_Operations is
 2
 3 function Get_Extended_Title return String is
 4 begin
 5 return "Book Title: " & Get_Title;
 6 end Get_Extended_Title;
 7
 8 function Get_Extended_Author return String is
 9 begin
10 return "Book Author: " & Get_Author;
11 end Get_Extended_Author;
12
13end Book.Additional_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: b00c187cb54d3fcb9574726028c1efc6

This is a simple test application for the packages above:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Book.Additional_Operations;
 4use Book.Additional_Operations;
 5
 6procedure Main is
 7begin
 8 Put_Line (Get_Extended_Title);
 9 Put_Line (Get_Extended_Author);
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Visibility
MD5: bdc75987fe61e9401b400f8704890ebe

Runtime output

Book Title: Visible for my children
Book Author: Author not visible for my children

By declaring elements in the body of a package, we can implement encapsulation
in Ada. Those elements will only be visible in the package body, but nowhere
else. This isn't, however, the only way to achieve encapsulation in Ada: we'll
discuss other approaches in the Privacy chapter.

Renaming

Previously, we've mentioned that
subprograms can be renamed. We can rename
packages, too. Again, we use the renames keyword for that. The following
example renames the Ada.Text_IO package as TIO:

main.adb

1with Ada.Text_IO;
2
3procedure Main is
4 package TIO renames Ada.Text_IO;
5begin
6 TIO.Put_Line ("Hello");
7end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Rename_Text_IO
MD5: 33652dd004ef33d95c168ab8893cd412

Runtime output

Hello

We can use renaming to improve the readability of our code by using shorter
package names. In the example above, we write TIO.Put_Line instead of
the longer version (Ada.Text_IO.Put_Line). This approach is especially
useful when we don't use packages and want to avoid that the code
becomes too verbose.

Note we can also rename subprograms and objects inside packages. For instance,
we could have just renamed the Put_Line procedure in the source code
example above:

main.adb

1with Ada.Text_IO;
2
3procedure Main is
4 procedure Say (Something : String)
5 renames Ada.Text_IO.Put_Line;
6begin
7 Say ("Hello");
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Modular_Programming.Rename_Put_Line
MD5: f30174ff29eb01f33bc95f1787f9f1dc

Runtime output

Hello

In this example, we rename the Put_Line procedure to Say.

Footnotes

Strongly typed language

Ada is a strongly typed language. It is interestingly modern in that
respect: strong static typing has been increasing in popularity in programming
language design, owing to factors such as the growth of statically typed
functional programming, a big push from the research community in the typing
domain, and many practical languages with strong type systems.

What is a type?

In statically typed languages, a type is mainly (but not only) a compile time
construct. It is a construct to enforce invariants about the behavior of a
program. Invariants are unchangeable properties that hold for all variables of
a given type. Enforcing them ensures, for example, that variables of a data
type never have invalid values.

A type is used to reason about the objects a program manipulates (an object
is a variable or a constant). The aim is to classify objects by what you can
accomplish with them (i.e., the operations that are permitted), and this way
you can reason about the correctness of the objects' values.

Integers

A nice feature of Ada is that you can define your own integer types, based on
the requirements of your program (i.e., the range of values that makes sense).
In fact, the definitional mechanism that Ada provides forms the semantic basis
for the predefined integer types. There is no "magical" built-in type in that
regard, which is unlike most languages, and arguably very elegant.

integer_type_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Integer_Type_Example is
 4 -- Declare a signed integer type,
 5 -- and give the bounds
 6 type My_Int is range -1 .. 20;
 7 -- ^ High bound
 8 -- ^ Low bound
 9
10 -- Like variables, type declarations can
11 -- only appear in declarative regions.
12begin
13 for I in My_Int loop
14 Put_Line (My_Int'Image (I));
15 -- ^ 'Image attribute
16 -- converts a value
17 -- to a String.
18 end loop;
19end Integer_Type_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Integer_Type_Example
MD5: 1d82fa54b604944fdd8652cbf84f4ff2

Runtime output

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

This example illustrates the declaration of a signed integer type, and
several things we can do with them.

Every type declaration in Ada starts with the type keyword (except for
task types). After the type, we can see a range that looks
a lot like
the ranges that we use in for loops, that defines the low and high bound of the
type. Every integer in the inclusive range of the bounds is a valid value for
the type.

Ada integer types

In Ada, an integer type is not specified in terms of its
machine representation, but rather by its range. The
compiler will then choose the most appropriate representation.

Another point to note in the above example is the My_Int'Image (I)
expression. The Name'Attribute (optional params) notation is used for
what is called an attribute in Ada. An attribute is a
built-in operation on a type, a value, or some other program entity. It is
accessed by using a ' symbol (the ASCII apostrophe).

Ada has several types available as "built-ins"; Integer is one of
them. Here is how Integer might be defined for a typical processor:

type Integer is
 range -(2 ** 31) .. +(2 ** 31 - 1);

** is the exponent operator, which means that the first valid
value for Integer is -231, and the last valid value is
231 - 1.

Ada does not mandate the range of the built-in type Integer. An implementation
for a 16-bit target would likely choose the range -215 through
215 - 1.

Operational semantics

Unlike some other languages, Ada requires that operations on integers should be
checked for overflow.

main.adb

1procedure Main is
2 A : Integer := Integer'Last;
3 B : Integer;
4begin
5 B := A + 5;
6 -- This operation will overflow, eg. it
7 -- will raise an exception at run time.
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Overflow_Check
MD5: bddd15b394f043442024899d12b982fb

Build output

main.adb:5:11: warning: value not in range of type "Standard.Integer" [enabled by default]
main.adb:5:11: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:5 overflow check failed

There are two types of overflow checks:

	Machine-level overflow, when the result of an operation exceeds the maximum
value (or is less than the minimum value) that can be represented in the
storage reserved for an object of the type, and

	Type-level overflow, when the result of an operation is outside the range
defined for the type.

Mainly for efficiency reasons, while machine-level overflow always results in
an exception, type-level overflows will only be checked at specific boundaries,
like assignment:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type My_Int is range 1 .. 20;
 5 A : My_Int := 12;
 6 B : My_Int := 15;
 7 M : My_Int := (A + B) / 2;
 8 -- No overflow here, overflow checks
 9 -- are done at specific boundaries.
10begin
11 for I in 1 .. M loop
12 Put_Line ("Hello, World!");
13 end loop;
14 -- Loop body executed 13 times
15end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Overflow_Check_2
MD5: d24283cbb42c0be5b5fa215eb16ad2e7

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

Type-level overflow will only be checked at specific points in the execution.
The result, as we see above, is that you might have an operation that overflows
in an intermediate computation, but no exception will be raised because the
final result does not overflow.

Unsigned types

Ada also features unsigned Integer types. They're called modular types in Ada
parlance. The reason for this designation is due to their behavior in case of
overflow: They simply "wrap around", as if a modulo operation was applied.

For machine sized modular types, for example a modulus of 232, this
mimics the most common implementation behavior of unsigned types. However, an
advantage of Ada is that the modulus is more general:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Mod_Int is mod 2 ** 5;
 5 -- ^ Range is 0 .. 31
 6
 7 A : constant Mod_Int := 20;
 8 B : constant Mod_Int := 15;
 9
10 M : constant Mod_Int := A + B;
11 -- No overflow here,
12 -- M = (20 + 15) mod 32 = 3
13begin
14 for I in 1 .. M loop
15 Put_Line ("Hello, World!");
16 end loop;
17end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Unsigned_Types
MD5: df4efee4eb29e7ea15a0cf961b600dd5

Runtime output

Hello, World!
Hello, World!
Hello, World!

Unlike in C/C++, since this wraparound behavior is guaranteed by the Ada
specification, you can rely on it to implement portable code. Also, being able
to leverage the wrapping on arbitrary bounds is very useful — the modulus
does not need to be a power of 2 — to implement certain algorithms and
data structures, such as
ring buffers[#1].

Enumerations

Enumeration types are another nicety of Ada's type system. Unlike C's enums,
they are not integers, and each new enumeration type is incompatible with
other enumeration types. Enumeration types are part of the bigger family of
discrete types, which makes them usable in certain situations that we will
describe later but one context that we have already seen is a case statement.

enumeration_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Enumeration_Example is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7 -- An enumeration type
 8begin
 9 for I in Days loop
10 case I is
11 when Saturday .. Sunday =>
12 Put_Line ("Week end!");
13
14 when Monday .. Friday =>
15 Put_Line ("Hello on "
16 & Days'Image (I));
17 -- 'Image attribute, works on
18 -- enums too
19 end case;
20 end loop;
21end Enumeration_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Enumeration_Example
MD5: 45d6c83992af4fb6d5015d5f22cb7113

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY
Week end!
Week end!

Enumeration types are powerful enough that, unlike in most languages, they're
used to define the standard Boolean type:

type Boolean is (False, True);

As mentioned previously, every "built-in" type in Ada is defined with facilities
generally available to the user.

Floating-point types

Basic properties

Like most languages, Ada supports floating-point types. The most commonly used
floating-point type is Float:

floating_point_demo.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Floating_Point_Demo is
4 A : constant Float := 2.5;
5begin
6 Put_Line ("The value of A is "
7 & Float'Image (A));
8end Floating_Point_Demo;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Demo
MD5: 06998775497b68b742700138faecbb6a

Runtime output

The value of A is 2.50000E+00

The application will display 2.5 as the value of A.

The Ada language does not specify the precision (number of decimal digits in
the mantissa) for Float; on a typical 32-bit machine the precision will be 6.

All common operations that could be expected for floating-point types are
available, including absolute value and exponentiation. For example:

floating_point_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Floating_Point_Operations is
 4 A : Float := 2.5;
 5begin
 6 A := abs (A - 4.5);
 7 Put_Line ("The value of A is "
 8 & Float'Image (A));
 9
10 A := A ** 2 + 1.0;
11 Put_Line ("The value of A is "
12 & Float'Image (A));
13end Floating_Point_Operations;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Operations
MD5: c280e0f23e020aaee1a8777e7fb4c242

Runtime output

The value of A is 2.00000E+00
The value of A is 5.00000E+00

The value of A is 2.0 after the first operation and 5.0
after the second operation.

In addition to Float, an Ada implementation may offer data types with
higher precision such as Long_Float and Long_Long_Float. Like
Float, the standard does not indicate the exact precision of these types: it
only guarantees that the type Long_Float, for example, has at least the
precision of Float. In order to guarantee that a certain precision
requirement is met, we can define custom floating-point types, as we will see
in the next section.

Precision of floating-point types

Ada allows the user to specify the precision for a floating-point type,
expressed in terms of decimal digits. Operations on these custom types will
then have at least the specified precision. The syntax for a simple
floating-point type declaration is:

type T is digits <number_of_decimal_digits>;

The compiler will choose a floating-point representation that supports the
required precision. For example:

custom_floating_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Custom_Floating_Types is
 4 type T3 is digits 3;
 5 type T15 is digits 15;
 6 type T18 is digits 18;
 7begin
 8 Put_Line ("T3 requires "
 9 & Integer'Image (T3'Size)
10 & " bits");
11 Put_Line ("T15 requires "
12 & Integer'Image (T15'Size)
13 & " bits");
14 Put_Line ("T18 requires "
15 & Integer'Image (T18'Size)
16 & " bits");
17end Custom_Floating_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Custom_Floating_Types
MD5: 3c23738f13e081038996c533da8fb723

Runtime output

T3 requires 32 bits
T15 requires 64 bits
T18 requires 128 bits

In this example, the attribute 'Size is used to retrieve the number of
bits used for the specified data type. As we can see by running this example,
the compiler allocates 32 bits for T3, 64 bits for T15 and 128
bits for T18. This includes both the mantissa and the exponent.

The number of digits specified in the data type is also used in the format
when displaying floating-point variables. For example:

display_custom_floating_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_Custom_Floating_Types is
 4 type T3 is digits 3;
 5 type T18 is digits 18;
 6
 7 C1 : constant := 1.0e-4;
 8
 9 A : constant T3 := 1.0 + C1;
10 B : constant T18 := 1.0 + C1;
11begin
12 Put_Line ("The value of A is "
13 & T3'Image (A));
14 Put_Line ("The value of B is "
15 & T18'Image (B));
16end Display_Custom_Floating_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Display_Custom_Floating_Types
MD5: 58ec2660388a7f05e139f73e94303cf1

Runtime output

The value of A is 1.00E+00
The value of B is 1.00010000000000000E+00

As expected, the application will display the variables according to
specified precision (1.00E+00 and 1.00010000000000000E+00).

Range of floating-point types

In addition to the precision, a range can also be specified for a
floating-point type. The syntax is similar to the one used for integer data
types — using the range keyword. This simple example creates a new
floating-point type based on the type Float, for a normalized range
between -1.0 and 1.0:

floating_point_range.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Floating_Point_Range is
 4 type T_Norm is new Float range -1.0 .. 1.0;
 5 A : T_Norm;
 6begin
 7 A := 1.0;
 8 Put_Line ("The value of A is "
 9 & T_Norm'Image (A));
10end Floating_Point_Range;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Range
MD5: b43d596682aa0fa11124a3a3d0596abc

Runtime output

The value of A is 1.00000E+00

The application is responsible for ensuring that variables of this type stay
within this range; otherwise an exception is raised. In this example, the
exception Constraint_Error is raised when assigning 2.0 to the
variable A:

floating_point_range_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Floating_Point_Range_Exception is
 4 type T_Norm is new Float range -1.0 .. 1.0;
 5 A : T_Norm;
 6begin
 7 A := 2.0;
 8 Put_Line ("The value of A is "
 9 & T_Norm'Image (A));
10end Floating_Point_Range_Exception;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Floating_Point_Range_Exception
MD5: ecda66589ba28e453956dca159ea5f0d

Build output

floating_point_range_exception.adb:7:09: warning: value not in range of type "T_Norm" defined at line 4 [enabled by default]
floating_point_range_exception.adb:7:09: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : floating_point_range_exception.adb:7 range check failed

Ranges can also be specified for custom floating-point types. For example:

custom_range_types.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Ada.Numerics; use Ada.Numerics;
3
4procedure Custom_Range_Types is
5 type T6_Inv_Trig is
6 digits 6 range -Pi / 2.0 .. Pi / 2.0;
7begin
8 null;
9end Custom_Range_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Custom_Range_Types
MD5: 7b62abc869290a30e351163f670059e0

In this example, we are defining a type called T6_Inv_Trig, which has a
range from -π / 2 to π / 2 with a minimum precision of 6
digits. (Pi is defined in the predefined package Ada.Numerics.)

Strong typing

As noted earlier, Ada is strongly typed. As a result, different types of the
same family are incompatible with each other; a value of one type cannot be
assigned to a variable from the other type. For example:

illegal_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Illegal_Example is
 4 -- Declare two different floating point types
 5 type Meters is new Float;
 6 type Miles is new Float;
 7
 8 Dist_Imperial : Miles;
 9
10 -- Declare a constant
11 Dist_Metric : constant Meters := 1000.0;
12begin
13 -- Not correct: types mismatch
14 Dist_Imperial := Dist_Metric * 621.371e-6;
15 Put_Line (Miles'Image (Dist_Imperial));
16end Illegal_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric_Error
MD5: e28e341c5eda9b3b4cef691fa24b7f7e

Build output

illegal_example.adb:14:33: error: expected type "Miles" defined at line 6
illegal_example.adb:14:33: error: found type "Meters" defined at line 5
gprbuild: *** compilation phase failed

A consequence of these rules is that, in the general case, a "mixed mode"
expression like 2 * 3.0 will trigger a compilation error. In a language
like C or Python, such expressions are made valid by implicit conversions. In
Ada, such conversions must be made explicit:

conv.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Conv is
 3 type Meters is new Float;
 4 type Miles is new Float;
 5 Dist_Imperial : Miles;
 6 Dist_Metric : constant Meters := 1000.0;
 7begin
 8 Dist_Imperial :=
 9 Miles (Dist_Metric) * 621.371e-6;
10 -- ^^^^^^^^^^^^^^^^^
11 -- Type conversion, from Meters to Miles
12 -- Now the code is correct
13
14 Put_Line (Miles'Image (Dist_Imperial));
15end Conv;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric
MD5: e455641e86227e80e5f920b5af6315d4

Runtime output

 6.21371E-01

Of course, we probably do not want to write the conversion code every time we
convert from meters to miles. The idiomatic Ada way in that case would be to
introduce conversion functions along with the types.

conv.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Conv is
 4 type Meters is new Float;
 5 type Miles is new Float;
 6
 7 -- Function declaration, like procedure
 8 -- but returns a value.
 9 function To_Miles (M : Meters) return Miles is
10 -- ^ Return type
11 begin
12 return Miles (M) * 621.371e-6;
13 end To_Miles;
14
15 Dist_Imperial : Miles;
16 Dist_Metric : constant Meters := 1000.0;
17begin
18 Dist_Imperial := To_Miles (Dist_Metric);
19 Put_Line (Miles'Image (Dist_Imperial));
20end Conv;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Imperial_Metric_Func
MD5: 661737fa9f130ac3070210bbf6f08214

Runtime output

 6.21371E-01

If you write a lot of numeric code, having to explicitly provide such
conversions might seem painful at first. However, this approach brings some
advantages. Notably, you can rely on the absence of implicit conversions, which
will in turn prevent some subtle errors.

In other languages

In C, for example, the rules for implicit conversions may not
always be completely obvious. In Ada, however, the code will always do
exactly what it seems to do. For example:

int a = 3, b = 2;
float f = a / b;

This code will compile fine, but the result of f will be 1.0 instead
of 1.5, because the compiler will generate an integer division (three
divided by two) that results in one. The software developer must be
aware of data conversion issues and use an appropriate casting:

int a = 3, b = 2;
float f = (float)a / b;

In the corrected example, the compiler will convert both variables to
their corresponding floating-point representation before performing the
division. This will produce the expected result.

This example is very simple, and experienced C developers will probably
notice and correct it before it creates bigger
problems. However, in more complex applications where the type
declaration is not always visible — e.g. when referring to elements of
a struct — this situation might not always be evident and quickly
lead to software defects that can be harder to find.

The Ada compiler, in contrast, will always reject code that
mixes floating-point and integer variables without explicit conversion.
The following Ada code, based on the erroneous example in C, will not
compile:

main.adb

1procedure Main is
2 A : Integer := 3;
3 B : Integer := 2;
4 F : Float;
5begin
6 F := A / B;
7end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Implicit_Cast
MD5: 38a8fcc6608c22e22940052ab8dd62f4

Build output

main.adb:6:11: error: expected type "Standard.Float"
main.adb:6:11: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

The offending line must be changed to F := Float (A) / Float (B);
in order to be accepted by the compiler.

You can use Ada's strong typing to help
enforce invariants in your code, as in the example
above: Since Miles and Meters are two different types, you cannot mistakenly
convert an instance of one to an instance of the other.

Derived types

In Ada you can create new types based on existing ones. This is very useful:
you get a type that has the same properties as some existing type but is
treated as a distinct type in the interest of strong typing.

main.adb

 1procedure Main is
 2 -- ID card number type,
 3 -- incompatible with Integer.
 4 type Social_Security_Number is new Integer
 5 range 0 .. 999_99_9999;
 6 -- ^ Since a SSN has 9 digits
 7 -- max., and cannot be
 8 -- negative, we enforce
 9 -- a validity constraint.
10
11 SSN : Social_Security_Number :=
12 555_55_5555;
13 -- ^ You can put underscores as
14 -- formatting in any number.
15
16 I : Integer;
17
18 -- The value -1 below will cause a
19 -- runtime error and a compile time
20 -- warning with GNAT.
21 Invalid : Social_Security_Number := -1;
22begin
23 -- Illegal, they have different types:
24 I := SSN;
25
26 -- Likewise illegal:
27 SSN := I;
28
29 -- OK with explicit conversion:
30 I := Integer (SSN);
31
32 -- Likewise OK:
33 SSN := Social_Security_Number (I);
34end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Derived_Types
MD5: 63445601ddb5e52dceab095d3305623a

Build output

main.adb:21:40: warning: value not in range of type "Social_Security_Number" defined at line 4 [enabled by default]
main.adb:21:40: warning: Constraint_Error will be raised at run time [enabled by default]
main.adb:24:09: error: expected type "Standard.Integer"
main.adb:24:09: error: found type "Social_Security_Number" defined at line 4
main.adb:27:11: error: expected type "Social_Security_Number" defined at line 4
main.adb:27:11: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

The type Social_Security is said to be a derived type;
its parent type is Integer.

As illustrated in this example, you can refine the valid range when defining a
derived scalar type (such as integer, floating-point and enumeration).

The syntax for enumerations uses the range <range> syntax:

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7
 8 type Weekend_Days is new
 9 Days range Saturday .. Sunday;
10 -- New type, where only Saturday and Sunday
11 -- are valid literals.
12begin
13 null;
14end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days
MD5: 853b5c1576961c7c20d4306275122364

Subtypes

As we are starting to see, types may be used in Ada to enforce constraints on
the valid range of values. However, we sometimes want to enforce constraints on
some values while staying within a single type. This is where subtypes come
into play. A subtype does not introduce a new type.

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7
 8 -- Declaration of a subtype
 9 subtype Weekend_Days is
10 Days range Saturday .. Sunday;
11 -- ^ Constraint of the subtype
12
13 M : Days := Sunday;
14
15 S : Weekend_Days := M;
16 -- No error here, Days and Weekend_Days
17 -- are of the same type.
18begin
19 for I in Days loop
20 case I is
21 -- Just like a type, a subtype can
22 -- be used as a range
23 when Weekend_Days =>
24 Put_Line ("Week end!");
25 when others =>
26 Put_Line ("Hello on "
27 & Days'Image (I));
28 end case;
29 end loop;
30end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days_Subtype
MD5: 8ee7127d152a8b2c9d0ac74d05fc2fc2

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY
Week end!
Week end!

Several subtypes are predefined in the standard package in Ada, and are
automatically available to you:

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

While subtypes of a type are statically compatible with each other,
constraints are enforced at run time: if you violate a subtype constraint,
an exception will be raised.

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7
 8 subtype Weekend_Days is
 9 Days range Saturday .. Sunday;
10
11 Day : Days := Saturday;
12 Weekend : Weekend_Days;
13begin
14 Weekend := Day;
15 -- ^ Correct: Same type, subtype
16 -- constraints are respected
17 Weekend := Monday;
18 -- ^ Wrong value for the subtype
19 -- Compiles, but exception at runtime
20end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Days_Subtype_Error
MD5: 84d42d276d26544f35edab5870459378

Build output

greet.adb:17:15: warning: value not in range of type "Weekend_Days" defined at line 8 [enabled by default]
greet.adb:17:15: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : greet.adb:17 range check failed

Subtypes as type aliases

Previously, we've seen that we can create new types by declaring e.g.
type Miles is new Float. We could also create type aliases, which
generate alternative names — aliases — for known types. Note that
type aliases are sometimes called type synonyms.

We achieve this in Ada by using subtypes without new constraints. In this case,
however, we don't get all of the benefits of Ada's strong type checking. Let's
rewrite an example using type aliases:

undetected_imperial_metric_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Undetected_Imperial_Metric_Error is
 4 -- Declare two type aliases
 5 subtype Meters is Float;
 6 subtype Miles is Float;
 7
 8 Dist_Imperial : Miles;
 9
10 -- Declare a constant
11 Dist_Metric : constant Meters := 100.0;
12begin
13 -- No conversion to Miles type required:
14 Dist_Imperial := (Dist_Metric * 1609.0)
15 / 1000.0;
16
17 -- Not correct, but undetected:
18 Dist_Imperial := Dist_Metric;
19
20 Put_Line (Miles'Image (Dist_Imperial));
21end Undetected_Imperial_Metric_Error;

Code block metadata

Project: Courses.Intro_To_Ada.Strongly_Typed_Language.Undetected_Imperial_Metric_Error
MD5: cdb8f949c69f3c480502b859dac298ee

Runtime output

 1.00000E+02

In the example above, the fact that both Meters and Miles are
subtypes of Float allows us to mix variables of both types without
type conversion. This, however, can lead to all sorts of programming mistakes
that we'd like to avoid, as we can see in the undetected error highlighted in
the code above. In that example, the error in the assignment of a value in
meters to a variable meant to store values in miles remains undetected because
both Meters and Miles are subtypes of Float. Therefore,
the recommendation is to use strong typing — via type X is new Y
— for cases such as the one above.

There are, however, many situations where type aliases are useful. For example,
in an application that uses floating-point types in multiple contexts, we could
use type aliases to indicate additional meaning to the types or to avoid long
variable names. For example, instead of writing:

Paid_Amount, Due_Amount : Float;

We could write:

subtype Amount is Float;

Paid, Due : Amount;

In other languages

In C, for example, we can use a typedef declaration to create a type
alias. For example:

typedef float meters;

This corresponds to the declaration that we've seen above using subtypes.
Other programming languages include this concept in similar ways. For
example:

	C++: using meters = float;

	Swift: typealias Meters = Double

	Kotlin: typealias Meters = Double

	Haskell: type Meters = Float

Note, however, that subtypes in Ada correspond to type aliases if, and only
if, they don't have new constraints. Thus, if we add a new constraint to a
subtype declaration, we don't have a type alias anymore. For example, the
following declaration can't be considered a type alias of Float:

subtype Meters is Float range 0.0 .. 1_000_000.0;

Let's look at another example:

subtype Degree_Celsius is Float;

subtype Liquid_Water_Temperature is
 Degree_Celsius range 0.0 .. 100.0;

subtype Running_Water_Temperature is
 Liquid_Water_Temperature;

In this example, Liquid_Water_Temperature isn't an alias of
Degree_Celsius, since it adds a new constraint that wasn't part of the
declaration of the Degree_Celsius. However, we do have two type aliases
here:

	Degree_Celsius is an alias of Float;

	Running_Water_Temperature is an alias of
Liquid_Water_Temperature, even if Liquid_Water_Temperature
itself has a constrained range.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Circular_buffer

Records

So far, all the types we have encountered have values that are not
decomposable: each instance represents a single piece of data. Now we are going
to see our first class of composite types: records.

Records allow composing a value out of instances of other types. Each of
those instances will be given a name. The pair consisting of a name and
an instance of a specific type is called a field, or a component.

Record type declaration

Here is an example of a simple record declaration:

type Date is record
 -- The following declarations are
 -- components of the record
 Day : Integer range 1 .. 31;
 Month : Months;
 -- You can add custom constraints
 -- on fields
 Year : Integer range 1 .. 3000;
end record;

Fields look a lot like variable declarations, except that they are inside of a
record definition. And as with variable declarations, you can specify
additional constraints when supplying the subtype of the field.

type Date is record
 Day : Integer range 1 .. 31;
 Month : Months := January;
 -- This component has a default value
 Year : Integer range 1 .. 3000 := 2012;
 -- ^^^^
 -- Default value
end record;

Record components can have default values. When a variable having the record
type is declared, a field with a default initialization will be automatically
set to this value. The value can be any expression of the component type, and
may be run-time computable.

In the remaining sections of this chapter, we see how to use record types. In
addition to that, we discuss more about records in
another chapter.

Aggregates

-- Positional components
Ada_Birthday : Date := (10, December, 1815);

-- Named components
Leap_Day_2020 : Date := (Day => 29,
 Month => February,
 Year => 2020);
-- ^ By name

Records have a convenient notation for expressing values, illustrated above.
This notation is called aggregate notation, and the literals are called
aggregates. They can be used in a variety of contexts that we will see
throughout the course, one of which is to initialize records.

An aggregate is a list of values separated by commas and enclosed in
parentheses. It is allowed in any context where a value of the record is
expected.

Values for the components can be specified positionally, as in
Ada_Birthday example, or by name, as in Leap_Day_2020. A mixture
of positional and named values is permitted, but you cannot use a positional
notation after a named one.

Component selection

To access components of a record instance, you use an operation that is
called component selection. This is achieved by using the dot notation. For
example, if we declare a variable Some_Day of the Date record
type mentioned above, we can access the Year component by writing
Some_Day.Year.

Let's look at an example:

record_selection.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Record_Selection is
 4
 5 type Months is
 6 (January, February, March, April,
 7 May, June, July, August, September,
 8 October, November, December);
 9
10 type Date is record
11 Day : Integer range 1 .. 31;
12 Month : Months;
13 Year : Integer range 1 .. 3000 := 2032;
14 end record;
15
16 procedure Display_Date (D : Date) is
17 begin
18 Put_Line ("Day:" & Integer'Image (D.Day)
19 & ", Month: "
20 & Months'Image (D.Month)
21 & ", Year:"
22 & Integer'Image (D.Year));
23 end Display_Date;
24
25 Some_Day : Date := (1, January, 2000);
26
27begin
28 Display_Date (Some_Day);
29
30 Put_Line ("Changing year...");
31 Some_Day.Year := 2001;
32
33 Display_Date (Some_Day);
34end Record_Selection;

Code block metadata

Project: Courses.Intro_To_Ada.Records.Record_Selection
MD5: 79602cf4d011ba7423d07772b13e2b5a

Runtime output

Day: 1, Month: JANUARY, Year: 2000
Changing year...
Day: 1, Month: JANUARY, Year: 2001

As you can see in this example, we can use the dot notation in the expression
D.Year or Some_Day.Year to access the information stored in that
component, as well as to modify this information in assignments. To be more
specific, when we use D.Year in the call to Put_Line, we're
retrieving the information stored in that component. When we write
Some_Day.Year := 2001, we're overwriting the information that was
previously stored in the Year component of Some_Day.

Renaming

In previous chapters, we've discussed subprogram
and package renaming. We can rename record
components as well. Instead of writing the full component selection using the
dot notation, we can declare an alias that allows us to access the same
component. This is useful to simplify the implementation of a subprogram, for
example.

We can rename record components by using the renames keyword in a
variable declaration. For example:

Some_Day : Date;
Y : Integer renames Some_Day.Year;

Here, Y is an alias, so that every time we using Y, we are really
using the Year component of Some_Day.

Let's look at a complete example:

dates.ads

 1package Dates is
 2
 3 type Months is
 4 (January, February, March, April,
 5 May, June, July, August, September,
 6 October, November, December);
 7
 8 type Date is record
 9 Day : Integer range 1 .. 31;
10 Month : Months;
11 Year : Integer range 1 .. 3000 := 2032;
12 end record;
13
14 procedure Increase_Month
15 (Some_Day : in out Date);
16
17 procedure Display_Month
18 (Some_Day : Date);
19
20end Dates;

dates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Dates is
 4
 5 procedure Increase_Month
 6 (Some_Day : in out Date)
 7 is
 8 -- Renaming components from
 9 -- the Date record
10 M : Months renames Some_Day.Month;
11 Y : Integer renames Some_Day.Year;
12
13 -- Renaming function (for Months
14 -- enumeration)
15 function Next (M : Months)
16 return Months
17 renames Months'Succ;
18 begin
19 if M = December then
20 M := January;
21 Y := Y + 1;
22 else
23 M := Next (M);
24 end if;
25 end Increase_Month;
26
27 procedure Display_Month
28 (Some_Day : Date)
29 is
30 -- Renaming components from
31 -- the Date record
32 M : Months renames Some_Day.Month;
33 Y : Integer renames Some_Day.Year;
34 begin
35 Put_Line ("Month: "
36 & Months'Image (M)
37 & ", Year:"
38 & Integer'Image (Y));
39 end Display_Month;
40
41end Dates;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Dates; use Dates;
 3
 4procedure Main is
 5 D : Date := (1, January, 2000);
 6begin
 7 Display_Month (D);
 8
 9 Put_Line ("Increasing month...");
10 Increase_Month (D);
11
12 Display_Month (D);
13end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Record_Component_Renaming
MD5: 905390bd02b8417039052218800975a3

Runtime output

Month: JANUARY, Year: 2000
Increasing month...
Month: FEBRUARY, Year: 2000

We apply renaming to two components of the Date record in the
implementation of the Increase_Month procedure. Then, instead of
directly using Some_Day.Month and Some_Day.Year in the
next operations, we simply use the renamed versions M and Y.

Note that, in the example above, we also rename Months'Succ —
which is the function that gives us the next month — to Next.

Footnotes

Arrays

Arrays provide another fundamental family of composite types in Ada.

Array type declaration

Arrays in Ada are used to define contiguous collections of elements that can be
selected by indexing. Here's a simple example:

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type My_Int is range 0 .. 1000;
 5 type Index is range 1 .. 5;
 6
 7 type My_Int_Array is
 8 array (Index) of My_Int;
 9 -- ^ Type of elements
10 -- ^ Bounds of the array
11 Arr : My_Int_Array := (2, 3, 5, 7, 11);
12 -- ^ Array literal
13 -- (aggregate)
14
15 V : My_Int;
16begin
17 for I in Index loop
18 V := Arr (I);
19 -- ^ Take the Ith element
20 Put (My_Int'Image (V));
21 end loop;
22 New_Line;
23end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet
MD5: ffdd2ba2322b0946dfcac3a55bce5270

Runtime output

 2 3 5 7 11

The first point to note is that we specify the index type for the array,
rather than its size. Here we declared an integer type named Index
ranging from 1 to 5, so each array instance will have 5 elements,
with the initial element at index 1 and the last element at index 5.

Although this example used an integer type for the index, Ada is more general:
any discrete type is permitted to index an array, including
Enum types. We will soon see what that means.

Another point to note is that querying an element of the array at a given index
uses the same syntax as for function calls: that is, the array object followed
by the index in parentheses.

Thus when you see an expression such as A (B), whether it is a function
call or an array subscript depends on what A refers to.

Finally, notice how we initialize the array with the (2, 3, 5, 7, 11)
expression. This is another kind of aggregate in Ada, and is in a sense a
literal expression for an array, in the same way that 3 is a literal
expression for an integer. The notation is very powerful, with a number of
properties that we will introduce later. A detailed overview appears in the
notation of aggregate types.

Unrelated to arrays, the example also illustrated two procedures from
Ada.Text_IO:

	Put, which displays a string without a terminating end of line

	New_Line, which outputs an end of line

Let's now delve into what it means to be able to use any discrete type
to index into the array.

In other languages

Semantically, an array object in Ada is the entire data structure, and
not simply a handle or pointer. Unlike C and C++, there is no implicit
equivalence between an array and a pointer to its initial element.

array_bounds_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Array_Bounds_Example is
 4 type My_Int is range 0 .. 1000;
 5
 6 type Index is range 11 .. 15;
 7 -- ^ Low bound can
 8 -- be any value
 9
10 type My_Int_Array is
11 array (Index) of My_Int;
12
13 Tab : constant My_Int_Array :=
14 (2, 3, 5, 7, 11);
15begin
16 for I in Index loop
17 Put (My_Int'Image (Tab (I)));
18 end loop;
19 New_Line;
20end Array_Bounds_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Array_Bounds_Example
MD5: e5fe9e7b83055f3ae23dd890e29c22de

Runtime output

 2 3 5 7 11

One effect is that the bounds of an array can be any values. In the first
example we constructed an array type whose first index is 1, but in the
example above we declare an array type whose first index is 11.

That's perfectly fine in Ada, and moreover since we use the index type as a
range to iterate over the array indices, the code using the array does not need
to change.

That leads us to an important consequence with regard to code dealing with
arrays. Since the bounds can vary, you should not assume / hard-code specific
bounds when iterating / using arrays. That means the code above is good,
because it uses the index type, but a for loop as shown below is bad practice
even though it works correctly:

for I in 11 .. 15 loop
 Tab (I) := Tab (I) * 2;
end loop;

Since you can use any discrete type to index an array, enumeration types
are permitted.

month_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Month_Example is
 4 type Month_Duration is range 1 .. 31;
 5 type Month is (Jan, Feb, Mar, Apr,
 6 May, Jun, Jul, Aug,
 7 Sep, Oct, Nov, Dec);
 8
 9 type My_Int_Array is
10 array (Month) of Month_Duration;
11 -- ^ Can use an enumeration type
12 -- as the index
13
14 Tab : constant My_Int_Array :=
15 -- ^ constant is like a variable but
16 -- cannot be modified
17 (31, 28, 31, 30, 31, 30,
18 31, 31, 30, 31, 30, 31);
19 -- Maps months to number of days
20 -- (ignoring leap years)
21
22 Feb_Days : Month_Duration := Tab (Feb);
23 -- Number of days in February
24begin
25 for M in Month loop
26 Put_Line
27 (Month'Image (M) & " has "
28 & Month_Duration'Image (Tab (M))
29 & " days.");
30 -- ^ Concatenation operator
31 end loop;
32end Month_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Month_Example
MD5: 420bb8faa36d0efd3d071c76c2033d21

Runtime output

JAN has 31 days.
FEB has 28 days.
MAR has 31 days.
APR has 30 days.
MAY has 31 days.
JUN has 30 days.
JUL has 31 days.
AUG has 31 days.
SEP has 30 days.
OCT has 31 days.
NOV has 30 days.
DEC has 31 days.

In the example above, we are:

	Creating an array type mapping months to month durations in days.

	Creating an array, and instantiating it with an aggregate mapping months to
their actual durations in days.

	Iterating over the array, printing out the months, and the number of days for
each.

Being able to use enumeration values as indices is very helpful in creating
mappings such as shown above one, and is an often used feature in Ada.

Indexing

We have already seen the syntax for selecting elements of an array. There are
however a few more points to note.

First, as is true in general in Ada, the indexing operation is strongly typed.
If you use a value of the wrong type to index the array, you will get a
compile-time error.

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type My_Int is range 0 .. 1000;
 5
 6 type My_Index is range 1 .. 5;
 7 type Your_Index is range 1 .. 5;
 8
 9 type My_Int_Array is
10 array (My_Index) of My_Int;
11
12 Tab : My_Int_Array := (2, 3, 5, 7, 11);
13begin
14 for I in Your_Index loop
15 Put (My_Int'Image (Tab (I)));
16 -- ^ Compile time error
17 end loop;
18 New_Line;
19end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_2
MD5: 54543017e4ec69d24bf9e43d507b50e6

Build output

greet.adb:15:31: error: expected type "My_Index" defined at line 6
greet.adb:15:31: error: found type "Your_Index" defined at line 7
gprbuild: *** compilation phase failed

Second, arrays in Ada are bounds checked. This means that if you try to access
an element outside of the bounds of the array, you will get a run-time error
instead of accessing random memory as in unsafe languages.

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 type My_Int is range 0 .. 1000;
 5 type Index is range 1 .. 5;
 6
 7 type My_Int_Array is
 8 array (Index) of My_Int;
 9
10 Tab : My_Int_Array := (2, 3, 5, 7, 11);
11begin
12 for I in Index range 2 .. 6 loop
13 Put (My_Int'Image (Tab (I)));
14 -- ^ Will raise an
15 -- exception when
16 -- I = 6
17 end loop;
18 New_Line;
19end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_3
MD5: 0102674d089be838f1dfbf0791d99fce

Build output

greet.adb:12:30: warning: static value out of range of type "Index" defined at line 5 [enabled by default]
greet.adb:12:30: warning: Constraint_Error will be raised at run time [enabled by default]
greet.adb:12:30: warning: suspicious loop bound out of range of loop subtype [enabled by default]
greet.adb:12:30: warning: loop executes zero times or raises Constraint_Error [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : greet.adb:12 range check failed

Simpler array declarations

In the previous examples, we have always explicitly created an index type for
the array. While this can be useful for typing and readability purposes,
sometimes you simply want to express a range of values. Ada allows you to do
that, too.

simple_array_bounds.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Array_Bounds is
 4 type My_Int is range 0 .. 1000;
 5
 6 type My_Int_Array is
 7 array (1 .. 5) of My_Int;
 8 -- ^ Subtype of Integer
 9
10 Tab : constant My_Int_Array :=
11 (2, 3, 5, 7, 11);
12begin
13 for I in 1 .. 5 loop
14 -- ^ Subtype of Integer
15 Put (My_Int'Image (Tab (I)));
16 end loop;
17 New_Line;
18end Simple_Array_Bounds;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Simple_Array_Bounds
MD5: c337a7fe0dacccc5f60f7b234aa96d39

Runtime output

 2 3 5 7 11

This example defines the range of the array via the range syntax, which
specifies an anonymous subtype of Integer and uses it to index the array.

This means that the type of the index is Integer. Similarly, when you
use an anonymous range in a for loop as in the example above, the type of the
iteration variable is also Integer, so you can use I to index
Tab.

You can also use a named subtype for the bounds for an array.

Range attribute

We noted earlier that hard coding bounds when iterating over an array is a bad
idea, and showed how to use the array's index type/subtype to iterate over its
range in a for loop. That raises the question of how to write an iteration
when the array has an anonymous range for its bounds, since there is no name to
refer to the range. Ada solves that via several attributes of array objects:

range_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Range_Example is
 4 type My_Int is range 0 .. 1000;
 5
 6 type My_Int_Array is
 7 array (1 .. 5) of My_Int;
 8
 9 Tab : constant My_Int_Array :=
10 (2, 3, 5, 7, 11);
11begin
12 for I in Tab'Range loop
13 -- ^ Gets the range of Tab
14 Put (My_Int'Image (Tab (I)));
15 end loop;
16 New_Line;
17end Range_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Range_Example
MD5: 8b0d7bf346cb59999dfd12dbaaf3e2a6

Runtime output

 2 3 5 7 11

If you want more fine grained control, you can use the separate attributes
'First and 'Last.

array_attributes_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Array_Attributes_Example is
 4 type My_Int is range 0 .. 1000;
 5
 6 type My_Int_Array is
 7 array (1 .. 5) of My_Int;
 8
 9 Tab : My_Int_Array :=
10 (2, 3, 5, 7, 11);
11begin
12 for I in Tab'First .. Tab'Last - 1 loop
13 -- ^ Iterate on every index
14 -- except the last
15 Put (My_Int'Image (Tab (I)));
16 end loop;
17 New_Line;
18end Array_Attributes_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Array_Attributes_Example
MD5: 95cc407c8aadd936e050fe3505e8fb46

Runtime output

 2 3 5 7

The 'Range, 'First and 'Last attributes in these examples
could also have been applied to the array type name, and not just the array
instances.

Although not illustrated in the above examples, another useful attribute for an
array instance A is A'Length, which is the number of elements
that A contains.

It is legal and sometimes useful to have a "null array", which contains no
elements. To get this effect, define an index range whose upper bound is less
than the lower bound.

Unconstrained arrays

Let's now consider one of the most powerful aspects of Ada's array facility.

Every array type we have defined so far has a fixed size: every instance of
this type will have the same bounds and therefore the same number of elements
and the same size.

However, Ada also allows you to declare array types whose bounds are not fixed:
in that case, the bounds will need to be provided when creating instances of
the type.

unconstrained_array_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Unconstrained_Array_Example is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7
 8 type Workload_Type is
 9 array (Days range <>) of Natural;
10 -- Indefinite array type
11 -- ^ Bounds are of type Days,
12 -- but not known
13
14 Workload : constant
15 Workload_Type (Monday .. Friday) :=
16 -- ^ Specify the bounds
17 -- when declaring
18 (Friday => 7, others => 8);
19 -- ^ Default value
20 -- ^ Specify element by name of index
21begin
22 for I in Workload'Range loop
23 Put_Line (Integer'Image (Workload (I)));
24 end loop;
25end Unconstrained_Array_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Unconstrained_Array_Example
MD5: c84910e9b424cfabbbbe018ba0a6de59

Runtime output

 8
 8
 8
 8
 7

The fact that the bounds of the array are not known is indicated by the
Days range <> syntax. Given a discrete type Discrete_Type, if we
use Discrete_Type for the index in an array type then
Discrete_Type serves as the type of the index and comprises the range of
index values for each array instance.

If we define the index as Discrete_Type range <> then
Discrete_Type serves as the type of the index, but different array
instances may have different bounds from this type.

An array type that is defined with the Discrete_Type range <> syntax
for its index is referred to as an unconstrained array type, and, as
illustrated above, the bounds need to be provided when an instance is created.

The above example also shows other forms of the aggregate syntax. You can specify
associations by name, by giving the value of the index on the left side of an
arrow association. 1 => 2 thus means
"assign value 2 to the element at index 1 in my array". others => 8 means
"assign value 8 to every element that wasn't previously assigned in this aggregate".

Attention

The so-called "box" notation (<>) is commonly used as a wildcard or
placeholder in Ada. You will often see it when the meaning is "what is
expected here can be anything".

In other languages

While unconstrained arrays in Ada might seem similar to variable length
arrays in C, they are in reality much more powerful, because they're truly
first-class values in the language. You can pass them as parameters to
subprograms or return them from functions, and they implicitly contain
their bounds as part of their value. This means that it is useless to pass
the bounds or length of an array explicitly along with the array, because
they are accessible via the 'First, 'Last, 'Range and
'Length attributes explained earlier.

Although different instances of the same unconstrained array type can have different
bounds, a specific instance has the same bounds throughout its lifetime.
This allows Ada to implement unconstrained arrays efficiently; instances can be
stored on the stack and do not require heap allocation as in languages like Java.

Predefined array type: String

A recurring theme in our introduction to Ada types has been the way important
built-in types like Boolean or Integer are defined through the
same facilities that are available to the user. This is also true for strings:
The String type in Ada is a simple array.

Here is how the string type is defined in Ada:

type String is
 array (Positive range <>) of Character;

The only built-in feature Ada adds to make strings more ergonomic is custom
literals, as we can see in the example below.

Hint

String literals are a syntactic sugar for aggregates, so that in the
following example, A and B have the same value.

string_literals.ads

1package String_Literals is
2 -- Those two declarations are equivalent
3 A : String (1 .. 11) := "Hello World";
4 B : String (1 .. 11) :=
5 ('H', 'e', 'l', 'l', 'o', ' ',
6 'W', 'o', 'r', 'l', 'd');
7end String_Literals;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.String_Literals
MD5: 8e5871c8ead4ff8da643539857e23b30

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 Message : String (1 .. 11) := "dlroW olleH";
 5 -- ^ Pre-defined array type.
 6 -- Component type is Character
 7begin
 8 for I in reverse Message'Range loop
 9 -- ^ Iterate in reverse order
10 Put (Message (I));
11 end loop;
12 New_Line;
13end Greet;

However, specifying the bounds of the object explicitly is a bit of a hassle;
you have to manually count the number of characters in the literal.
Fortunately, Ada gives you an easier way.

You can omit the bounds when creating an instance of an unconstrained array
type if you supply an initialization, since the bounds can be deduced from the
initialization expression.

greet.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Greet is
 4 Message : constant String := "dlroW olleH";
 5 -- ^ Bounds are automatically
 6 -- computed from
 7 -- initialization value
 8begin
 9 for I in reverse Message'Range loop
10 Put (Message (I));
11 end loop;
12 New_Line;
13end Greet;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Greet_5
MD5: 21448a1007a07ec9d434880628625c3f

Runtime output

Hello World

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Integer_Array is
 5 array (Natural range <>) of Integer;
 6
 7 My_Array : constant Integer_Array :=
 8 (1, 2, 3, 4);
 9 -- ^^^^^^^^^^^^^^^^^^^^^
10 -- Bounds are automatically
11 -- computed from
12 -- initialization value
13begin
14 null;
15end Main;

Attention

As you can see above, the standard String type in Ada is an array. As
such, it shares the advantages and drawbacks of arrays: a String
value is stack allocated, it is accessed efficiently, and its bounds are
immutable.

If you want something akin to C++'s std::string, you can use
Unbounded Strings from Ada's standard library.
This type is more like a mutable, automatically managed string buffer to
which you can add content.

Restrictions

A very important point about arrays: bounds have to be known when instances
are created. It is for example illegal to do the following.

declare
 A : String;
begin
 A := "World";
end;

Also, while you of course can change the values of elements in an array, you
cannot change the array's bounds (and therefore its size) after it has been
initialized. So this is also illegal:

declare
 A : String := "Hello";
begin
 A := "World"; -- OK: Same size
 A := "Hello World"; -- Not OK: Different size
end;

Also, while you can expect a warning for this kind of error in very simple
cases like this one, it is impossible for a compiler to know in the general
case if you are assigning a value of the correct length, so this violation will
generally result in a run-time error.

Attention

While we will learn more about this later, it is important to know
that arrays are not the only types whose instances might be of unknown
size at compile-time.

Such objects are said to be of an indefinite subtype, which means that
the subtype size is not known at compile time, but is dynamically computed
(at run time).

indefinite_subtypes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Indefinite_Subtypes is
 4 function Get_Number return Integer is
 5 begin
 6 return Integer'Value (Get_Line);
 7 end Get_Number;
 8
 9 A : String := "Hello";
10 -- Indefinite subtype
11
12 B : String (1 .. 5) := "Hello";
13 -- Definite subtype
14
15 C : String (1 .. Get_Number);
16 -- Indefinite subtype
17 -- (Get_Number's value is computed at
18 -- run-time)
19begin
20 null;
21end Indefinite_Subtypes;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Indefinite_Subtypes
MD5: a24235838511a94879f74757421a28f0

Here, the 'Value attribute converts the string to an integer.

Returning unconstrained arrays

The return type of a function can be any type; a function can return a value
whose size is unknown at compile time. Likewise, the parameters can be of
any type.

For example, this is a function that returns an unconstrained String:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Days is (Monday, Tuesday, Wednesday,
 6 Thursday, Friday,
 7 Saturday, Sunday);
 8
 9 function Get_Day_Name (Day : Days := Monday)
10 return String is
11 begin
12 return
13 (case Day is
14 when Monday => "Monday",
15 when Tuesday => "Tuesday",
16 when Wednesday => "Wednesday",
17 when Thursday => "Thursday",
18 when Friday => "Friday",
19 when Saturday => "Saturday",
20 when Sunday => "Sunday");
21 end Get_Day_Name;
22
23begin
24 Put_Line ("First day is "
25 & Get_Day_Name (Days'First));
26end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Day_Name_1
MD5: 0b7c567c723ded52d8e95c4ef46bcecc

Runtime output

First day is Monday

(This example is for illustrative purposes only. There is a built-in mechanism,
the 'Image attribute for scalar types, that returns the name (as a
String) of any element of an enumeration type. For example
Days'Image(Monday) is "MONDAY".)

In other languages

Returning variable size objects in languages lacking a garbage collector is
a bit complicated implementation-wise, which is why C and C++ don't allow
it, preferring to depend on explicit dynamic allocation / free from the user.

The problem is that explicit storage management is unsafe as soon as you
want to collect unused memory. Ada's ability to return variable size
objects will remove one use case for dynamic allocation, and hence, remove
one potential source of bugs from your programs.

Rust follows the C/C++ model, but with safe pointer semantics.
However, dynamic allocation is still used. Ada can benefit from
a possible performance edge because it can use any model.

Declaring arrays (2)

While we can have array types whose size and bounds are determined at run time,
the array's component type needs to be of a definite and constrained type.

Thus, if you need to declare, for example, an array of strings, the
String subtype used as component will need to have a fixed size.

show_days.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Days is
 4 type Days is (Monday, Tuesday, Wednesday,
 5 Thursday, Friday,
 6 Saturday, Sunday);
 7
 8 subtype Day_Name is String (1 .. 2);
 9 -- Subtype of string with known size
10
11 type Days_Name_Type is
12 array (Days) of Day_Name;
13 -- ^ Type of the index
14 -- ^ Type of the element.
15 -- Must be definite
16
17 Names : constant Days_Name_Type :=
18 ("Mo", "Tu", "We", "Th", "Fr", "Sa", "Su");
19 -- Initial value given by aggregate
20begin
21 for I in Names'Range loop
22 Put_Line (Names (I));
23 end loop;
24end Show_Days;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Day_Name_2
MD5: bc66303091c084f66abde72ae59f55a9

Runtime output

Mo
Tu
We
Th
Fr
Sa
Su

Array slices

One last feature of Ada arrays that we're going to cover is array slices. It is
possible to take and use a slice of an array (a contiguous sequence of
elements) as a name or a value.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 Buf : String := "Hello ...";
 5
 6 Full_Name : String := "John Smith";
 7begin
 8 Buf (7 .. 9) := "Bob";
 9 -- Careful! This works because the string
10 -- on the right side is the same length as
11 -- the replaced slice!
12
13 -- Prints "Hello Bob"
14 Put_Line (Buf);
15
16 -- Prints "Hi John"
17 Put_Line ("Hi " & Full_Name (1 .. 4));
18end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Slices
MD5: cdf582c6c9089658236f5c79b7be4c3f

Runtime output

Hello Bob
Hi John

As we can see above, you can use a slice on the left side of an assignment, to
replace only part of an array.

A slice of an array is of the same type as the array, but has a different
subtype, constrained by the bounds of the slice.

Attention

Ada has multidimensional arrays[#1],
which are not covered in this course. Slices will only work on one
dimensional arrays.

Renaming

So far, we've seen that the following elements can be renamed:
subprograms, packages,
and record components. We can also rename objects
by using the renames keyword. This allows for creating alternative names
for these objects. Let's look at an example:

measurements.ads

1package Measurements is
2
3 subtype Degree_Celsius is Float;
4
5 Current_Temperature : Degree_Celsius;
6
7end Measurements;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Measurements;
 3
 4procedure Main is
 5 subtype Degrees is
 6 Measurements.Degree_Celsius;
 7
 8 T : Degrees
 9 renames Measurements.Current_Temperature;
10begin
11 T := 5.0;
12
13 Put_Line (Degrees'Image (T));
14 Put_Line (Degrees'Image
15 (Measurements.Current_Temperature));
16
17 T := T + 2.5;
18
19 Put_Line (Degrees'Image (T));
20 Put_Line (Degrees'Image
21 (Measurements.Current_Temperature));
22end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Variable_Renaming
MD5: 4426aeaa364cb5cf10ff40e1bccb9757

Runtime output

 5.00000E+00
 5.00000E+00
 7.50000E+00
 7.50000E+00

In the example above, we declare a variable T by renaming the
Current_Temperature object from the Measurements package. As you
can see by running this example, both Current_Temperature and its
alternative name T have the same values:

	first, they show the value 5.0

	after the addition, they show the value 7.5.

This is because they are essentially referring to the same object, but with two
different names.

Note that, in the example above, we're using Degrees as an alias of
Degree_Celsius. We discussed this method
earlier in the course.

Renaming can be useful for improving the readability of more complicated array
indexing. Instead of explicitly using indices every time we're accessing certain
positions of the array, we can create shorter names for these positions by
renaming them. Let's look at the following example:

colors.ads

 1package Colors is
 2
 3 type Color is (Black,
 4 Red,
 5 Green,
 6 Blue,
 7 White);
 8
 9 type Color_Array is
10 array (Positive range <>) of Color;
11
12 procedure Reverse_It (X : in out Color_Array);
13
14end Colors;

colors.adb

 1package body Colors is
 2
 3 procedure Reverse_It (X : in out Color_Array)
 4 is
 5 begin
 6 for I in X'First ..
 7 (X'Last + X'First) / 2
 8 loop
 9 declare
10 Tmp : Color;
11 X_Left : Color
12 renames X (I);
13 X_Right : Color
14 renames X (X'Last + X'First - I);
15 begin
16 Tmp := X_Left;
17 X_Left := X_Right;
18 X_Right := Tmp;
19 end;
20 end loop;
21 end Reverse_It;
22
23end Colors;

test_reverse_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Colors; use Colors;
 4
 5procedure Test_Reverse_Colors is
 6
 7 My_Colors : Color_Array (1 .. 5) :=
 8 (Black, Red, Green, Blue, White);
 9
10begin
11 for C of My_Colors loop
12 Put_Line ("My_Color: "
13 & Color'Image (C));
14 end loop;
15
16 New_Line;
17 Put_Line ("Reversing My_Color...");
18 New_Line;
19 Reverse_It (My_Colors);
20
21 for C of My_Colors loop
22 Put_Line ("My_Color: "
23 & Color'Image (C));
24 end loop;
25
26end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Arrays.Reverse_Colors
MD5: cd9fd7f64d1ec8967e340d57fd7afc0a

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

In the example above, package Colors implements the procedure
Reverse_It by declaring new names for two positions of the array. The
actual implementation becomes easy to read:

begin
 Tmp := X_Left;
 X_Left := X_Right;
 X_Right := Tmp;
end;

Compare this to the alternative version without renaming:

begin
 Tmp := X (I);
 X (I) := X (X'Last +
 X'First - I);
 X (X'Last + X'First - I) := Tmp;
end;

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-3-6.html

More about types

Aggregates: A primer

So far, we have talked about aggregates quite a bit and have seen a number of
examples. Now we will revisit this feature in some more detail.

An Ada aggregate is, in effect, a literal value for a composite type. It's a
very powerful notation that helps you to avoid writing procedural code for the
initialization of your data structures in many cases.

A basic rule when writing aggregates is that every component of the array or
record has to be specified, even components that have a default value.

This means that the following code is incorrect:

incorrect.ads

1package Incorrect is
2 type Point is record
3 X, Y : Integer := 0;
4 end record;
5
6 Origin : Point := (X => 0);
7end Incorrect;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Incorrect_Aggregate
MD5: 80a3475dece1c42cfb67b1d57b5bd464

Build output

incorrect.ads:6:22: error: no value supplied for component "Y"
gprbuild: *** compilation phase failed

There are a few shortcuts that you can use to make the notation more
convenient:

	To specify the default value for a component, you can use the
<> notation.

	You can use the | symbol to give several components the same value.

	You can use the others choice to refer to every component that has not
yet been specified, provided all those fields have the same type.

	You can use the range notation .. to refer to specify a contiguous
sequence of indices in an array.

However, note that as soon as you used a named association, all subsequent
components likewise need to be specified with named associations.

points.ads

 1package Points is
 2 type Point is record
 3 X, Y : Integer := 0;
 4 end record;
 5
 6 type Point_Array is
 7 array (Positive range <>) of Point;
 8
 9 -- use the default values
10 Origin : Point := (X | Y => <>);
11
12 -- likewise, use the defaults
13 Origin_2 : Point := (others => <>);
14
15 Points_1 : Point_Array := ((1, 2), (3, 4));
16 Points_2 : Point_Array := (1 => (1, 2),
17 2 => (3, 4),
18 3 .. 20 => <>);
19end Points;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Points
MD5: 48ea183a42f203325ed6190fbd8493d9

Overloading and qualified expressions

Ada has a general concept of name overloading, which we saw earlier
in the section on enumeration types.

Let's take a simple example: it is possible in Ada to have functions that have
the same name, but different types for their parameters.

pkg.ads

1package Pkg is
2 function F (A : Integer) return Integer;
3 function F (A : Character) return Integer;
4end Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading
MD5: defae85228ee183b536af395d077e71e

This is a common concept in programming languages, called
overloading[#1], or name
overloading.

One of the novel aspects of Ada's overloading facility is the ability to
resolve overloading based on the return type of a function.

pkg.ads

1package Pkg is
2 type SSID is new Integer;
3
4 function Convert (Self : SSID)
5 return Integer;
6 function Convert (Self : SSID)
7 return String;
8end Pkg;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Pkg; use Pkg;
 3
 4procedure Main is
 5 S : String := Convert (123_145_299);
 6 -- ^ Valid, will choose the
 7 -- proper Convert
 8begin
 9 Put_Line (S);
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading
MD5: aa556b55ee89f9c5f8f7e138d84c27b8

Attention

Note that overload resolution based on the type is allowed for both
functions and enumeration literals in Ada - which is why you can have
multiple enumeration literals with the same name. Semantically, an
enumeration literal is treated like a function that has no parameters.

However, sometimes an ambiguity makes it impossible to resolve which
declaration of an overloaded name a given occurrence of the name refers to.
This is where a qualified expression becomes useful.

pkg.ads

 1package Pkg is
 2 type SSID is new Integer;
 3
 4 function Convert (Self : SSID)
 5 return Integer;
 6 function Convert (Self : SSID)
 7 return String;
 8 function Convert (Self : Integer)
 9 return String;
10end Pkg;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Pkg; use Pkg;
 3
 4procedure Main is
 5 S : String := Convert (123_145_299);
 6 -- ^ Invalid, which convert
 7 -- should we call?
 8
 9 S2 : String := Convert (SSID'(123_145_299));
10 -- ^ We specify that the
11 -- type of the
12 -- expression is SSID.
13
14 -- We could also have declared a temporary
15
16 I : SSID := 123_145_299;
17
18 S3 : String := Convert (I);
19begin
20 Put_Line (S);
21end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Overloading_Error
MD5: 722660d8b692cde65a1c2b7800dd78c4

Syntactically the target of a qualified expression can be either any expression
in parentheses, or an aggregate:

qual_expr.ads

1package Qual_Expr is
2 type Point is record
3 A, B : Integer;
4 end record;
5
6 P : Point := Point'(12, 15);
7
8 A : Integer := Integer'(12);
9end Qual_Expr;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Qual_Expr
MD5: e71523eb441a28a4f6549d5f0418620a

This illustrates that qualified expressions are a convenient (and sometimes
necessary) way for the programmer to make the type of an expression explicit,
for the compiler of course, but also for other programmers.

Attention

While they look and feel similar, type conversions and qualified
expressions are not the same.

A qualified expression specifies the exact type that the target expression
will be resolved to, whereas a type conversion will try to convert the
target and issue a run-time error if the target value cannot be so
converted.

Note that you can use a qualified expression to convert from one subtype to
another, with an exception raised if a constraint is violated.

X : Integer := Natural'(1);

Character types

As noted earlier, each enumeration type is distinct and
incompatible with every other enumeration type. However, what we did not
mention previously is that character literals are permitted as
enumeration literals. This means that in addition to the language's
strongly typed character types,
user-defined character types are also permitted:

character_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Character_Example is
 4 type My_Char is ('a', 'b', 'c');
 5 -- Our custom character type, an
 6 -- enumeration type with 3 valid values.
 7
 8 C : Character;
 9 -- ^ Built-in character type
10 -- (it's an enumeration type)
11
12 M : My_Char;
13begin
14 C := '?';
15 -- ^ Character literal
16 -- (enumeration literal)
17
18 M := 'a';
19
20 C := 65;
21 -- ^ Invalid: 65 is not a
22 -- Character value
23
24 C := Character'Val (65);
25 -- Assign the character at
26 -- position 65 in the
27 -- enumeration (which is 'A')
28
29 M := C;
30 -- ^ Invalid: C is of type Character,
31 -- and M is a My_Char
32
33 M := 'd';
34 -- ^ Invalid: 'd' is not a valid
35 -- literal for type My_Char
36end Character_Example;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Types.Character_Example
MD5: e4c5a07dbe8745749056f8c110d69fa3

Build output

character_example.adb:20:09: error: expected type "Standard.Character"
character_example.adb:20:09: error: found type universal integer
character_example.adb:29:09: error: expected type "My_Char" defined at line 4
character_example.adb:29:09: error: found type "Standard.Character"
character_example.adb:33:09: error: character not defined for type "My_Char" defined at line 4
gprbuild: *** compilation phase failed

In this example, we're using characters in the definition of My_Char.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Function_overloading

Access types (pointers)

Overview

Pointers are a potentially dangerous construct, which conflicts with Ada's
underlying philosophy.

There are two ways in which Ada helps shield programmers from the dangers of
pointers:

	One approach, which we have already seen, is to provide alternative features
so that the programmer does not need to use pointers. Parameter modes,
arrays, and varying size types are all constructs that can replace typical
pointer usages in C.

	Second, Ada has made pointers as safe and restricted as possible, but allows
"escape hatches" when the programmer explicitly requests them and presumably
will be exercising such features with appropriate care.

Here is how you declare a simple pointer type, or access type, in Ada:

dates.ads

 1package Dates is
 2 type Months is
 3 (January, February, March, April,
 4 May, June, July, August, September,
 5 October, November, December);
 6
 7 type Date is record
 8 Day : Integer range 1 .. 31;
 9 Month : Months;
10 Year : Integer;
11 end record;
12end Dates;

access_types.ads

 1with Dates; use Dates;
 2
 3package Access_Types is
 4 -- Declare an access type
 5 type Date_Acc is access Date;
 6 -- ^ "Designated type"
 7 -- ^ Date_Acc values
 8 -- point to Date
 9 -- objects
10
11 D : Date_Acc := null;
12 -- ^ Literal for
13 -- "access to nothing"
14 -- ^ Access to date
15end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: d3421918c48c221836bdf03b9e68bfb5

This illustrates how to:

	Declare an access type whose values point to ("designate") objects from a
specific type

	Declare a variable (access value) from this access type

	Give it a value of null

In line with Ada's strong typing philosophy, if you declare a second access
type whose designated type is Date, the two access types will be incompatible
with each other:

access_types.ads

 1with Dates; use Dates;
 2
 3package Access_Types is
 4 -- Declare an access type
 5 type Date_Acc is access Date;
 6 type Date_Acc_2 is access Date;
 7
 8 D : Date_Acc := null;
 9 D2 : Date_Acc_2 := D;
10 -- ^ Invalid! Different types
11end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: af0dff5a26cb16f0fe15c84286557a44

Build output

access_types.ads:9:24: error: expected type "Date_Acc_2" defined at line 6
access_types.ads:9:24: error: found type "Date_Acc" defined at line 5
gprbuild: *** compilation phase failed

In other languages

In most other languages, pointer types are structurally, not nominally
typed, like they are in Ada, which means that two pointer types will be the
same as long as they share the same target type and accessibility rules.

Not so in Ada, which takes some time getting used to. A seemingly simple
problem is, if you want to have a canonical access to a type, where should
it be declared? A commonly used pattern is that if you need an access type
to a specific type you "own", you will declare it along with the type:

package Access_Types is
 type Point is record
 X, Y : Natural;
 end record;

 type Point_Access is access Point;
end Access_Types;

Allocation (by type)

Once we have declared an access type, we need a way to give variables of the
types a meaningful value! You can allocate a value of an access type
with the new keyword in Ada.

access_types.ads

1with Dates; use Dates;
2
3package Access_Types is
4 type Date_Acc is access Date;
5
6 D : Date_Acc := new Date;
7 -- ^ Allocate a new Date record
8end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: e0be95b966e4aebaaf25db646d60c35c

If the type you want to allocate needs constraints, you can put them in the
subtype indication, just as you would do in a variable declaration:

access_types.ads

 1with Dates; use Dates;
 2
 3package Access_Types is
 4 type String_Acc is access String;
 5 -- ^
 6 -- Access to unconstrained array type
 7 Msg : String_Acc;
 8 -- ^ Default value is null
 9
10 Buffer : String_Acc :=
11 new String (1 .. 10);
12 -- ^ Constraint required
13end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: 83cf7a1074ff1b739658508098aa8208

In some cases, though, allocating just by specifying the type is not ideal, so
Ada also allows you to initialize along with the allocation. This is done via
the qualified expression syntax:

access_types.ads

 1with Dates; use Dates;
 2
 3package Access_Types is
 4 type Date_Acc is access Date;
 5 type String_Acc is access String;
 6
 7 D : Date_Acc :=
 8 new Date'(30, November, 2011);
 9 Msg : String_Acc := new String'("Hello");
10end Access_Types;

Dereferencing

The last important piece of Ada's access type facility is how to get from an
access value to the object that is pointed to, that is, how to dereference the
pointer. Dereferencing a pointer uses the .all syntax in Ada, but is
often not needed — in many cases, the access value will be implicitly
dereferenced for you:

access_types.ads

 1with Dates; use Dates;
 2
 3package Access_Types is
 4 type Date_Acc is access Date;
 5
 6 D : Date_Acc :=
 7 new Date'(30, November, 2011);
 8
 9 Today : Date := D.all;
10 -- ^ Access value dereference
11 J : Integer := D.Day;
12 -- ^ Implicit dereference
13 -- for record and array
14 -- components
15 -- Equivalent to D.all.day
16end Access_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Access_Types
MD5: 5cd1c259da04010b0dc1b43e9bd93b55

Other features

As you might know if you have used pointers in C or C++, we are still missing
features that are considered fundamental to the use of pointers, such as:

	Pointer arithmetic (being able to increment or decrement a pointer in order
to point to the next or previous object)

	Manual deallocation - what is called free or delete in C. This is
a potentially unsafe operation. To keep within the realm of safe
Ada, you need to never deallocate manually.

Those features exist in Ada, but are only available through specific standard
library APIs.

Attention

The guideline in Ada is that most of the time you can avoid manual
allocation, and you should.

There are many ways to avoid manual allocation, some of which have been
covered (such as parameter modes). The language also provides library
abstractions to avoid pointers:

	One is the use of containers. Containers help users
avoid pointers, because container memory is automatically managed.

	A container to note in this context is the
Indefinite holder[#1].
This container allows you to store a value of an indefinite type such as
String.

	GNATCOLL has a library for smart pointers, called
Refcount[#2]
Those pointers' memory is automatically managed, so that when an
allocated object has no more references to it, the memory is
automatically deallocated.

Mutually recursive types

The linked list is a common idiom in data structures; in Ada this would be most
naturally defined through two types, a record type and an access type, that are
mutually dependent. To declare mutually dependent types, you can use an
incomplete type declaration:

simple_list.ads

 1package Simple_List is
 2 type Node;
 3 -- This is an incomplete type declaration,
 4 -- which is completed in the same
 5 -- declarative region.
 6
 7 type Node_Acc is access Node;
 8
 9 type Node is record
10 Content : Natural;
11 Prev, Next : Node_Acc;
12 end record;
13end Simple_List;

Code block metadata

Project: Courses.Intro_To_Ada.Access_Types.Simple_List
MD5: 4929b89c1fc913da635fa02e48248271

In this example, the Node and Node_Acc types are mutually dependent.

Footnotes

[#1]
http://www.ada-auth.org/standards/12rat/html/Rat12-8-5.html

[#2]
https://github.com/AdaCore/gnatcoll-core/blob/master/src/gnatcoll-refcount.ads

More about records

Dynamically sized record types

We have previously seen
some simple examples of record types.
Let's now look at some of the more advanced properties of this fundamental
language feature.

One point to note is that object size for a record type does not need to be
known at compile time. This is illustrated in the example below:

runtime_length.ads

1package Runtime_Length is
2 function Compute_Max_Len return Natural;
3end Runtime_Length;

var_size_record.ads

 1with Runtime_Length; use Runtime_Length;
 2
 3package Var_Size_Record is
 4 Max_Len : constant Natural :=
 5 Compute_Max_Len;
 6 -- ^ Not known at compile time
 7
 8 type Items_Array is
 9 array (Positive range <>) of Integer;
10
11 type Growable_Stack is record
12 Items : Items_Array (1 .. Max_Len);
13 Len : Natural;
14 end record;
15 -- Growable_Stack is a definite type, but
16 -- size is not known at compile time.
17
18 G : Growable_Stack;
19end Var_Size_Record;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record
MD5: 6fb0b3f2b685a72ec694640ce378f77c

It is completely fine to determine the size of your records at run time, but
note that all objects of this type will have the same size.

Records with discriminant

In the example above, the size of the Items field is determined once, at
run-time, but every Growable_Stack instance will be exactly the same size.
But maybe that's not what you want to do. We saw that arrays in general offer
this flexibility: for an unconstrained array type, different objects can have
different sizes.

You can get analogous functionality for records, too, using a special kind of
field that is called a discriminant:

var_size_record_2.ads

 1package Var_Size_Record_2 is
 2 type Items_Array is
 3 array (Positive range <>) of Integer;
 4
 5 type Growable_Stack (Max_Len : Natural) is
 6 record
 7 -- ^ Discriminant. Cannot be
 8 -- modified once
 9 -- initialized.
10 Items : Items_Array (1 .. Max_Len);
11 Len : Natural := 0;
12 end record;
13 -- Growable_Stack is an indefinite type
14 -- (like an array)
15end Var_Size_Record_2;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record_2
MD5: 0c2ffe41b7553984e1ef48a50386559f

Discriminants, in their simple forms, are constant: You cannot modify them once
you have initialized the object. This intuitively makes sense since they
determine the size of the object.

Also, they make a type indefinite: Whether or not the discriminant is used to
specify the size of an object, a type with a discriminant will be indefinite if
the discriminant is not declared with an initialization:

test_discriminants.ads

 1package Test_Discriminants is
 2 type Point (X, Y : Natural) is record
 3 null;
 4 end record;
 5
 6 P : Point;
 7 -- ERROR: Point is indefinite, so you
 8 -- need to specify the discriminants
 9 -- or give a default value
10
11 P2 : Point (1, 2);
12 P3 : Point := (1, 2);
13 -- Those two declarations are equivalent.
14
15end Test_Discriminants;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Test_Discriminants
MD5: c3ec81ccae0d4144fe952ad99482be81

Build output

test_discriminants.ads:6:08: error: unconstrained subtype not allowed (need initialization)
test_discriminants.ads:6:08: error: provide initial value or explicit discriminant values
test_discriminants.ads:6:08: error: or give default discriminant values for type "Point"
gprbuild: *** compilation phase failed

This also means that, in the example above, you cannot declare an array of
Point values, because the size of a Point is not known.

As mentioned in the example above, we could provide a default value for the
discriminants, so that we could legally declare Point values without
specifying the discriminants. For the example above, this is how it would look:

test_discriminants.ads

 1package Test_Discriminants is
 2 type Point (X, Y : Natural := 0) is record
 3 null;
 4 end record;
 5
 6 P : Point;
 7 -- We can now simply declare a "Point"
 8 -- without further ado. In this case,
 9 -- we're using the default values (0)
10 -- for X and Y.
11
12 P2 : Point (1, 2);
13 P3 : Point := (1, 2);
14 -- We can still specify discriminants.
15
16end Test_Discriminants;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Test_Discriminants
MD5: 259f6cdf7fa857cc006dac6d1daedd73

Also note that, even though the Point type now has default
discriminants, we can still specify discriminants, as we're doing in the
declarations of P2 and P3.

In most other respects discriminants behave like regular fields: You have to
specify their values in aggregates, as seen above, and you can access their
values via the dot notation.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Var_Size_Record_2; use Var_Size_Record_2;
 4
 5procedure Main is
 6 procedure Print_Stack (G : Growable_Stack) is
 7 begin
 8 Put ("<Stack, items: [");
 9 for I in G.Items'Range loop
10 exit when I > G.Len;
11 Put (" " & Integer'Image (G.Items (I)));
12 end loop;
13 Put_Line ("]>");
14 end Print_Stack;
15
16 S : Growable_Stack :=
17 (Max_Len => 128,
18 Items => (1, 2, 3, 4, others => <>),
19 Len => 4);
20begin
21 Print_Stack (S);
22end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Var_Size_Record_2
MD5: 4e8c102cd93dc5d8aa1b402589c5239b

Runtime output

<Stack, items: [1 2 3 4]>

Note

In the examples above, we used a discriminant to determine the size of an
array, but it is not limited to that, and could be used, for example, to
determine the size of a nested discriminated record.

Variant records

The examples of discriminants thus far have illustrated the declaration of
records of varying size, by having components whose size depends on the
discriminant.

However, discriminants can also be used to obtain the functionality of what are
sometimes called "variant records": records that can contain different sets of
fields.

variant_record.ads

 1package Variant_Record is
 2 -- Forward declaration of Expr
 3 type Expr;
 4
 5 -- Access to a Expr
 6 type Expr_Access is access Expr;
 7
 8 type Expr_Kind_Type is (Bin_Op_Plus,
 9 Bin_Op_Minus,
10 Num);
11 -- A regular enumeration type
12
13 type Expr (Kind : Expr_Kind_Type) is record
14 -- ^ The discriminant is an
15 -- enumeration value
16 case Kind is
17 when Bin_Op_Plus | Bin_Op_Minus =>
18 Left, Right : Expr_Access;
19 when Num =>
20 Val : Integer;
21 end case;
22 -- Variant part. Only one, at the end of
23 -- the record definition, but can be
24 -- nested
25 end record;
26end Variant_Record;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: af9c1edca3ed6b2d938249c7258806b1

The fields that are in a when branch will be only available when the
value of the discriminant is covered by the branch. In the example above, you
will only be able to access the fields Left and Right when the
Kind is Bin_Op_Plus or Bin_Op_Minus.

If you try to access a field that is not valid for your record, a
Constraint_Error will be raised.

main.adb

1with Variant_Record; use Variant_Record;
2
3procedure Main is
4 E : Expr := (Num, 12);
5begin
6 E.Left := new Expr'(Num, 15);
7 -- Will compile but fail at runtime
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: d157d5f96db0825b9376ba7fca9613ed

Build output

main.adb:6:05: warning: component not present in subtype of "Expr" defined at line 4 [enabled by default]
main.adb:6:05: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:6 discriminant check failed

Here is how you could write an evaluator for expressions:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Variant_Record; use Variant_Record;
 4
 5procedure Main is
 6 function Eval_Expr (E : Expr) return Integer is
 7 (case E.Kind is
 8 when Bin_Op_Plus =>
 9 Eval_Expr (E.Left.all)
10 + Eval_Expr (E.Right.all),
11 when Bin_Op_Minus =>
12 Eval_Expr (E.Left.all)
13 - Eval_Expr (E.Right.all),
14 when Num => E.Val);
15
16 E : Expr := (Bin_Op_Plus,
17 new Expr'(Bin_Op_Minus,
18 new Expr'(Num, 12),
19 new Expr'(Num, 15)),
20 new Expr'(Num, 3));
21begin
22 Put_Line (Integer'Image (Eval_Expr (E)));
23end Main;

Code block metadata

Project: Courses.Intro_To_Ada.More_About_Records.Variant_Record
MD5: 807dbb921b44b3eaeaf1baf6ffe1afaa

Runtime output

 0

In other languages

Ada's variant records are very similar to Sum types in functional languages
such as OCaml or Haskell. A major difference is that the discriminant is a
separate field in Ada, whereas the 'tag' of
a Sum type is kind of built in, and only accessible with pattern matching.

There are other differences (you can have several discriminants in a
variant record in Ada). Nevertheless, they allow the same kind of type
modeling as sum types in functional languages.

Compared to C/C++ unions, Ada variant records are more powerful in what
they allow, and are also checked at run time, which makes them safer.

Footnotes

Fixed-point types

Decimal fixed-point types

We have already seen how to specify floating-point types. However, in some
applications floating-point is not appropriate since, for example, the roundoff
error from binary arithmetic may be unacceptable or perhaps the hardware does
not support floating-point instructions. Ada provides a category of types, the
decimal fixed-point types, that allows the programmer to specify the required
decimal precision (number of digits) as well as the scaling factor (a power of
ten) and, optionally, a range. In effect the values will be represented as
integers implicitly scaled by the specified power of 10. This is useful, for
example, for financial applications.

The syntax for a simple decimal fixed-point type is

type <type-name> is delta <delta-value> digits <digits-value>;

In this case, the delta and the digits will be used by the
compiler to derive a range.

Several attributes are useful for dealing with decimal types:

	Attribute Name

	Meaning

	First

	The first value of the type

	Last

	The last value of the type

	Delta

	The delta value of the type

In the example below, we declare two data types: T3_D3 and T6_D3.
For both types, the delta value is the same: 0.001.

decimal_fixed_point_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Decimal_Fixed_Point_Types is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5 type T6_D3 is delta 10.0 ** (-3) digits 6;
 6begin
 7 Put_Line ("The delta value of T3_D3 is "
 8 & T3_D3'Image (T3_D3'Delta));
 9 Put_Line ("The minimum value of T3_D3 is "
10 & T3_D3'Image (T3_D3'First));
11 Put_Line ("The maximum value of T3_D3 is "
12 & T3_D3'Image (T3_D3'Last));
13 New_Line;
14
15 Put_Line ("The delta value of T6_D3 is "
16 & T6_D3'Image (T6_D3'Delta));
17 Put_Line ("The minimum value of T6_D3 is "
18 & T6_D3'Image (T6_D3'First));
19 Put_Line ("The maximum value of T6_D3 is "
20 & T6_D3'Image (T6_D3'Last));
21end Decimal_Fixed_Point_Types;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Types
MD5: 6b1f6bfa555031b831aa872187c8bee9

Runtime output

The delta value of T3_D3 is 0.001
The minimum value of T3_D3 is -0.999
The maximum value of T3_D3 is 0.999

The delta value of T6_D3 is 0.001
The minimum value of T6_D3 is -999.999
The maximum value of T6_D3 is 999.999

When running the application, we see that the delta value of both
types is indeed the same: 0.001. However, because T3_D3 is restricted
to 3 digits, its range is -0.999 to 0.999. For the T6_D3, we have
defined a precision of 6 digits, so the range is -999.999 to 999.999.

Similar to the type definition using the range syntax, because we
have an implicit range, the compiled code will check that the variables
contain values that are not out-of-range. Also, if the result of a
multiplication or division on decimal fixed-point types is smaller than
the delta value required for the context, the actual result will be
zero. For example:

decimal_fixed_point_smaller.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Decimal_Fixed_Point_Smaller is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5 type T6_D6 is delta 10.0 ** (-6) digits 6;
 6 A : T3_D3 := T3_D3'Delta;
 7 B : T3_D3 := 0.5;
 8 C : T6_D6;
 9begin
10 Put_Line ("The value of A is "
11 & T3_D3'Image (A));
12
13 A := A * B;
14 Put_Line ("The value of A * B is "
15 & T3_D3'Image (A));
16
17 A := T3_D3'Delta;
18 C := A * B;
19 Put_Line ("The value of A * B is "
20 & T6_D6'Image (C));
21end Decimal_Fixed_Point_Smaller;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Decimal_Fixed_Point_Smaller
MD5: 6b0242caa4a79f9b3447a304002e6a3b

Runtime output

The value of A is 0.001
The value of A * B is 0.000
The value of A * B is 0.000500

In this example, the result of the operation 0.001 * 0.5 is
0.0005. Since this value is not representable for the T3_D3 type
because the delta value is 0.001, the actual value stored in variable
A is zero. However, accuracy is preserved during the arithmetic
operations if the target has sufficient precision, and the value
displayed for C is 0.000500.

Ordinary fixed-point types

Ordinary fixed-point types are similar to decimal fixed-point types in that the
values are, in effect, scaled integers. The difference between them is in the
scale factor: for a decimal fixed-point type, the scaling, given explicitly by
the type's delta, is always a power of ten.

In contrast, for an ordinary fixed-point type, the scaling is defined by the
type's small, which is derived from the specified delta and, by
default, is a power of two. Therefore, ordinary fixed-point types are sometimes
called binary fixed-point types.

Note

Ordinary fixed-point types can be thought of being closer to the actual
representation on the machine, since hardware support for decimal
fixed-point arithmetic is not widespread (rescalings by a power of ten),
while ordinary fixed-point types make use of the available integer shift
instructions.

The syntax for an ordinary fixed-point type is

type <type-name> is
 delta <delta-value>
 range <lower-bound> .. <upper-bound>;

By default the compiler will choose a scale factor, or small, that is a
power of 2 no greater than <delta-value>.

For example, we may define a normalized range between -1.0 and 1.0 as
following:

normalized_fixed_point_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Normalized_Fixed_Point_Type is
 4 D : constant := 2.0 ** (-31);
 5 type TQ31 is delta D range -1.0 .. 1.0 - D;
 6begin
 7 Put_Line ("TQ31 requires "
 8 & Integer'Image (TQ31'Size)
 9 & " bits");
10 Put_Line ("The delta value of TQ31 is "
11 & TQ31'Image (TQ31'Delta));
12 Put_Line ("The minimum value of TQ31 is "
13 & TQ31'Image (TQ31'First));
14 Put_Line ("The maximum value of TQ31 is "
15 & TQ31'Image (TQ31'Last));
16end Normalized_Fixed_Point_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Normalized_Fixed_Point_Type
MD5: 778dde401c7ff3dd42938dccfe6cf9d3

Runtime output

TQ31 requires 32 bits
The delta value of TQ31 is 0.0000000005
The minimum value of TQ31 is -1.0000000000
The maximum value of TQ31 is 0.9999999995

In this example, we are defining a 32-bit fixed-point data type for our
normalized range. When running the application, we notice that the upper
bound is close to one, but not exact one. This is a typical effect of
fixed-point data types — you can find more details in this discussion
about the Q format[#1].

We may also rewrite this code with an exact type definition:

normalized_adapted_fixed_point_type.adb

1procedure Normalized_Adapted_Fixed_Point_Type is
2 type TQ31 is
3 delta 2.0 ** (-31)
4 range -1.0 .. 1.0 - 2.0 ** (-31);
5begin
6 null;
7end Normalized_Adapted_Fixed_Point_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Normalized_Adapted_Fixed_Point_Type
MD5: 3421800bb47b282d601a51d276944f62

We may also use any other range. For example:

custom_fixed_point_range.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics; use Ada.Numerics;
 3
 4procedure Custom_Fixed_Point_Range is
 5 type T_Inv_Trig is
 6 delta 2.0 ** (-15) * Pi
 7 range -Pi / 2.0 .. Pi / 2.0;
 8begin
 9 Put_Line ("T_Inv_Trig requires "
10 & Integer'Image (T_Inv_Trig'Size)
11 & " bits");
12 Put_Line ("Delta value of T_Inv_Trig: "
13 & T_Inv_Trig'Image
14 (T_Inv_Trig'Delta));
15 Put_Line ("Minimum value of T_Inv_Trig: "
16 & T_Inv_Trig'Image
17 (T_Inv_Trig'First));
18 Put_Line ("Maximum value of T_Inv_Trig: "
19 & T_Inv_Trig'Image
20 (T_Inv_Trig'Last));
21end Custom_Fixed_Point_Range;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Custom_Fixed_Point_Range
MD5: a3e6c549cb1070aa285857ae8813de27

Runtime output

T_Inv_Trig requires 16 bits
Delta value of T_Inv_Trig: 0.00006
Minimum value of T_Inv_Trig: -1.57080
Maximum value of T_Inv_Trig: 1.57080

In this example, we are defining a 16-bit type called T_Inv_Trig,
which has a range from -π/2 to π/2.

All standard operations are available for fixed-point types. For example:

fixed_point_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Fixed_Point_Op is
 4 type TQ31 is
 5 delta 2.0 ** (-31)
 6 range -1.0 .. 1.0 - 2.0 ** (-31);
 7
 8 A, B, R : TQ31;
 9begin
10 A := 0.25;
11 B := 0.50;
12 R := A + B;
13 Put_Line ("R is " & TQ31'Image (R));
14end Fixed_Point_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Fixed_Point_Types.Fixed_Point_Op
MD5: cad218b70b7fb0621468027a807431b1

Runtime output

R is 0.7500000000

As expected, R contains 0.75 after the addition of A and B.

In fact the language is more general than these examples imply, since in
practice it is typical to need to multiply or divide values from different
fixed-point types, and obtain a result that may be of a third fixed-point type.
The details are outside the scope of this introductory course.

It is also worth noting, although again the details are outside the scope of
this course, that you can explicitly specify a value for an ordinary
fixed-point type's small. This allows non-binary scaling, for example:

type Angle is
 delta 1.0/3600.0
 range 0.0 .. 360.0 - 1.0 / 3600.0;
for Angle'Small use Angle'Delta;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Q_(number_format)

Privacy

One of the main principles of modular programming, as well as object oriented
programming, is
encapsulation[#1].

Encapsulation, briefly, is the concept that the implementer of a piece of
software will distinguish between the code's public interface and its private
implementation.

This is not only applicable to software libraries but wherever abstraction is
used.

In Ada, the granularity of encapsulation is a bit different from most
object-oriented languages, because privacy is generally specified at the
package level.

Basic encapsulation

encapsulate.ads

1package Encapsulate is
2 procedure Hello;
3
4private
5
6 procedure Hello2;
7 -- Not visible from external units
8end Encapsulate;

encapsulate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Encapsulate is
 4
 5 procedure Hello is
 6 begin
 7 Put_Line ("Hello");
 8 end Hello;
 9
10 procedure Hello2 is
11 begin
12 Put_Line ("Hello #2");
13 end Hello2;
14
15end Encapsulate;

main.adb

1with Encapsulate;
2
3procedure Main is
4begin
5 Encapsulate.Hello;
6 Encapsulate.Hello2;
7 -- Invalid: Hello2 is not visible
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Encapsulate
MD5: cf56ee89481962d1e0a6d1e9ad888362

Build output

main.adb:6:15: error: "Hello2" is not a visible entity of "Encapsulate"
gprbuild: *** compilation phase failed

Abstract data types

With this high-level granularity, it might not seem obvious how to hide the
implementation details of a type. Here is how it can be done in Ada:

stacks.ads

 1package Stacks is
 2 type Stack is private;
 3 -- Declare a private type: You cannot depend
 4 -- on its implementation. You can only assign
 5 -- and test for equality.
 6
 7 procedure Push (S : in out Stack;
 8 Val : Integer);
 9 procedure Pop (S : in out Stack;
10 Val : out Integer);
11private
12
13 subtype Stack_Index is
14 Natural range 1 .. 10;
15
16 type Content_Type is
17 array (Stack_Index) of Natural;
18
19 type Stack is record
20 Top : Stack_Index;
21 Content : Content_Type;
22 end record;
23end Stacks;

stacks.adb

 1package body Stacks is
 2
 3 procedure Push (S : in out Stack;
 4 Val : Integer) is
 5 begin
 6 -- Missing implementation!
 7 null;
 8 end Push;
 9
10 procedure Pop (S : in out Stack;
11 Val : out Integer) is
12 begin
13 -- Dummy implementation!
14 Val := 0;
15 end Pop;
16
17end Stacks;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Stacks
MD5: 364df7c6806af4a1bc957c2c2d53b2cc

In the above example, we define a stack type in the public part (known as the
visible part of the package spec in Ada), but the exact representation
of that type is private.

Then, in the private part, we define the representation of that type. We can
also declare other types that will be used as helpers for our main public
type. This is useful since declaring helper types is common in Ada.

A few words about terminology:

	The Stack type as viewed from the public part is called the partial
view of the type. This is what clients have access to.

	The Stack type as viewed from the private part or the body of the
package is called the full view of the type. This is what implementers have
access to.

From the point of view of the client (the with'ing unit), only the public
(visible) part is important, and the private part could as well not exist. It
makes it very easy to read linearly the part of the package that is important
for you.

-- No need to read the private part to use the package
package Stacks is
 type Stack is private;

 procedure Push (S : in out Stack;
 Val : Integer);
 procedure Pop (S : in out Stack;
 Val : out Integer);
private
 ...
end Stacks;

Here is how the Stacks package would be used:

-- Example of use
with Stacks; use Stacks;

procedure Test_Stack is
 S : Stack;
 Res : Integer;
begin
 Push (S, 5);
 Push (S, 7);
 Pop (S, Res);
end Test_Stack;

Limited types

Ada's limited type facility allows you to declare a type for which
assignment and comparison operations are not automatically provided.

stacks.ads

 1package Stacks is
 2 type Stack is limited private;
 3 -- Limited type. Cannot assign nor compare.
 4
 5 procedure Push (S : in out Stack;
 6 Val : Integer);
 7 procedure Pop (S : in out Stack;
 8 Val : out Integer);
 9private
10 subtype Stack_Index is
11 Natural range 1 .. 10;
12
13 type Content_Type is
14 array (Stack_Index) of Natural;
15
16 type Stack is limited record
17 Top : Stack_Index;
18 Content : Content_Type;
19 end record;
20end Stacks;

stacks.adb

 1package body Stacks is
 2
 3 procedure Push (S : in out Stack;
 4 Val : Integer) is
 5 begin
 6 -- Missing implementation!
 7 null;
 8 end Push;
 9
10 procedure Pop (S : in out Stack;
11 Val : out Integer) is
12 begin
13 -- Dummy implementation!
14 Val := 0;
15 end Pop;
16
17end Stacks;

main.adb

1with Stacks; use Stacks;
2
3procedure Main is
4 S, S2 : Stack;
5begin
6 S := S2;
7 -- Illegal: S is limited.
8end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Limited_Stacks
MD5: 811343b46f20ac6af5e1bf26561f8d8d

Build output

main.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

This is useful because, for example, for some data types the built-in assignment
operation might be incorrect (for example when a deep copy is required).

Ada does allow you to overload the comparison operators = and /= for limited
types (and to override the built-in declarations for non-limited types).

Ada also allows you to implement special semantics for assignment via
controlled types[#2]. However, in some cases
assignment is simply inappropriate; one example is the File_Type from the
Ada.Text_IO package, which is declared as a limited type and thus
attempts to assign one file to another would be detected as illegal.

Child packages & privacy

We've seen previously (in the child packages section)
that packages can have child packages. Privacy plays an important role in child
packages. This section discusses some of the privacy rules that apply to child
packages.

Although the private part of a package P is meant to encapsulate
information, certain parts of a child package P.C can have access to
this private part of P. In those cases, information from the private
part of P can then be used as if it were declared in the public part of
its specification. To be more specific, the body of P.C and the private
part of the specification of P.C have access to the private part of
P. However, the public part of the specification of P.C only has
access to the public part of P's specification. The following table
summarizes this:

	Part of a child package

	Access to the private part of
its parent's specification

	Specification: public part

	

	Specification: private part

	✓

	Body

	✓

The rest of this section shows examples of how this access to private
information actually works for child packages.

Let's first look at an example where the body of a child package P.C
has access to the private part of the specification of its parent P.
We've seen, in a previous source-code example, that the Hello2 procedure
declared in the private part of the Encapsulate package cannot be used
in the Main procedure, since it's not visible there. This limitation
doesn't apply, however, for parts of the child packages of the
Encapsulate package. In fact, the body of its child package
Encapsulate.Child has access to the Hello2 procedure and can call
it there, as you can see in the implementation of the Hello3 procedure
of the Child package:

encapsulate.ads

1package Encapsulate is
2 procedure Hello;
3
4private
5
6 procedure Hello2;
7 -- Not visible from external units
8 -- But visible in child packages
9end Encapsulate;

encapsulate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Encapsulate is
 4
 5 procedure Hello is
 6 begin
 7 Put_Line ("Hello");
 8 end Hello;
 9
10 procedure Hello2 is
11 begin
12 Put_Line ("Hello #2");
13 end Hello2;
14
15end Encapsulate;

encapsulate-child.ads

1package Encapsulate.Child is
2
3 procedure Hello3;
4
5end Encapsulate.Child;

encapsulate-child.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Encapsulate.Child is
 4
 5 procedure Hello3 is
 6 begin
 7 -- Using private procedure Hello2
 8 -- from the parent package
 9 Hello2;
10 Put_Line ("Hello #3");
11 end Hello3;
12
13end Encapsulate.Child;

main.adb

1with Encapsulate.Child;
2
3procedure Main is
4begin
5 Encapsulate.Child.Hello3;
6end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Encapsulate_Child
MD5: 1533f43eee8f8b4d14c9b2101f42f13a

Runtime output

Hello #2
Hello #3

The same mechanism applies to types declared in the private part of a parent
package. For instance, the body of a child package can access components of a
record declared in the private part of its parent package. Let's look at an
example:

my_types.ads

 1package My_Types is
 2
 3 type Priv_Rec is private;
 4
 5private
 6
 7 type Priv_Rec is record
 8 Number : Integer := 42;
 9 end record;
10
11end My_Types;

my_types-ops.ads

1package My_Types.Ops is
2
3 procedure Display (E : Priv_Rec);
4
5end My_Types.Ops;

my_types-ops.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Types.Ops is
 4
 5 procedure Display (E : Priv_Rec) is
 6 begin
 7 Put_Line ("Priv_Rec.Number: "
 8 & Integer'Image (E.Number));
 9 end Display;
10
11end My_Types.Ops;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with My_Types; use My_Types;
 4with My_Types.Ops; use My_Types.Ops;
 5
 6procedure Main is
 7 E : Priv_Rec;
 8begin
 9 Put_Line ("Presenting information:");
10
11 -- The following code would trigger a
12 -- compilation error here:
13 --
14 -- Put_Line ("Priv_Rec.Number: "
15 -- & Integer'Image (E.Number));
16
17 Display (E);
18end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Privacy.Private_Type_Child
MD5: 9960611460bc1190b30949eca08fc02b

Runtime output

Presenting information:
Priv_Rec.Number: 42

In this example, we don't have access to the Number component of the
record type Priv_Rec in the Main procedure. You can see this in
the call to Put_Line that has been commented-out in the implementation
of Main. Trying to access the Number component there would
trigger a compilation error. But we do have access to this component in the
body of the My_Types.Ops package, since it's a child package of the
My_Types package. Therefore, Ops's body has access to the
declaration of the Priv_Rec type — which is in the private part of
its parent, the My_Types package. For this reason, the same call to
Put_Line that would trigger a compilation error in the Main
procedure works fine in the Display procedure of the My_Types.Ops
package.

This kind of privacy rules for child packages allows for extending the
functionality of a parent package and, at the same time, retain its
encapsulation.

As we mentioned previously, in addition to the package body, the private part
of the specification of a child package P.C also has access to the
private part of the specification of its parent P. Let's look at an
example where we declare an object of private type Priv_Rec in the
private part of the child package My_Types.Child and initialize the
Number component of the Priv_Rec record directly:

package My_Types.Child is

private

 E : Priv_Rec := (Number => 99);

end My_Types.Ops;

As expected, we wouldn't be able to initialize this component if we moved this
declaration to the public (visible) part of the same child package:

package My_Types.Child is

 E : Priv_Rec := (Number => 99);

end My_Types.Ops;

The declaration above triggers a compilation error, since type Priv_Rec
is private. Because the public part of My_Types.Child is also visible
outside the child package, Ada cannot allow accessing private information in
this part of the specification.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

[#2]
http://www.ada-auth.org/standards/12rm/html/RM-7-6.html

Generics

Introduction

Generics are used for metaprogramming in Ada. They are useful for
abstract algorithms that share common properties with each other.

Either a subprogram or a package can be generic. A generic is declared
by using the keyword generic. For example:

operator.ads

1generic
2 type T is private;
3 -- Declaration of formal types and objects
4-- Below, we could use one of the following:
5-- <procedure | function | package>
6procedure Operator (Dummy : in out T);

operator.adb

1procedure Operator (Dummy : in out T) is
2begin
3 null;
4end Operator;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Simple_Generic
MD5: 1321d437043dafdb725fad416e654318

Formal type declaration

Formal types are abstractions of a specific type. For example, we may
want to create an algorithm that works on any integer type, or even on
any type at all, whether a numeric type or not. The following example
declares a formal type T for the Set procedure.

set.ads

1generic
2 type T is private;
3 -- T is a formal type that indicates that
4 -- any type can be used, possibly a numeric
5 -- type or possibly even a record type.
6procedure Set (Dummy : T);

set.adb

1procedure Set (Dummy : T) is
2begin
3 null;
4end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Type_Declaration
MD5: 668156f66b2479c4932d18b5ad35deba

The declaration of T as private indicates that you can map
any definite type to it. But you can also restrict the declaration to allow
only some types to be mapped to that formal type. Here are some
examples:

	Formal Type

	Format

	Any type

	type T is private;

	Any discrete type

	type T is (<>);

	Any floating-point type

	type T is digits <>;

Formal object declaration

Formal objects are similar to subprogram parameters. They can reference
formal types declared in the formal specification. For example:

set.ads

1generic
2 type T is private;
3 X : in out T;
4 -- X can be used in the Set procedure
5procedure Set (E : T);

set.adb

1procedure Set (E : T) is
2 pragma Unreferenced (E, X);
3begin
4 null;
5end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Object_Declaration
MD5: 1b88bc0e5b8f48a35394966e6af07ac0

Formal objects can be either input parameters or specified using the
in out mode.

Generic body definition

We don't repeat the generic keyword for the body declaration of a
generic subprogram or package. Instead, we start with the actual
declaration and use the generic types and objects we declared. For example:

set.ads

1generic
2 type T is private;
3 X : in out T;
4procedure Set (E : T);

set.adb

1procedure Set (E : T) is
2-- Body definition: "generic" keyword
3-- is not used
4begin
5 X := E;
6end Set;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Body_Definition
MD5: de611ef77b528543fd6bad82c53857f7

Generic instantiation

Generic subprograms or packages can't be used directly. Instead, they
need to be instantiated, which we do using the new keyword, as
shown in the following example:

set.ads

1generic
2 type T is private;
3 X : in out T;
4 -- X can be used in the Set procedure
5procedure Set (E : T);

set.adb

1procedure Set (E : T) is
2begin
3 X := E;
4end Set;

show_generic_instantiation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Set;
 3
 4procedure Show_Generic_Instantiation is
 5
 6 Main : Integer := 0;
 7 Current : Integer;
 8
 9 procedure Set_Main is new Set (T => Integer,
10 X => Main);
11 -- Here, we map the formal parameters to
12 -- actual types and objects.
13 --
14 -- The same approach can be used to
15 -- instantiate functions or packages, e.g.:
16 --
17 -- function Get_Main is new ...
18 -- package Integer_Queue is new ...
19
20begin
21 Current := 10;
22
23 Set_Main (Current);
24 Put_Line ("Value of Main is "
25 & Integer'Image (Main));
26end Show_Generic_Instantiation;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Instantiation
MD5: 13dc0692252496d954240952561e1c05

Runtime output

Value of Main is 10

In the example above, we instantiate the procedure Set by mapping the
formal parameters T and X to actual existing elements, in this case
the Integer type and the Main variable.

Generic packages

The previous examples focused on generic subprograms. In this section,
we look at generic packages. The syntax is similar to that used for
generic subprograms: we start with the generic keyword and
continue with formal declarations. The only difference is that
package is specified instead of a subprogram keyword.

Here's an example:

element.ads

 1generic
 2 type T is private;
 3package Element is
 4
 5 procedure Set (E : T);
 6 procedure Reset;
 7 function Get return T;
 8 function Is_Valid return Boolean;
 9
10 Invalid_Element : exception;
11
12private
13 Value : T;
14 Valid : Boolean := False;
15end Element;

element.adb

 1package body Element is
 2
 3 procedure Set (E : T) is
 4 begin
 5 Value := E;
 6 Valid := True;
 7 end Set;
 8
 9 procedure Reset is
10 begin
11 Valid := False;
12 end Reset;
13
14 function Get return T is
15 begin
16 if not Valid then
17 raise Invalid_Element;
18 end if;
19 return Value;
20 end Get;
21
22 function Is_Valid return Boolean is (Valid);
23end Element;

show_generic_package.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Element;
 3
 4procedure Show_Generic_Package is
 5
 6 package I is new Element (T => Integer);
 7
 8 procedure Display_Initialized is
 9 begin
10 if I.Is_Valid then
11 Put_Line ("Value is initialized");
12 else
13 Put_Line ("Value is not initialized");
14 end if;
15 end Display_Initialized;
16
17begin
18 Display_Initialized;
19
20 Put_Line ("Initializing...");
21 I.Set (5);
22 Display_Initialized;
23 Put_Line ("Value is now set to "
24 & Integer'Image (I.Get));
25
26 Put_Line ("Resetting...");
27 I.Reset;
28 Display_Initialized;
29
30end Show_Generic_Package;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Generic_Package
MD5: c5278a06c6d06f1f37353ee0ca6686ec

Runtime output

Value is not initialized
Initializing...
Value is initialized
Value is now set to 5
Resetting...
Value is not initialized

In the example above, we created a simple container named Element,
with just one single element. This container tracks whether the
element has been initialized or not.

After writing the package definition, we create the instance I of the
Element. We use the instance by calling the package subprograms
(Set, Reset, and Get).

Formal subprograms

In addition to formal types and objects, we can also declare formal
subprograms or packages. This course only describes formal subprograms;
formal packages are discussed in the advanced course.

We use the with keyword to declare a formal subprogram. In the
example below, we declare a formal function (Comparison) to be
used by the generic procedure Check.

check.ads

1generic
2 Description : String;
3 type T is private;
4 with function Comparison (X, Y : T)
5 return Boolean;
6procedure Check (X, Y : T);

check.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Check (X, Y : T) is
 4 Result : Boolean;
 5begin
 6 Result := Comparison (X, Y);
 7 if Result then
 8 Put_Line
 9 ("Comparison ("
10 & Description
11 & ") between arguments is OK!");
12 else
13 Put_Line
14 ("Comparison ("
15 & Description
16 & ") between arguments is not OK!");
17 end if;
18end Check;

show_formal_subprogram.adb

 1with Check;
 2
 3procedure Show_Formal_Subprogram is
 4
 5 A, B : Integer;
 6
 7 procedure Check_Is_Equal is new
 8 Check (Description => "equality",
 9 T => Integer,
10 Comparison => Standard."=");
11 -- Here, we are mapping the standard
12 -- equality operator for Integer types to
13 -- the Comparison formal function
14begin
15 A := 0;
16 B := 1;
17 Check_Is_Equal (A, B);
18end Show_Formal_Subprogram;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Formal_Subprogram
MD5: 1c463a47e9ce56b5afbca1da6acd116d

Runtime output

Comparison (equality) between arguments is not OK!

Example: I/O instances

Ada offers generic I/O packages that can be instantiated for standard and
derived types. One example is the generic Float_IO package, which
provides procedures such as Put and Get. In fact,
Float_Text_IO — available from the standard library — is an
instance of the Float_IO package, and it's defined as:

with Ada.Text_IO;

package Ada.Float_Text_IO is new Ada.Text_IO.Float_IO (Float);

You can use it directly with any object of floating-point type. For example:

show_float_text_io.adb

1with Ada.Float_Text_IO;
2
3procedure Show_Float_Text_IO is
4 X : constant Float := 2.5;
5
6 use Ada.Float_Text_IO;
7begin
8 Put (X);
9end Show_Float_Text_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Float_Text_IO
MD5: 7cc9b547ef301a2071e9fb65caa4631b

Runtime output

 2.50000E+00

Instantiating generic I/O packages can be useful for derived types. For example,
let's create a new type Price that must be displayed with two decimal
digits after the point, and no exponent.

show_float_io_inst.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Float_IO_Inst is
 4
 5 type Price is digits 3;
 6
 7 package Price_IO is new
 8 Ada.Text_IO.Float_IO (Price);
 9
10 P : Price;
11begin
12 -- Set to zero => don't display exponent
13 Price_IO.Default_Exp := 0;
14
15 P := 2.5;
16 Price_IO.Put (P);
17 New_Line;
18
19 P := 5.75;
20 Price_IO.Put (P);
21 New_Line;
22end Show_Float_IO_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Float_IO_Inst
MD5: 583c761421d7fdb812dd2a183b676bae

Runtime output

 2.50
 5.75

By adjusting Default_Exp from the Price_IO instance to remove
the exponent, we can control how variables of Price type are displayed.
Just as a side note, we could also have written:

-- [...]

 type Price is new Float;

 package Price_IO is new
 Ada.Text_IO.Float_IO (Price);

begin
 Price_IO.Default_Aft := 2;
 Price_IO.Default_Exp := 0;

In this case, we're ajusting Default_Aft, too, to get two decimal digits
after the point when calling Put.

In addition to the generic Float_IO package, the following generic
packages are available from Ada.Text_IO:

	Enumeration_IO for enumeration types;

	Integer_IO for integer types;

	Modular_IO for modular types;

	Fixed_IO for fixed-point types;

	Decimal_IO for decimal types.

In fact, we could rewrite the example above using decimal types:

show_decimal_io_inst.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_IO_Inst is
 4
 5 type Price is delta 10.0 ** (-2) digits 12;
 6
 7 package Price_IO is new
 8 Ada.Text_IO.Decimal_IO (Price);
 9
10 P : Price;
11begin
12 Price_IO.Default_Exp := 0;
13
14 P := 2.5;
15 Price_IO.Put (P);
16 New_Line;
17
18 P := 5.75;
19 Price_IO.Put (P);
20 New_Line;
21end Show_Decimal_IO_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Decimal_IO_Inst
MD5: f413570759dcb32cc166078b3cee1a16

Runtime output

 2.50
 5.75

Example: ADTs

An important application of generics is to model abstract data types
(ADTs). In fact, Ada includes a library with numerous ADTs using
generics: Ada.Containers (described in the containers
section).

A typical example of an ADT is a stack:

stacks.ads

 1generic
 2 Max : Positive;
 3 type T is private;
 4package Stacks is
 5
 6 type Stack is limited private;
 7
 8 Stack_Underflow, Stack_Overflow : exception;
 9
10 function Is_Empty (S : Stack) return Boolean;
11
12 function Pop (S : in out Stack) return T;
13
14 procedure Push (S : in out Stack;
15 V : T);
16
17private
18
19 type Stack_Array is
20 array (Natural range <>) of T;
21
22 Min : constant := 1;
23
24 type Stack is record
25 Container : Stack_Array (Min .. Max);
26 Top : Natural := Min - 1;
27 end record;
28
29end Stacks;

stacks.adb

 1package body Stacks is
 2
 3 function Is_Empty (S : Stack) return Boolean is
 4 (S.Top < S.Container'First);
 5
 6 function Is_Full (S : Stack) return Boolean is
 7 (S.Top >= S.Container'Last);
 8
 9 function Pop (S : in out Stack) return T is
10 begin
11 if Is_Empty (S) then
12 raise Stack_Underflow;
13 else
14 return X : T do
15 X := S.Container (S.Top);
16 S.Top := S.Top - 1;
17 end return;
18 end if;
19 end Pop;
20
21 procedure Push (S : in out Stack;
22 V : T) is
23 begin
24 if Is_Full (S) then
25 raise Stack_Overflow;
26 else
27 S.Top := S.Top + 1;
28 S.Container (S.Top) := V;
29 end if;
30 end Push;
31
32end Stacks;

show_stack.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Stacks;
 3
 4procedure Show_Stack is
 5
 6 package Integer_Stacks is new
 7 Stacks (Max => 10,
 8 T => Integer);
 9 use Integer_Stacks;
10
11 Values : Integer_Stacks.Stack;
12
13begin
14 Push (Values, 10);
15 Push (Values, 20);
16
17 Put_Line ("Last value was "
18 & Integer'Image (Pop (Values)));
19end Show_Stack;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Show_Stack
MD5: ee112d395552c1a02d211b9e5425dc71

Runtime output

Last value was 20

In this example, we first create a generic stack package (Stacks)
and then instantiate it to create a stack of up to 10 integer values.

Example: Swap

Let's look at a simple procedure that swaps variables of type
Color:

colors.ads

1package Colors is
2 type Color is (Black, Red, Green,
3 Blue, White);
4
5 procedure Swap_Colors (X, Y : in out Color);
6end Colors;

colors.adb

 1package body Colors is
 2
 3 procedure Swap_Colors (X, Y : in out Color) is
 4 Tmp : constant Color := X;
 5 begin
 6 X := Y;
 7 Y := Tmp;
 8 end Swap_Colors;
 9
10end Colors;

test_non_generic_swap_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Test_Non_Generic_Swap_Colors is
 5 A, B, C : Color;
 6begin
 7 A := Blue;
 8 B := White;
 9 C := Red;
10
11 Put_Line ("Value of A is "
12 & Color'Image (A));
13 Put_Line ("Value of B is "
14 & Color'Image (B));
15 Put_Line ("Value of C is "
16 & Color'Image (C));
17
18 New_Line;
19 Put_Line ("Swapping A and C...");
20 New_Line;
21 Swap_Colors (A, C);
22
23 Put_Line ("Value of A is "
24 & Color'Image (A));
25 Put_Line ("Value of B is "
26 & Color'Image (B));
27 Put_Line ("Value of C is "
28 & Color'Image (C));
29end Test_Non_Generic_Swap_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Non_Generic_Swap_Colors
MD5: 4d1cf826a1676c3750a8aabd484ac71f

Runtime output

Value of A is BLUE
Value of B is WHITE
Value of C is RED

Swapping A and C...

Value of A is RED
Value of B is WHITE
Value of C is BLUE

In this example, Swap_Colors can only be used for the Color
type. However, this algorithm can theoretically be used for any type,
whether an enumeration type or a complex record type with many
elements. The algorithm itself is the same: it's only the type that
differs. If, for example, we want to swap variables of Integer
type, we don't want to duplicate the implementation. Therefore, such
an algorithm is a perfect candidate for abstraction using generics.

In the example below, we create a generic version of Swap_Colors
and name it Generic_Swap. This generic version can operate on any
type due to the declaration of formal type T.

generic_swap.ads

1generic
2 type T is private;
3procedure Generic_Swap (X, Y : in out T);

generic_swap.adb

1procedure Generic_Swap (X, Y : in out T) is
2 Tmp : constant T := X;
3begin
4 X := Y;
5 Y := Tmp;
6end Generic_Swap;

colors.ads

 1with Generic_Swap;
 2
 3package Colors is
 4
 5 type Color is (Black, Red, Green,
 6 Blue, White);
 7
 8 procedure Swap_Colors is new
 9 Generic_Swap (T => Color);
10
11end Colors;

test_swap_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Test_Swap_Colors is
 5 A, B, C : Color;
 6begin
 7 A := Blue;
 8 B := White;
 9 C := Red;
10
11 Put_Line ("Value of A is "
12 & Color'Image (A));
13 Put_Line ("Value of B is "
14 & Color'Image (B));
15 Put_Line ("Value of C is "
16 & Color'Image (C));
17
18 New_Line;
19 Put_Line ("Swapping A and C...");
20 New_Line;
21 Swap_Colors (A, C);
22
23 Put_Line ("Value of A is "
24 & Color'Image (A));
25 Put_Line ("Value of B is "
26 & Color'Image (B));
27 Put_Line ("Value of C is "
28 & Color'Image (C));
29end Test_Swap_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Swap_Colors
MD5: a5d94a40bd9d1c6736cc873f8b58e867

Runtime output

Value of A is BLUE
Value of B is WHITE
Value of C is RED

Swapping A and C...

Value of A is RED
Value of B is WHITE
Value of C is BLUE

As we can see in the example, we can create the same Swap_Colors
procedure as we had in the non-generic version of the algorithm by
declaring it as an instance of the generic Generic_Swap procedure. We
specify that the generic T type will be mapped to the Color type
by passing it as an argument to the Generic_Swap instantiation.

Example: Reversing

The previous example, with an algorithm to swap two values, is one of the
simplest examples of using generics. Next we study an algorithm for
reversing elements of an array. First, let's start with a non-generic
version of the algorithm, one that works specifically for the Color
type:

colors.ads

 1package Colors is
 2
 3 type Color is (Black, Red, Green,
 4 Blue, White);
 5
 6 type Color_Array is
 7 array (Integer range <>) of Color;
 8
 9 procedure Reverse_It (X : in out Color_Array);
10
11end Colors;

colors.adb

 1package body Colors is
 2
 3 procedure Reverse_It (X : in out Color_Array)
 4 is
 5 begin
 6 for I in X'First ..
 7 (X'Last + X'First) / 2 loop
 8 declare
 9 Tmp : Color;
10 X_Left : Color
11 renames X (I);
12 X_Right : Color
13 renames X (X'Last + X'First - I);
14 begin
15 Tmp := X_Left;
16 X_Left := X_Right;
17 X_Right := Tmp;
18 end;
19 end loop;
20 end Reverse_It;
21
22end Colors;

test_non_generic_reverse_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Test_Non_Generic_Reverse_Colors is
 5
 6 My_Colors : Color_Array (1 .. 5) :=
 7 (Black, Red, Green, Blue, White);
 8
 9begin
10 for C of My_Colors loop
11 Put_Line ("My_Color: " & Color'Image (C));
12 end loop;
13
14 New_Line;
15 Put_Line ("Reversing My_Color...");
16 New_Line;
17 Reverse_It (My_Colors);
18
19 for C of My_Colors loop
20 Put_Line ("My_Color: " & Color'Image (C));
21 end loop;
22
23end Test_Non_Generic_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Non_Generic_Reverse_Colors
MD5: 9b3a489d0bc0ecd79de6ba99fd7cd44f

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

The procedure Reverse_It takes an array of colors, starts by
swapping the first and last elements of the array, and continues doing that
with successive elements until it reaches the middle of array. At that
point, the entire array has been reversed, as we see from the output of the
test program.

To abstract this procedure, we declare formal types for three components of
the algorithm:

	the elements of the array (Color type in the example)

	the range used for the array (Integer range in the example)

	the actual array type (Color_Array type in the example)

This is a generic version of the algorithm:

generic_reverse.ads

1generic
2 type T is private;
3 type Index is range <>;
4 type Array_T is
5 array (Index range <>) of T;
6procedure Generic_Reverse (X : in out Array_T);

generic_reverse.adb

 1procedure Generic_Reverse (X : in out Array_T) is
 2begin
 3 for I in X'First ..
 4 (X'Last + X'First) / 2 loop
 5 declare
 6 Tmp : T;
 7 X_Left : T
 8 renames X (I);
 9 X_Right : T
10 renames X (X'Last + X'First - I);
11 begin
12 Tmp := X_Left;
13 X_Left := X_Right;
14 X_Right := Tmp;
15 end;
16 end loop;
17end Generic_Reverse;

colors.ads

 1with Generic_Reverse;
 2
 3package Colors is
 4
 5 type Color is (Black, Red, Green,
 6 Blue, White);
 7
 8 type Color_Array is
 9 array (Integer range <>) of Color;
10
11 procedure Reverse_It is new
12 Generic_Reverse (T => Color,
13 Index => Integer,
14 Array_T => Color_Array);
15
16end Colors;

test_reverse_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Test_Reverse_Colors is
 5
 6 My_Colors : Color_Array (1 .. 5) :=
 7 (Black, Red, Green, Blue, White);
 8
 9begin
10 for C of My_Colors loop
11 Put_Line ("My_Color: "
12 & Color'Image (C));
13 end loop;
14
15 New_Line;
16 Put_Line ("Reversing My_Color...");
17 New_Line;
18 Reverse_It (My_Colors);
19
20 for C of My_Colors loop
21 Put_Line ("My_Color: "
22 & Color'Image (C));
23 end loop;
24
25end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Reverse_Colors
MD5: 9ef175c517d7574b4b65b24ba0027f1f

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Reversing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

As mentioned above, we're abstracting three components of the algorithm:

	the T type abstracts the elements of the array

	the Index type abstracts the range used for the array

	the Array_T type abstracts the array type and uses the
formal declarations of the T and Index types.

Example: Test application

In the previous example we've focused only on abstracting the reversing
algorithm itself. However, we could have decided to also abstract our small
test application. This could be useful if we, for example, decide to test
other procedures that change elements of an array.

In order to do this, we again have to choose the elements to abstract. We
therefore declare the following formal parameters:

	S: the string containing the array name

	a function Image that converts an element of type T to a
string

	a procedure Test that performs some operation on the array

Note that Image and Test are examples of formal subprograms and
S is an example of a formal object.

Here is a version of the test application making use of the generic
Perform_Test procedure:

generic_reverse.ads

1generic
2 type T is private;
3 type Index is range <>;
4 type Array_T is
5 array (Index range <>) of T;
6procedure Generic_Reverse (X : in out Array_T);

generic_reverse.adb

 1procedure Generic_Reverse (X : in out Array_T) is
 2begin
 3 for I in X'First ..
 4 (X'Last + X'First) / 2 loop
 5 declare
 6 Tmp : T;
 7 X_Left : T
 8 renames X (I);
 9 X_Right : T
10 renames X (X'Last + X'First - I);
11 begin
12 Tmp := X_Left;
13 X_Left := X_Right;
14 X_Right := Tmp;
15 end;
16 end loop;
17end Generic_Reverse;

perform_test.ads

 1generic
 2 type T is private;
 3 type Index is range <>;
 4 type Array_T is
 5 array (Index range <>) of T;
 6 S : String;
 7 with function Image (E : T)
 8 return String is <>;
 9 with procedure Test (X : in out Array_T);
10procedure Perform_Test (X : in out Array_T);

perform_test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Perform_Test (X : in out Array_T) is
 4begin
 5 for C of X loop
 6 Put_Line (S & ": " & Image (C));
 7 end loop;
 8
 9 New_Line;
10 Put_Line ("Testing " & S & "...");
11 New_Line;
12 Test (X);
13
14 for C of X loop
15 Put_Line (S & ": " & Image (C));
16 end loop;
17end Perform_Test;

colors.ads

 1with Generic_Reverse;
 2
 3package Colors is
 4
 5 type Color is (Black, Red, Green,
 6 Blue, White);
 7
 8 type Color_Array is
 9 array (Integer range <>) of Color;
10
11 procedure Reverse_It is new
12 Generic_Reverse (T => Color,
13 Index => Integer,
14 Array_T => Color_Array);
15
16end Colors;

test_reverse_colors.adb

 1with Colors; use Colors;
 2with Perform_Test;
 3
 4procedure Test_Reverse_Colors is
 5
 6 procedure Perform_Test_Reverse_It is new
 7 Perform_Test (T => Color,
 8 Index => Integer,
 9 Array_T => Color_Array,
10 S => "My_Color",
11 Image => Color'Image,
12 Test => Reverse_It);
13
14 My_Colors : Color_Array (1 .. 5) :=
15 (Black, Red, Green, Blue, White);
16
17begin
18 Perform_Test_Reverse_It (My_Colors);
19end Test_Reverse_Colors;

Code block metadata

Project: Courses.Intro_To_Ada.Generics.Test_Reverse_Colors_2
MD5: 04640309f4f7e9f8bcff137d1a6f8733

Runtime output

My_Color: BLACK
My_Color: RED
My_Color: GREEN
My_Color: BLUE
My_Color: WHITE

Testing My_Color...

My_Color: WHITE
My_Color: BLUE
My_Color: GREEN
My_Color: RED
My_Color: BLACK

In this example, we create the procedure
Perform_Test_Reverse_It as an instance of the generic
procedure (Perform_Test). Note that:

	For the formal Image function, we use the 'Image attribute
of the Color type

	For the formal Test procedure, we reference the
Reverse_Array procedure from the package.

Footnotes

Exceptions

Ada uses exceptions for error handling. Unlike many other languages,
Ada speaks about raising, not throwing, an exception and
handling, not catching, an exception.

Exception declaration

Ada exceptions are not types, but instead objects, which may be
peculiar to you if you're used to the way Java or Python support
exceptions. Here's how you declare an exception:

exceptions.ads

1package Exceptions is
2 My_Except : exception;
3 -- Like an object. *NOT* a type !
4end Exceptions;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 6201faeca9b029c790023856d2c8c419

Even though they're objects, you're going to use each declared
exception object as a "kind" or "family" of exceptions. Ada does not
require that a subprogram declare every exception it can potentially
raise.

Raising an exception

To raise an exception of our newly declared exception kind, do the following:

main.adb

 1with Exceptions; use Exceptions;
 2
 3procedure Main is
 4begin
 5 raise My_Except;
 6 -- Execution of current control flow
 7 -- abandoned; an exception of kind
 8 -- "My_Except" will bubble up until it
 9 -- is caught.
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 24b40ae1509722adf51c3dd0d3ea4fbe

Runtime output

raised EXCEPTIONS.MY_EXCEPT : main.adb:5

Here, the My_Except exception is raised. We can also specify a message:

main.adb

 1with Exceptions; use Exceptions;
 2
 3procedure Main is
 4begin
 5 raise My_Except with "My exception message";
 6 -- Execution of current control flow
 7 -- abandoned; an exception of kind
 8 -- "My_Except" with associated string will
 9 -- bubble up until it is caught.
10end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception
MD5: 279299c9703c3ed4e51fdd7c3a5e1392

Runtime output

raised EXCEPTIONS.MY_EXCEPT : My exception message

In this case, we see an additional message when the exception is displayed.

Handling an exception

Next, we address how to handle exceptions that were raised by us or
libraries that we call. The neat thing in Ada is that you can add an
exception handler to any statement block as follows:

open_file.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Open_File is
 5 File : File_Type;
 6begin
 7 -- Block (sequence of statements)
 8 begin
 9 Open (File, In_File, "input.txt");
10 exception
11 when E : Name_Error =>
12 -- ^ Exception to be handled
13 Put ("Cannot open input file : ");
14 Put_Line (Exception_Message (E));
15 raise;
16 -- Reraise current occurence
17 end;
18end Open_File;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception_Handling
MD5: 4ea1d5da684a6d7d7ee32908810e9c8f

Runtime output

Cannot open input file : input.txt: No such file or directory

raised ADA.IO_EXCEPTIONS.NAME_ERROR : input.txt: No such file or directory

In the example above, we're using the Exception_Message function from
the Ada.Exceptions package. This function returns the message
associated with the exception as a string.

You don't need to introduce a block just to handle an exception: you
can add it to the statements block of your current subprogram:

open_file.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Open_File is
 5 File : File_Type;
 6begin
 7 Open (File, In_File, "input.txt");
 8-- Exception block can be added to any block
 9exception
10 when Name_Error =>
11 Put ("Cannot open input file");
12end Open_File;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Show_Exception_Message
MD5: 838e87ae416b3a717901cdc00eb71b40

Runtime output

Cannot open input file

Attention

Exception handlers have an important restriction that
you need to be careful about: Exceptions raised in the declarative
section are not caught by the handlers of that block. So for
example, in the following code, the exception will not be caught.

be_careful.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Be_Careful is
 5 function Dangerous return Integer is
 6 begin
 7 raise Constraint_Error;
 8 return 42;
 9 end Dangerous;
10
11begin
12 declare
13 A : Integer := Dangerous;
14 begin
15 Put_Line (Integer'Image (A));
16 exception
17 when Constraint_Error =>
18 Put_Line ("error!");
19 end;
20end Be_Careful;

Code block metadata

Project: Courses.Intro_To_Ada.Exceptions.Be_Careful
MD5: 6ea8a214bbbaca09d7444136d069e782

Runtime output

raised CONSTRAINT_ERROR : be_careful.adb:7 explicit raise

This is also the case for the top-level exception block that is
part of the current subprogram.

Predefined exceptions

Ada has a very small number of predefined exceptions:

	Constraint_Error is the main one you might see. It's raised:

	When bounds don't match or, in general, any violation of constraints.

	In case of overflow

	In case of null dereferences

	In case of division by 0

	Program_Error might appear, but probably less often. It's raised
in more arcane situations, such as for order of elaboration issues
and some cases of detectable erroneous execution.

	Storage_Error will happen because of memory issues, such as:

	Not enough memory (allocator)

	Not enough stack

	Tasking_Error will happen with task related errors, such as any error
happening during task activation.

You should not reuse predefined exceptions. If you do then, it won't
be obvious when one is raised that it is because something went wrong
in a built-in language operation.

Footnotes

Tasking

Tasks and protected objects allow the implementation of concurrency in
Ada. The following sections explain these concepts in more detail.

Tasks

A task can be thought as an application that runs concurrently with the
main application. In other programming languages, a task might be called a
thread[#1], and tasking
might be called
multithreading[#2].

Tasks may synchronize with the main application but may also process
information completely independently from the main application. Here we show
how this is accomplished.

Simple task

Tasks are declared using the keyword task. The task implementation
is specified in a task body block. For example:

show_simple_task.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Task is
 4 task T;
 5
 6 task body T is
 7 begin
 8 Put_Line ("In task T");
 9 end T;
10begin
11 Put_Line ("In main");
12end Show_Simple_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task
MD5: b17d9b35b4b2b53bc59776749e1be219

Runtime output

In task T
In main

Here, we're declaring and implementing the task T. As soon as the main
application starts, task T starts automatically — it's not necessary
to manually start this task. By running the application above, we can see
that both calls to Put_Line are performed.

Note that:

	The main application is itself a task (the main or “environment” task).

	In this example, the subprogram Show_Simple_Task is the main task of
the application.

	Task T is a subtask.

	Each subtask has a master, which represents the program construct in which
the subtask is declared. In this case, the main subprogram
Show_Simple_Task is T 's master.

	The master construct is executed by some enclosing task, which we will
refer to as the "master task" of the subtask.

	The number of tasks is not limited to one: we could include a
task T2 in the example above.

	This task also starts automatically and runs concurrently with
both task T and the main task. For example:

show_simple_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Tasks is
 4 task T;
 5 task T2;
 6
 7 task body T is
 8 begin
 9 Put_Line ("In task T");
10 end T;
11
12 task body T2 is
13 begin
14 Put_Line ("In task T2");
15 end T2;
16
17begin
18 Put_Line ("In main");
19end Show_Simple_Tasks;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Multiple_Simple_Task
MD5: 5e24b797e742bec306ad498f4f40d2b4

Runtime output

In task T
In main
In task T2

Simple synchronization

As we've just seen, as soon as the master construct reaches its “begin”,
its subtasks also
start automatically. The master continues its processing until it has
nothing more to do. At that point, however, it will not terminate. Instead,
the master waits until its subtasks have finished before it allows itself to
complete. In other words, this waiting process provides synchronization
between the master task and its subtasks. After this synchronization, the
master construct will complete. For example:

show_simple_sync.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Sync is
 4 task T;
 5 task body T is
 6 begin
 7 for I in 1 .. 10 loop
 8 Put_Line ("hello");
 9 end loop;
10 end T;
11begin
12 null;
13 -- Will wait here until all tasks
14 -- have terminated
15end Show_Simple_Sync;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Sync
MD5: 84afce465854f99f8cbe0b57714d8a5f

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

The same mechanism is used for other subprograms that contain subtasks: the
subprogram execution will wait for its subtasks to finish. So this
mechanism is not limited to the main subprogram and also applies to any
subprogram called by the main subprogram, directly or indirectly.

Synchronization also occurs if we move the task to a separate package. In
the example below, we declare a task T in the package
Simple_Sync_Pkg.

simple_sync_pkg.ads

1package Simple_Sync_Pkg is
2 task T;
3end Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: 2f9be044d04994240970f150e2293d5e

This is the corresponding package body:

simple_sync_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Sync_Pkg is
 4 task body T is
 5 begin
 6 for I in 1 .. 10 loop
 7 Put_Line ("hello");
 8 end loop;
 9 end T;
10end Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: b668451e4fb10e802f619889bcd743ff

Because the package is with'ed by the main procedure, the task T
defined in the package will become a subtask of the main task. For example:

test_simple_sync_pkg.adb

1with Simple_Sync_Pkg;
2
3procedure Test_Simple_Sync_Pkg is
4begin
5 null;
6 -- Will wait here until all tasks
7 -- have terminated
8end Test_Simple_Sync_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Simple_Sync_Pkg
MD5: e51565b91767ce198496ef3e9c582ac8

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

As soon as the main subprogram returns, the main task synchronizes with any
subtasks spawned by packages
T from Simple_Sync_Pkg before finally terminating.

Delay

We can introduce a delay by using the keyword delay. This puts the
current task to sleep for the length of time (in seconds) specified in the delay
statement. For example:

show_delay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Delay is
 4
 5 task T;
 6
 7 task body T is
 8 begin
 9 for I in 1 .. 5 loop
10 Put_Line ("hello from task T");
11 delay 1.0;
12 -- ^ Wait 1.0 seconds
13 end loop;
14 end T;
15begin
16 delay 1.5;
17 Put_Line ("hello from main");
18end Show_Delay;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Delay
MD5: 4a6e8039744301a128e8fb2dd27902a5

Runtime output

hello from task T
hello from task T
hello from main
hello from task T
hello from task T
hello from task T

In this example, we're making the task T wait one second after each
time it displays the "hello" message. In addition, the main task is waiting
1.5 seconds before displaying its own "hello" message

Synchronization: rendezvous

The only type of synchronization we've seen so far is the one that happens
automatically at the end of a master construct with a subtask.
You can also define custom
synchronization points using the keyword entry. An entry can be
viewed as a special kind of subprogram, which is called by another task
using a similar syntax, as we will see later.

In the task body definition, you define which part of the task will accept the
entries by using the keyword accept. A task proceeds until it
reaches an accept statement and then waits for some other task to
synchronize with it. Specifically,

	The task with the entry waits at that point (in the accept statement),
ready to accept a call to the corresponding entry from the master task.

	The other task calls the task entry, in a manner similar to a procedure
call, to synchronize with the entry.

This synchronization between tasks is called a rendezvous. Let's see an
example:

show_rendezvous.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Rendezvous is
 4
 5 task T is
 6 entry Start;
 7 end T;
 8
 9 task body T is
10 begin
11 accept Start;
12 -- ^ Waiting for somebody
13 -- to call the entry
14
15 Put_Line ("In T");
16 end T;
17
18begin
19 Put_Line ("In Main");
20
21 -- Calling T's entry:
22 T.Start;
23end Show_Rendezvous;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Rendezvous
MD5: 479eea7adc876ac359ad20ac6e3acf66

Runtime output

In Main
In T

In this example, we declare an entry Start for task T. In the task
body, we implement this entry using accept Start. When task T
reaches this point, it waits for some other task to call its entry.
This synchronization
occurs in the T.Start statement. After the rendezvous completes,
the main task and task T again run concurrently until they synchronize
one final time when the main subprogram Show_Rendezvous finishes.

An entry may be used to perform more than a simple task synchronization: it
also may perform multiple statements during the time both tasks are
synchronized. We do this with a do ... end block. For the previous
example, we would simply write accept Start do <statements>;
end;. We use this kind of block in the next example.

Select loop

There's no limit to the number of times an entry can be accepted. We could
even create an infinite loop in the task and accept calls to the same entry
over and over again. An infinite loop, however, prevents the subtask from
finishing, so it blocks its master task when it reaches the end of its
processing. Therefore, a loop containing accept statements in a task
body can be used in conjunction with a select ... or terminate
statement. In simple terms, this statement allows its master task to
automatically terminate the subtask when the master construct reaches its end. For
example:

show_rendezvous_loop.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Rendezvous_Loop is
 4
 5 task T is
 6 entry Reset;
 7 entry Increment;
 8 end T;
 9
10 task body T is
11 Cnt : Integer := 0;
12 begin
13 loop
14 select
15 accept Reset do
16 Cnt := 0;
17 end Reset;
18 Put_Line ("Reset");
19 or
20 accept Increment do
21 Cnt := Cnt + 1;
22 end Increment;
23 Put_Line ("In T's loop ("
24 & Integer'Image (Cnt)
25 & ")");
26 or
27 terminate;
28 end select;
29 end loop;
30 end T;
31
32begin
33 Put_Line ("In Main");
34
35 for I in 1 .. 4 loop
36 -- Calling T's entry multiple times
37 T.Increment;
38 end loop;
39
40 T.Reset;
41 for I in 1 .. 4 loop
42 -- Calling T's entry multiple times
43 T.Increment;
44 end loop;
45
46end Show_Rendezvous_Loop;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Rendezvous_Loop
MD5: 0542dbc029cffb9f794d761bab9f3a9d

Runtime output

In Main
In T's loop (1)
In T's loop (2)
In T's loop (3)
In T's loop (4)
Reset
In T's loop (1)
In T's loop (2)
In T's loop (3)
In T's loop (4)

In this example, the task body implements an infinite loop that accepts
calls to the Reset and Increment entry. We make the following
observations:

	The accept E do ... end block is used to increment a counter.

	As long as task T is performing the do ... end block, the
main task waits for the block to complete.

	The main task is calling the Increment entry multiple times in the
loop from 1 .. 4. It is also calling the Reset entry before
the second loop.

	Because task T contains an infinite loop, it always accepts calls
to the Reset and Increment entries.

	When the master construct of the subtask (the Show_Rendezvous_Loop
subprogram) completes, it checks the status of the T
task. Even though task T could accept new calls to the
Reset or Increment entries, the master construct is
allowed to
terminate task T due to the or terminate part of the
select statement.

Cycling tasks

In a previous example, we saw how to delay a task a specified time by using
the delay keyword. However, using delay statements in a loop is not
enough to guarantee regular intervals between those delay statements. For
example, we may have a call to a computationally intensive procedure
between executions of successive delay statements:

while True loop
 delay 1.0;
 -- ^ Wait 1.0 seconds
 Computational_Intensive_App;
end loop;

In this case, we can't guarantee that exactly 10 seconds have elapsed after
10 calls to the delay statement because a time drift may be introduced by
the Computational_Intensive_App procedure. In many cases, this time
drift is not relevant, so using the delay keyword is good enough.

However, there are situations where a time drift isn't acceptable. In those
cases, we need to use the delay until statement, which accepts a
precise time for the end of the delay, allowing us to define a regular
interval. This is useful, for example, in real-time applications.

We will soon see an example of how this time drift may be introduced and
how the delay until statement circumvents the problem. But before we
do that, we look at a package containing a procedure allowing us to measure
the elapsed time (Show_Elapsed_Time) and a dummy
Computational_Intensive_App procedure which is simulated by using a
simple delay. This is the complete package:

delay_aux_pkg.ads

 1with Ada.Real_Time; use Ada.Real_Time;
 2
 3package Delay_Aux_Pkg is
 4
 5 function Get_Start_Time return Time
 6 with Inline;
 7
 8 procedure Show_Elapsed_Time
 9 with Inline;
10
11 procedure Computational_Intensive_App;
12private
13 Start_Time : Time := Clock;
14
15 function Get_Start_Time return Time is
16 (Start_Time);
17
18end Delay_Aux_Pkg;

delay_aux_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Delay_Aux_Pkg is
 4
 5 procedure Show_Elapsed_Time is
 6 Now_Time : Time;
 7 Elapsed_Time : Time_Span;
 8 begin
 9 Now_Time := Clock;
10 Elapsed_Time := Now_Time - Start_Time;
11 Put_Line ("Elapsed time "
12 & Duration'Image
13 (To_Duration (Elapsed_Time))
14 & " seconds");
15 end Show_Elapsed_Time;
16
17 procedure Computational_Intensive_App is
18 begin
19 delay 0.5;
20 end Computational_Intensive_App;
21
22end Delay_Aux_Pkg;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: 422a38c1afa0bbd659ec81de88479e0a

Using this auxiliary package, we're now ready to write our time-drifting
application:

show_time_task.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3
 4with Delay_Aux_Pkg;
 5
 6procedure Show_Time_Task is
 7 package Aux renames Delay_Aux_Pkg;
 8
 9 task T;
10
11 task body T is
12 Cnt : Integer := 1;
13 begin
14 for I in 1 .. 5 loop
15 delay 1.0;
16
17 Aux.Show_Elapsed_Time;
18 Aux.Computational_Intensive_App;
19
20 Put_Line ("Cycle # "
21 & Integer'Image (Cnt));
22 Cnt := Cnt + 1;
23 end loop;
24 Put_Line ("Finished time-drifting loop");
25 end T;
26
27begin
28 null;
29end Show_Time_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: fe17c902fc127c0132677ea4005ff3f1

Runtime output

Elapsed time 1.026122546 seconds
Cycle # 1
Elapsed time 2.529910214 seconds
Cycle # 2
Elapsed time 4.030285219 seconds
Cycle # 3
Elapsed time 5.530634545 seconds
Cycle # 4
Elapsed time 7.030933133 seconds
Cycle # 5
Finished time-drifting loop

We can see by running the application that we already have a time
difference of about four seconds after three iterations of the loop due to
the drift introduced by Computational_Intensive_App. Using the
delay until statement, however, we're able to avoid this time drift
and have a regular interval of exactly one second:

show_time_task.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3
 4with Delay_Aux_Pkg;
 5
 6procedure Show_Time_Task is
 7 package Aux renames Delay_Aux_Pkg;
 8
 9 task T;
10
11 task body T is
12 Cycle : constant Time_Span :=
13 Milliseconds (1000);
14 Next : Time := Aux.Get_Start_Time
15 + Cycle;
16
17 Cnt : Integer := 1;
18 begin
19 for I in 1 .. 5 loop
20 delay until Next;
21
22 Aux.Show_Elapsed_Time;
23 Aux.Computational_Intensive_App;
24
25 -- Calculate next execution time
26 -- using a cycle of one second
27 Next := Next + Cycle;
28
29 Put_Line ("Cycle # "
30 & Integer'Image (Cnt));
31 Cnt := Cnt + 1;
32 end loop;
33 Put_Line ("Finished cycling");
34 end T;
35
36begin
37 null;
38end Show_Time_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Time
MD5: 1456c0feee6def8b370d994c0ab75a15

Runtime output

Elapsed time 1.000147444 seconds
Cycle # 1
Elapsed time 2.000082404 seconds
Cycle # 2
Elapsed time 3.000107990 seconds
Cycle # 3
Elapsed time 4.000192538 seconds
Cycle # 4
Elapsed time 5.000131323 seconds
Cycle # 5
Finished cycling

Now, as we can see by running the application, the delay until
statement ensures that the Computational_Intensive_App doesn't disturb
the regular interval of one second between iterations.

Protected objects

When multiple tasks are accessing shared data, corruption of that data may
occur. For example, data may be inconsistent if one task overwrites parts
of the information that's being read by another task at the same time. In
order to avoid these kinds of problems and ensure information is accessed
in a coordinated way, we use protected objects.

Protected objects encapsulate data and provide access to that data by means
of protected operations, which may be subprograms or protected
entries. Using protected objects ensures that data is not corrupted by race
conditions or other concurrent access.

Important

Objects can be protected from concurrent access using Ada tasks.
In fact, this was the only way of protecting objects from concurrent
access in Ada 83 (the first
version of the Ada language). However, the use of protected objects is
much simpler than using similar mechanisms implemented using only
tasks. Therefore, you should use protected objects when your main goal
is only to protect data.

Simple object

You declare a protected object with the protected keyword. The
syntax is similar to that used for packages: you can declare operations
(e.g., procedures and functions) in the public part and data in the private
part. The corresponding implementation of the operations is included in the
protected body of the object. For example:

show_protected_objects.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Protected_Objects is
 4
 5 protected Obj is
 6 -- Operations go here (only subprograms)
 7 procedure Set (V : Integer);
 8 function Get return Integer;
 9 private
10 -- Data goes here
11 Local : Integer := 0;
12 end Obj;
13
14 protected body Obj is
15 -- procedures can modify the data
16 procedure Set (V : Integer) is
17 begin
18 Local := V;
19 end Set;
20
21 -- functions cannot modify the data
22 function Get return Integer is
23 begin
24 return Local;
25 end Get;
26 end Obj;
27
28begin
29 Obj.Set (5);
30 Put_Line ("Number is: "
31 & Integer'Image (Obj.Get));
32end Show_Protected_Objects;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Objects
MD5: dd97dd584ba2f13def3c04725d4e48a7

Runtime output

Number is: 5

In this example, we define two operations for Obj: Set and
Get. The implementation of these operations is in the Obj body. The
syntax used for writing these operations is the same as that for normal
procedures and functions. The implementation of protected objects is
straightforward — we simply access and update Local in these
subprograms. To call these operations in the main application, we use
prefixed notation, e.g., Obj.Get.

Entries

In addition to protected procedures and functions, you can also define
protected entry points. Do this using the entry keyword. Protected
entry points allow you to define barriers using the when
keyword. Barriers are conditions that must be fulfilled before the entry
can start performing its actual processing — we speak of releasing the
barrier when the condition is fulfilled.

The previous example used procedures and functions to define operations on
the protected objects. However, doing so permits reading protected
information (via Obj.Get) before it's set (via Obj.Set). To allow
that to be a defined operation, we specified a default value (0). Instead,
by rewriting Obj.Get using an entry instead of a function, we
implement a barrier, ensuring no task can read the information before it's
been set.

The following example implements the barrier for the Obj.Get
operation. It also contains two concurrent subprograms (main task and task
T) that try to access the protected object.

show_protected_objects_entries.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Protected_Objects_Entries is
 4
 5 protected Obj is
 6 procedure Set (V : Integer);
 7 entry Get (V : out Integer);
 8 private
 9 Local : Integer;
10 Is_Set : Boolean := False;
11 end Obj;
12
13 protected body Obj is
14 procedure Set (V : Integer) is
15 begin
16 Local := V;
17 Is_Set := True;
18 end Set;
19
20 entry Get (V : out Integer)
21 when Is_Set is
22 -- Entry is blocked until the
23 -- condition is true. The barrier
24 -- is evaluated at call of entries
25 -- and at exits of procedures and
26 -- entries. The calling task sleeps
27 -- until the barrier is released.
28 begin
29 V := Local;
30 Is_Set := False;
31 end Get;
32 end Obj;
33
34 N : Integer := 0;
35
36 task T;
37
38 task body T is
39 begin
40 Put_Line
41 ("Task T will delay for 4 seconds...");
42 delay 4.0;
43
44 Put_Line
45 ("Task T will set Obj...");
46 Obj.Set (5);
47
48 Put_Line
49 ("Task T has just set Obj...");
50 end T;
51begin
52 Put_Line
53 ("Main application will get Obj...");
54 Obj.Get (N);
55
56 Put_Line
57 ("Main application has retrieved Obj...");
58 Put_Line
59 ("Number is: " & Integer'Image (N));
60
61end Show_Protected_Objects_Entries;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Objects_Entries
MD5: c1134445a96700b871fb76c4d6342359

Runtime output

Task T will delay for 4 seconds...
Main application will get Obj...
Task T will set Obj...
Task T has just set Obj...
Main application has retrieved Obj...
Number is: 5

As we see by running it, the main application waits until the protected
object is set (by the call to Obj.Set in task T) before it reads
the information (via Obj.Get). Because a 4-second delay has been added
in task T, the main application is also delayed by 4 seconds. Only
after this delay does task T set the object and release the barrier in
Obj.Get so that the main application can then resume processing (after
the information is retrieved from the protected object).

Task and protected types

In the previous examples, we defined single tasks and protected objects. We
can, however, generalize tasks and protected objects using type
definitions. This allows us, for example, to create multiple tasks based on
just a single task type.

Task types

A task type is a generalization of a task. The declaration is similar to
simple tasks: you replace task with task type. The
difference between simple tasks and task types is that task types don't
create actual tasks that automatically start. Instead, a task object declaration
is needed. This is exactly the way normal variables and types work:
objects are only created by variable definitions, not type definitions.

To illustrate this, we repeat our first example:

show_simple_task.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Task is
 4 task T;
 5
 6 task body T is
 7 begin
 8 Put_Line ("In task T");
 9 end T;
10begin
11 Put_Line ("In main");
12end Show_Simple_Task;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task
MD5: b17d9b35b4b2b53bc59776749e1be219

Runtime output

In task T
In main

We now rewrite it by replacing task T with task type TT. We
declare a task (A_Task) based on the task type TT after its
definition:

show_simple_task_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Task_Type is
 4 task type TT;
 5
 6 task body TT is
 7 begin
 8 Put_Line ("In task type TT");
 9 end TT;
10
11 A_Task : TT;
12begin
13 Put_Line ("In main");
14end Show_Simple_Task_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Simple_Task_Type
MD5: 24c26dcbba6f5c54f0a7d47c3c0da728

Runtime output

In task type TT
In main

We can extend this example and create an array of tasks. Since we're using
the same syntax as for variable declarations, we use a similar syntax for
task types: array (<>) of Task_Type. Also, we can pass information
to the individual tasks by defining a Start entry. Here's the updated
example:

show_task_type_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Task_Type_Array is
 4 task type TT is
 5 entry Start (N : Integer);
 6 end TT;
 7
 8 task body TT is
 9 Task_N : Integer;
10 begin
11 accept Start (N : Integer) do
12 Task_N := N;
13 end Start;
14 Put_Line ("In task T: "
15 & Integer'Image (Task_N));
16 end TT;
17
18 My_Tasks : array (1 .. 5) of TT;
19begin
20 Put_Line ("In main");
21
22 for I in My_Tasks'Range loop
23 My_Tasks (I).Start (I);
24 end loop;
25end Show_Task_Type_Array;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Task_Type_Array
MD5: bba072dfc52fb2bfbef6e7b9f8191464

Runtime output

In main
In task T: 1
In task T: 2
In task T: 3
In task T: 4
In task T: 5

In this example, we're declaring five tasks in the array My_Tasks. We
pass the array index to the individual tasks in the entry point
(Start). After the synchronization between the individual subtasks and
the main task, each subtask calls Put_Line concurrently.

Protected types

A protected type is a generalization of a protected object. The
declaration is similar to that for protected objects: you replace
protected with protected type. Like task types,
protected types require an object declaration to create actual
objects. Again, this is similar to variable declarations and allows
for creating arrays (or other composite objects) of protected objects.

We can reuse a previous example and rewrite it to use a protected type:

show_protected_object_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Protected_Object_Type is
 4
 5 protected type P_Obj_Type is
 6 procedure Set (V : Integer);
 7 function Get return Integer;
 8 private
 9 Local : Integer := 0;
10 end P_Obj_Type;
11
12 protected body P_Obj_Type is
13 procedure Set (V : Integer) is
14 begin
15 Local := V;
16 end Set;
17
18 function Get return Integer is
19 begin
20 return Local;
21 end Get;
22 end P_Obj_Type;
23
24 Obj : P_Obj_Type;
25begin
26 Obj.Set (5);
27 Put_Line ("Number is: "
28 & Integer'Image (Obj.Get));
29end Show_Protected_Object_Type;

Code block metadata

Project: Courses.Intro_To_Ada.Tasking.Show_Protected_Object_Type
MD5: c50321e55afef0d72f263fee0669e55f

Runtime output

Number is: 5

In this example, instead of directly defining the protected object
Obj, we first define a protected type P_Obj_Type and then
declare Obj as an object of that protected type. Note that the
main application hasn't changed: we still use Obj.Set and
Obj.Get to access the protected object, just like in the original
example.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Thread_(computing)

[#2]
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

Design by contracts

Contracts are used in programming to codify expectations. Parameter modes
of a subprogram can be viewed as a simple form of contracts. When the
specification of subprogram Op declares a parameter using in
mode, the caller of Op knows that the in argument won't be
changed by Op. In other words, the caller expects that Op doesn't
modify the argument it's providing, but just reads the information stored
in the argument. Constraints and subtypes are other examples of
contracts. In general, these specifications improve the consistency of the
application.

Design-by-contract programming refers to techniques that include pre- and
postconditions, subtype predicates, and type invariants. We study those
topics in this chapter.

Pre- and postconditions

Pre- and postconditions provide expectations regarding input and output
parameters of subprograms and return value of functions. If we say that
certain requirements must be met before calling a subprogram Op, those
are preconditions. Similarly, if certain requirements must be met after a
call to the subprogram Op, those are postconditions. We can think of
preconditions and postconditions as promises between the subprogram caller
and the callee: a precondition is a promise from the caller to the callee,
and a postcondition is a promise in the other direction.

Pre- and postconditions are specified using an aspect clause in the
subprogram declaration. A with Pre => <condition> clause specifies a
precondition and a with Post => <condition> clause specifies a
postcondition.

The following code shows an example of preconditions:

show_simple_precondition.adb

 1procedure Show_Simple_Precondition is
 2
 3 procedure DB_Entry (Name : String;
 4 Age : Natural)
 5 with Pre => Name'Length > 0
 6 is
 7 begin
 8 -- Missing implementation
 9 null;
10 end DB_Entry;
11begin
12 DB_Entry ("John", 30);
13
14 -- Precondition will fail!
15 DB_Entry ("", 21);
16end Show_Simple_Precondition;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Precondition
MD5: 87b6e080555603111801a0fcd2469acd

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from show_simple_precondition.adb:5

In this example, we want to prevent the name field in our database from
containing an empty string. We implement this requirement by using a
precondition requiring that the length of the string used for the
Name parameter of the DB_Entry procedure is greater than
zero. If the DB_Entry procedure is called with an empty string for
the Name parameter, the call will fail because the precondition is
not met.

In the GNAT toolchain

GNAT handles pre- and postconditions by generating runtime assertions for
them. By default, however, assertions aren't enabled. Therefore, in order
to check pre- and postconditions at runtime, you need to enable assertions
by using the -gnata switch.

Before we get to our next example, let's briefly discuss quantified
expressions, which are quite useful in concisely writing pre- and
postconditions. Quantified expressions return a Boolean value indicating
whether elements of an array or container match the expected
condition. They have the form: (for all I in A'Range => <condition on
A(I)>, where A is an array and I is an index. Quantified
expressions using for all check whether the condition is true for
every element. For example:

(for all I in A'Range => A (I) = 0)

This quantified expression is only true when all elements of the array
A have a value of zero.

Another kind of quantified expressions uses for some. The form
looks similar: (for some I in A'Range => <condition on
A(I)>. However, in this case the qualified expression tests whether the
condition is true only on some elements (hence the name) instead of all
elements.

We illustrate postconditions using the following example:

show_simple_postcondition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Postcondition is
 4
 5 type Int_8 is range -2 ** 7 .. 2 ** 7 - 1;
 6
 7 type Int_8_Array is
 8 array (Integer range <>) of Int_8;
 9
10 function Square (A : Int_8) return Int_8 is
11 (A * A)
12 with Post => (if abs A in 0 | 1
13 then Square'Result = abs A
14 else Square'Result > A);
15
16 procedure Square (A : in out Int_8_Array)
17 with Post => (for all I in A'Range =>
18 A (I) = A'Old (I) *
19 A'Old (I))
20 is
21 begin
22 for V of A loop
23 V := Square (V);
24 end loop;
25 end Square;
26
27 V : Int_8_Array := (-2, -1, 0, 1, 10, 11);
28begin
29 for E of V loop
30 Put_Line ("Original: "
31 & Int_8'Image (E));
32 end loop;
33 New_Line;
34
35 Square (V);
36 for E of V loop
37 Put_Line ("Square: "
38 & Int_8'Image (E));
39 end loop;
40end Show_Simple_Postcondition;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Postcondition
MD5: b9bae9fe09cefcbe6769ad9cd6739e2a

Runtime output

Original: -2
Original: -1
Original: 0
Original: 1
Original: 10
Original: 11

Square: 4
Square: 1
Square: 0
Square: 1
Square: 100
Square: 121

We declare a signed 8-bit type Int_8 and an array of that type
(Int_8_Array). We want to ensure each element of the array is
squared after calling the procedure Square for an object of the
Int_8_Array type. We do this with a postcondition using a for
all expression. This postcondition also uses the 'Old attribute to
refer to the original value of the parameter (before the call).

We also want to ensure that the result of calls to the Square
function for the Int_8 type are greater than the input to that call.
To do that, we write a postcondition using the 'Result attribute of
the function and comparing it to the input value.

We can use both pre- and postconditions in the declaration of a single
subprogram. For example:

show_simple_contract.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Contract is
 4
 5 type Int_8 is range -2 ** 7 .. 2 ** 7 - 1;
 6
 7 function Square (A : Int_8) return Int_8 is
 8 (A * A)
 9 with
10 Pre => (Integer'Size >= Int_8'Size * 2
11 and Integer (A) *
12 Integer (A) <=
13 Integer (Int_8'Last)),
14 Post => (if abs A in 0 | 1
15 then Square'Result = abs A
16 else Square'Result > A);
17
18 V : Int_8;
19begin
20 V := Square (11);
21 Put_Line ("Square of 11 is "
22 & Int_8'Image (V));
23
24 -- Precondition will fail...
25 V := Square (12);
26 Put_Line ("Square of 12 is "
27 & Int_8'Image (V));
28end Show_Simple_Contract;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Simple_Contract
MD5: 1d928dd100704907c858562155f90ee2

Runtime output

Square of 11 is 121

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from show_simple_contract.adb:10

In this example, we want to ensure that the input value of calls to the
Square function for the Int_8 type won't cause overflow in
that function. We do this by converting the input value to the
Integer type, which is used for the temporary calculation, and check
if the result is in the appropriate range for the Int_8 type. We
have the same postcondition in this example as in the previous one.

Predicates

Predicates specify expectations regarding types. They're similar to pre-
and postconditions, but apply to types instead of subprograms. Their
conditions are checked for each object of a given type, which allows
verifying that an object of type T is conformant to the requirements of
its type.

There are two kinds of predicates: static and dynamic. In simple terms,
static predicates are used to check objects at compile-time, while dynamic
predicates are used for checks at run time. Normally, static predicates are
used for scalar types and dynamic predicates for the more complex types.

Static and dynamic predicates are specified using the following clauses,
respectively:

	with Static_Predicate => <property>

	with Dynamic_Predicate => <property>

Let's use the following example to illustrate dynamic predicates:

show_dynamic_predicate_courses.adb

 1with Ada.Calendar; use Ada.Calendar;
 2
 3with Ada.Containers.Vectors;
 4
 5with Ada.Strings.Unbounded;
 6use Ada.Strings.Unbounded;
 7
 8procedure Show_Dynamic_Predicate_Courses is
 9
10 package Courses is
11 type Course_Container is private;
12
13 type Course is record
14 Name : Unbounded_String;
15 Start_Date : Time;
16 End_Date : Time;
17 end record
18 with Dynamic_Predicate =>
19 Course.Start_Date <= Course.End_Date;
20
21 procedure Add (CC : in out Course_Container;
22 C : Course);
23 private
24 package Course_Vectors is new
25 Ada.Containers.Vectors
26 (Index_Type => Natural,
27 Element_Type => Course);
28
29 type Course_Container is record
30 V : Course_Vectors.Vector;
31 end record;
32 end Courses;
33
34 package body Courses is
35 procedure Add (CC : in out Course_Container;
36 C : Course) is
37 begin
38 CC.V.Append (C);
39 end Add;
40 end Courses;
41
42 use Courses;
43
44 CC : Course_Container;
45begin
46 Add (CC,
47 Course'(
48 Name =>
49 To_Unbounded_String
50 ("Intro to Photography"),
51 Start_Date =>
52 Time_Of (2018, 5, 1),
53 End_Date =>
54 Time_Of (2018, 5, 10)));
55
56 -- This should trigger an error in the
57 -- dynamic predicate check
58 Add (CC,
59 Course'(
60 Name =>
61 To_Unbounded_String
62 ("Intro to Video Recording"),
63 Start_Date =>
64 Time_Of (2019, 5, 1),
65 End_Date =>
66 Time_Of (2018, 5, 10)));
67
68end Show_Dynamic_Predicate_Courses;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Dynamic_Predicate_Courses
MD5: 8bd6539e72995fececfcdf9666ffd04f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_dynamic_predicate_courses.adb:59

In this example, the package Courses defines a type Course
and a type Course_Container, an object of which contains all
courses. We want to ensure that the dates of each course are consistent,
specifically that the start date is no later than the end date. To enforce
this rule, we declare a dynamic predicate for the Course type that
performs the check for each object. The predicate uses the type name where
a variable of that type would normally be used: this is a reference to the
instance of the object being tested.

Note that the example above makes use of unbounded strings and dates. Both types
are available in Ada's standard library. Please refer to the following sections
for more information about:

	the unbounded string type (Unbounded_String):
Unbounded Strings section;

	dates and times:
Dates & Times section.

Static predicates, as mentioned above, are mostly used for scalar types and
checked during compilation. They're particularly useful for representing
non-contiguous elements of an enumeration. A classic example is a list of
week days:

type Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

We can easily create a sub-list of work days in the week by specifying a
subtype with a range based on Week. For example:

subtype Work_Week is Week range Mon .. Fri;

Ranges in Ada can only be specified as contiguous lists: they don't allow
us to pick specific days. However, we may want to create a list containing
just the first, middle and last day of the work week. To do that, we use a
static predicate:

subtype Check_Days is Work_Week
 with Static_Predicate =>
 Check_Days in Mon | Wed | Fri;

Let's look at a complete example:

show_predicates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Predicates is
 4
 5 type Week is (Mon, Tue, Wed, Thu,
 6 Fri, Sat, Sun);
 7
 8 subtype Work_Week is Week range Mon .. Fri;
 9
10 subtype Test_Days is Work_Week
11 with Static_Predicate =>
12 Test_Days in Mon | Wed | Fri;
13
14 type Tests_Week is array (Week) of Natural
15 with Dynamic_Predicate =>
16 (for all I in Tests_Week'Range =>
17 (case I is
18 when Test_Days =>
19 Tests_Week (I) > 0,
20 when others =>
21 Tests_Week (I) = 0));
22
23 Num_Tests : Tests_Week :=
24 (Mon => 3, Tue => 0,
25 Wed => 4, Thu => 0,
26 Fri => 2, Sat => 0,
27 Sun => 0);
28
29 procedure Display_Tests (N : Tests_Week) is
30 begin
31 for I in Test_Days loop
32 Put_Line ("# tests on "
33 & Test_Days'Image (I)
34 & " => "
35 & Integer'Image (N (I)));
36 end loop;
37 end Display_Tests;
38
39begin
40 Display_Tests (Num_Tests);
41
42 -- Assigning non-conformant values to
43 -- individual elements of the Tests_Week
44 -- type does not trigger a predicate
45 -- check:
46 Num_Tests (Tue) := 2;
47
48 -- However, assignments with the "complete"
49 -- Tests_Week type trigger a predicate
50 -- check. For example:
51 --
52 -- Num_Tests := (others => 0);
53
54 -- Also, calling any subprogram with
55 -- parameters of Tests_Week type
56 -- triggers a predicate check. Therefore,
57 -- the following line will fail:
58 Display_Tests (Num_Tests);
59end Show_Predicates;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Predicates
MD5: 126c47033fc67fc8b6d7f6479205e752

Runtime output

tests on MON => 3
tests on WED => 4
tests on FRI => 2

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_predicates.adb:58

Here we have an application that wants to perform tests only on three days
of the work week. These days are specified in the Test_Days
subtype. We want to track the number of tests that occur each day. We
declare the type Tests_Week as an array, an object of which will
contain the number of tests done each day. According to our requirements,
these tests should happen only in the aforementioned three days; on other
days, no tests should be performed. This requirement is implemented with a
dynamic predicate of the type Tests_Week. Finally, the actual
information about these tests is stored in the array Num_Tests,
which is an instance of the Tests_Week type.

The dynamic predicate of the Tests_Week type is verified during the
initialization of Num_Tests. If we have a non-conformant value
there, the check will fail. However, as we can see in our example,
individual assignments to elements of the array do not trigger a check. We
can't check for consistency at this point because the initialization of the
a complex data structure (such as arrays or records) may not be performed
with a single assignment. However, as soon as the object is passed as an
argument to a subprogram, the dynamic predicate is checked because the
subprogram requires the object to be consistent. This happens in the last
call to Display_Tests in our example. Here, the predicate check
fails because the previous assignment has a non-conformant value.

Type invariants

Type invariants are another way of specifying expectations regarding types.
While predicates are used for non-private types, type invariants are used
exclusively to define expectations about private types. If a type T
from a package P has a type invariant, the results of operations on
objects of type T are always consistent with that invariant.

Type invariants are specified with a
with Type_Invariant => <property>
clause. Like predicates, the property defines a condition
that allows us to check if an object of type T is conformant to its
requirements. In this sense, type invariants can be viewed as a sort of
predicate for private types. However, there are some differences in terms
of checks. The following table summarizes the differences:

	Element

	Subprogram parameter checks

	Assignment checks

	Predicates

	On all in and
out parameters

	On assignments and explicit
initializations

	Type
invariants

	On out parameters
returned from subprograms
declared in the same public
scope

	On all initializations

We could rewrite our previous example and replace dynamic predicates by
type invariants. It would look like this:

show_type_invariant.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar; use Ada.Calendar;
 3
 4with Ada.Containers.Vectors;
 5
 6with Ada.Strings.Unbounded;
 7use Ada.Strings.Unbounded;
 8
 9procedure Show_Type_Invariant is
10
11 package Courses is
12 type Course is private
13 with Type_Invariant => Check (Course);
14
15 type Course_Container is private;
16
17 procedure Add (CC : in out Course_Container;
18 C : Course);
19
20 function Init
21 (Name : String;
22 Start_Date, End_Date : Time)
23 return Course;
24
25 function Check (C : Course)
26 return Boolean;
27
28 private
29 type Course is record
30 Name : Unbounded_String;
31 Start_Date : Time;
32 End_Date : Time;
33 end record;
34
35 function Check (C : Course)
36 return Boolean is
37 (C.Start_Date <= C.End_Date);
38
39 package Course_Vectors is new
40 Ada.Containers.Vectors
41 (Index_Type => Natural,
42 Element_Type => Course);
43
44 type Course_Container is record
45 V : Course_Vectors.Vector;
46 end record;
47 end Courses;
48
49 package body Courses is
50 procedure Add (CC : in out Course_Container;
51 C : Course) is
52 begin
53 CC.V.Append (C);
54 end Add;
55
56 function Init
57 (Name : String;
58 Start_Date, End_Date : Time)
59 return Course is
60 begin
61 return
62 Course'(Name =>
63 To_Unbounded_String (Name),
64 Start_Date => Start_Date,
65 End_Date => End_Date);
66 end Init;
67 end Courses;
68
69 use Courses;
70
71 CC : Course_Container;
72begin
73 Add (CC,
74 Init (Name =>
75 "Intro to Photography",
76 Start_Date =>
77 Time_Of (2018, 5, 1),
78 End_Date =>
79 Time_Of (2018, 5, 10)));
80
81 -- This should trigger an error in the
82 -- type-invariant check
83 Add (CC,
84 Init (Name =>
85 "Intro to Video Recording",
86 Start_Date =>
87 Time_Of (2019, 5, 1),
88 End_Date =>
89 Time_Of (2018, 5, 10)));
90end Show_Type_Invariant;

Code block metadata

Project: Courses.Intro_To_Ada.Contracts.Show_Type_Invariant
MD5: c6ef863da94285f927dd106645af8650

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed invariant from show_type_invariant.adb:13

The major difference is that the Course type was a visible (public)
type of the Courses package in the previous example, but in this
example is a private type.

Footnotes

Interfacing with C

Ada allows us to interface with code in many languages, including C
and C++. This section discusses how to interface with C.

Multi-language project

By default, when using gprbuild we only compile Ada source files.
To compile C files as well, we need to modify the project file used by
gprbuild. We use the Languages entry, as in the following
example:

project Multilang is

 for Languages use ("ada", "c");

 for Source_Dirs use ("src");
 for Main use ("main.adb");
 for Object_Dir use "obj";

end Multilang;

Type convention

To interface with data types declared in a C application, you specify
the Convention aspect on the corresponding Ada type
declaration. In the following example, we interface with the
C_Enum enumeration declared in a C source file:

show_c_enum.adb

1procedure Show_C_Enum is
2
3 type C_Enum is (A, B, C)
4 with Convention => C;
5 -- Use C convention for C_Enum
6begin
7 null;
8end Show_C_Enum;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Enum
MD5: a14d7d981fd7d6d806cf3c55f35e19c8

To interface with C's built-in types, we use the Interfaces.C
package, which contains most of the type definitions we need. For example:

show_c_struct.adb

 1with Interfaces.C; use Interfaces.C;
 2
 3procedure Show_C_Struct is
 4
 5 type c_struct is record
 6 a : int;
 7 b : long;
 8 c : unsigned;
 9 d : double;
10 end record
11 with Convention => C;
12
13begin
14 null;
15end Show_C_Struct;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Struct
MD5: dda4d3f8e4ddf5c5138a990a9a8ac427

Here, we're interfacing with a C struct (C_Struct) and using the
corresponding data types in C (int, long, unsigned and
double). This is the declaration in C:

c_struct.h

1struct c_struct
2{
3 int a;
4 long b;
5 unsigned c;
6 double d;
7};

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Struct
MD5: 58709b6a9eea2606d7ec0aaca0a749ff

Foreign subprograms

Calling C subprograms in Ada

We use a similar approach when interfacing with subprograms written in C.
Consider the following declaration in the C header file:

my_func.h

1int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 37b9d7ba668f7ec83c2b27ee33637937

Here's the corresponding C definition:

my_func.c

1#include "my_func.h"
2
3int my_func (int a)
4{
5 return a * 2;
6}

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 284b1639cb393fc14ed196d78429f3ba

We can interface this code in Ada using the Import aspect. For example:

show_c_func.adb

 1with Interfaces.C; use Interfaces.C;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_C_Func is
 5
 6 function my_func (a : int) return int
 7 with
 8 Import => True,
 9 Convention => C;
10
11 -- Imports function 'my_func' from C.
12 -- You can now call it from Ada.
13
14 V : int;
15begin
16 V := my_func (2);
17 Put_Line ("Result is " & int'Image (V));
18end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 6c5d85c1debdeaa642946eacf413dfd2

If you want, you can use a different subprogram name in the Ada code. For
example, we could call the C function Get_Value:

show_c_func.adb

 1with Interfaces.C; use Interfaces.C;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_C_Func is
 5
 6 function Get_Value (a : int) return int
 7 with
 8 Import => True,
 9 Convention => C,
10 External_Name => "my_func";
11
12 -- Imports function 'my_func' from C and
13 -- renames it to 'Get_Value'
14
15 V : int;
16begin
17 V := Get_Value (2);
18 Put_Line ("Result is " & int'Image (V));
19end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Func
MD5: 856b4d99dfaa6946fb4597f254fd2f97

Calling Ada subprograms in C

You can also call Ada subprograms from C applications. You do this with
the Export aspect. For example:

c_api.ads

 1with Interfaces.C; use Interfaces.C;
 2
 3package C_API is
 4
 5 function My_Func (a : int) return int
 6 with
 7 Export => True,
 8 Convention => C,
 9 External_Name => "my_func";
10
11end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 00aa4ec29fc551e710900e2ee7d96bc9

This is the corresponding body that implements that function:

c_api.adb

1package body C_API is
2
3 function My_Func (a : int) return int is
4 begin
5 return a * 2;
6 end My_Func;
7
8end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 2b999ab431bbc1ee223a654ad84b8248

On the C side, we do the same as we would if the function were written
in C: simply declare it using the extern keyword. For example:

main.c

 1#include <stdio.h>
 2
 3extern int my_func (int a);
 4
 5int main (int argc, char **argv) {
 6
 7 int v = my_func(2);
 8
 9 printf("Result is %d\n", v);
10
11 return 0;
12}

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Func
MD5: 69301036be9be16ed45895c2a86bc352

Foreign variables

Using C global variables in Ada

To use global variables from C code, we use the same method as
subprograms: we specify the Import and Convention
aspects for each variable we want to import.

Let's reuse an example from the previous section. We'll add a global
variable (func_cnt) to count the number of times the function
(my_func) is called:

test.h

1extern int func_cnt;
2
3int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: 11ba8f7a72ce7058571994870a02b052

The variable is declared in the C file and incremented in my_func:

test.c

 1#include "test.h"
 2
 3int func_cnt = 0;
 4
 5int my_func (int a)
 6{
 7 func_cnt++;
 8
 9 return a * 2;
10}

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: 23631537cb877a03d1243c94cb7b48e8

In the Ada application, we just reference the foreign variable:

show_c_func.adb

 1with Interfaces.C; use Interfaces.C;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_C_Func is
 5
 6 function my_func (a : int) return int
 7 with
 8 Import => True,
 9 Convention => C;
10
11 V : int;
12
13 func_cnt : int
14 with
15 Import => True,
16 Convention => C;
17 -- We can access the func_cnt variable
18 -- from test.c
19
20begin
21 V := my_func (1);
22 V := my_func (2);
23 V := my_func (3);
24
25 Put_Line ("Result is "
26 & int'Image (V));
27
28 Put_Line ("Function was called "
29 & int'Image (func_cnt)
30 & " times");
31end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.Ada_C_Vars
MD5: cf64a9dfbc6be853ba19729fe55f0ba4

As we see by running the application, the value of the counter is the
number of times my_func was called.

We can use the External_Name aspect to give a different name
for the variable in the Ada application in the same way we do for
subprograms.

Using Ada variables in C

You can also use variables declared in Ada files in C applications. In
the same way as we did for subprograms, you do this with the
Export aspect.

Let's reuse a past example and add a counter, as in the previous
example, but this time have the counter incremented in Ada code:

c_api.ads

 1with Interfaces.C; use Interfaces.C;
 2
 3package C_API is
 4
 5 func_cnt : int := 0
 6 with
 7 Export => True,
 8 Convention => C;
 9
10 function My_Func (a : int) return int
11 with
12 Export => True,
13 Convention => C,
14 External_Name => "my_func";
15
16end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: fc118cddd797b669d2c68e57f90f69b2

The variable is then incremented in My_Func:

c_api.adb

1package body C_API is
2
3 function My_Func (a : int) return int is
4 begin
5 func_cnt := func_cnt + 1;
6 return a * 2;
7 end My_Func;
8
9end C_API;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: adff5f3088da8b0dd853f1fb8b1e204f

In the C application, we just need to declare the variable and use it:

main.c

 1#include <stdio.h>
 2
 3extern int my_func (int a);
 4
 5extern int func_cnt;
 6
 7int main (int argc, char **argv) {
 8
 9 int v;
10
11 v = my_func(1);
12 v = my_func(2);
13 v = my_func(3);
14
15 printf("Result is %d\n", v);
16
17 printf("Function was called %d times\n",
18 func_cnt);
19
20 return 0;
21}

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Ada_Vars
MD5: 07fb3fbadb8ed4c0543fbfd7b5ef5c57

Again, by running the application, we see that the value from the counter
is the number of times that my_func was called.

Generating bindings

In the examples above, we manually added aspects to our Ada code to
correspond to the C source-code we're interfacing with. This is called
creating a binding. We can automate this process by using the Ada spec
dump compiler option: -fdump-ada-spec. We illustrate this by
revisiting our previous example.

This was our C header file:

test.h

1extern int func_cnt;
2
3int my_func (int a);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 11ba8f7a72ce7058571994870a02b052

To create Ada bindings, we'll call the compiler like this:

gcc -c -fdump-ada-spec -C ./test.h

The result is an Ada spec file called test_h.ads:

test_h.ads

 1pragma Ada_2005;
 2pragma Style_Checks (Off);
 3
 4with Interfaces.C; use Interfaces.C;
 5
 6package test_h is
 7
 8 func_cnt : aliased int; -- ./test.h:3
 9 pragma Import (C, func_cnt, "func_cnt");
10
11 function my_func (arg1 : int) return int; -- ./test.h:5
12 pragma Import (C, my_func, "my_func");
13
14end test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 8d18aeae72dba3a9ab4f9f3943fab839

Now we simply refer to this test_h package in our Ada application:

show_c_func.adb

 1with Interfaces.C; use Interfaces.C;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with test_h; use test_h;
 4
 5procedure Show_C_Func is
 6 V : int;
 7begin
 8 V := my_func (1);
 9 V := my_func (2);
10 V := my_func (3);
11
12 Put_Line ("Result is "
13 & int'Image (V));
14
15 Put_Line ("Function was called "
16 & int'Image (func_cnt)
17 & " times");
18end Show_C_Func;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds
MD5: 8a07aae87b9f36c3fce84b75e8388933

You can specify the name of the parent unit for the bindings you're
creating as the operand to fdump-ada-spec:

gcc -c -fdump-ada-spec -fada-spec-parent=Ext_C_Code -C ./test.h

This creates the file ext_c_code-test_h.ads:

ext_c_code-test_h.ads

1package Ext_C_Code.test_h is
2
3 -- automatic generated bindings...
4
5end Ext_C_Code.test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_2
MD5: 3bd4087edff145a70d2a6db8543859ad

Adapting bindings

The compiler does the best it can when creating bindings for a C header
file. However, sometimes it has to guess about the translation and the
generated bindings don't always match our expectations. For example,
this can happen when creating bindings for functions that have
pointers as arguments. In this case, the compiler may use
System.Address as the type of one or more pointers. Although
this approach works fine (as we'll see later), this is usually not how
a human would interpret the C header file. The following example
illustrates this issue.

Let's start with this C header file:

test.h

 1struct test;
 2
 3struct test * test_create(void);
 4
 5void test_destroy(struct test *t);
 6
 7void test_reset(struct test *t);
 8
 9void test_set_name(struct test *t,
10 char *name);
11
12void test_set_address(struct test *t,
13 char *address);
14
15void test_display(const struct test *t);

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: af642d9ea995bf01f13f8ff41bb0f4f6

And the corresponding C implementation:

test.c

 1#include <stdlib.h>
 2#include <string.h>
 3#include <stdio.h>
 4
 5#include "test.h"
 6
 7struct test {
 8 char name[80];
 9 char address[120];
10};
11
12static size_t
13strlcpy_stat(char *dst,
14 const char *src,
15 size_t dstsize)
16{
17 size_t len = strlen(src);
18 if (dstsize) {
19 size_t bl = (len < dstsize-1 ?
20 len : dstsize-1);
21 ((char*)memcpy(dst, src, bl))[bl] = 0;
22 }
23 return len;
24}
25
26struct test * test_create(void)
27{
28 return malloc (sizeof (struct test));
29}
30
31void test_destroy(struct test *t)
32{
33 if (t != NULL) {
34 free(t);
35 }
36}
37
38void test_reset(struct test *t)
39{
40 t->name[0] = '\0';
41 t->address[0] = '\0';
42}
43
44void test_set_name(struct test *t,
45 char *name)
46{
47 strlcpy_stat(t->name,
48 name,
49 sizeof(t->name));
50}
51
52void test_set_address(struct test *t,
53 char *address)
54{
55 strlcpy_stat(t->address,
56 address,
57 sizeof(t->address));
58}
59
60void test_display(const struct test *t)
61{
62 printf("Name: %s\n", t->name);
63 printf("Address: %s\n", t->address);
64}

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 32652eb76ad92212609680d64e5687d3

Next, we'll create our bindings:

gcc -c -fdump-ada-spec -C ./test.h

This creates the following specification in test_h.ads:

test_h.ads

 1pragma Ada_2005;
 2pragma Style_Checks (Off);
 3
 4with Interfaces.C; use Interfaces.C;
 5with System;
 6with Interfaces.C.Strings;
 7
 8package test_h is
 9
10 -- skipped empty struct test
11
12 function test_create return System.Address; -- ./test.h:5
13 pragma Import (C, test_create, "test_create");
14
15 procedure test_destroy (arg1 : System.Address); -- ./test.h:7
16 pragma Import (C, test_destroy, "test_destroy");
17
18 procedure test_reset (arg1 : System.Address); -- ./test.h:9
19 pragma Import (C, test_reset, "test_reset");
20
21 procedure test_set_name (arg1 : System.Address; arg2 : Interfaces.C.Strings.chars_ptr); -- ./test.h:11
22 pragma Import (C, test_set_name, "test_set_name");
23
24 procedure test_set_address (arg1 : System.Address; arg2 : Interfaces.C.Strings.chars_ptr); -- ./test.h:13
25 pragma Import (C, test_set_address, "test_set_address");
26
27 procedure test_display (arg1 : System.Address); -- ./test.h:15
28 pragma Import (C, test_display, "test_display");
29
30end test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 3bf8f01b94fd28594e4121a6a36afdf7

As we can see, the binding generator completely ignores the
declaration struct test and all references to the test struct
are replaced by addresses (System.Address). Nevertheless, these
bindings are good enough to allow us to create a test application in
Ada:

show_automatic_c_struct_bindings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Interfaces.C;
 4use Interfaces.C;
 5
 6with Interfaces.C.Strings;
 7use Interfaces.C.Strings;
 8
 9with test_h; use test_h;
10
11with System;
12
13procedure Show_Automatic_C_Struct_Bindings is
14
15 Name : constant chars_ptr :=
16 New_String ("John Doe");
17 Address : constant chars_ptr :=
18 New_String ("Small Town");
19
20 T : System.Address := test_create;
21
22begin
23 test_reset (T);
24 test_set_name (T, Name);
25 test_set_address (T, Address);
26
27 test_display (T);
28 test_destroy (T);
29end Show_Automatic_C_Struct_Bindings;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 99d64fb14d9c869d140dd2fb7d3888d7

We can successfully bind our C code with Ada using the
automatically-generated bindings, but they aren't ideal. Instead, we would
prefer Ada bindings that match our (human) interpretation of the C header
file. This requires manual analysis of the header file. The good news is
that we can use the automatic generated bindings as a starting point and
adapt them to our needs. For example, we can:

	Define a Test type based on System.Address and use it in
all relevant functions.

	Remove the test_ prefix in all operations on the Test
type.

This is the resulting specification:

adapted_test_h.ads

 1with System;
 2
 3with Interfaces.C; use Interfaces.C;
 4with Interfaces.C.Strings;
 5
 6package adapted_test_h is
 7
 8 type Test is new System.Address;
 9
10 function Create return Test;
11 pragma Import (C, Create, "test_create");
12
13 procedure Destroy (T : Test);
14 pragma Import (C, Destroy, "test_destroy");
15
16 procedure Reset (T : Test);
17 pragma Import (C, Reset, "test_reset");
18
19 procedure Set_Name (T : Test;
20 Name : Interfaces.C.Strings.chars_ptr); -- ./test.h:11
21 pragma Import (C, Set_Name, "test_set_name");
22
23 procedure Set_Address (T : Test;
24 Address : Interfaces.C.Strings.chars_ptr);
25 pragma Import (C, Set_Address, "test_set_address");
26
27 procedure Display (T : Test); -- ./test.h:15
28 pragma Import (C, Display, "test_display");
29
30end adapted_test_h;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 5cc875e1b01af839141e5e623f6c5b7a

And this is the corresponding Ada body:

show_adapted_c_struct_bindings.adb

 1with Interfaces.C;
 2use Interfaces.C;
 3
 4with Interfaces.C.Strings;
 5use Interfaces.C.Strings;
 6
 7with adapted_test_h; use adapted_test_h;
 8
 9with System;
10
11procedure Show_Adapted_C_Struct_Bindings is
12
13 Name : constant chars_ptr :=
14 New_String ("John Doe");
15 Address : constant chars_ptr :=
16 New_String ("Small Town");
17
18 T : Test := Create;
19
20begin
21 Reset (T);
22 Set_Name (T, Name);
23 Set_Address (T, Address);
24
25 Display (T);
26 Destroy (T);
27end Show_Adapted_C_Struct_Bindings;

Code block metadata

Project: Courses.Intro_To_Ada.Interfacing_With_C.C_Binds_3
MD5: 626d07b080fbbd2bf1d5f9140b64955c

Now we can use the Test type and its operations in a clean, readable
way.

Footnotes

Object-oriented programming

Object-oriented programming (OOP) is a large and ill-defined concept
in programming languages and one that tends to encompass many
different meanings because different languages often implement their
own vision of it, with similarities and differences from the
implementations in other languages.

However, one model mostly "won" the battle of what object-oriented
means, if only by sheer popularity. It's the model used in the Java
programming language, which is very similar to the one used by C++.
Here are some defining characteristics:

	Type derivation and extension: Most object oriented languages allow the user
to add fields to derived types.

	Subtyping: Objects of a type derived from a base type can, in some
instances, be substituted for objects of the base type.

	Runtime polymorphism: Calling a subprogram, usually called a
method, attached to an object type can dispatch at runtime
depending on the exact type of the object.

	Encapsulation: Objects can hide some of their data.

	Extensibility: People from the "outside" of your package, or even
your whole library, can derive from your object types and define
their own behaviors.

Ada dates from before object-oriented programming was as popular as it
is today. Some of the mechanisms and concepts from the above list were
in the earliest version of Ada even before what we would call OOP was
added:

	As we saw, encapsulation is not implemented at the type level in
Ada, but instead at the package level.

	Subtyping can be implemented using, well, subtypes, which have a full and
permissive static substitutability model. The substitution will fail at runtime
if the dynamic constraints of the subtype are not fulfilled.

	Runtime polymorphism can be implemented using variant records.

However, this lists leaves out type extensions, if you don't consider
variant records, and extensibility.

The 1995 revision of Ada added a feature filling the gaps, which
allowed people to program following the object-oriented paradigm in an
easier fashion. This feature is called tagged types.

Note

It's possible to program in Ada without ever creating tagged
types. If that's your prefered style of programming or you have
no specific use for tagged types, feel free to not use them, as is
the case for many features of Ada.

However, they can be the best way to express solutions to certain
problems and they may be the best way to solve your problem. If
that's the case, read on!

Derived types

Before presenting tagged types, we should discuss a topic we have
brushed on, but not really covered, up to now:

You can create one or more new types from every type in Ada. Type
derivation is built into the language.

newtypes.ads

1package Newtypes is
2 type Point is record
3 X, Y : Integer;
4 end record;
5
6 type New_Point is new Point;
7end Newtypes;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Newtypes
MD5: 0d45096755b4bfb08ba8db19ecba3f57

Type derivation is useful to enforce strong typing because the type
system treats the two types as incompatible.

But the benefits are not limited to that: you can inherit things from
the type you derive from. You not only inherit the representation of
the data, but you can also inherit behavior.

When you inherit a type you also inherit what are called primitive
operations. A primitive operation (or just a primitive) is a
subprogram attached to a type. Ada defines primitives as subprograms
defined in the same scope as the type.

Attention

A subprogram will only become a primitive of the type if:

	The subprogram is declared in the same scope as the type and

	The type and the subprogram are declared in a package

primitives.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Primitives is
 4 package Week is
 5 type Days is (Monday, Tuesday, Wednesday,
 6 Thursday, Friday,
 7 Saturday, Sunday);
 8
 9 -- Print_Day is a primitive
10 -- of the type Days
11 procedure Print_Day (D : Days);
12 end Week;
13
14 package body Week is
15 procedure Print_Day (D : Days) is
16 begin
17 Put_Line (Days'Image (D));
18 end Print_Day;
19 end Week;
20
21 use Week;
22 type Weekend_Days is new
23 Days range Saturday .. Sunday;
24
25 -- A procedure Print_Day is automatically
26 -- inherited here. It is as if the procedure
27 --
28 -- procedure Print_Day (D : Weekend_Days);
29 --
30 -- has been declared with the same body
31
32 Sat : Weekend_Days := Saturday;
33begin
34 Print_Day (Sat);
35end Primitives;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Primitives
MD5: eb1b0eb66f03a4a17bd9686ec4e12e2e

Runtime output

SATURDAY

This kind of inheritance can be very useful, and is not limited to
record types (you can use it on discrete types, as in the example
above), but it's only superficially similar to object-oriented
inheritance:

	Records can't be extended using this mechanism alone. You also
can't specify a new representation for the new type: it will
always have the same representation as the base type.

	There's no facility for dynamic dispatch or polymorphism. Objects
are of a fixed, static type.

There are other differences, but it's not useful to list them all
here. Just remember that this is a kind of inheritance you can use if
you only want to statically inherit behavior without duplicating code
or using composition, but a kind you can't use if you want any dynamic
features that are usually associated with OOP.

Tagged types

The 1995 revision of the Ada language introduced tagged types to
fullfil the need for an unified solution that allows programming in an
object-oriented style similar to the one described at the beginning of
this chapter.

Tagged types are very similar to normal records except that some
functionality is added:

	Types have a tag, stored inside each object, that identifies the
runtime type[#1] of that
object.

	Primitives can dispatch. A primitive on a tagged type is what you
would call a method in Java or C++. If you derive a base type and
override a primitive of it, you can often call it on an object with
the result that which primitive is called depends on the exact
runtime type of the object.

	Subtyping rules are introduced allowing a tagged type derived from a
base type to be statically compatible with the base type.

Let's see our first tagged type declarations:

p.ads

 1package P is
 2 type My_Class is tagged null record;
 3 -- Just like a regular record, but
 4 -- with tagged qualifier
 5
 6 -- Methods are outside of the type
 7 -- definition:
 8
 9 procedure Foo (Self : in out My_Class);
10 -- If you define a procedure taking a
11 -- My_Class argument in the same package,
12 -- it will be a method.
13
14 -- Here's how you derive a tagged type:
15
16 type Derived is new My_Class with record
17 A : Integer;
18 -- You can add fields in derived types.
19 end record;
20
21 overriding
22 procedure Foo (Self : in out Derived);
23 -- The "overriding" qualifier is optional,
24 -- but if it is present, it must be valid.
25end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4 procedure Foo (Self : in out My_Class) is
 5 begin
 6 Put_Line ("In My_Class.Foo");
 7 end Foo;
 8
 9 procedure Foo (Self : in out Derived) is
10 begin
11 Put_Line ("In Derived.Foo, A = "
12 & Integer'Image (Self.A));
13 end Foo;
14end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 45baaad66a1047358addb574d0fa00bc

Classwide types

To remain consistent with the rest of the language, a new notation
needed to be introduced to say "This object is of this type or any
descendant derives tagged type".

In Ada, we call this the classwide type. It's used in OOP as soon as
you need polymorphism. For example, you can't do the following:

main.adb

 1with P; use P;
 2
 3procedure Main is
 4
 5 O1 : My_Class;
 6 -- Declaring an object of type My_Class
 7
 8 O2 : Derived := (A => 12);
 9 -- Declaring an object of type Derived
10
11 O3 : My_Class := O2;
12 -- INVALID: Trying to assign a value
13 -- of type derived to a variable of
14 -- type My_Class.
15begin
16 null;
17end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: c87ad8bb686cb1763740750846258357

Build output

main.adb:11:21: error: expected type "My_Class" defined at p.ads:2
main.adb:11:21: error: found type "Derived" defined at p.ads:16
gprbuild: *** compilation phase failed

This is because an object of a type T is exactly of the type
T, whether T is tagged or not. What you want to say as a
programmer is "I want O3 to be able to hold an object of type
My_Class or any type descending from My_Class". Here's how you
do that:

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 O1 : My_Class;
 5 -- Declare an object of type My_Class
 6
 7 O2 : Derived := (A => 12);
 8 -- Declare an object of type Derived
 9
10 O3 : My_Class'Class := O2;
11 -- Now valid: My_Class'Class designates
12 -- the classwide type for My_Class,
13 -- which is the set of all types
14 -- descending from My_Class (including
15 -- My_Class).
16begin
17 null;
18end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 35412176a248015a26e507164ce526af

Attention

Because an object of a classwide type can be the size of any
descendant of its base type, it has an unknown size. It's therefore
an indefinite type, with the expected restrictions:

	It can't be stored as a field/component of a record

	An object of a classwide type needs to be initialized immediately
(you can't specify the constraints of such a type in
any way other than by initializing it).

Dispatching operations

We saw that you can override operations in types derived from another
tagged type. The eventual goal of OOP is to make a dispatching call: a
call to a primitive (method) that depends on the exact type of the
object.

But, if you think carefully about it, a variable of type My_Class
always contains an object of exactly that type. If you want to have a
variable that can contain a My_Class or any derived type, it has
to be of type My_Class'Class.

In other words, to make a dispatching call, you must first have an
object that can be either of a type or any type derived from this
type, namely an object of a classwide type.

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 O1 : My_Class;
 5 -- Declare an object of type My_Class
 6
 7 O2 : Derived := (A => 12);
 8 -- Declare an object of type Derived
 9
10 O3 : My_Class'Class := O2;
11
12 O4 : My_Class'Class := O1;
13begin
14 Foo (O1);
15 -- Non dispatching: Calls My_Class.Foo
16 Foo (O2);
17 -- Non dispatching: Calls Derived.Foo
18 Foo (O3);
19 -- Dispatching: Calls Derived.Foo
20 Foo (O4);
21 -- Dispatching: Calls My_Class.Foo
22end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 7631f823b0dd9e5474f6bb2dc35af2a2

Runtime output

In My_Class.Foo
In Derived.Foo, A = 12
In Derived.Foo, A = 12
In My_Class.Foo

Attention

You can convert an object of type Derived to an
object of type My_Class. This is called a view conversion in
Ada parlance and is useful, for example, if you want to call a
parent method.

In that case, the object really is converted to a My_Class
object, which means its tag is changed. Since tagged objects are
always passed by reference, you can use this kind of conversion to
modify the state of an object: changes to converted object will
affect the original one.

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 O1 : Derived := (A => 12);
 5 -- Declare an object of type Derived
 6
 7 O2 : My_Class := My_Class (O1);
 8
 9 O3 : My_Class'Class := O2;
10begin
11 Foo (O1);
12 -- Non dispatching: Calls Derived.Foo
13 Foo (O2);
14 -- Non dispatching: Calls My_Class.Foo
15
16 Foo (O3);
17 -- Dispatching: Calls My_Class.Foo
18end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: b92112b05201ff14789baca258fa0cbc

Runtime output

In Derived.Foo, A = 12
In My_Class.Foo
In My_Class.Foo

Dot notation

You can also call primitives of tagged types with a notation that's
more familiar to object oriented programmers. Given the Foo primitive
above, you can also write the above program this way:

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 O1 : My_Class;
 5 -- Declare an object of type My_Class
 6
 7 O2 : Derived := (A => 12);
 8 -- Declare an object of type Derived
 9
10 O3 : My_Class'Class := O2;
11
12 O4 : My_Class'Class := O1;
13begin
14 O1.Foo;
15 -- Non dispatching: Calls My_Class.Foo
16 O2.Foo;
17 -- Non dispatching: Calls Derived.Foo
18 O3.Foo;
19 -- Dispatching: Calls Derived.Foo
20 O4.Foo;
21 -- Dispatching: Calls My_Class.Foo
22end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: 9c6ebdfec9ceeb986d92eb90ec9ff59b

Runtime output

In My_Class.Foo
In Derived.Foo, A = 12
In Derived.Foo, A = 12
In My_Class.Foo

If the dispatching parameter of a primitive is the first parameter,
which is the case in our examples, you can call the primitive using
the dot notation. Any remaining parameter are passed normally:

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 package Extend is
 5 type D2 is new Derived with null record;
 6
 7 procedure Bar (Self : in out D2;
 8 Val : Integer);
 9 end Extend;
10
11 package body Extend is
12 procedure Bar (Self : in out D2;
13 Val : Integer) is
14 begin
15 Self.A := Self.A + Val;
16 end Bar;
17 end Extend;
18
19 use Extend;
20
21 Obj : D2 := (A => 15);
22begin
23 Obj.Bar (2);
24 Obj.Foo;
25end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Types
MD5: fec4f5cc4213cc111708dcc276e870c2

Runtime output

In Derived.Foo, A = 17

Private & Limited

We've seen previously (in the Privacy chapter) that types can be
declared limited or private. These encapsulation techniques can also be
applied to tagged types, as we'll see in this section.

This is an example of a tagged private type:

p.ads

1package P is
2 type T is tagged private;
3private
4 type T is tagged record
5 E : Integer;
6 end record;
7end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Private_Types
MD5: 4cd4bcd1a54d5f6407a500558b5da417

This is an example of a tagged limited type:

p.ads

1package P is
2 type T is tagged limited record
3 E : Integer;
4 end record;
5end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Limited_Types
MD5: 13228777133aa6db97da1c29f732459c

Naturally, you can combine both limited and private types and declare a
tagged limited private type:

p.ads

1package P is
2 type T is tagged limited private;
3
4 procedure Init (A : in out T);
5private
6 type T is tagged limited record
7 E : Integer;
8 end record;
9end P;

p.adb

1package body P is
2
3 procedure Init (A : in out T) is
4 begin
5 A.E := 0;
6 end Init;
7
8end P;

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 T1, T2 : T;
 5begin
 6 T1.Init;
 7 T2.Init;
 8
 9 -- The following line doesn't work
10 -- because type T is private:
11 --
12 -- T1.E := 0;
13
14 -- The following line doesn't work
15 -- because type T is limited:
16 --
17 -- T2 := T1;
18end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Tagged_Limited_Private_Types
MD5: 68240374505bcaf7aad4ebaed3b9127b

Note that the code in the Main procedure above presents two assignments
that trigger compilation errors because type T is limited private.
In fact, you cannot:

	assign to T1.E directly because type T is private;

	assign T1 to T2 because type T is limited.

In this case, there's no distinction between tagged and non-tagged types: these
compilation errors would also occur for non-tagged types.

Classwide access types

In this section, we'll discuss an useful pattern for object-oriented programming
in Ada: classwide access type. Let's start with an example where we declare a
tagged type T and a derived type T_New:

p.ads

1package P is
2 type T is tagged null record;
3
4 procedure Show (Dummy : T);
5
6 type T_New is new T with null record;
7
8 procedure Show (Dummy : T_New);
9end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Show (Dummy : T) is
 6 begin
 7 Put_Line ("Using type "
 8 & T'External_Tag);
 9 end Show;
10
11 procedure Show (Dummy : T_New) is
12 begin
13 Put_Line ("Using type "
14 & T_New'External_Tag);
15 end Show;
16
17end P;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: fd5cb99925d3c88536546aa0be8104b7

Note that we're using null records for both types T and T_New.
Although these types don't actually have any component, we can still use them
to demonstrate dispatching. Also note that the example above makes use of the
'External_Tag attribute in the implementation of the Show
procedure to get a string for the corresponding tagged type.

As we've seen before, we must use a classwide type to create objects that
can make dispatching calls. In other words, objects of type T'Class will
dispatch. For example:

dispatching_example.adb

1with P; use P;
2
3procedure Dispatching_Example is
4 T2 : T_New;
5 T_Dispatch : constant T'Class := T2;
6begin
7 T_Dispatch.Show;
8end Dispatching_Example;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: f8957b31c9c62db23759baad7b867a57

Runtime output

Using type P.T_NEW

A more useful application is to declare an array of objects that can dispatch.
For example, we'd like to declare an array T_Arr, loop over this array
and dispatch according to the actual type of each individual element:

for I in T_Arr'Range loop
 T_Arr (I).Show;
 -- Call Show procedure according
 -- to actual type of T_Arr (I)
end loop;

However, it's not possible to declare an array of type T'Class directly:

classwide_compilation_error.adb

 1with P; use P;
 2
 3procedure Classwide_Compilation_Error is
 4 T_Arr : array (1 .. 2) of T'Class;
 5 -- ^
 6 -- Compilation Error!
 7begin
 8 for I in T_Arr'Range loop
 9 T_Arr (I).Show;
10 end loop;
11end Classwide_Compilation_Error;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Error
MD5: e86f6c6ee35dced8f330bf6177d178fd

Build output

classwide_compilation_error.adb:4:32: error: unconstrained element type in array declaration
gprbuild: *** compilation phase failed

In fact, it's impossible for the compiler to know which type would actually be
used for each element of the array. However, if we use dynamic allocation via
access types, we can allocate objects of different types for the individual
elements of an array T_Arr. We do this by using classwide access types,
which have the following format:

type T_Class is access T'Class;

We can rewrite the previous example using the T_Class type. In this
case, dynamically allocated objects of this type will dispatch according to
the actual type used during the allocation. Also, let's introduce an
Init procedure that won't be overridden for the derived T_New
type. This is the adapted code:

p.ads

 1package P is
 2 type T is tagged record
 3 E : Integer;
 4 end record;
 5
 6 type T_Class is access T'Class;
 7
 8 procedure Init (A : in out T);
 9
10 procedure Show (Dummy : T);
11
12 type T_New is new T with null record;
13
14 procedure Show (Dummy : T_New);
15
16end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Init (A : in out T) is
 6 begin
 7 Put_Line ("Initializing type T...");
 8 A.E := 0;
 9 end Init;
10
11 procedure Show (Dummy : T) is
12 begin
13 Put_Line ("Using type "
14 & T'External_Tag);
15 end Show;
16
17 procedure Show (Dummy : T_New) is
18 begin
19 Put_Line ("Using type "
20 & T_New'External_Tag);
21 end Show;
22
23end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P; use P;
 3
 4procedure Main is
 5 T_Arr : array (1 .. 2) of T_Class;
 6begin
 7 T_Arr (1) := new T;
 8 T_Arr (2) := new T_New;
 9
10 for I in T_Arr'Range loop
11 Put_Line ("Element # "
12 & Integer'Image (I));
13
14 T_Arr (I).Init;
15 T_Arr (I).Show;
16
17 Put_Line ("-----------");
18 end loop;
19end Main;

Code block metadata

Project: Courses.Intro_To_Ada.Object_Oriented_Programming.Classwide_Access
MD5: 97c05a8f911d0a0e39c0cc90fae184a7

Runtime output

Element # 1
Initializing type T...
Using type P.T

Element # 2
Initializing type T...
Using type P.T_NEW

In this example, the first element (T_Arr (1)) is of type T,
while the second element is of type T_New. When running the example,
the Init procedure of type T is called for both elements of the
T_Arr array, while the call to the Show procedure selects the
corresponding procedure according to the type of each element of T_Arr.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Run-time_type_information

Standard library: Containers

In previous chapters, we've used arrays as the standard way to group multiple
objects of a specific data type. In many cases, arrays are good enough for
manipulating those objects. However, there are situations that require more
flexibility and more advanced operations. For those cases, Ada provides support
for containers — such as vectors and sets — in its standard
library.

We present an introduction to containers here. For a list of all containers
available in Ada, see Appendix B.

Vectors

In the following sections, we present a general overview of vectors,
including instantiation, initialization, and operations on vector
elements and vectors.

Instantiation

Here's an example showing the instantiation and declaration of a
vector V:

show_vector_inst.adb

 1with Ada.Containers.Vectors;
 2
 3procedure Show_Vector_Inst is
 4
 5 package Integer_Vectors is new
 6 Ada.Containers.Vectors
 7 (Index_Type => Natural,
 8 Element_Type => Integer);
 9
10 V : Integer_Vectors.Vector;
11begin
12 null;
13end Show_Vector_Inst;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Inst
MD5: 8b737842d2784f25502990f21e1cf6de

Containers are based on generic packages, so we can't simply declare
a vector as we would declare an array of a specific type:

A : array (1 .. 10) of Integer;

Instead, we first need to instantiate one of those packages. We
with the container package (Ada.Containers.Vectors in this
case) and instantiate it to create an instance of the generic package for
the desired type. Only then can we declare the vector using the type from
the instantiated package. This instantiation needs to be done for any
container type from the standard library.

In the instantiation of Integer_Vectors, we indicate that the vector
contains elements of Integer type by specifying it as the
Element_Type. By setting Index_Type to Natural, we specify
that the allowed range includes all natural numbers. We could have used a
more restrictive range if desired.

Initialization

One way to initialize a vector is from a concatenation of elements.
We use the & operator, as shown in the following example:

show_vector_init.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_Init is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 V : Vector := 20 & 10 & 0 & 13;
16begin
17 Put_Line ("Vector has "
18 & Count_Type'Image (V.Length)
19 & " elements");
20end Show_Vector_Init;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Init
MD5: 0087b0a15e0c88b27ac36c3b27159a17

Runtime output

Vector has 4 elements

We specify use Integer_Vectors, so we have direct access to the
types and operations from the instantiated package. Also, the example
introduces another operation on the vector: Length, which
retrieves the number of elements in the vector. We can use the dot
notation because Vector is a tagged type, allowing us to write
either V.Length or Length (V).

Appending and prepending elements

You add elements to a vector using the Prepend and Append
operations. As the names suggest, these operations add elements to the
beginning or end of a vector, respectively. For example:

show_vector_append.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_Append is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 V : Vector;
16begin
17 Put_Line ("Appending some elements "
18 & "to the vector...");
19 V.Append (20);
20 V.Append (10);
21 V.Append (0);
22 V.Append (13);
23 Put_Line ("Finished appending.");
24
25 Put_Line ("Prepending some elements"
26 & "to the vector...");
27 V.Prepend (30);
28 V.Prepend (40);
29 V.Prepend (100);
30 Put_Line ("Finished prepending.");
31
32 Put_Line ("Vector has "
33 & Count_Type'Image (V.Length)
34 & " elements");
35end Show_Vector_Append;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Append
MD5: f88d393ba96a7950f58d9f1c0c74a021

Runtime output

Appending some elements to the vector...
Finished appending.
Prepending some elementsto the vector...
Finished prepending.
Vector has 7 elements

This example puts elements into the vector in the following sequence: (100,
40, 30, 20, 10, 0, 13).

The Reference Manual specifies that the worst-case complexity must be:

	O(log N) for the Append operation, and

	O(N log N) for the Prepend operation.

Accessing first and last elements

We access the first and last elements of a vector using the
First_Element and Last_Element functions. For example:

show_vector_first_last_element.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_First_Last_Element is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 function Img (I : Integer) return String
16 renames Integer'Image;
17 function Img (I : Count_Type) return String
18 renames Count_Type'Image;
19
20 V : Vector := 20 & 10 & 0 & 13;
21begin
22 Put_Line ("Vector has "
23 & Img (V.Length)
24 & " elements");
25
26 -- Using V.First_Element to
27 -- retrieve first element
28 Put_Line ("First element is "
29 & Img (V.First_Element));
30
31 -- Using V.Last_Element to
32 -- retrieve last element
33 Put_Line ("Last element is "
34 & Img (V.Last_Element));
35end Show_Vector_First_Last_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_First_Last_Element
MD5: 602255760d0017ced6b4115c845cd48d

Runtime output

Vector has 4 elements
First element is 20
Last element is 13

You can swap elements by calling the procedure Swap and retrieving a
reference (a cursor) to the first and last elements of the vector by
calling First and Last. A cursor allows us to iterate over a
container and process individual elements from it.

With these operations, we're able to write code to swap the first and last
elements of a vector:

show_vector_first_last_element.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_First_Last_Element is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 function Img (I : Integer) return String
16 renames Integer'Image;
17
18 V : Vector := 20 & 10 & 0 & 13;
19begin
20 -- We use V.First and V.Last to retrieve
21 -- cursor for first and last elements.
22 -- We use V.Swap to swap elements.
23 V.Swap (V.First, V.Last);
24
25 Put_Line ("First element is now "
26 & Img (V.First_Element));
27 Put_Line ("Last element is now "
28 & Img (V.Last_Element));
29end Show_Vector_First_Last_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_First_Last_Element
MD5: 1a0c0bf28bb661b3f328473ac3c2eb54

Runtime output

First element is now 13
Last element is now 20

Iterating

The easiest way to iterate over a container is to use a
for E of Our_Container loop. This gives us a reference (E) to the
element at the current position. We can then use E directly.
For example:

show_vector_iteration.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Vector_Iteration is
 6
 7 package Integer_Vectors is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Natural,
10 Element_Type => Integer);
11
12 use Integer_Vectors;
13
14 function Img (I : Integer) return String
15 renames Integer'Image;
16
17 V : Vector := 20 & 10 & 0 & 13;
18begin
19 Put_Line ("Vector elements are: ");
20
21 --
22 -- Using for ... of loop to iterate:
23 --
24 for E of V loop
25 Put_Line ("- " & Img (E));
26 end loop;
27
28end Show_Vector_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Iteration
MD5: 4fc9a939aa822097d3a937646d3e2910

Runtime output

Vector elements are:
- 20
- 10
- 0
- 13

This code displays each element from the vector V.

Because we're given a reference, we can display not only the value of an
element but also modify it. For example, we could easily write a loop to
add one to each element of vector V:

for E of V loop
 E := E + 1;
end loop;

We can also use indices to access vector elements. The format is
similar to a loop over array elements: we use a
for I in <range> loop. The range is provided by V.First_Index and
V.Last_Index. We can access the current element by using it as an
array index: V (I). For example:

show_vector_index_iteration.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Vector_Index_Iteration is
 6
 7 package Integer_Vectors is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Natural,
10 Element_Type => Integer);
11
12 use Integer_Vectors;
13
14 V : Vector := 20 & 10 & 0 & 13;
15begin
16 Put_Line ("Vector elements are: ");
17
18 --
19 -- Using indices in a "for I in ..." loop
20 -- to iterate:
21 --
22 for I in V.First_Index .. V.Last_Index loop
23 -- Displaying current index I
24 Put ("- ["
25 & Extended_Index'Image (I)
26 & "] ");
27
28 Put (Integer'Image (V (I)));
29
30 -- We could also use the V.Element (I)
31 -- function to retrieve the element at
32 -- the current index I
33
34 New_Line;
35 end loop;
36
37end Show_Vector_Index_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Index_Iteration
MD5: f5600bbcc53d6d6887a771b1505676e9

Runtime output

Vector elements are:
- [0] 20
- [1] 10
- [2] 0
- [3] 13

Here, in addition to displaying the vector elements, we're also
displaying each index, I, just like what we can do for array
indices. Also, we can access the element by using either the short
form V (I) or the longer form V.Element (I) but not V.I.

As mentioned in the previous section, you can use cursors to iterate over
containers. For this, use the function Iterate, which retrieves a
cursor for each position in the vector. The corresponding loop has the
format for C in V.Iterate loop. Like the previous example using
indices, you can again access the current element by using the cursor as an
array index: V (C). For example:

show_vector_cursor_iteration.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Vector_Cursor_Iteration is
 6
 7 package Integer_Vectors is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Natural,
10 Element_Type => Integer);
11
12 use Integer_Vectors;
13
14 V : Vector := 20 & 10 & 0 & 13;
15begin
16 Put_Line ("Vector elements are: ");
17
18 --
19 -- Use a cursor to iterate in a loop:
20 --
21 for C in V.Iterate loop
22 -- Using To_Index function to retrieve
23 -- the index for the cursor position
24 Put ("- ["
25 & Extended_Index'Image (To_Index (C))
26 & "] ");
27
28 Put (Integer'Image (V (C)));
29
30 -- We could use Element (C) to retrieve
31 -- the vector element for the cursor
32 -- position
33
34 New_Line;
35 end loop;
36
37 -- Alternatively, we could iterate with a
38 -- while-loop:
39 --
40 -- declare
41 -- C : Cursor := V.First;
42 -- begin
43 -- while C /= No_Element loop
44 -- some processing here...
45 --
46 -- C := Next (C);
47 -- end loop;
48 -- end;
49
50end Show_Vector_Cursor_Iteration;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Cursor_Iteration
MD5: de789bbd2e1814aae3fb5213c99ac25c

Runtime output

Vector elements are:
- [0] 20
- [1] 10
- [2] 0
- [3] 13

Instead of accessing an element in the loop using V (C), we could
also have used the longer form Element (C). In this example, we're
using the function To_Index to retrieve the index corresponding to
the current cursor.

As shown in the comments after the loop, we could also use a
while ... loop to iterate over the vector. In this case, we
would start with a cursor for the first element (retrieved by calling
V.First) and then call Next (C) to retrieve a cursor for
subsequent elements. Next (C) returns No_Element when the
cursor reaches the end of the vector.

You can directly modify the elements using a reference. This is what it
looks like when using both indices and cursors:

-- Modify vector elements using index
for I in V.First_Index .. V.Last_Index loop
 V (I) := V (I) + 1;
end loop;

-- Modify vector elements using cursor
for C in V.Iterate loop
 V (C) := V (C) + 1;
end loop;

The Reference Manual requires that the worst-case complexity for
accessing an element be O(log N).

Another way of modifying elements of a vector is using a process
procedure, which takes an individual element and does some processing on
it. You can call Update_Element and pass both a cursor and an access
to the process procedure. For example:

show_vector_update.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Vector_Update is
 6
 7 package Integer_Vectors is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Natural,
10 Element_Type => Integer);
11
12 use Integer_Vectors;
13
14 procedure Add_One (I : in out Integer) is
15 begin
16 I := I + 1;
17 end Add_One;
18
19 V : Vector := 20 & 10 & 12;
20begin
21 --
22 -- Use V.Update_Element to process elements
23 --
24 for C in V.Iterate loop
25 V.Update_Element (C, Add_One'Access);
26 end loop;
27
28end Show_Vector_Update;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Update
MD5: 5dcc3dd8020632a8ea2ce975ecd8f4da

Finding and changing elements

You can locate a specific element in a vector by retrieving its index.
Find_Index retrieves the index of the first element matching the value
you're looking for. Alternatively, you can use Find to retrieve a
cursor referencing that element. For example:

show_find_vector_element.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Find_Vector_Element is
 6
 7 package Integer_Vectors is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Natural,
10 Element_Type => Integer);
11
12 use Integer_Vectors;
13
14 V : Vector := 20 & 10 & 0 & 13;
15 Idx : Extended_Index;
16 C : Cursor;
17begin
18 -- Using Find_Index to retrieve the index
19 -- of element with value 10
20 Idx := V.Find_Index (10);
21 Put_Line ("Index of element with value 10 is "
22 & Extended_Index'Image (Idx));
23
24 -- Using Find to retrieve the cursor for
25 -- the element with value 13
26 C := V.Find (13);
27 Idx := To_Index (C);
28 Put_Line ("Index of element with value 13 is "
29 & Extended_Index'Image (Idx));
30end Show_Find_Vector_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Vector_Element
MD5: c3da01cd66c8705a7cbccae8390d5f81

Runtime output

Index of element with value 10 is 1
Index of element with value 13 is 3

As we saw in the previous section, we can directly access vector elements
by using either an index or cursor. However, an exception is raised if we
try to access an element with an invalid index or cursor, so we must check
whether the index or cursor is valid before using it to access an element.
In our example, Find_Index or Find might not have found the element
in the vector. We check for this possibility by comparing the index to
No_Index or the cursor to No_Element. For example:

-- Modify vector element using index
if Idx /= No_Index then
 V (Idx) := 11;
end if;

-- Modify vector element using cursor
if C /= No_Element then
 V (C) := 14;
end if;

Instead of writing V (C) := 14, we could use the longer form
V.Replace_Element (C, 14).

Inserting elements

In the previous sections, we've seen examples of how to add elements to a
vector:

	using the concatenation operator (&) at the vector declaration,
or

	calling the Prepend and Append procedures.

You may want to insert an element at a specific position, e.g. before a
certain element in the vector. You do this by calling Insert. For
example:

show_vector_insert.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_Insert is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 procedure Show_Elements (V : Vector) is
16 begin
17 New_Line;
18 Put_Line ("Vector has "
19 & Count_Type'Image (V.Length)
20 & " elements");
21
22 if not V.Is_Empty then
23 Put_Line ("Vector elements are: ");
24 for E of V loop
25 Put_Line ("- " & Integer'Image (E));
26 end loop;
27 end if;
28 end Show_Elements;
29
30 V : Vector := 20 & 10 & 12;
31 C : Cursor;
32begin
33 Show_Elements (V);
34
35 New_Line;
36 Put_Line ("Adding element with value 9");
37 Put_Line (" (before 10)...");
38
39 --
40 -- Using V.Insert to insert the element
41 -- into the vector
42 --
43 C := V.Find (10);
44 if C /= No_Element then
45 V.Insert (C, 9);
46 end if;
47
48 Show_Elements (V);
49
50end Show_Vector_Insert;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Insert
MD5: af49f390388896c51ab97541036fbcaf

Runtime output

Vector has 3 elements
Vector elements are:
- 20
- 10
- 12

Adding element with value 9
 (before 10)...

Vector has 4 elements
Vector elements are:
- 20
- 9
- 10
- 12

In this example, we're looking for an element with the value of 10. If we
find it, we insert an element with the value of 9 before it.

Removing elements

You can remove elements from a vector by passing either a valid index or
cursor to the Delete procedure. If we combine this with the functions
Find_Index and Find from the previous section, we can write a
program that searches for a specific element and deletes it, if found:

show_remove_vector_element.adb

 1with Ada.Containers.Vectors;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Remove_Vector_Element is
 6 package Integer_Vectors is new
 7 Ada.Containers.Vectors
 8 (Index_Type => Natural,
 9 Element_Type => Integer);
10
11 use Integer_Vectors;
12
13 V : Vector := 20 & 10 & 0 & 13 & 10 & 13;
14 Idx : Extended_Index;
15 C : Cursor;
16begin
17 -- Use Find_Index to retrieve index of
18 -- the element with value 10
19 Idx := V.Find_Index (10);
20
21 -- Checking whether index is valid
22 if Idx /= No_Index then
23 -- Removing element using V.Delete
24 V.Delete (Idx);
25 end if;
26
27 -- Use Find to retrieve cursor for
28 -- the element with value 13
29 C := V.Find (13);
30
31 -- Check whether index is valid
32 if C /= No_Element then
33 -- Remove element using V.Delete
34 V.Delete (C);
35 end if;
36
37end Show_Remove_Vector_Element;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Remove_Vector_Element
MD5: 540d0dc5715e58926e9dc4600bd6ad5d

We can extend this approach to delete all elements matching a certain
value. We just need to keep searching for the element in a loop until we
get an invalid index or cursor. For example:

show_remove_vector_elements.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Remove_Vector_Elements is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 use Integer_Vectors;
14
15 procedure Show_Elements (V : Vector) is
16 begin
17 New_Line;
18 Put_Line ("Vector has "
19 & Count_Type'Image (V.Length)
20 & " elements");
21
22 if not V.Is_Empty then
23 Put_Line ("Vector elements are: ");
24 for E of V loop
25 Put_Line ("- " & Integer'Image (E));
26 end loop;
27 end if;
28 end Show_Elements;
29
30 V : Vector := 20 & 10 & 0 & 13 & 10 & 14 & 13;
31begin
32 Show_Elements (V);
33
34 --
35 -- Remove elements using an index
36 --
37 declare
38 E : constant Integer := 10;
39 I : Extended_Index;
40 begin
41 New_Line;
42 Put_Line
43 ("Removing all elements with value of "
44 & Integer'Image (E) & "...");
45 loop
46 I := V.Find_Index (E);
47 exit when I = No_Index;
48 V.Delete (I);
49 end loop;
50 end;
51
52 --
53 -- Remove elements using a cursor
54 --
55 declare
56 E : constant Integer := 13;
57 C : Cursor;
58 begin
59 New_Line;
60 Put_Line
61 ("Removing all elements with value of "
62 & Integer'Image (E) & "...");
63 loop
64 C := V.Find (E);
65 exit when C = No_Element;
66 V.Delete (C);
67 end loop;
68 end;
69
70 Show_Elements (V);
71end Show_Remove_Vector_Elements;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Remove_Vector_Elements
MD5: 6e364843b9638224bd9a36eb9d45e446

Runtime output

Vector has 7 elements
Vector elements are:
- 20
- 10
- 0
- 13
- 10
- 14
- 13

Removing all elements with value of 10...

Removing all elements with value of 13...

Vector has 3 elements
Vector elements are:
- 20
- 0
- 14

In this example, we remove all elements with the value 10 from the vector
by retrieving their index. Likewise, we remove all elements with the value
13 by retrieving their cursor.

Other Operations

We've seen some operations on vector elements. Here, we'll see operations
on the vector as a whole. The most prominent is the concatenation of
multiple vectors, but we'll also see operations on vectors, such as sorting
and sorted merging operations, that view the vector as a sequence of
elements and operate on the vector considering the element's relations to
each other.

We do vector concatenation using the & operator on vectors. Let's
consider two vectors V1 and V2. We can concatenate them by doing
V := V1 & V2. V contains the resulting vector.

The generic package Generic_Sorting is a child package of
Ada.Containers.Vectors. It contains sorting and merging operations.
Because it's a generic package, you can't use it directly, but have to
instantiate it. In order to use these operations on a vector of integer
values (Integer_Vectors, in our example), you need to instantiate it
directly as a child of Integer_Vectors. The next example makes it clear
how to do this.

After instantiating Generic_Sorting, we make all the operations
available to us with the use statement. We can then call Sort to
sort the vector and Merge to merge one vector into another.

The following example presents code that manipulates three vectors (V1,
V2, V3) using the concatenation, sorting and merging operations:

show_vector_ops.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Vector_Ops is
 7
 8 package Integer_Vectors is new
 9 Ada.Containers.Vectors
10 (Index_Type => Natural,
11 Element_Type => Integer);
12
13 package Integer_Vectors_Sorting is
14 new Integer_Vectors.Generic_Sorting;
15
16 use Integer_Vectors;
17 use Integer_Vectors_Sorting;
18
19 procedure Show_Elements (V : Vector) is
20 begin
21 New_Line;
22 Put_Line ("Vector has "
23 & Count_Type'Image (V.Length)
24 & " elements");
25
26 if not V.Is_Empty then
27 Put_Line ("Vector elements are: ");
28 for E of V loop
29 Put_Line ("- " & Integer'Image (E));
30 end loop;
31 end if;
32 end Show_Elements;
33
34 V, V1, V2, V3 : Vector;
35begin
36 V1 := 10 & 12 & 18;
37 V2 := 11 & 13 & 19;
38 V3 := 15 & 19;
39
40 New_Line;
41 Put_Line ("---- V1 ----");
42 Show_Elements (V1);
43
44 New_Line;
45 Put_Line ("---- V2 ----");
46 Show_Elements (V2);
47
48 New_Line;
49 Put_Line ("---- V3 ----");
50 Show_Elements (V3);
51
52 New_Line;
53 Put_Line
54 ("Concatenating V1, V2 and V3 into V:");
55
56 V := V1 & V2 & V3;
57
58 Show_Elements (V);
59
60 New_Line;
61 Put_Line ("Sorting V:");
62
63 Sort (V);
64
65 Show_Elements (V);
66
67 New_Line;
68 Put_Line ("Merging V2 into V1:");
69
70 Merge (V1, V2);
71
72 Show_Elements (V1);
73
74end Show_Vector_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Vector_Ops
MD5: 3301513e4e7fd2f28488966e5b24e448

Runtime output

---- V1 ----

Vector has 3 elements
Vector elements are:
- 10
- 12
- 18

---- V2 ----

Vector has 3 elements
Vector elements are:
- 11
- 13
- 19

---- V3 ----

Vector has 2 elements
Vector elements are:
- 15
- 19

Concatenating V1, V2 and V3 into V:

Vector has 8 elements
Vector elements are:
- 10
- 12
- 18
- 11
- 13
- 19
- 15
- 19

Sorting V:

Vector has 8 elements
Vector elements are:
- 10
- 11
- 12
- 13
- 15
- 18
- 19
- 19

Merging V2 into V1:

Vector has 6 elements
Vector elements are:
- 10
- 11
- 12
- 13
- 18
- 19

The Reference Manual requires that the worst-case complexity of a call to
Sort be O(N2) and the average complexity be better than
O(N2).

Sets

Sets are another class of containers. While vectors allow duplicated
elements to be inserted, sets ensure that no duplicated elements exist.

In the following sections, we'll see operations you can perform on
sets. However, since many of the operations on vectors are similar to the
ones used for sets, we'll cover them more quickly here. Please refer back
to the section on vectors for a more detailed discussion.

Initialization and iteration

To initialize a set, you can call the Insert procedure. However, if
you do, you need to ensure no duplicate elements are being inserted: if you
try to insert a duplicate, you'll get an exception. If you have less
control over the elements to be inserted so that there may be duplicates,
you can use another option instead:

	a version of Insert that returns a Boolean value
indicating whether the insertion was successful;

	the Include procedure, which silently ignores any attempt to
insert a duplicated element.

To iterate over a set, you can use a for E of S loop, as you saw for
vectors. This gives you a reference to each element in the set.

Let's see an example:

show_set_init.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Ordered_Sets;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Set_Init is
 7
 8 package Integer_Sets is new
 9 Ada.Containers.Ordered_Sets
10 (Element_Type => Integer);
11
12 use Integer_Sets;
13
14 S : Set;
15 -- Same as: S : Integer_Sets.Set;
16 C : Cursor;
17 Ins : Boolean;
18begin
19 S.Insert (20);
20 S.Insert (10);
21 S.Insert (0);
22 S.Insert (13);
23
24 -- Calling S.Insert(0) now would raise
25 -- Constraint_Error because this element
26 -- is already in the set. We instead call a
27 -- version of Insert that doesn't raise an
28 -- exception but instead returns a Boolean
29 -- indicating the status
30
31 S.Insert (0, C, Ins);
32 if not Ins then
33 Put_Line
34 ("Error while inserting 0 into set");
35 end if;
36
37 -- We can also call S.Include instead
38 -- If the element is already present,
39 -- the set remains unchanged
40 S.Include (0);
41 S.Include (13);
42 S.Include (14);
43
44 Put_Line ("Set has "
45 & Count_Type'Image (S.Length)
46 & " elements");
47
48 --
49 -- Iterate over set using for .. of loop
50 --
51 Put_Line ("Elements:");
52 for E of S loop
53 Put_Line ("- " & Integer'Image (E));
54 end loop;
55end Show_Set_Init;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Init
MD5: b87f6729fea278396347248b95a30cb6

Runtime output

Error while inserting 0 into set
Set has 5 elements
Elements:
- 0
- 10
- 13
- 14
- 20

Operations on elements

In this section, we briefly explore the following operations on sets:

	Delete and Exclude to remove elements;

	Contains and Find to verify the existence of elements.

To delete elements, you call the procedure Delete. However,
analogously to the Insert procedure above, Delete raises an
exception if the element to be deleted isn't present in the set. If you
want to permit the case where an element might not exist, you can call
Exclude, which silently ignores any attempt to delete a non-existent
element.

Contains returns a Boolean value indicating whether a value is
contained in the set. Find also looks for an element in a set, but
returns a cursor to the element or No_Element if the element doesn't
exist. You can use either function to search for elements in a set.

Let's look at an example that makes use of these operations:

show_set_element_ops.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Ordered_Sets;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Set_Element_Ops is
 7
 8 package Integer_Sets is new
 9 Ada.Containers.Ordered_Sets
10 (Element_Type => Integer);
11
12 use Integer_Sets;
13
14 procedure Show_Elements (S : Set) is
15 begin
16 New_Line;
17 Put_Line ("Set has "
18 & Count_Type'Image (S.Length)
19 & " elements");
20 Put_Line ("Elements:");
21 for E of S loop
22 Put_Line ("- " & Integer'Image (E));
23 end loop;
24 end Show_Elements;
25
26 S : Set;
27begin
28 S.Insert (20);
29 S.Insert (10);
30 S.Insert (0);
31 S.Insert (13);
32
33 S.Delete (13);
34
35 -- Calling S.Delete (13) again raises
36 -- Constraint_Error because the element
37 -- is no longer present in the set, so
38 -- it can't be deleted. We can call
39 -- V.Exclude instead:
40 S.Exclude (13);
41
42 if S.Contains (20) then
43 Put_Line ("Found element 20 in set");
44 end if;
45
46 -- Alternatively, we could use S.Find
47 -- instead of S.Contains
48 if S.Find (0) /= No_Element then
49 Put_Line ("Found element 0 in set");
50 end if;
51
52 Show_Elements (S);
53end Show_Set_Element_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Element_Ops
MD5: 77fb2aaba4221e337b0f90dd1a49c556

Runtime output

Found element 20 in set
Found element 0 in set

Set has 3 elements
Elements:
- 0
- 10
- 20

In addition to ordered sets used in the examples above, the standard
library also offers hashed sets. The Reference Manual requires the
following average complexity of each operation:

	Operations

	Ordered_Sets

	Hashed_Sets

	
	Insert

	Include

	Replace

	Delete

	Exclude

	Find

	O((log N)2)
or better

	O(log N)

	Subprogram using
cursor

	O(1)

	O(1)

Other Operations

The previous sections mostly dealt with operations on individual elements
of a set. But Ada also provides typical set operations: union,
intersection, difference and symmetric difference. In contrast to some
vector operations we've seen before (e.g. Merge), here you can use
built-in operators, such as -. The following table lists the
operations and its associated operator:

	Set Operation

	Operator

	Union

	or

	Intersection

	and

	Difference

	-

	Symmetric difference

	xor

The following example makes use of these operators:

show_set_ops.adb

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Ordered_Sets;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Set_Ops is
 7
 8 package Integer_Sets is new
 9 Ada.Containers.Ordered_Sets
10 (Element_Type => Integer);
11
12 use Integer_Sets;
13
14 procedure Show_Elements (S : Set) is
15 begin
16 Put_Line ("Elements:");
17 for E of S loop
18 Put_Line ("- " & Integer'Image (E));
19 end loop;
20 end Show_Elements;
21
22 procedure Show_Op (S : Set;
23 Op_Name : String) is
24 begin
25 New_Line;
26 Put_Line (Op_Name
27 & "(set #1, set #2) has "
28 & Count_Type'Image (S.Length)
29 & " elements");
30 end Show_Op;
31
32 S1, S2, S3 : Set;
33begin
34 S1.Insert (0);
35 S1.Insert (10);
36 S1.Insert (13);
37
38 S2.Insert (0);
39 S2.Insert (10);
40 S2.Insert (14);
41
42 S3.Insert (0);
43 S3.Insert (10);
44
45 New_Line;
46 Put_Line ("---- Set #1 ----");
47 Show_Elements (S1);
48
49 New_Line;
50 Put_Line ("---- Set #2 ----");
51 Show_Elements (S2);
52
53 New_Line;
54 Put_Line ("---- Set #3 ----");
55 Show_Elements (S3);
56
57 New_Line;
58 if S3.Is_Subset (S1) then
59 Put_Line ("S3 is a subset of S1");
60 else
61 Put_Line ("S3 is not a subset of S1");
62 end if;
63
64 S3 := S1 and S2;
65 Show_Op (S3, "Intersection");
66 Show_Elements (S3);
67
68 S3 := S1 or S2;
69 Show_Op (S3, "Union");
70 Show_Elements (S3);
71
72 S3 := S1 - S2;
73 Show_Op (S3, "Difference");
74 Show_Elements (S3);
75
76 S3 := S1 xor S2;
77 Show_Op (S3, "Symmetric difference");
78 Show_Elements (S3);
79
80end Show_Set_Ops;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Set_Ops
MD5: be9086591fc643e53facaf2ffea6c26d

Runtime output

---- Set #1 ----
Elements:
- 0
- 10
- 13

---- Set #2 ----
Elements:
- 0
- 10
- 14

---- Set #3 ----
Elements:
- 0
- 10

S3 is a subset of S1

Intersection(set #1, set #2) has 2 elements
Elements:
- 0
- 10

Union(set #1, set #2) has 4 elements
Elements:
- 0
- 10
- 13
- 14

Difference(set #1, set #2) has 1 elements
Elements:
- 13

Symmetric difference(set #1, set #2) has 2 elements
Elements:
- 13
- 14

Indefinite maps

The previous sections presented containers for elements of definite
types. Although most examples in those sections presented Integer
types as element type of the containers, containers can also be used with
indefinite types, an example of which is the String type. However,
indefinite types require a different kind of containers designed specially
for them.

We'll also be exploring a different class of containers: maps. They
associate a key with a specific value. An example of a map is the
one-to-one association between a person and their age. If we consider a
person's name to be the key, the value is the person's age.

Hashed maps

Hashed maps are maps that make use of a hash as a key. The hash itself is
calculated by a function you provide.

In other languages

Hashed maps are similar to dictionaries in Python and hashes in Perl.
One of the main differences is that these scripting languages allow
using different types for the values contained in a single map, while
in Ada, both the type of key and value are specified in the package
instantiation and remains constant for that specific map. You can't
have a map where two elements are of different types or two keys are of
different types. If you want to use multiple types, you must create a
different map for each and use only one type in each map.

When instantiating a hashed map from
Ada.Containers.Indefinite_Hashed_Maps, we specify following elements:

	Key_Type: type of the key

	Element_Type: type of the element

	Hash: hash function for the Key_Type

	Equivalent_Keys: an equality operator (e.g. =) that indicates
whether two keys are to be considered equal.

	If the type specified in Key_Type has a standard operator, you can
use it, which you do by specifying that operator as the value of
Equivalent_Keys.

In the next example, we'll use a string as a key type. We'll use the
Hash function provided by the standard library for strings (in the
Ada.Strings package) and the standard equality operator.

You add elements to a hashed map by calling Insert. If an element is
already contained in a map M, you can access it directly by using its
key. For example, you can change the value of an element by calling M
("My_Key") := 10. If the key is not found, an exception is raised. To
verify if a key is available, use the function Contains (as we've seen
above in the section on sets).

Let's see an example:

show_hashed_map.adb

 1with Ada.Containers.Indefinite_Hashed_Maps;
 2with Ada.Strings.Hash;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Hashed_Map is
 7
 8 package Integer_Hashed_Maps is new
 9 Ada.Containers.Indefinite_Hashed_Maps
10 (Key_Type => String,
11 Element_Type => Integer,
12 Hash => Ada.Strings.Hash,
13 Equivalent_Keys => "=");
14
15 use Integer_Hashed_Maps;
16
17 M : Map;
18 -- Same as:
19 --
20 -- M : Integer_Hashed_Maps.Map;
21begin
22 M.Include ("Alice", 24);
23 M.Include ("John", 40);
24 M.Include ("Bob", 28);
25
26 if M.Contains ("Alice") then
27 Put_Line ("Alice's age is "
28 & Integer'Image (M ("Alice")));
29 end if;
30
31 -- Update Alice's age
32 -- Key must already exist in M.
33 -- Otherwise an exception is raised.
34 M ("Alice") := 25;
35
36 New_Line; Put_Line ("Name & Age:");
37 for C in M.Iterate loop
38 Put_Line (Key (C) & ": "
39 & Integer'Image (M (C)));
40 end loop;
41
42end Show_Hashed_Map;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Hashed_Map
MD5: 6117775bd9ce2b1466f448b100117ded

Runtime output

Alice's age is 24

Name & Age:
John: 40
Bob: 28
Alice: 25

Ordered maps

Ordered maps share many features with hashed maps. The main differences are:

	A hash function isn't needed. Instead, you must provide an ordering
function (< operator), which the ordered map will use to order
elements and allow fast access, O(log N), using a binary search.

	If the type specified in Key_Type has a standard < operator,
you can use it in a similar way as we did for Equivalent_Keys above
for hashed maps.

Let's see an example:

show_ordered_map.adb

 1with Ada.Containers.Indefinite_Ordered_Maps;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Ordered_Map is
 6
 7 package Integer_Ordered_Maps is new
 8 Ada.Containers.Indefinite_Ordered_Maps
 9 (Key_Type => String,
10 Element_Type => Integer);
11
12 use Integer_Ordered_Maps;
13
14 M : Map;
15begin
16 M.Include ("Alice", 24);
17 M.Include ("John", 40);
18 M.Include ("Bob", 28);
19
20 if M.Contains ("Alice") then
21 Put_Line ("Alice's age is "
22 & Integer'Image (M ("Alice")));
23 end if;
24
25 -- Update Alice's age
26 -- Key must already exist in M
27 M ("Alice") := 25;
28
29 New_Line; Put_Line ("Name & Age:");
30 for C in M.Iterate loop
31 Put_Line (Key (C) & ": "
32 & Integer'Image (M (C)));
33 end loop;
34
35end Show_Ordered_Map;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Ordered_Map
MD5: 3deb3c685e767cee271b06e87727b086

Runtime output

Alice's age is 24

Name & Age:
Alice: 25
Bob: 28
John: 40

You can see a great similarity between the examples above and from the
previous section. In fact, since both kinds of maps share many operations,
we didn't need to make extensive modifications when we changed our example
to use ordered maps instead of hashed maps. The main difference is seen
when we run the examples: the output of a hashed map is usually unordered,
but the output of a ordered map is always ordered, as implied by its name.

Complexity

Hashed maps are generally the fastest data structure available to you in
Ada if you need to associate heterogeneous keys to values and search for
them quickly. In most cases, they are slightly faster than ordered maps.
So if you don't need ordering, use hashed maps.

The Reference Manual requires the following average complexity of
operations:

	Operations

	Ordered_Maps

	Hashed_Maps

	
	Insert

	Include

	Replace

	Delete

	Exclude

	Find

	O((log N)2) or better

	O(log N)

	Subprogram using
cursor

	O(1)

	O(1)

Footnotes

Standard library: Dates & Times

The standard library supports processing of dates and times using two
approaches:

	Calendar approach, which is suitable for handling dates and times in
general;

	Real-time approach, which is better suited for real-time applications
that require enhanced precision — for example, by having access to an
absolute clock and handling time spans. Note that this approach only supports
times, not dates.

The following sections present these two approaches.

Date and time handling

The Ada.Calendar package supports handling of dates and times. Let's
look at a simple example:

display_current_time.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar; use Ada.Calendar;
 3
 4with Ada.Calendar.Formatting;
 5use Ada.Calendar.Formatting;
 6
 7procedure Display_Current_Time is
 8 Now : Time := Clock;
 9begin
10 Put_Line ("Current time: " & Image (Now));
11end Display_Current_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Current_Time
MD5: 4a88069b33ecf80314b0164a472ff606

Runtime output

Current time: 2024-03-30 02:24:13

This example displays the current date and time, which is retrieved by a
call to the Clock function. We call the function Image from the
Ada.Calendar.Formatting package to get a String for the current
date and time. We could instead retrieve each component using the Split
function. For example:

display_current_year.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar; use Ada.Calendar;
 3
 4procedure Display_Current_Year is
 5 Now : Time := Clock;
 6
 7 Now_Year : Year_Number;
 8 Now_Month : Month_Number;
 9 Now_Day : Day_Number;
10 Now_Seconds : Day_Duration;
11begin
12 Split (Now,
13 Now_Year,
14 Now_Month,
15 Now_Day,
16 Now_Seconds);
17
18 Put_Line ("Current year is: "
19 & Year_Number'Image (Now_Year));
20 Put_Line ("Current month is: "
21 & Month_Number'Image (Now_Month));
22 Put_Line ("Current day is: "
23 & Day_Number'Image (Now_Day));
24end Display_Current_Year;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Current_Year
MD5: fdf298ee97f225261ce3839ebd833bbe

Runtime output

Current year is: 2024
Current month is: 3
Current day is: 30

Here, we're retrieving each element and displaying it separately.

Delaying using date

You can delay an application so that it restarts at a specific date and
time. We saw something similar in the chapter on tasking. You do this
using a delay until statement. For example:

display_delay_next_specific_time.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar; use Ada.Calendar;
 3
 4with Ada.Calendar.Formatting;
 5use Ada.Calendar.Formatting;
 6
 7with Ada.Calendar.Time_Zones;
 8use Ada.Calendar.Time_Zones;
 9
10procedure Display_Delay_Next_Specific_Time is
11 TZ : Time_Offset := UTC_Time_Offset;
12 Next : Time :=
13 Ada.Calendar.Formatting.Time_Of
14 (Year => 2018,
15 Month => 5,
16 Day => 1,
17 Hour => 15,
18 Minute => 0,
19 Second => 0,
20 Sub_Second => 0.0,
21 Leap_Second => False,
22 Time_Zone => TZ);
23
24 -- Next = 2018-05-01 15:00:00.00
25 -- (local time-zone)
26begin
27 Put_Line ("Let's wait until...");
28 Put_Line (Image (Next, True, TZ));
29
30 delay until Next;
31
32 Put_Line ("Enough waiting!");
33end Display_Delay_Next_Specific_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Specific_Time
MD5: 36ec2bdce7c1e8d107fae54ef9852d3f

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we specify the date and time by initializing Next
using a call to Time_Of, a function taking the various components
of a date (year, month, etc) and returning an element of the Time
type. Because the date specified is in the past, the delay
until statement won't produce any noticeable effect. However, if we
passed a date in the future, the program would wait until that
specific date and time arrived.

Here we're converting the time to the local timezone. If we don't specify a
timezone, Coordinated Universal Time (abbreviated to UTC) is used by
default. By retrieving the time offset to UTC with a call to
UTC_Time_Offset from the Ada.Calendar.Time_Zones package, we can
initialize TZ and use it in the call to Time_Of. This is all we
need do to make the information provided to Time_Of relative to the
local time zone.

We could achieve a similar result by initializing Next with a
String. We can do this with a call to Value from the
Ada.Calendar.Formatting package. This is the modified code:

display_delay_next_specific_time.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar; use Ada.Calendar;
 3
 4with Ada.Calendar.Formatting;
 5use Ada.Calendar.Formatting;
 6
 7with Ada.Calendar.Time_Zones;
 8use Ada.Calendar.Time_Zones;
 9
10procedure Display_Delay_Next_Specific_Time is
11 TZ : Time_Offset := UTC_Time_Offset;
12 Next : Time :=
13 Ada.Calendar.Formatting.Value
14 ("2018-05-01 15:00:00.00", TZ);
15
16 -- Next = 2018-05-01 15:00:00.00
17 -- (local time-zone)
18begin
19 Put_Line ("Let's wait until...");
20 Put_Line (Image (Next, True, TZ));
21
22 delay until Next;
23
24 Put_Line ("Enough waiting!");
25end Display_Delay_Next_Specific_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Specific_Time
MD5: fdf6ad7fca303d4d7bd444c23e11c7bd

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we're again using TZ in the call to Value to
adjust the input time to the current time zone.

In the examples above, we were delaying to a specific date and time.
Just like we saw in the tasking chapter, we could instead specify the
delay relative to the current time. For example, we could delay by 5
seconds, using the current time:

display_delay_next.adb

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Display_Delay_Next is
 5 D : Duration := 5.0;
 6 -- ^ seconds
 7 Now : Time := Clock;
 8 Next : Time := Now + D;
 9 -- ^ use duration to
10 -- specify next
11 -- point in time
12begin
13 Put_Line ("Let's wait "
14 & Duration'Image (D)
15 & " seconds...");
16 delay until Next;
17 Put_Line ("Enough waiting!");
18end Display_Delay_Next;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next
MD5: 58360d93388c3fe027c3d9d67389efc7

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

Here, we're specifying a duration of 5 seconds in D, adding it to the
current time from Now, and storing the sum in Next. We then use it
in the delay until statement.

Real-time

In addition to Ada.Calendar, the standard library also supports time
operations for real-time applications. These are included in the
Ada.Real_Time package. This package also include a Time type.
However, in the Ada.Real_Time package, the Time type is used to
represent an absolute clock and handle a time span. This contrasts with the
Ada.Calendar, which uses the Time type to represent dates and
times.

In the previous section, we used the Time type from the
Ada.Calendar and the delay until statement to delay an
application by 5 seconds. We could have used the Ada.Real_Time
package instead. Let's modify that example:

display_delay_next_real_time.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3
 4procedure Display_Delay_Next_Real_Time is
 5 D : Time_Span := Seconds (5);
 6 Next : Time := Clock + D;
 7begin
 8 Put_Line ("Let's wait "
 9 & Duration'Image (To_Duration (D))
10 & " seconds...");
11 delay until Next;
12 Put_Line ("Enough waiting!");
13end Display_Delay_Next_Real_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Delay_Next_Real_Time
MD5: a80e96c4ac7bd3ba7813f983b10cb038

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

The main difference is that D is now a variable of type Time_Span,
defined in the Ada.Real_Time package. We call the function
Seconds to initialize D, but could have gotten a finer granularity
by calling Nanoseconds instead. Also, we need to first convert D to
the Duration type using To_Duration before we can display it.

Benchmarking

One interesting application using the Ada.Real_Time package is
benchmarking. We've used that package before in a previous section when
discussing tasking. Let's look at an example of benchmarking:

display_benchmarking.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3
 4procedure Display_Benchmarking is
 5
 6 procedure Computational_Intensive_App is
 7 begin
 8 delay 5.0;
 9 end Computational_Intensive_App;
10
11 Start_Time, Stop_Time : Time;
12 Elapsed_Time : Time_Span;
13
14begin
15 Start_Time := Clock;
16
17 Computational_Intensive_App;
18
19 Stop_Time := Clock;
20 Elapsed_Time := Stop_Time - Start_Time;
21
22 Put_Line ("Elapsed time: "
23 & Duration'Image
24 (To_Duration (Elapsed_Time))
25 & " seconds");
26end Display_Benchmarking;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking
MD5: 4b20940cb613d3f634be5224f409efeb

Runtime output

Elapsed time: 5.000165564 seconds

This example defines a dummy Computational_Intensive_App implemented
using a simple delay statement. We initialize Start_Time and
Stop_Time from the then-current clock and calculate the elapsed
time. By running this program, we see that the time is roughly 5 seconds,
which is expected due to the delay statement.

A similar application is benchmarking of CPU time. We can implement this
using the Execution_Time package. Let's modify the previous example
to measure CPU time:

display_benchmarking_cpu_time.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3with Ada.Execution_Time; use Ada.Execution_Time;
 4
 5procedure Display_Benchmarking_CPU_Time is
 6
 7 procedure Computational_Intensive_App is
 8 begin
 9 delay 5.0;
10 end Computational_Intensive_App;
11
12 Start_Time, Stop_Time : CPU_Time;
13 Elapsed_Time : Time_Span;
14
15begin
16 Start_Time := Clock;
17
18 Computational_Intensive_App;
19
20 Stop_Time := Clock;
21 Elapsed_Time := Stop_Time - Start_Time;
22
23 Put_Line ("CPU time: "
24 & Duration'Image
25 (To_Duration (Elapsed_Time))
26 & " seconds");
27end Display_Benchmarking_CPU_Time;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking_CPU_Time
MD5: ba83ddbd05db523479be5692c4134901

Runtime output

CPU time: 0.000052670 seconds

In this example, Start_Time and Stop_Time are of type CPU_Time
instead of Time. However, we still call the Clock function to
initialize both variables and calculate the elapsed time in the same way as
before. By running this program, we see that the CPU time is significantly
lower than the 5 seconds we've seen before. This is because the
delay statement doesn't require much CPU time. The results will be
different if we change the implementation of
Computational_Intensive_App to use a mathematical function in a long
loop. For example:

display_benchmarking_math.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Real_Time; use Ada.Real_Time;
 3with Ada.Execution_Time; use Ada.Execution_Time;
 4
 5with Ada.Numerics.Generic_Elementary_Functions;
 6
 7procedure Display_Benchmarking_Math is
 8
 9 procedure Computational_Intensive_App is
10 package Funcs is new
11 Ada.Numerics.Generic_Elementary_Functions
12 (Float_Type => Long_Long_Float);
13 use Funcs;
14
15 X : Long_Long_Float;
16 begin
17 for I in 0 .. 1_000_000 loop
18 X := Tan (Arctan
19 (Tan (Arctan
20 (Tan (Arctan
21 (Tan (Arctan
22 (Tan (Arctan
23 (Tan (Arctan
24 (0.577))))))))))));
25 end loop;
26 end Computational_Intensive_App;
27
28 procedure Benchm_Elapsed_Time is
29 Start_Time, Stop_Time : Time;
30 Elapsed_Time : Time_Span;
31
32 begin
33 Start_Time := Clock;
34
35 Computational_Intensive_App;
36
37 Stop_Time := Clock;
38 Elapsed_Time := Stop_Time - Start_Time;
39
40 Put_Line ("Elapsed time: "
41 & Duration'Image
42 (To_Duration (Elapsed_Time))
43 & " seconds");
44 end Benchm_Elapsed_Time;
45
46 procedure Benchm_CPU_Time is
47 Start_Time, Stop_Time : CPU_Time;
48 Elapsed_Time : Time_Span;
49
50 begin
51 Start_Time := Clock;
52
53 Computational_Intensive_App;
54
55 Stop_Time := Clock;
56 Elapsed_Time := Stop_Time - Start_Time;
57
58 Put_Line ("CPU time: "
59 & Duration'Image
60 (To_Duration (Elapsed_Time))
61 & " seconds");
62 end Benchm_CPU_Time;
63begin
64 Benchm_Elapsed_Time;
65 Benchm_CPU_Time;
66end Display_Benchmarking_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Display_Benchmarking_Math
MD5: 06fe96bf03321c248dd1ed843648cf0b

Runtime output

Elapsed time: 1.179919705 seconds
CPU time: 1.184868185 seconds

Now that our dummy Computational_Intensive_App involves mathematical
operations requiring significant CPU time, the measured elapsed and CPU
time are much closer to each other than before.

Footnotes

Standard library: Strings

In previous chapters, we've seen source-code examples using the String
type, which is a fixed-length string type — essentialy, it's an array
of characters. In many cases, this data type is good enough to deal with
textual information. However, there are situations that require more advanced
text processing. Ada offers alternative approaches for these cases:

	Bounded strings: similar to fixed-length strings, bounded strings have a
maximum length, which is set at its instantiation. However, bounded strings
are not arrays of characters. At any time, they can contain a string of
varied length — provided this length is below or equal to the maximum
length.

	Unbounded strings: similar to bounded strings, unbounded strings can
contain strings of varied length. However, in addition to that, they don't
have a maximum length. In this sense, they are very flexible.

The following sections present an overview of the different string types and
common operations for string types.

String operations

Operations on standard (fixed-length) strings are available in the
Ada.Strings.Fixed package. As mentioned previously, standard strings
are arrays of elements of Character type with a
fixed-length. That's why this child package is called Fixed.

One of the simplest operations provided is counting the number of
substrings available in a string (Count) and finding their
corresponding indices (Index). Let's look at an example:

show_find_substring.adb

 1with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_Find_Substring is
 5
 6 S : String := "Hello" & 3 * " World";
 7 P : constant String := "World";
 8 Idx : Natural;
 9 Cnt : Natural;
10begin
11 Cnt := Ada.Strings.Fixed.Count
12 (Source => S,
13 Pattern => P);
14
15 Put_Line ("String: " & S);
16 Put_Line ("Count for '" & P & "': "
17 & Natural'Image (Cnt));
18
19 Idx := 0;
20 for I in 1 .. Cnt loop
21 Idx := Index
22 (Source => S,
23 Pattern => P,
24 From => Idx + 1);
25
26 Put_Line ("Found instance of '"
27 & P & "' at position: "
28 & Natural'Image (Idx));
29 end loop;
30
31end Show_Find_Substring;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Substring
MD5: faa8373bf9aec9f9f5507cf55590b0c0

Runtime output

String: Hello World World World
Count for 'World': 3
Found instance of 'World' at position: 7
Found instance of 'World' at position: 13
Found instance of 'World' at position: 19

We initialize the string S using a multiplication. Writing
"Hello" & 3 * " World" creates the string Hello World World World.
We then call the function Count to get the number of instances
of the word World in S. Next we call the function Index in a
loop to find the index of each instance of World in S.

That example looked for instances of a specific substring. In the next
example, we retrieve all the words in the string. We do this using
Find_Token and specifying whitespaces as separators. For example:

show_find_words.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3with Ada.Strings.Maps; use Ada.Strings.Maps;
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Find_Words is
 7
 8 S : String := "Hello" & 3 * " World";
 9 F : Positive;
10 L : Natural;
11 I : Natural := 1;
12
13 Whitespace : constant Character_Set :=
14 To_Set (' ');
15begin
16 Put_Line ("String: " & S);
17 Put_Line ("String length: "
18 & Integer'Image (S'Length));
19
20 while I in S'Range loop
21 Find_Token
22 (Source => S,
23 Set => Whitespace,
24 From => I,
25 Test => Outside,
26 First => F,
27 Last => L);
28
29 exit when L = 0;
30
31 Put_Line ("Found word instance at position "
32 & Natural'Image (F)
33 & ": '" & S (F .. L) & "'");
34 -- & "-" & F'Img & "-" & L'Img
35
36 I := L + 1;
37 end loop;
38end Show_Find_Words;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Find_Words
MD5: e622f489af5901e5d31f314efc3324d2

Runtime output

String: Hello World World World
String length: 23
Found word instance at position 1: 'Hello'
Found word instance at position 7: 'World'
Found word instance at position 13: 'World'
Found word instance at position 19: 'World'

We pass a set of characters to be used as delimitators to the procedure
Find_Token. This set is a member of the Character_Set type from the
Ada.Strings.Maps package. We call the To_Set function (from the
same package) to initialize the set to Whitespace and then call
Find_Token to loop over each valid index and find the starting index of
each word. We pass Outside to the Test parameter of the
Find_Token procedure to indicate that we're looking for indices that
are outside the Whitespace set, i.e. actual words. The First and
Last parameters of Find_Token are output parameters that indicate
the valid range of the substring. We use this information to display the
string (S (F .. L)).

The operations we've looked at so far read strings, but don't modify
them. We next discuss operations that change the content of strings:

	Operation

	Description

	Insert

	Insert substring in a string

	Overwrite

	Overwrite a string with a substring

	Delete

	Delete a substring

	Trim

	Remove whitespaces from a string

All these operations are available both as functions or procedures.
Functions create a new string but procedures perform the operations in
place. The procedure will raise an exception if the constraints of the
string are not satisfied. For example, if we have a string S containing
10 characters, inserting a string with two characters (e.g. "!!") into
it produces a string containing 12 characters. Since it has a fixed length,
we can't increase its size. One possible solution in this case is to
specify that truncation should be applied while inserting the substring.
This keeps the length of S fixed. Let's see an example that makes use
of both function and procedure versions of Insert, Overwrite, and
Delete:

show_adapted_strings.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Adapted_Strings is
 6
 7 S : String := "Hello World";
 8 P : constant String := "World";
 9 N : constant String := "Beautiful";
10
11 procedure Display_Adapted_String
12 (Source : String;
13 Before : Positive;
14 New_Item : String;
15 Pattern : String)
16 is
17 S_Ins_In : String := Source;
18 S_Ovr_In : String := Source;
19 S_Del_In : String := Source;
20
21 S_Ins : String :=
22 Insert (Source,
23 Before,
24 New_Item & " ");
25 S_Ovr : String :=
26 Overwrite (Source,
27 Before,
28 New_Item);
29 S_Del : String :=
30 Trim (Delete (Source,
31 Before,
32 Before +
33 Pattern'Length - 1),
34 Ada.Strings.Right);
35 begin
36 Insert (S_Ins_In,
37 Before,
38 New_Item,
39 Right);
40
41 Overwrite (S_Ovr_In,
42 Before,
43 New_Item,
44 Right);
45
46 Delete (S_Del_In,
47 Before,
48 Before + Pattern'Length - 1);
49
50 Put_Line ("Original: '"
51 & Source & "'");
52
53 Put_Line ("Insert: '"
54 & S_Ins & "'");
55 Put_Line ("Overwrite: '"
56 & S_Ovr & "'");
57 Put_Line ("Delete: '"
58 & S_Del & "'");
59
60 Put_Line ("Insert (in-place): '"
61 & S_Ins_In & "'");
62 Put_Line ("Overwrite (in-place): '"
63 & S_Ovr_In & "'");
64 Put_Line ("Delete (in-place): '"
65 & S_Del_In & "'");
66 end Display_Adapted_String;
67
68 Idx : Natural;
69begin
70 Idx := Index
71 (Source => S,
72 Pattern => P);
73
74 if Idx > 0 then
75 Display_Adapted_String (S, Idx, N, P);
76 end if;
77end Show_Adapted_Strings;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Adapted_Strings
MD5: b31b6bc94d8bdbec717c6b6b2534beb6

Runtime output

Original: 'Hello World'
Insert: 'Hello Beautiful World'
Overwrite: 'Hello Beautiful'
Delete: 'Hello'
Insert (in-place): 'Hello Beaut'
Overwrite (in-place): 'Hello Beaut'
Delete (in-place): 'Hello '

In this example, we look for the index of the substring World and
perform operations on this substring within the outer string. The procedure
Display_Adapted_String uses both versions of the operations. For the
procedural version of Insert and Overwrite, we apply truncation to
the right side of the string (Right). For the Delete procedure, we
specify the range of the substring, which is replaced by whitespaces. For
the function version of Delete, we also call Trim which trims the
trailing whitespace.

Limitation of fixed-length strings

Using fixed-length strings is usually good enough for strings that are
initialized when they are declared. However, as seen in the previous
section, procedural operations on strings cause difficulties when done on
fixed-length strings because fixed-length strings are arrays of
characters. The following example shows how cumbersome the initialization
of fixed-length strings can be when it's not performed in the declaration:

show_char_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Char_Array is
 4 S : String (1 .. 15);
 5 -- Strings are arrays of Character
 6begin
 7 S := "Hello ";
 8 -- Alternatively:
 9 --
10 -- #1:
11 -- S (1 .. 5) := "Hello";
12 -- S (6 .. S'Last) := (others => ' ');
13 --
14 -- #2:
15 -- S := ('H', 'e', 'l', 'l', 'o',
16 -- others => ' ');
17
18 Put_Line ("String: " & S);
19 Put_Line ("String Length: "
20 & Integer'Image (S'Length));
21end Show_Char_Array;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Char_Array
MD5: 9f3df03c9c5336184139cf2a22f2cb7e

Runtime output

String: Hello
String Length: 15

In this case, we can't simply write S := "Hello" because the
resulting array of characters for the Hello constant has a different
length than the S string. Therefore, we need to include trailing
whitespaces to match the length of S. As shown in the example, we could
use an exact range for the initialization (S (1 .. 5)) or use an
explicit array of individual characters.

When strings are initialized or manipulated at run-time, it's usually
better to use bounded or unbounded strings. An important feature of these
types is that they aren't arrays, so the difficulties presented above don't
apply. Let's start with bounded strings.

Bounded strings

Bounded strings are defined in the
Ada.Strings.Bounded.Generic_Bounded_Length package. Because
this is a generic package, you need to instantiate it and set the
maximum length of the bounded string. You can then declare bounded
strings of the Bounded_String type.

Both bounded and fixed-length strings have a maximum length that they
can hold. However, bounded strings are not arrays, so initializing
them at run-time is much easier. For example:

show_bounded_string.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Bounded;
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Bounded_String is
 6 package B_Str is new
 7 Ada.Strings.Bounded.Generic_Bounded_Length
 8 (Max => 15);
 9 use B_Str;
10
11 S1, S2 : Bounded_String;
12
13 procedure Display_String_Info
14 (S : Bounded_String)
15 is
16 begin
17 Put_Line ("String: " & To_String (S));
18 Put_Line ("String Length: "
19 & Integer'Image (Length (S)));
20 -- String:
21 -- S'Length => ok
22 -- Bounded_String:
23 -- S'Length => compilation error:
24 -- bounded strings are
25 -- not arrays!
26
27 Put_Line ("Max. Length: "
28 & Integer'Image (Max_Length));
29 end Display_String_Info;
30
31begin
32 S1 := To_Bounded_String ("Hello");
33 Display_String_Info (S1);
34
35 S2 := To_Bounded_String ("Hello World");
36 Display_String_Info (S2);
37
38 S1 := To_Bounded_String
39 ("Something longer to say here...",
40 Right);
41 Display_String_Info (S1);
42end Show_Bounded_String;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Bounded_String
MD5: a51fdeacfd43923145ee92bf5c72ecd6

Runtime output

String: Hello
String Length: 5
Max. Length: 15
String: Hello World
String Length: 11
Max. Length: 15
String: Something longe
String Length: 15
Max. Length: 15

By using bounded strings, we can easily assign to S1 and S2
multiple times during execution. We use the To_Bounded_String and
To_String functions to convert, in the respective direction, between
fixed-length and bounded strings. A call to To_Bounded_String raises an
exception if the length of the input string is greater than the maximum
capacity of the bounded string. To avoid this, we can use the truncation
parameter (Right in our example).

Bounded strings are not arrays, so we can't use the 'Length
attribute as we did for fixed-length strings. Instead, we call the
Length function, which returns the length of the bounded string. The
Max_Length constant represents the maximum length of the bounded string
that we set when we instantiated the package.

After initializing a bounded string, we can manipulate it. For example, we
can append a string to a bounded string using Append or concatenate
bounded strings using the & operator. Like so:

show_bounded_string_op.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Bounded;
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Bounded_String_Op is
 6 package B_Str is new
 7 Ada.Strings.Bounded.Generic_Bounded_Length
 8 (Max => 30);
 9 use B_Str;
10
11 S1, S2 : Bounded_String;
12begin
13 S1 := To_Bounded_String ("Hello");
14 -- Alternatively:
15 --
16 -- A := Null_Bounded_String & "Hello";
17
18 Append (S1, " World");
19 -- Alternatively:
20 -- Append (A, " World", Right);
21
22 Put_Line ("String: " & To_String (S1));
23
24 S2 := To_Bounded_String ("Hello!");
25 S1 := S1 & " " & S2;
26 Put_Line ("String: " & To_String (S1));
27end Show_Bounded_String_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Bounded_String_Op
MD5: c7c6a840c314a9cd9f75aac082a63159

Runtime output

String: Hello World
String: Hello World Hello!

We can initialize a bounded string with an empty string using the
Null_Bounded_String constant. Also, we can use the Append procedure
and specify the truncation mode like we do with the To_Bounded_String
function.

Unbounded strings

Unbounded strings are defined in the Ada.Strings.Unbounded package.
This is not a generic package, so we don't need to instantiate it before
using the Unbounded_String type. As you may recall from the previous
section, bounded strings require a package instantiation.

Unbounded strings are similar to bounded strings. The main difference is
that they can hold strings of any size and adjust according to the input
string: if we assign, e.g., a 10-character string to an unbounded string
and later assign a 50-character string, internal operations in the
container ensure that memory is allocated to store the new string. In most
cases, developers don't need to worry about these operations. Also, no
truncation is necessary.

Initialization of unbounded strings is very similar to bounded strings.
Let's look at an example:

show_unbounded_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3
 4with Ada.Strings.Unbounded;
 5use Ada.Strings.Unbounded;
 6
 7procedure Show_Unbounded_String is
 8 S1, S2 : Unbounded_String;
 9
10 procedure Display_String_Info
11 (S : Unbounded_String)
12 is
13 begin
14 Put_Line ("String: " & To_String (S));
15 Put_Line ("String Length: "
16 & Integer'Image (Length (S)));
17 end Display_String_Info;
18begin
19 S1 := To_Unbounded_String ("Hello");
20 -- Alternatively:
21 --
22 -- A := Null_Unbounded_String & "Hello";
23
24 Display_String_Info (S1);
25
26 S2 := To_Unbounded_String ("Hello World");
27 Display_String_Info (S2);
28
29 S1 := To_Unbounded_String
30 ("Something longer to say here...");
31 Display_String_Info (S1);
32end Show_Unbounded_String;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Unbounded_String
MD5: 904402992c96eb393b875d1b7cf49c1b

Runtime output

String: Hello
String Length: 5
String: Hello World
String Length: 11
String: Something longer to say here...
String Length: 31

Like bounded strings, we can assign to S1 and S2 multiple times
during execution and use the To_Unbounded_String and To_String
functions to convert back-and-forth between fixed-length strings and
unbounded strings. However, in this case, truncation is not needed.

And, just like for bounded strings, you can use the Append procedure and
the & operator for unbounded strings. For example:

show_unbounded_string_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.Unbounded;
 4use Ada.Strings.Unbounded;
 5
 6procedure Show_Unbounded_String_Op is
 7 S1, S2 : Unbounded_String :=
 8 Null_Unbounded_String;
 9begin
10 S1 := S1 & "Hello";
11 S2 := S2 & "Hello!";
12
13 Append (S1, " World");
14 Put_Line ("String: " & To_String (S1));
15
16 S1 := S1 & " " & S2;
17 Put_Line ("String: " & To_String (S1));
18end Show_Unbounded_String_Op;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Unbounded_String_Op
MD5: 806e24a6dd0bc87e76f73a22e42ba390

Runtime output

String: Hello World
String: Hello World Hello!

In this example, we're concatenating the unbounded S1 and S2
strings with the "Hello" and "Hello!" strings, respectively.
Also, we're using the Append procedure, just like we did with bounded
strings.

Footnotes

Standard library: Files and streams

Ada provides different approaches for file input/output (I/O):

	Text I/O, which supports file I/O in text format, including the display of
information on the console.

	Sequential I/O, which supports file I/O in binary format written in a
sequential fashion for a specific data type.

	Direct I/O, which supports file I/O in binary format for a specific data
type, but also supporting access to any position of a file.

	Stream I/O, which supports I/O of information for multiple data types,
including objects of unbounded types, using files in binary format.

This table presents a summary of the features we've just seen:

	File I/O
option

	Format

	Random
access

	Data types

	Text I/O

	text

	
	string type

	Sequential I/O

	binary

	
	single type

	Direct I/O

	binary

	✓

	single type

	Stream I/O

	binary

	✓

	multiple types

In the following sections, we discuss details about these I/O approaches.

Text I/O

In most parts of this course, we used the Put_Line procedure to display
information on the console. However, this procedure also accepts a
File_Type parameter. For example, you can select between standard
output and standard error by setting this parameter explicitly:

show_std_text_out.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Std_Text_Out is
4begin
5 Put_Line (Standard_Output, "Hello World #1");
6 Put_Line (Standard_Error, "Hello World #2");
7end Show_Std_Text_Out;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Std_Text_Out
MD5: 4d75bd2906226897244e3d2a611c9725

Runtime output

Hello World #1
Hello World #2

You can also use this parameter to write information to any text file. To
create a new file for writing, use the Create procedure, which
initializes a File_Type element that you can later pass to Put_Line
(instead of, e.g., Standard_Output). After you finish writing
information, you can close the file by calling the Close procedure.

You use a similar method to read information from a text file. However,
when opening the file, you must specify that it's an input file
(In_File) instead of an output file. Also, instead of calling the
Put_Line procedure, you call the Get_Line function to read
information from the file.

Let's see an example that writes information into a new text file and then
reads it back from the same file:

show_simple_text_file_io.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Text_File_IO is
 4 F : File_Type;
 5 File_Name : constant String := "simple.txt";
 6begin
 7 Create (F, Out_File, File_Name);
 8 Put_Line (F, "Hello World #1");
 9 Put_Line (F, "Hello World #2");
10 Put_Line (F, "Hello World #3");
11 Close (F);
12
13 Open (F, In_File, File_Name);
14 while not End_Of_File (F) loop
15 Put_Line (Get_Line (F));
16 end loop;
17 Close (F);
18end Show_Simple_Text_File_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Simple_Text_File_IO
MD5: 7461e946eef18c93219fa4ce3afbb1ea

Runtime output

Hello World #1
Hello World #2
Hello World #3

In addition to the Create and Close procedures, the standard
library also includes a Reset procedure, which, as the name implies,
resets (erases) all the information from the file. For example:

show_text_file_reset.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Text_File_Reset is
 4 F : File_Type;
 5 File_Name : constant String := "simple.txt";
 6begin
 7 Create (F, Out_File, File_Name);
 8 Put_Line (F, "Hello World #1");
 9 Reset (F);
10 Put_Line (F, "Hello World #2");
11 Close (F);
12
13 Open (F, In_File, File_Name);
14 while not End_Of_File (F) loop
15 Put_Line (Get_Line (F));
16 end loop;
17 Close (F);
18end Show_Text_File_Reset;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Text_File_Reset
MD5: 5e5498f03b2c829513af062c5959fc93

Runtime output

Hello World #2

By running this program, we notice that, although we've written the first
string ("Hello World #1") to the file, it has been erased because of the
call to Reset.

In addition to opening a file for reading or writing, you can also open an
existing file and append to it. Do this by calling the Open procedure
with the Append_File option.

When calling the Open procedure, an exception is raised if the
specified file isn't found. Therefore, you should handle exceptions in
that context. The following example deletes a file and then tries to open
the same file for reading:

show_text_file_input_except.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Text_File_Input_Except is
 4 F : File_Type;
 5 File_Name : constant String := "simple.txt";
 6begin
 7 -- Open output file and delete it
 8 Create (F, Out_File, File_Name);
 9 Delete (F);
10
11 -- Try to open deleted file
12 Open (F, In_File, File_Name);
13 Close (F);
14exception
15 when Name_Error =>
16 Put_Line ("File does not exist");
17 when others =>
18 Put_Line
19 ("Error while processing input file");
20end Show_Text_File_Input_Except;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Text_File_Input_Except
MD5: c8d257091831c48d10b6e70e34b4261b

Runtime output

File does not exist

In this example, we create the file by calling Create and then
delete it by calling Delete. After the call to Delete, we can
no longer use the File_Type element. After deleting the file, we
try to open the non-existent file, which raises a Name_Error
exception.

Sequential I/O

The previous section presented details about text file I/O. Here, we
discuss doing file I/O in binary format. The first package we'll explore is
the Ada.Sequential_IO package. Because this package is a generic
package, you need to instantiate it for the data type you want to use for
file I/O. Once you've done that, you can use the same procedures we've seen
in the previous section: Create, Open, Close, Reset and
Delete. However, instead of calling the Get_Line and Put_Line
procedures, you'd call the Read and Write procedures.

In the following example, we instantiate the Ada.Sequential_IO
package for floating-point types:

show_seq_float_io.adb

 1with Ada.Text_IO;
 2with Ada.Sequential_IO;
 3
 4procedure Show_Seq_Float_IO is
 5 package Float_IO is
 6 new Ada.Sequential_IO (Float);
 7 use Float_IO;
 8
 9 F : Float_IO.File_Type;
10 File_Name : constant String :=
11 "float_file.bin";
12begin
13 Create (F, Out_File, File_Name);
14 Write (F, 1.5);
15 Write (F, 2.4);
16 Write (F, 6.7);
17 Close (F);
18
19 declare
20 Value : Float;
21 begin
22 Open (F, In_File, File_Name);
23 while not End_Of_File (F) loop
24 Read (F, Value);
25 Ada.Text_IO.Put_Line
26 (Float'Image (Value));
27 end loop;
28 Close (F);
29 end;
30end Show_Seq_Float_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Seq_Float_IO
MD5: 27aa5daf92cba5df23fdc55c3578aa34

Runtime output

 1.50000E+00
 2.40000E+00
 6.70000E+00

We use the same approach to read and write complex information. The
following example uses a record that includes a Boolean and a
floating-point value:

show_seq_rec_io.adb

 1with Ada.Text_IO;
 2with Ada.Sequential_IO;
 3
 4procedure Show_Seq_Rec_IO is
 5 type Num_Info is record
 6 Valid : Boolean := False;
 7 Value : Float;
 8 end record;
 9
10 procedure Put_Line (N : Num_Info) is
11 begin
12 if N.Valid then
13 Ada.Text_IO.Put_Line
14 ("(ok, "
15 & Float'Image (N.Value) & ")");
16 else
17 Ada.Text_IO.Put_Line
18 ("(not ok, -----------)");
19 end if;
20 end Put_Line;
21
22 package Num_Info_IO is new
23 Ada.Sequential_IO (Num_Info);
24 use Num_Info_IO;
25
26 F : Num_Info_IO.File_Type;
27 File_Name : constant String :=
28 "float_file.bin";
29begin
30 Create (F, Out_File, File_Name);
31 Write (F, (True, 1.5));
32 Write (F, (False, 2.4));
33 Write (F, (True, 6.7));
34 Close (F);
35
36 declare
37 Value : Num_Info;
38 begin
39 Open (F, In_File, File_Name);
40 while not End_Of_File (F) loop
41 Read (F, Value);
42 Put_Line (Value);
43 end loop;
44 Close (F);
45 end;
46end Show_Seq_Rec_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Seq_Rec_IO
MD5: a88b1428cc50745dce0509087e74adb7

Runtime output

(ok, 1.50000E+00)
(not ok, -----------)
(ok, 6.70000E+00)

As the example shows, we can use the same approach we used for
floating-point types to perform file I/O for this record. Once we
instantiate the Ada.Sequential_IO package for the record type, file
I/O operations are performed the same way.

Direct I/O

Direct I/O is available in the Ada.Direct_IO package. This mechanism
is similar to the sequential I/O approach just presented, but allows us to
access any position in the file. The package instantiation and most
operations are very similar to sequential I/O. To rewrite the
Show_Seq_Float_IO application presented in the previous section to use
the Ada.Direct_IO package, we just need to replace the instances of
the Ada.Sequential_IO package by the Ada.Direct_IO
package. This is the new source code:

show_dir_float_io.adb

 1with Ada.Text_IO;
 2with Ada.Direct_IO;
 3
 4procedure Show_Dir_Float_IO is
 5 package Float_IO is new Ada.Direct_IO (Float);
 6 use Float_IO;
 7
 8 F : Float_IO.File_Type;
 9 File_Name : constant String :=
10 "float_file.bin";
11begin
12 Create (F, Out_File, File_Name);
13 Write (F, 1.5);
14 Write (F, 2.4);
15 Write (F, 6.7);
16 Close (F);
17
18 declare
19 Value : Float;
20 begin
21 Open (F, In_File, File_Name);
22 while not End_Of_File (F) loop
23 Read (F, Value);
24 Ada.Text_IO.Put_Line
25 (Float'Image (Value));
26 end loop;
27 Close (F);
28 end;
29end Show_Dir_Float_IO;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Dir_Float_IO
MD5: e4e5855976de44f53a821eb90dcbb206

Runtime output

 1.50000E+00
 2.40000E+00
 6.70000E+00

Unlike sequential I/O, direct I/O allows you to access any position in
the file. However, it doesn't offer an option to append information to
a file. Instead, it provides an Inout_File mode allowing reading
and writing to a file via the same File_Type element.

To access any position in the file, call the Set_Index procedure to set
the new position / index. You can use the Index function to retrieve
the current index. Let's see an example:

show_dir_float_in_out_file.adb

 1with Ada.Text_IO;
 2with Ada.Direct_IO;
 3
 4procedure Show_Dir_Float_In_Out_File is
 5 package Float_IO is new Ada.Direct_IO (Float);
 6 use Float_IO;
 7
 8 F : Float_IO.File_Type;
 9 File_Name : constant String :=
10 "float_file.bin";
11begin
12 -- Open file for input / output
13 Create (F, Inout_File, File_Name);
14 Write (F, 1.5);
15 Write (F, 2.4);
16 Write (F, 6.7);
17
18 -- Set index to previous position
19 -- and overwrite value
20 Set_Index (F, Index (F) - 1);
21 Write (F, 7.7);
22
23 declare
24 Value : Float;
25 begin
26 -- Set index to start of file
27 Set_Index (F, 1);
28
29 while not End_Of_File (F) loop
30 Read (F, Value);
31 Ada.Text_IO.Put_Line
32 (Float'Image (Value));
33 end loop;
34 Close (F);
35 end;
36end Show_Dir_Float_In_Out_File;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Dir_Float_In_Out_File
MD5: 17b83a16ab8fa30f07cf8a0bd54078a1

Runtime output

 1.50000E+00
 2.40000E+00
 7.70000E+00

By running this example, we see that the file contains 7.7, rather than
the previous 6.7 that we wrote. We overwrote the value by changing the
index to the previous position before doing another write.

In this example we used the Inout_File mode. Using that mode, we just
changed the index back to the initial position before reading from the file
(Set_Index (F, 1)) instead of closing the file and reopening it for
reading.

Stream I/O

All the previous approaches for file I/O in binary format (sequential and
direct I/O) are specific for a single data type (the one we instantiate
them with). You can use these approaches to write objects of a single data
type that may be an array or record (potentially with many fields), but if
you need to create and process files that include different data types, or
any objects of an unbounded type, these approaches are not
sufficient. Instead, you should use stream I/O.

Stream I/O shares some similarities with the previous approaches. We still
use the Create, Open and Close procedures. However, instead of
accessing the file directly via a File_Type element, you use a
Stream_Access element. To read and write information, you use the
'Read or 'Write attributes of the data types you're reading
or writing.

Let's look at a version of the Show_Dir_Float_IO procedure from the
previous section that makes use of stream I/O instead of direct I/O:

show_float_stream.adb

 1with Ada.Text_IO;
 2
 3with Ada.Streams.Stream_IO;
 4use Ada.Streams.Stream_IO;
 5
 6procedure Show_Float_Stream is
 7 F : File_Type;
 8 S : Stream_Access;
 9 File_Name : constant String :=
10 "float_file.bin";
11begin
12 Create (F, Out_File, File_Name);
13 S := Stream (F);
14
15 Float'Write (S, 1.5);
16 Float'Write (S, 2.4);
17 Float'Write (S, 6.7);
18
19 Close (F);
20
21 declare
22 Value : Float;
23 begin
24 Open (F, In_File, File_Name);
25 S := Stream (F);
26
27 while not End_Of_File (F) loop
28 Float'Read (S, Value);
29 Ada.Text_IO.Put_Line
30 (Float'Image (Value));
31 end loop;
32 Close (F);
33 end;
34end Show_Float_Stream;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Float_Stream
MD5: 34ccf04b0821074a332019ac0e38bb3e

Runtime output

 1.50000E+00
 2.40000E+00
 6.70000E+00

After the call to Create, we retrieve the corresponding
Stream_Access element by calling the Stream function. We then
use this stream to write information to the file via the 'Write
attribute of the Float type. After closing the file and
reopening it for reading, we again retrieve the corresponding
Stream_Access element and processed to read information from the
file via the 'Read attribute of the Float type.

You can use streams to create and process files containing different data
types within the same file. You can also read and write unbounded data
types such as strings. However, when using unbounded data types you must
call the 'Input and 'Output attributes of the unbounded data
type: these attributes write information about bounds or discriminants in
addition to the object's actual data.

The following example shows file I/O that mixes both strings of
different lengths and floating-point values:

show_string_stream.adb

 1with Ada.Text_IO;
 2
 3with Ada.Streams.Stream_IO;
 4use Ada.Streams.Stream_IO;
 5
 6procedure Show_String_Stream is
 7 F : File_Type;
 8 S : Stream_Access;
 9 File_Name : constant String :=
10 "float_file.bin";
11
12 procedure Output (S : Stream_Access;
13 FV : Float;
14 SV : String) is
15 begin
16 String'Output (S, SV);
17 Float'Output (S, FV);
18 end Output;
19
20 procedure Input_Display (S : Stream_Access) is
21 SV : String := String'Input (S);
22 FV : Float := Float'Input (S);
23 begin
24 Ada.Text_IO.Put_Line (Float'Image (FV)
25 & " --- " & SV);
26 end Input_Display;
27
28begin
29 Create (F, Out_File, File_Name);
30 S := Stream (F);
31
32 Output (S, 1.5, "Hi!!");
33 Output (S, 2.4, "Hello world!");
34 Output (S, 6.7, "Something longer here...");
35
36 Close (F);
37
38 Open (F, In_File, File_Name);
39 S := Stream (F);
40
41 while not End_Of_File (F) loop
42 Input_Display (S);
43 end loop;
44 Close (F);
45
46end Show_String_Stream;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_String_Stream
MD5: 3ae8276ada5f24cab49994e368e0fa34

Runtime output

 1.50000E+00 --- Hi!!
 2.40000E+00 --- Hello world!
 6.70000E+00 --- Something longer here...

When you use Stream I/O, no information is written into the file indicating
the type of the data that you wrote. If a file contains data from
different types, you must reference types in the same order when reading a
file as when you wrote it. If not, the information you get will be
corrupted. Unfortunately, strong data typing doesn't help you in this
case. Writing simple procedures for file I/O (as in the example above) may
help ensuring that the file format is consistent.

Like direct I/O, stream I/O support also allows you to access any location
in the file. However, when doing so, you need to be extremely careful that
the position of the new index is consistent with the data types you're
expecting.

Footnotes

Standard library: Numerics

The standard library provides support for common numeric operations on
floating-point types as well as on complex types and matrices. In the sections
below, we present a brief introduction to these numeric operations.

Elementary Functions

The Ada.Numerics.Elementary_Functions package provides common
operations for floating-point types, such as square root, logarithm,
and the trigonometric functions (e.g., sin, cos). For example:

show_elem_math.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics; use Ada.Numerics;
 3
 4with Ada.Numerics.Elementary_Functions;
 5use Ada.Numerics.Elementary_Functions;
 6
 7procedure Show_Elem_Math is
 8 X : Float;
 9begin
10 X := 2.0;
11 Put_Line ("Square root of "
12 & Float'Image (X)
13 & " is "
14 & Float'Image (Sqrt (X)));
15
16 X := e;
17 Put_Line ("Natural log of "
18 & Float'Image (X)
19 & " is "
20 & Float'Image (Log (X)));
21
22 X := 10.0 ** 6.0;
23 Put_Line ("Log_10 of "
24 & Float'Image (X)
25 & " is "
26 & Float'Image (Log (X, 10.0)));
27
28 X := 2.0 ** 8.0;
29 Put_Line ("Log_2 of "
30 & Float'Image (X)
31 & " is "
32 & Float'Image (Log (X, 2.0)));
33
34 X := Pi;
35 Put_Line ("Cos of "
36 & Float'Image (X)
37 & " is "
38 & Float'Image (Cos (X)));
39
40 X := -1.0;
41 Put_Line ("Arccos of "
42 & Float'Image (X)
43 & " is "
44 & Float'Image (Arccos (X)));
45end Show_Elem_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Elem_Math
MD5: 17511d7e17cd98d4b6e49ad302d6dcb6

Runtime output

Square root of 2.00000E+00 is 1.41421E+00
Natural log of 2.71828E+00 is 1.00000E+00
Log_10 of 1.00000E+06 is 6.00000E+00
Log_2 of 2.56000E+02 is 8.00000E+00
Cos of 3.14159E+00 is -1.00000E+00
Arccos of -1.00000E+00 is 3.14159E+00

Here we use the standard e and Pi constants from the
Ada.Numerics package.

The Ada.Numerics.Elementary_Functions package provides operations
for the Float type. Similar packages are available for
Long_Float and Long_Long_Float types. For example, the
Ada.Numerics.Long_Elementary_Functions package offers the same set
of operations for the Long_Float type. In addition, the
Ada.Numerics.Generic_Elementary_Functions package is a generic
version of the package that you can instantiate for custom floating-point
types. In fact, the Elementary_Functions package can be defined as
follows:

package Elementary_Functions is new
 Ada.Numerics.Generic_Elementary_Functions (Float);

Random Number Generation

The Ada.Numerics.Float_Random package provides a simple random
number generator for the range between 0.0 and 1.0. To use it, declare a
generator G, which you pass to Random. For example:

show_float_random_num.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Float_Random;
 4use Ada.Numerics.Float_Random;
 5
 6procedure Show_Float_Random_Num is
 7 G : Generator;
 8 X : Uniformly_Distributed;
 9begin
10 Reset (G);
11
12 Put_Line ("Some random numbers between "
13 & Float'Image
14 (Uniformly_Distributed'First)
15 & " and "
16 & Float'Image
17 (Uniformly_Distributed'Last)
18 & ":");
19 for I in 1 .. 15 loop
20 X := Random (G);
21 Put_Line (Float'Image (X));
22 end loop;
23end Show_Float_Random_Num;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Float_Random_Num
MD5: cf38ab00e27bad4309010e678113dd36

Runtime output

Some random numbers between 0.00000E+00 and 1.00000E+00:
 8.27457E-01
 9.30087E-01
 8.52278E-01
 4.25328E-01
 4.12874E-04
 2.67612E-01
 7.09291E-01
 5.94872E-01
 5.37676E-01
 6.77410E-02
 9.41456E-01
 6.58235E-01
 8.91268E-01
 3.99750E-01
 1.46791E-01

The standard library also includes a random number generator for discrete
numbers, which is part of the Ada.Numerics.Discrete_Random package.
Since it's a generic package, you have to instantiate it for the desired
discrete type. This allows you to specify a range for the generator. In the
following example, we create an application that displays random integers
between 1 and 10:

show_discrete_random_num.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics.Discrete_Random;
 3
 4procedure Show_Discrete_Random_Num is
 5
 6 subtype Random_Range is Integer range 1 .. 10;
 7
 8 package R is new
 9 Ada.Numerics.Discrete_Random (Random_Range);
10 use R;
11
12 G : Generator;
13 X : Random_Range;
14begin
15 Reset (G);
16
17 Put_Line ("Some random numbers between "
18 & Integer'Image (Random_Range'First)
19 & " and "
20 & Integer'Image (Random_Range'Last)
21 & ":");
22
23 for I in 1 .. 15 loop
24 X := Random (G);
25 Put_Line (Integer'Image (X));
26 end loop;
27end Show_Discrete_Random_Num;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Discrete_Random_Num
MD5: 892f6525477f9a2c56f88885de011fba

Runtime output

Some random numbers between 1 and 10:
 6
 9
 10
 3
 3
 3
 4
 2
 8
 7
 6
 6
 2
 9
 2

Here, package R is instantiated with the Random_Range type,
which has a constrained range between 1 and 10. This allows us to
control the range used for the random numbers. We could easily modify
the application to display random integers between 0 and 20 by
changing the specification of the Random_Range type. We can also
use floating-point or fixed-point types.

Complex Types

The Ada.Numerics.Complex_Types package provides support for complex
number types and the Ada.Numerics.Complex_Elementary_Functions
package provides support for common operations on complex number types,
similar to the Ada.Numerics.Elementary_Functions package. Finally,
you can use the Ada.Text_IO.Complex_IO package to perform I/O
operations on complex numbers. In the following example, we declare
variables of the Complex type and initialize them using an aggregate:

show_elem_math.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics; use Ada.Numerics;
 3
 4with Ada.Numerics.Complex_Types;
 5use Ada.Numerics.Complex_Types;
 6
 7with Ada.Numerics.Complex_Elementary_Functions;
 8use Ada.Numerics.Complex_Elementary_Functions;
 9
10with Ada.Text_IO.Complex_IO;
11
12procedure Show_Elem_Math is
13
14 package C_IO is new
15 Ada.Text_IO.Complex_IO (Complex_Types);
16 use C_IO;
17
18 X, Y : Complex;
19 R, Th : Float;
20begin
21 X := (2.0, -1.0);
22 Y := (3.0, 4.0);
23
24 Put (X);
25 Put (" * ");
26 Put (Y);
27 Put (" is ");
28 Put (X * Y);
29 New_Line;
30 New_Line;
31
32 R := 3.0;
33 Th := Pi / 2.0;
34 X := Compose_From_Polar (R, Th);
35 -- Alternatively:
36 -- X := R * Exp ((0.0, Th));
37 -- X := R * e ** Complex'(0.0, Th);
38
39 Put ("Polar form: "
40 & Float'Image (R) & " * e**(i * "
41 & Float'Image (Th) & ")");
42 New_Line;
43
44 Put ("Modulus of ");
45 Put (X);
46 Put (" is ");
47 Put (Float'Image (abs (X)));
48 New_Line;
49
50 Put ("Argument of ");
51 Put (X);
52 Put (" is ");
53 Put (Float'Image (Argument (X)));
54 New_Line;
55 New_Line;
56
57 Put ("Sqrt of ");
58 Put (X);
59 Put (" is ");
60 Put (Sqrt (X));
61 New_Line;
62end Show_Elem_Math;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Elem_Math
MD5: 24fd48ab69aeac28286e6ec8065899c5

Runtime output

(2.00000E+00,-1.00000E+00) * (3.00000E+00, 4.00000E+00) is (1.00000E+01, 5.00000E+00)

Polar form: 3.00000E+00 * e**(i * 1.57080E+00)
Modulus of (-1.31134E-07, 3.00000E+00) is 3.00000E+00
Argument of (-1.31134E-07, 3.00000E+00) is 1.57080E+00

Sqrt of (-1.31134E-07, 3.00000E+00) is (1.22474E+00, 1.22474E+00)

As we can see from this example, all the common operators, such as *
and +, are available for complex types. You also have typical
operations on complex numbers, such as Argument and Exp. In
addition to initializing complex numbers in the cartesian form using
aggregates, you can do so from the polar form by calling the
Compose_From_Polar function.

The Ada.Numerics.Complex_Types and
Ada.Numerics.Complex_Elementary_Functions packages provide
operations for the Float type. Similar packages are available for
Long_Float and Long_Long_Float types. In addition, the
Ada.Numerics.Generic_Complex_Types and
Ada.Numerics.Generic_Complex_Elementary_Functions packages are
generic versions that you can instantiate for custom or pre-defined
floating-point types. For example:

with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
with Ada.Text_IO.Complex_IO;

procedure Show_Elem_Math is

 package Complex_Types is new
 Ada.Numerics.Generic_Complex_Types (Float);
 use Complex_Types;

 package Elementary_Functions is new
 Ada.Numerics.Generic_Complex_Elementary_Functions
 (Complex_Types);
 use Elementary_Functions;

 package C_IO is new Ada.Text_IO.Complex_IO
 (Complex_Types);
 use C_IO;

 X, Y : Complex;
 R, Th : Float;

Vector and Matrix Manipulation

The Ada.Numerics.Real_Arrays package provides support for
vectors and matrices. It includes common matrix operations such as
inverse, determinant, eigenvalues in addition to simpler operators
such as matrix addition and multiplication. You can declare vectors
and matrices using the Real_Vector and Real_Matrix types,
respectively.

The following example uses some of the operations from the
Ada.Numerics.Real_Arrays package:

show_matrix.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Real_Arrays;
 4use Ada.Numerics.Real_Arrays;
 5
 6procedure Show_Matrix is
 7
 8 procedure Put_Vector (V : Real_Vector) is
 9 begin
10 Put (" (");
11 for I in V'Range loop
12 Put (Float'Image (V (I)) & " ");
13 end loop;
14 Put_Line (")");
15 end Put_Vector;
16
17 procedure Put_Matrix (M : Real_Matrix) is
18 begin
19 for I in M'Range (1) loop
20 Put (" (");
21 for J in M'Range (2) loop
22 Put (Float'Image (M (I, J)) & " ");
23 end loop;
24 Put_Line (")");
25 end loop;
26 end Put_Matrix;
27
28 V1 : Real_Vector := (1.0, 3.0);
29 V2 : Real_Vector := (75.0, 11.0);
30
31 M1 : Real_Matrix :=
32 ((1.0, 5.0, 1.0),
33 (2.0, 2.0, 1.0));
34 M2 : Real_Matrix :=
35 ((31.0, 11.0, 10.0),
36 (34.0, 16.0, 11.0),
37 (32.0, 12.0, 10.0),
38 (31.0, 13.0, 10.0));
39 M3 : Real_Matrix := ((1.0, 2.0),
40 (2.0, 3.0));
41begin
42 Put_Line ("V1");
43 Put_Vector (V1);
44 Put_Line ("V2");
45 Put_Vector (V2);
46 Put_Line ("V1 * V2 =");
47 Put_Line (" "
48 & Float'Image (V1 * V2));
49 Put_Line ("V1 * V2 =");
50 Put_Matrix (V1 * V2);
51 New_Line;
52
53 Put_Line ("M1");
54 Put_Matrix (M1);
55 Put_Line ("M2");
56 Put_Matrix (M2);
57 Put_Line ("M2 * Transpose(M1) =");
58 Put_Matrix (M2 * Transpose (M1));
59 New_Line;
60
61 Put_Line ("M3");
62 Put_Matrix (M3);
63 Put_Line ("Inverse (M3) =");
64 Put_Matrix (Inverse (M3));
65 Put_Line ("abs Inverse (M3) =");
66 Put_Matrix (abs Inverse (M3));
67 Put_Line ("Determinant (M3) =");
68 Put_Line (" "
69 & Float'Image (Determinant (M3)));
70 Put_Line ("Solve (M3, V1) =");
71 Put_Vector (Solve (M3, V1));
72 Put_Line ("Eigenvalues (M3) =");
73 Put_Vector (Eigenvalues (M3));
74 New_Line;
75end Show_Matrix;

Code block metadata

Project: Courses.Intro_To_Ada.Standard_Library.Show_Matrix
MD5: c9df45a742a42bd47e03fbf2d0282238

Runtime output

V1
 (1.00000E+00 3.00000E+00)
V2
 (7.50000E+01 1.10000E+01)
V1 * V2 =
 1.08000E+02
V1 * V2 =
 (7.50000E+01 1.10000E+01)
 (2.25000E+02 3.30000E+01)

M1
 (1.00000E+00 5.00000E+00 1.00000E+00)
 (2.00000E+00 2.00000E+00 1.00000E+00)
M2
 (3.10000E+01 1.10000E+01 1.00000E+01)
 (3.40000E+01 1.60000E+01 1.10000E+01)
 (3.20000E+01 1.20000E+01 1.00000E+01)
 (3.10000E+01 1.30000E+01 1.00000E+01)
M2 * Transpose(M1) =
 (9.60000E+01 9.40000E+01)
 (1.25000E+02 1.11000E+02)
 (1.02000E+02 9.80000E+01)
 (1.06000E+02 9.80000E+01)

M3
 (1.00000E+00 2.00000E+00)
 (2.00000E+00 3.00000E+00)
Inverse (M3) =
 (-3.00000E+00 2.00000E+00)
 (2.00000E+00 -1.00000E+00)
abs Inverse (M3) =
 (3.00000E+00 2.00000E+00)
 (2.00000E+00 1.00000E+00)
Determinant (M3) =
 -1.00000E+00
Solve (M3, V1) =
 (3.00000E+00 -1.00000E+00)
Eigenvalues (M3) =
 (4.23607E+00 -2.36068E-01)

Matrix dimensions are automatically determined from the aggregate used for
initialization when you don't specify them. You can, however, also use
explicit ranges. For example:

M1 : Real_Matrix (1 .. 2, 1 .. 3) :=
 ((1.0, 5.0, 1.0),
 (2.0, 2.0, 1.0));

The Ada.Numerics.Real_Arrays package implements operations for the
Float type. Similar packages are available for Long_Float and
Long_Long_Float types. In addition, the
Ada.Numerics.Generic_Real_Arrays package is a generic version that
you can instantiate with custom floating-point types. For example, the
Real_Arrays package can be defined as follows:

package Real_Arrays is new
 Ada.Numerics.Generic_Real_Arrays (Float);

Footnotes

Appendices

Appendix A: Generic Formal Types

The following tables contain examples of available formal types
for generics:

	Formal type

	Actual type

	Incomplete type

Format: type T;

	Any type

	Discrete type

Format: type T is (<>);

	Any integer, modular or
enumeration type

	Range type

Format: type T is range <>;

	Any signed integer type

	Modular type

Format: type T is mod <>;

	Any modular type

	Floating-point type

Format: type T is digits <>;

	Any floating-point type

	Binary fixed-point type

Format: type T is delta <>;

	Any binary fixed-point
type

	Decimal fixed-point type

Format: type T is delta <> digits <>;

	Any decimal fixed-point
type

	Definite nonlimited private type

Format: type T is private;

	Any nonlimited,
definite type

	Nonlimited Private type with discriminant

Format: type T (D : DT) is private;

	Any nonlimited type
with discriminant

	Access type

Format: type A is access T;

	Any access type for
type T

	Definite derived type

Format: type T is new B;

	Any concrete type
derived from base type
B

	Limited private type

Format: type T is limited private;

	Any definite type,
limited or not

	Incomplete tagged type

Format: type T is tagged;

	Any concrete, definite,
tagged type

	Definite tagged private type

Format: type T is tagged private;

	Any concrete, definite,
tagged type

	Definite tagged limited private type

Format: type T is tagged limited private;

	Any concrete definite
tagged type, limited or
not

	Definite abstract tagged private type

Format: type T is abstract tagged private;

	Any nonlimited,
definite tagged type,
abstract or concrete

	Definite abstract tagged limited private type

Format:
type T is abstract tagged limited private;

	Any definite tagged
type, limited or not,
abstract or concrete

	Definite derived tagged type

Format: type T is new B with private;

	Any concrete tagged
type derived from base
type B

	Definite abstract derived tagged type

Format: type T is abstract new B with private;

	Any tagged type derived
from base type B
abstract or concrete

	Array type

Format: type A is array (R) of T;

	Any array type with
range R containing
elements of type T

	Interface type

Format: type T is interface;

	Any interface type T

	Limited interface type

Format: type T is limited interface;

	Any limited interface
type T

	Task interface type

Format: type T is task interface;

	Any task interface
type T

	Synchronized interface type

Format: type T is synchronized interface;

	Any synchronized
interface type T

	Protected interface type

Format: type T is protected interface;

	Any protected
interface type T

	Derived interface type

Format: type T is new B and I with private;

	Any type T derived from
base type B and
interface I

	Derived type with multiple interfaces

Format:
type T is new B and I1 and I2 with private;

	Any type T derived from
base type B and
interfaces I1 and I2

	Abstract derived interface type

Format:
type T is abstract new B and I with private;

	Any type T derived from
abstract base type B
and interface I

	Limited derived interface type

Format:
type T is limited new B and I with private;

	Any type T derived from
limited base type B and
limited interface I

	Abstract limited derived interface type

Format:
type T is abstract limited new B and I with private;

	Any type T derived from
abstract limited base
type B and limited
interface I

	Synchronized interface type

Format:
type T is synchronized new SI with private;

	Any type T derived from
synchronized interface
SI

	Abstract synchronized interface type

Format:
type T is abstract synchronized new SI with private;

	Any type T derived from
synchronized interface
SI

Indefinite version

Many of the examples above can be used for formal indefinite types:

	Formal type

	Actual type

	Indefinite incomplete type

Format: type T (<>);

	Any type

	Indefinite nonlimited private type

Format: type T (<>) is private;

	Any nonlimited type
indefinite or definite

	Indefinite limited private type

Format: type T (<>) is limited private;

	Any type, limited or
not, indefinite or
definite

	Incomplete indefinite tagged private type

Format: type T (<>) is tagged;

	Any concrete tagged
type,
indefinite or definite

	Indefinite tagged private type

Format: type T (<>) is tagged private;

	Any concrete,
nonlimited tagged type,
indefinite or definite

	Indefinite tagged limited private type

Format: type T (<>) is tagged limited private;

	Any concrete tagged
type, limited or not,
indefinite or definite

	Indefinite abstract tagged private type

Format: type T (<>) is abstract tagged private;

	Any nonlimited tagged
type, indefinite or
definite, abstract or
concrete

	Indefinite abstract tagged limited private type

Format:
type T (<>) is abstract tagged limited private;

	Any tagged type,
limited or not,
indefinite or definite
abstract or concrete

	Indefinite derived tagged type

Format: type T (<>) is new B with private;

	Any tagged type derived
from base type B,
indefinite or definite

	Indefinite abstract derived tagged type

Format:
type T (<>) is abstract new B with private;

	Any tagged type derived
from base type B,
indefinite or definite
abstract or concrete

The same examples could also contain discriminants. In this case, (<>)
is replaced by a list of discriminants, e.g.: (D: DT).

Appendix B: Containers

The following table shows all containers available in Ada,
including their versions (standard, bounded, unbounded, indefinite):

	Category

	Container

	Std

	Bounded

	Unbounded

	Indefinite

	Vector

	Vectors

	Y

	Y

	
	Y

	List

	Doubly Linked Lists

	Y

	Y

	
	Y

	Map

	Hashed Maps

	Y

	Y

	
	Y

	Map

	Ordered Maps

	Y

	Y

	
	Y

	Set

	Hashed Sets

	Y

	Y

	
	Y

	Set

	Ordered Sets

	Y

	Y

	
	Y

	Tree

	Multiway Trees

	Y

	Y

	
	Y

	Generic

	Holders

	
	
	
	Y

	Queue

	Synchronized Queue Interfaces

	Y

	
	
	

	Queue

	Synchronized Queues

	
	Y

	Y

	

	Queue

	Priority Queues

	
	Y

	Y

	

Note

To get the correct container name, replace the whitespace by _ in the
names above. (For example, Hashed Maps becomes Hashed_Maps.)

The following table presents the prefixing applied to the container
name that depends on its version. As indicated in the table, the
standard version does not have a prefix associated with it.

	Version

	Naming prefix

	Std

	

	Bounded

	Bounded_

	Unbounded

	Unbounded_

	Indefinite

	Indefinite_

Footnotes

Advanced Journey With Ada: A Flight In Progress

Release 2024-03

Mar 30, 2024

Copyright © 2019 – 2023, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

Warning

This is work in progress!

Information in this document is subject to change at any time without
prior notification.

Note

The code examples in this course use a 50-column limit, which
greatly improves the readability of the code on devices with a small
screen size. This constraint, however, leads to an unusual coding
style. For instance, instead of calling Put_Line in a single
line, we have this:

Put_Line
 (" is in the northeast quadrant");

or this:

Put_Line (" (X => "
 & Integer'Image (P.X)
 & ")");

Note that typical Ada code uses a limit of at least 79 columns.
Therefore, please don't take the coding style from this course as a
reference!

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

This course will teach you advanced topics of the Ada programming language.
The
Introduction to Ada
course is a prerequisite for this course.

This document was written by Gustavo A. Hoffmann and Robert A. Duff,
with contributions from Franco Gasperoni, Gary Dismukes,
Patrick Rogers, and Robert Dewar.

This document was reviewed by Patrick Rogers and Tucker Taft.

CHANGELOG

Release 2023-05

	First draft release including following parts:

	Data Types

	Control Flow

	Modular Programming

Contents

	Data types
	Types
	Scalar Types
	Ranges

	Predecessor and Successor

	Scalar To String Conversion

	Width attribute

	Base

	Enumerations
	Enumerations as functions

	Enumeration overloading

	Position and Internal Code

	Definite and Indefinite Subtypes
	Constrained Attribute

	Incomplete types

	Type view

	Type conversion
	Value conversion

	View conversion

	Implicit conversions

	Conversion of other types

	Qualified Expressions
	Verifying subtypes

	Default initial values

	Deferred Constants

	User-defined literals

	Types and Representation
	Enumeration Representation Clauses

	Data Representation
	Sizes

	Alignment

	Overlapping Storage

	Packed Representation

	Record Representation and storage clauses
	Storage Place Attributes

	Using Representation Clauses

	Derived Types And Representation Clauses

	Representation on Bit Level

	Changing Data Representation
	Restrictions

	Valid Attribute

	Unchecked Union

	Shared variable control
	Volatile

	Independent

	Atomic

	Addresses
	Address attribute

	Address aspect

	Address comparison

	Address to integer conversion

	Address arithmetic

	Discarding names

	Records
	Mutually dependent types

	Null records
	Simple Prototyping

	Extending the prototype

	More complex applications

	Implementing the API

	Tagged null records

	Per-Object Expressions

	Aggregates
	Container Aggregates

	Record aggregates
	<>

	others

	Record discriminants

	Full coverage rules for Aggregates

	Array aggregates
	Positional and named array aggregates

	Null array aggregate

	|, <>, others

	..

	Missing components

	Iterated component association

	Multidimensional array aggregates

	<> and default values

	Extension Aggregates
	Assignments to objects of derived types

	Example: Points

	Using extension aggregates

	More extension aggregates

	with others

	with null record

	Extension aggregates and descendent types

	Delta Aggregates
	Delta Aggregates for Tagged Records

	Delta Aggregates for Non-Tagged Records

	Delta Aggregates for Arrays

	Arrays
	Unconstrained Arrays
	Unconstrained Arrays vs. Vectors

	Multidimensional Arrays
	Unconstrained Multidimensional Arrays

	Arrays of arrays

	Strings
	Wide and Wide-Wide Strings
	Text I/O

	Wide and Wide-Wide String Handling

	Bounded and Unbounded Wide and Wide-Wide Strings

	String Encoding
	UTF-8 encoding and decoding

	UTF-8 size and length

	UTF-8 encoding in source-code files

	UTF-16 encoding and decoding

	Image attribute
	Overview

	Type'Image and Obj'Image

	Wider versions of Image

	Image attribute for non-scalar types

	Image attribute for tagged types

	Image attribute for task and protected types

	Put_Image aspect
	Overview

	Complete Example of Put_Image

	Relation to the Image attribute

	Put_Image and derived types

	Put_Image and tagged types

	Universal text buffer
	Overview

	Additional procedures

	Numerics
	Modular Types
	Modulus Attribute

	Mod Attribute

	Operations on modular types

	Numeric Literals
	Classification

	Features and Flexibility

	Floating-Point Types
	Representation-oriented attributes

	Primitive function attributes

	Fixed-Point Types
	Attributes of fixed-point types

	Attributes of decimal fixed-point types

	Big Numbers
	Overview

	Factorial

	Conversions

	Other features of big integers

	Other operators for big integers

	Big real and quotients

	Range checks

	Control Flow
	Expressions
	Expressions: Definition
	Relations and simple expressions

	Numeric expressions

	Other expressions

	Parenthesized expression

	Conditional Expressions

	Quantified Expressions

	Declare Expressions
	Restrictions in the declarative part

	Reduction Expressions
	Value sequences

	Custom reducers

	Other accumulator types

	Statements
	Simple and Compound Statements

	Labels
	Labels and goto statements

	Use-case: Continue

	Labels and compound statements

	Exit loop statement

	If, case and loop statements
	Case statements and expressions

	Block Statements

	Extended return statement
	Other usages of extended return statements

	Subprograms
	Parameter Modes and Associations
	Formal Parameter Modes

	By-copy and by-reference

	Bounded errors

	Aliased parameters

	Parameter Associations

	Operators
	User-defined operators

	Expression functions

	Overloading

	Operator Overloading

	Operator Overriding

	Nonreturning procedures

	Inline subprograms

	Null Procedures
	Null procedures and overriding

	Exceptions
	Asserts

	Assertion policies

	Checks and exceptions
	Access Check

	Discriminant Check

	Division Check

	Index Check

	Length Check

	Overflow Check

	Range Check

	Tag Check

	Accessibility Check

	Allocation Check

	Elaboration Check

	Storage Check

	Ada.Exceptions package
	Retrieving exception information

	Collecting exceptions

	Debugging exceptions in the GNAT toolchain

	Exception renaming

	Out and Uninitialized

	Suppressing checks
	pragma Suppress

	pragma Unsuppress

	Modular programming
	Packages
	Package renaming
	Grouping packages

	Child of renamed package

	Backwards-compatibility via renaming

	Private packages
	Declaration and usage

	Private sibling packages

	Outside the package tree

	Private with clauses
	Definition and usage

	Referring to private child package

	Limited Visibility
	Limited visibility and private with clauses

	Limited visibility and other elements

	Visibility
	Automatic visibility

	With clauses and visibility

	Circular dependency

	Private packages

	Use type clause
	Another use clause example

	Visibility and Readability

	use type

	use all type

	Use clauses and naming conflicts
	Code example

	Naming conflict

	Circumventing naming conflicts

	Subprograms and Modularity
	Private subprograms
	Private subprograms of a package

	Private subprograms and private packages

	Resource Management
	Access Types
	Access types: Terminology
	Access type, designated subtype and profile

	Access object and designated object

	Access value and designated value

	Access types: Allocation
	Pool-specific access types

	Multiple allocation

	Discriminants as Access Values
	Unconstrained type as designated subtype

	Whole object assignments

	Parameters as Access Values
	Changing the referenced object

	Replace the access value

	Side-effects on designated objects

	Self-reference

	Mutually dependent types using access types

	Dereferencing
	Implicit Dereferencing

	Ragged arrays
	Uniform multidimensional arrays

	Non-uniform multidimensional array

	Aliasing
	Aliased objects

	Aliased components

	Aliased parameters

	Accessibility Levels and Rules: An Introduction
	Lifetime of objects

	Accessibility Levels

	Accessibility Rules

	Accessibility rules on parameters

	Dangling References

	Unchecked Access

	Unchecked Deallocation
	Unchecked Deallocation and Dangling References

	Dereferencing dangling references

	Restrictions for Ada.Unchecked_Deallocation

	Null & Not Null Access

	Design strategies for access types
	Abstract data type for access types

	Controlled type for access types

	Access to subprograms
	Static vs. dynamic calls

	Access to subprogram declaration

	Objects of access-to-subprogram type

	Components of access-to-subprogram type

	Access-to-subprogram as discriminant types

	Access-to-subprograms as formal parameters

	Selecting subprograms

	Null exclusion

	Access to protected subprograms

	Accessibility Rules and Access-To-Subprograms
	Unchecked Access

	Access and Address
	Address and access conversion

	Anonymous Access Types
	Named and Anonymous Access Types
	Relation to named types

	Benefits of anonymous access types

	Anonymous Access-To-Object Types
	Not Null Anonymous Access-To-Object Types

	Drawbacks of Anonymous Access-To-Object Types

	Access discriminants
	Default Value of Access Discriminants

	Benefits of Access Discriminants

	Preventing dangling pointers

	Self-reference

	Mutually dependent types using anonymous access types

	Access parameters
	Interfacing To Other Languages

	Inherited Primitive Operations For Tagged Types

	User-Defined References
	Dereferencing of tagged types

	Simple container

	Anonymous Access Types and Accessibility Rules
	Conversions between Anonymous and Named Access Types

	Accessibility rules on access parameters

	Anonymous Access-To-Subprograms
	Examples of anonymous access-to-subprogram usage

	Application of anonymous access-to-subprogram types

	Readability

	Accessibility Rules and Anonymous Access-To-Subprograms
	Named vs. anonymous access-to-subprograms

	Named vs. anonymous access-to-subprograms as parameters

	Iterator

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Data types

	Types
	Scalar Types
	Ranges

	Predecessor and Successor

	Scalar To String Conversion

	Width attribute

	Base

	Enumerations
	Enumerations as functions

	Enumeration overloading

	Position and Internal Code

	Definite and Indefinite Subtypes
	Constrained Attribute

	Incomplete types

	Type view

	Type conversion
	Value conversion

	View conversion

	Implicit conversions

	Conversion of other types

	Qualified Expressions
	Verifying subtypes

	Default initial values

	Deferred Constants

	User-defined literals

	Types and Representation
	Enumeration Representation Clauses

	Data Representation
	Sizes

	Alignment

	Overlapping Storage

	Packed Representation

	Record Representation and storage clauses
	Storage Place Attributes

	Using Representation Clauses

	Derived Types And Representation Clauses

	Representation on Bit Level

	Changing Data Representation
	Restrictions

	Valid Attribute

	Unchecked Union

	Shared variable control
	Volatile

	Independent

	Atomic

	Addresses
	Address attribute

	Address aspect

	Address comparison

	Address to integer conversion

	Address arithmetic

	Discarding names

	Records
	Mutually dependent types

	Null records
	Simple Prototyping

	Extending the prototype

	More complex applications

	Implementing the API

	Tagged null records

	Per-Object Expressions

	Aggregates
	Container Aggregates

	Record aggregates
	<>

	others

	Record discriminants

	Full coverage rules for Aggregates

	Array aggregates
	Positional and named array aggregates

	Null array aggregate

	|, <>, others

	..

	Missing components

	Iterated component association

	Multidimensional array aggregates

	<> and default values

	Extension Aggregates
	Assignments to objects of derived types

	Example: Points

	Using extension aggregates

	More extension aggregates

	with others

	with null record

	Extension aggregates and descendent types

	Delta Aggregates
	Delta Aggregates for Tagged Records

	Delta Aggregates for Non-Tagged Records

	Delta Aggregates for Arrays

	Arrays
	Unconstrained Arrays
	Unconstrained Arrays vs. Vectors

	Multidimensional Arrays
	Unconstrained Multidimensional Arrays

	Arrays of arrays

	Strings
	Wide and Wide-Wide Strings
	Text I/O

	Wide and Wide-Wide String Handling

	Bounded and Unbounded Wide and Wide-Wide Strings

	String Encoding
	UTF-8 encoding and decoding

	UTF-8 size and length

	UTF-8 encoding in source-code files

	UTF-16 encoding and decoding

	Image attribute
	Overview

	Type'Image and Obj'Image

	Wider versions of Image

	Image attribute for non-scalar types

	Image attribute for tagged types

	Image attribute for task and protected types

	Put_Image aspect
	Overview

	Complete Example of Put_Image

	Relation to the Image attribute

	Put_Image and derived types

	Put_Image and tagged types

	Universal text buffer
	Overview

	Additional procedures

	Numerics
	Modular Types
	Modulus Attribute

	Mod Attribute

	Operations on modular types

	Numeric Literals
	Classification

	Features and Flexibility

	Floating-Point Types
	Representation-oriented attributes

	Primitive function attributes

	Fixed-Point Types
	Attributes of fixed-point types

	Attributes of decimal fixed-point types

	Big Numbers
	Overview

	Factorial

	Conversions

	Other features of big integers

	Other operators for big integers

	Big real and quotients

	Range checks

Footnotes

Types

Scalar Types

In general terms, scalar types are the most basic types that we can get. As
we know, we can classify them as follows:

	Category

	Discrete

	Numeric

	Enumeration

	Yes

	No

	Integer

	Yes

	Yes

	Real

	No

	Yes

Many attributes exist for scalar types. For example, we can use the
Image and Value attributes to convert between a given type and a
string type. The following table presents the main attributes for scalar types:

	Category

	Attribute

	Returned value

	Ranges

	First

	First value of the discrete subtype's range.

	Last

	Last value of the discrete subtype's range.

	Range

	Range of the discrete subtype (corresponds
to Subtype'First .. Subtype'Last).

	Iterators

	Pred

	Predecessor of the input value.

	Succ

	Successor of the input value.

	Comparison

	Min

	Minimum of two values.

	Max

	Maximum of two values.

	String
conversion

	Image

	String representation of the input value.

	Value

	Value of a subtype based on input string.

We already discussed some of these attributes in the
Introduction to Ada course (in the sections about
range and related attributes and
image attribute). In this
section, we'll discuss some aspects that have been left out of the previous
course.

In the Ada Reference Manual

	3.5 Scalar types[#1]

Ranges

We've seen that the First and Last attributes can be used with
discrete types. Those attributes are also available for real types. Here's an
example using the Float type and a subtype of it:

show_first_last_real.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_First_Last_Real is
 4 subtype Norm is Float range 0.0 .. 1.0;
 5begin
 6 Put_Line ("Float'First: " & Float'First'Image);
 7 Put_Line ("Float'Last: " & Float'Last'Image);
 8 Put_Line ("Norm'First: " & Norm'First'Image);
 9 Put_Line ("Norm'Last: " & Norm'Last'Image);
10end Show_First_Last_Real;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Ranges_Real_Types
MD5: 89745a94fbdc41a2880ba14e50401acb

Runtime output

Float'First: -3.40282E+38
Float'Last: 3.40282E+38
Norm'First: 0.00000E+00
Norm'Last: 1.00000E+00

This program displays the first and last values of both the Float type
and the Norm subtype. In the case of the Float type, we see the
full range, while for the Norm subtype, we get the values we used in the
declaration of the subtype (i.e. 0.0 and 1.0).

Predecessor and Successor

We can use the Pred and Succ attributes to get the predecessor
and successor of a specific value. For discrete types, this is simply the next
discrete value. For example, Pred (2) is 1 and Succ (2) is 3.
Let's look at a complete source-code example:

show_succ_pred_discrete.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Succ_Pred_Discrete is
 4 type State is (Idle, Started,
 5 Processing, Stopped);
 6
 7 Machine_State : constant State := Started;
 8
 9 I : constant Integer := 2;
10begin
11 Put_Line ("State : "
12 & Machine_State'Image);
13 Put_Line ("State'Pred (Machine_State): "
14 & State'Pred (Machine_State)'Image);
15 Put_Line ("State'Succ (Machine_State): "
16 & State'Succ (Machine_State)'Image);
17 Put_Line ("----------");
18
19 Put_Line ("I : "
20 & I'Image);
21 Put_Line ("Integer'Pred (I): "
22 & Integer'Pred (I)'Image);
23 Put_Line ("Integer'Succ (I): "
24 & Integer'Succ (I)'Image);
25end Show_Succ_Pred_Discrete;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Discrete
MD5: e11d0f50105864fdc1594b3bb72d927e

Runtime output

State : STARTED
State'Pred (Machine_State): IDLE
State'Succ (Machine_State): PROCESSING

I : 2
Integer'Pred (I): 1
Integer'Succ (I): 3

In this example, we use the Pred and Succ attributes for a
variable of enumeration type (State) and a variable of Integer
type.

We can also use the Pred and Succ attributes with real types. In
this case, however, the value we get depends on the actual type we're using:

	for fixed-point types, the value is calculated using the smallest value
(Small), which is derived from the declaration of the fixed-point
type;

	for floating-point types, the value used in the calculation depends on
representation constraints of the actual target machine.

Let's look at this example with a decimal type (Decimal) and a
floating-point type (My_Float):

show_succ_pred_real.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Succ_Pred_Real is
 4 subtype My_Float is
 5 Float range 0.0 .. 0.5;
 6
 7 type Decimal is
 8 delta 0.1 digits 2
 9 range 0.0 .. 0.5;
10
11 D : Decimal;
12 N : My_Float;
13begin
14 Put_Line ("---- DECIMAL -----");
15 Put_Line ("Small: " & Decimal'Small'Image);
16 Put_Line ("----- Succ -------");
17 D := Decimal'First;
18 loop
19 Put_Line (D'Image);
20 D := Decimal'Succ (D);
21
22 exit when D = Decimal'Last;
23 end loop;
24 Put_Line ("----- Pred -------");
25
26 D := Decimal'Last;
27 loop
28 Put_Line (D'Image);
29 D := Decimal'Pred (D);
30
31 exit when D = Decimal'First;
32 end loop;
33 Put_Line ("==================");
34
35 Put_Line ("---- MY_FLOAT ----");
36 Put_Line ("----- Succ -------");
37 N := My_Float'First;
38 for I in 1 .. 5 loop
39 Put_Line (N'Image);
40 N := My_Float'Succ (N);
41 end loop;
42 Put_Line ("----- Pred -------");
43
44 for I in 1 .. 5 loop
45 Put_Line (N'Image);
46 N := My_Float'Pred (N);
47 end loop;
48end Show_Succ_Pred_Real;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Real
MD5: f426d6539c3ce863101f1e6afb21c08f

Runtime output

---- DECIMAL -----
Small: 1.00000000000000000E-01
----- Succ -------
 0.0
 0.1
 0.2
 0.3
 0.4
----- Pred -------
 0.5
 0.4
 0.3
 0.2
 0.1
==================
---- MY_FLOAT ----
----- Succ -------
 0.00000E+00
 1.40130E-45
 2.80260E-45
 4.20390E-45
 5.60519E-45
----- Pred -------
 7.00649E-45
 5.60519E-45
 4.20390E-45
 2.80260E-45
 1.40130E-45

As the output of the program indicates, the smallest value (see
Decimal'Small in the example) is used to calculate the previous and next
values of Decimal type.

In the case of the My_Float type, the difference between the current
and the previous or next values is 1.40130E-45 (or 2-149) on a
standard PC.

Scalar To String Conversion

We've seen that we can use the Image and Value attributes to
perform conversions between values of a given subtype and a string:

show_image_value_attr.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Image_Value_Attr is
4 I : constant Integer := Integer'Value ("42");
5begin
6 Put_Line (I'Image);
7end Show_Image_Value_Attr;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Image_Value_Attr
MD5: 9daa13b1f05511fac7e108eb9b8eefa7

Runtime output

 42

The Image and Value attributes are used for the String
type specifically. In addition to them, there are also attributes for different
string types — namely Wide_String and Wide_Wide_String.
This is the complete list of available attributes:

	Conversion type

	Attribute

	String type

	Conversion to string

	Image

	String

	Wide_Image

	Wide_String

	Wide_Wide_Image

	Wide_Wide_String

	Conversion to subtype

	Value

	String

	Wide_Value

	Wide_String

	Wide_Wide_Value

	Wide_Wide_String

We discuss more about Wide_String and Wide_Wide_String in
another section.

Width attribute

When converting a value to a string by using the Image attribute, we get
a string with variable width. We can assess the maximum width of that string
for a specific subtype by using the Width attribute. For example,
Integer'Width gives us the maximum width returned by the Image
attribute when converting a value of Integer type to a string of
String type.

This attribute is useful when we're using bounded strings in our code to store
the string returned by the Image attribute. For example:

show_width_attr.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3with Ada.Strings.Bounded;
 4
 5procedure Show_Width_Attr is
 6 package B_Str is new
 7 Ada.Strings.Bounded.Generic_Bounded_Length
 8 (Max => Integer'Width);
 9 use B_Str;
10
11 Str_I : Bounded_String;
12
13 I : constant Integer := 42;
14 J : constant Integer := 103;
15begin
16 Str_I := To_Bounded_String (I'Image);
17 Put_Line ("Value: "
18 & To_String (Str_I));
19 Put_Line ("String Length: "
20 & Length (Str_I)'Image);
21 Put_Line ("----");
22
23 Str_I := To_Bounded_String (J'Image);
24 Put_Line ("Value: "
25 & To_String (Str_I));
26 Put_Line ("String Length: "
27 & Length (Str_I)'Image);
28end Show_Width_Attr;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Width_Attr
MD5: 82cff0cf4fecfdecce3020135cf98fd2

Runtime output

Value: 42
String Length: 3

Value: 103
String Length: 4

In this example, we're storing the string returned by Image in the
Str_I variable of Bounded_String type.

Similar to the Image and Value attributes, the Width
attribute is also available for string types other than String. In fact,
we can use:

	the Wide_Width attribute for strings returned by Wide_Image;
and

	the Wide_Wide_Width attribute for strings returned by
Wide_Wide_Image.

Base

The Base attribute gives us the unconstrained underlying hardware
representation selected for a given numeric type. As an example, let's say we
declared a subtype of the Integer type named One_To_Ten:

my_integers.ads

1package My_Integers is
2
3 subtype One_To_Ten is Integer
4 range 1 .. 10;
5
6end My_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: e3f8310ed742e61a65728fecb6caa557

If we then use the Base attribute — by writing
One_To_Ten'Base —, we're actually referring to the unconstrained
underlying hardware representation selected for One_To_Ten. As
One_To_Ten is a subtype of the Integer type, this also means that
One_To_Ten'Base is equivalent to Integer'Base, i.e. they refer to
the same base type. (This base type is the underlying hardware type
representing the Integer type — but is not the Integer type
itself.)

For further reading...

The Ada standard defines that the minimum range of the Integer type
is -2**15 + 1 .. 2**15 - 1. In modern 64-bit systems —
where wider types such as Long_Integer are defined — the range
is at least -2**31 + 1 .. 2**31 - 1. Therefore, we could think of
the Integer type as having the following declaration:

type Integer is
 range -2 ** 31 .. 2 ** 31 - 1;

However, even though Integer is a predefined Ada type, it's actually
a subtype of an anonymous type. That anonymous "type" is the hardware's
representation for the numeric type as chosen by the compiler based on the
requested range (for the signed integer types) or digits of precision (for
floating-point types). In other words, these types are actually subtypes of
something that does not have a specific name in Ada, and that is not
constrained.

In effect,

type Integer is
 range -2 ** 31 .. 2 ** 31 - 1;

is really as if we said this:

subtype Integer is
 Some_Hardware_Type_With_Sufficient_Range
 range -2 ** 31 .. 2 ** 31 - 1;

Since the Some_Hardware_Type_With_Sufficient_Range type is anonymous
and we therefore cannot refer to it in the code, we just say that
Integer is a type rather than a subtype.

Let's focus on signed integers — as the other numerics work the same
way. When we declare a signed integer type, we have to specify the required
range, statically. If the compiler cannot find a hardware-defined or
supported signed integer type with at least the range requested, the
compilation is rejected. For example, in current architectures, the code
below most likely won't compile:

int_def.ads

1package Int_Def is
2
3 type Too_Big_To_Fail is
4 range -2 ** 255 .. 2 ** 255 - 1;
5
6end Int_Def;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Very_Big_Range
MD5: 29f54776dc814dc8a5d245105b527992

Build output

int_def.ads:4:06: error: integer type definition bounds out of range
gprbuild: *** compilation phase failed

Otherwise, the compiler maps the named Ada type to the hardware "type",
presumably choosing the smallest one that supports the requested range.
(That's why the range has to be static in the source code, unlike for
explicit subtypes.)

The following example shows how the Base attribute affects the bounds of
a variable:

show_base.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with My_Integers; use My_Integers;
 3
 4procedure Show_Base is
 5 C : constant One_To_Ten := One_To_Ten'Last;
 6begin
 7 Using_Constrained_Subtype : declare
 8 V : One_To_Ten := C;
 9 begin
10 Put_Line
11 ("Increasing value for One_To_Ten...");
12
13 V := One_To_Ten'Succ (V);
14 exception
15 when others =>
16 Put_Line ("Exception raised!");
17 end Using_Constrained_Subtype;
18
19 Using_Base : declare
20 V : One_To_Ten'Base := C;
21 begin
22 Put_Line
23 ("Increasing value for One_To_Ten'Base...");
24
25 V := One_To_Ten'Succ (V);
26 exception
27 when others =>
28 Put_Line ("Exception raised!");
29 end Using_Base;
30
31 Put_Line ("One_To_Ten'Last: "
32 & One_To_Ten'Last'Image);
33 Put_Line ("One_To_Ten'Base'Last: "
34 & One_To_Ten'Base'Last'Image);
35end Show_Base;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: ce3e9fb3ff1619e835e9108ae0a787e7

Build output

show_base.adb:13:22: warning: value not in range of type "One_To_Ten" defined at my_integers.ads:3 [enabled by default]
show_base.adb:13:22: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

Increasing value for One_To_Ten...
Exception raised!
Increasing value for One_To_Ten'Base...
One_To_Ten'Last: 10
One_To_Ten'Base'Last: 2147483647

In the first block of the example (Using_Constrained_Subtype), we're
asking for the next value after the last value of a range — in this case,
One_To_Ten'Succ (One_To_Ten'Last). As expected, since the last value of
the range doesn't have a successor, a constraint exception is raised.

In the Using_Base block, we're declaring a variable V of
One_To_Ten'Base subtype. In this case, the next value exists —
because the condition One_To_Ten'Last + 1 <= One_To_Ten'Base'Last is
true —, so we can use the Succ attribute without having an
exception being raised.

In the following example, we adjust the result of additions and subtractions
to avoid constraint errors:

my_integers.ads

 1package My_Integers is
 2
 3 subtype One_To_Ten is Integer range 1 .. 10;
 4
 5 function Sat_Add (V1, V2 : One_To_Ten'Base)
 6 return One_To_Ten;
 7
 8 function Sat_Sub (V1, V2 : One_To_Ten'Base)
 9 return One_To_Ten;
10
11end My_Integers;

my_integers.adb

 1-- with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Integers is
 4
 5 function Saturate (V : One_To_Ten'Base)
 6 return One_To_Ten is
 7 begin
 8 -- Put_Line ("SATURATE " & V'Image);
 9
10 if V < One_To_Ten'First then
11 return One_To_Ten'First;
12 elsif V > One_To_Ten'Last then
13 return One_To_Ten'Last;
14 else
15 return V;
16 end if;
17 end Saturate;
18
19 function Sat_Add (V1, V2 : One_To_Ten'Base)
20 return One_To_Ten is
21 begin
22 return Saturate (V1 + V2);
23 end Sat_Add;
24
25 function Sat_Sub (V1, V2 : One_To_Ten'Base)
26 return One_To_Ten is
27 begin
28 return Saturate (V1 - V2);
29 end Sat_Sub;
30
31end My_Integers;

show_base.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with My_Integers; use My_Integers;
 3
 4procedure Show_Base is
 5
 6 type Display_Saturate_Op is (Add, Sub);
 7
 8 procedure Display_Saturate
 9 (V1, V2 : One_To_Ten;
10 Op : Display_Saturate_Op)
11 is
12 Res : One_To_Ten;
13 begin
14 case Op is
15 when Add =>
16 Res := Sat_Add (V1, V2);
17 when Sub =>
18 Res := Sat_Sub (V1, V2);
19 end case;
20 Put_Line ("SATURATE " & Op'Image
21 & " (" & V1'Image
22 & ", " & V2'Image
23 & ") = " & Res'Image);
24 end Display_Saturate;
25
26begin
27 Display_Saturate (1, 1, Add);
28 Display_Saturate (10, 8, Add);
29 Display_Saturate (1, 8, Sub);
30end Show_Base;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr_Sat
MD5: e9b31345c2efc056bdb71824072852d0

Runtime output

SATURATE ADD (1, 1) = 2
SATURATE ADD (10, 8) = 10
SATURATE SUB (1, 8) = 1

In this example, we're using the Base attribute to declare the
parameters of the Sat_Add, Sat_Sub and Saturate functions.
Note that the parameters of the Display_Saturate procedure are of
One_To_Ten type, while the parameters of the Sat_Add,
Sat_Sub and Saturate functions are of the (unconstrained) base
subtype (One_To_Ten'Base). In those functions, we perform operations
using the parameters of unconstrained subtype and adjust the result — in
the Saturate function — before returning it as a constrained value
of One_To_Ten subtype.

The code in the body of the My_Integers package contains lines that were
commented out — to be more precise, a call to Put_Line call in the
Saturate function. If you uncomment them, you'll see the value of the
input parameter V (of One_To_Ten'Base type) in the runtime output
of the program before it's adapted to fit the constraints of the
One_To_Ten subtype.

Enumerations

We've introduced enumerations back in the
Introduction to Ada course.
In this section, we'll discuss a few useful features of enumerations, such as
enumeration renaming, enumeration overloading and representation clauses.

In the Ada Reference Manual

	3.5.1 Enumeration Types[#2]

Enumerations as functions

If you have used programming language such as C in the past, you're familiar
with the concept of enumerations being constants with integer values. In Ada,
however, enumerations are not integers. In fact, they're actually parameterless
functions! Let's consider this example:

days.ads

 1package Days is
 2
 3 type Day is (Mon, Tue, Wed,
 4 Thu, Fri,
 5 Sat, Sun);
 6
 7 -- Essentially, we're declaring
 8 -- these functions:
 9 --
10 -- function Mon return Day;
11 -- function Tue return Day;
12 -- function Wed return Day;
13 -- function Thu return Day;
14 -- function Fri return Day;
15 -- function Sat return Day;
16 -- function Sun return Day;
17
18end Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_As_Function
MD5: fa3e58b58edffa5a3e04b060a7f8cb8b

In the package Days, we're declaring the enumeration type Day.
When we do this, we're essentially declaring seven parameterless functions, one
for each enumeration. For example, the Mon enumeration corresponds to
function Mon return Day. You can see all seven function declarations in
the comments of the example above.

Note that this has no direct relation to how an Ada compiler generates machine
code for enumeration. Even though enumerations are parameterless functions, a
typical Ada compiler doesn't generate function calls for code that deals with
enumerations.

Enumeration renaming

The idea that enumerations are parameterless functions can be used when we want
to rename enumerations. For example, we could rename the enumerations of the
Day type like this:

enumeration_example.ads

 1package Enumeration_Example is
 2
 3 type Day is (Mon, Tue, Wed,
 4 Thu, Fri,
 5 Sat, Sun);
 6
 7 function Monday return Day renames Mon;
 8 function Tuesday return Day renames Tue;
 9 function Wednesday return Day renames Wed;
10 function Thursday return Day renames Thu;
11 function Friday return Day renames Fri;
12 function Saturday return Day renames Sat;
13 function Sunday return Day renames Sun;
14
15end Enumeration_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: e2e12bb3bfcb0b6e94769ced9a4b80f9

Now, we can use both Monday or Mon to refer to Monday of the
Day type:

show_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Enumeration_Example; use Enumeration_Example;
 3
 4procedure Show_Renaming is
 5 D1 : constant Day := Mon;
 6 D2 : constant Day := Monday;
 7begin
 8 if D1 = D2 then
 9 Put_Line ("D1 = D2");
10 Put_Line (Day'Image (D1)
11 & " = "
12 & Day'Image (D2));
13 end if;
14end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 2d7177def2c9e9fb11c7dc5e036c3be3

Runtime output

D1 = D2
MON = MON

When running this application, we can confirm that D1 is equal to
D2. Also, even though we've assigned Monday to D2 (instead
of Mon), the application displays Mon = Mon, since Monday
is just another name to refer to the actual enumeration (Mon).

Hint

If you just want to have a single (renamed) enumeration visible in your
application — and make the original enumeration invisible —,
you can use a separate package. For example:

enumeration_example.ads

1package Enumeration_Example is
2
3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6
7end Enumeration_Example;

enumeration_renaming.ads

 1with Enumeration_Example;
 2
 3package Enumeration_Renaming is
 4
 5 subtype Day is Enumeration_Example.Day;
 6
 7 function Monday return Day renames
 8 Enumeration_Example.Mon;
 9 function Tuesday return Day renames
10 Enumeration_Example.Tue;
11 function Wednesday return Day renames
12 Enumeration_Example.Wed;
13 function Thursday return Day renames
14 Enumeration_Example.Thu;
15 function Friday return Day renames
16 Enumeration_Example.Fri;
17 function Saturday return Day renames
18 Enumeration_Example.Sat;
19 function Sunday return Day renames
20 Enumeration_Example.Sun;
21
22end Enumeration_Renaming;

show_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Enumeration_Renaming;
 4use Enumeration_Renaming;
 5
 6procedure Show_Renaming is
 7 D1 : constant Day := Monday;
 8begin
 9 Put_Line (Day'Image (D1));
10end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 87fe75026f0fc118921eaee45fe55a8a

Runtime output

MON

Note that the call to Put_Line still display Mon instead of
Monday.

Enumeration overloading

Enumerations can be overloaded. In simple terms, this means that the same name
can be used to declare an enumeration of different types. A typical example is
the declaration of colors:

colors.ads

 1package Colors is
 2
 3 type Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 type Primary_Color is
17 (Red,
18 Green,
19 Blue);
20
21end Colors;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: b808f90d9164f044b6b7a8931863726f

Note that we have Red as an enumeration of type Color and of type
Primary_Color. The same applies to Green and Blue. Because
Ada is a strongly-typed language, in most cases, the enumeration that we're
referring to is clear from the context. For example:

red_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Red_Colors is
 5 C1 : constant Color := Red;
 6 -- Using Red from Color
 7
 8 C2 : constant Primary_Color := Red;
 9 -- Using Red from Primary_Color
10begin
11 if C1 = Red then
12 Put_Line ("C1 = Red");
13 end if;
14 if C2 = Red then
15 Put_Line ("C2 = Red");
16 end if;
17end Red_Colors;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: dd590eab88164773e974e748d77a51af

Runtime output

C1 = Red
C2 = Red

When assigning Red to C1 and C2, it is clear that, in the
first case, we're referring to Red of Color type, while in the
second case, we're referring to Red of the Primary_Color type.
The same logic applies to comparisons such as the one in
if C1 = Red: because the type of C1 is defined
(Color), it's clear that the Red enumeration is the one of
Color type.

Enumeration subtypes

Note that enumeration overloading is not the same as enumeration subtypes. For
example, we could define the following subtype:

colors-shades.ads

1package Colors.Shades is
2
3 subtype Blue_Shades is
4 Colors range Blue .. Darkblue;
5
6end Colors.Shades;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: 9c13508bda487cae02dbf8b403271540

In this case, Blue of Blue_Shades and Blue of
Colors are the same enumeration.

Enumeration ambiguities

A situation where enumeration overloading might lead to ambiguities is when we
use them in ranges. For example:

colors.ads

 1package Colors is
 2
 3 type Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 type Primary_Color is
17 (Red,
18 Green,
19 Blue);
20
21end Colors;

color_loop.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Color_Loop is
 5begin
 6 for C in Red .. Blue loop
 7 -- ^^^^^^^^^^^
 8 -- ERROR: range is ambiguous!
 9 Put_Line (Color'Image (C));
10 end loop;
11end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 82d0d3f28f1faf6b296a4f44db71f41b

Build output

color_loop.adb:6:17: error: ambiguous bounds in range of iteration
color_loop.adb:6:17: error: possible interpretations:
color_loop.adb:6:17: error: type "Primary_Color" defined at colors.ads:16
color_loop.adb:6:17: error: type "Color" defined at colors.ads:3
color_loop.adb:6:17: error: ambiguous bounds in discrete range
color_loop.adb:9:30: error: expected type "Color" defined at colors.ads:3
color_loop.adb:9:30: error: found type "Primary_Color" defined at colors.ads:16
gprbuild: *** compilation phase failed

Here, it's not clear whether the range in the loop is of Color type or
of Primary_Color type. Therefore, we get a compilation error for this
code example. The next line in the code example — the one with the call
to Put_Line — gives us a hint about the developer's intention to
refer to the Color type. In this case, we can use qualification —
for example, Color'(Red) — to resolve the ambiguity:

color_loop.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Colors; use Colors;
3
4procedure Color_Loop is
5begin
6 for C in Color'(Red) .. Color'(Blue) loop
7 Put_Line (Color'Image (C));
8 end loop;
9end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: c3e946d330bb6aed258bcd005a540794

Runtime output

RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE

Note that, in the case of ranges, we can also rewrite the loop by using a range
declaration:

color_loop.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Colors; use Colors;
3
4procedure Color_Loop is
5begin
6 for C in Color range Red .. Blue loop
7 Put_Line (Color'Image (C));
8 end loop;
9end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 23f8db4fcb5710f7bda6b511234e0448

Runtime output

RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE

Alternatively, Color range Red .. Blue could be used in a subtype
declaration, so we could rewrite the example above using a subtype (such as
Red_To_Blue) in the loop:

color_loop.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors; use Colors;
 3
 4procedure Color_Loop is
 5 subtype Red_To_Blue is Color range Red .. Blue;
 6begin
 7 for C in Red_To_Blue loop
 8 Put_Line (Color'Image (C));
 9 end loop;
10end Color_Loop;

Position and Internal Code

As we've said above, a typical Ada compiler doesn't generate function calls for
code that deals with enumerations. On the contrary, each enumeration has values
associated with it, and the compiler uses those values instead.

Each enumeration has:

	a position value, which is a natural value indicating the position of the
enumeration in the enumeration type; and

	an internal code, which, by default, in most cases, is the same as the
position value.

Also, by default, the value of the first position is zero, the value of the
second position is one, and so on. We can see this by listing each enumeration
of the Day type and displaying the value of the corresponding position:

days.ads

1package Days is
2
3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6
7end Days;

show_days.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Days; use Days;
 3
 4procedure Show_Days is
 5begin
 6 for D in Day loop
 7 Put_Line (Day'Image (D)
 8 & " position = "
 9 & Integer'Image (Day'Pos (D)));
10 Put_Line (Day'Image (D)
11 & " internal code = "
12 & Integer'Image
13 (Day'Enum_Rep (D)));
14 end loop;
15end Show_Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Values
MD5: d6c5cb99b9770893b7277c470f40e805

Runtime output

MON position = 0
MON internal code = 0
TUE position = 1
TUE internal code = 1
WED position = 2
WED internal code = 2
THU position = 3
THU internal code = 3
FRI position = 4
FRI internal code = 4
SAT position = 5
SAT internal code = 5
SUN position = 6
SUN internal code = 6

Note that this application also displays the internal code, which, in this
case, is equivalent to the position value for all enumerations.

We may, however, change the internal code of an enumeration using a
representation clause. We discuss this topic
in another section.

Definite and Indefinite Subtypes

Indefinite types were mentioned back in the
Introduction to Ada course.
In this section, we'll recapitulate and extend on both definite and indefinite
types.

Definite types are the basic kind of types we commonly use when programming
applications. For example, we can only declare variables of definite types;
otherwise, we get a compilation error. Interestingly, however, to be able to
explain what definite types are, we need to first discuss indefinite types.

Indefinite types include:

	unconstrained arrays;

	record types with unconstrained discriminants without defaults.

Let's see some examples of indefinite types:

unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 type Simple_Record (Extended : Boolean) is
 7 record
 8 V : Integer;
 9 case Extended is
10 when False =>
11 null;
12 when True =>
13 V_Float : Float;
14 end case;
15 end record;
16
17end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: e569dc73150b834c9315b14d46c0ac79

In this example, both Integer_Array and Simple_Record are
indefinite types.

Important

Note that we cannot use indefinite subtypes as discriminants. For example,
the following code won't compile:

unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 type Simple_Record (Arr : Integer_Array) is
 7 record
 8 L : Natural := Arr'Length;
 9 end record;
10
11end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types_Error
MD5: cf73d308ddb4a8c2503146ecd550a791

Build output

unconstrained_types.ads:6:30: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed

Integer_Array is a correct type declaration — although
the type itself is indefinite after the declaration. However, we cannot
use it as the discriminant in the declaration of Simple_Record.
We could, however, have a correct declaration by using discriminants as
access values:

unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 type Integer_Array_Access is
 7 access Integer_Array;
 8
 9 type Simple_Record
10 (Arr : Integer_Array_Access) is
11 record
12 L : Natural := Arr'Length;
13 end record;
14
15end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types_Error
MD5: dc8193e3684b172e8503e1c5427cf93d

By adding the Integer_Array_Access type and using it in
Simple_Record's type declaration, we can indirectly use an
indefinite type in the declaration of another indefinite type. We discuss
this topic later
in another chapter.

As we've just mentioned, we cannot declare variable of indefinite types:

using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3procedure Using_Unconstrained_Type is
 4
 5 A : Integer_Array;
 6
 7 R : Simple_Record;
 8
 9begin
10 null;
11end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: 806d4ec64b911a9978ad30fa45a6df10

Build output

using_unconstrained_type.adb:5:08: error: unconstrained subtype not allowed (need initialization)
using_unconstrained_type.adb:5:08: error: provide initial value or explicit array bounds
using_unconstrained_type.adb:7:08: error: unconstrained subtype not allowed (need initialization)
using_unconstrained_type.adb:7:08: error: provide initial value or explicit discriminant values
using_unconstrained_type.adb:7:08: error: or give default discriminant values for type "Simple_Record"
gprbuild: *** compilation phase failed

As we can see when we try to build this example, the compiler complains about
the declaration of A and R because we're trying to use indefinite
types to declare variables. The main reason we cannot use indefinite types here
is that the compiler needs to know at this point how much memory it should
allocate. Therefore, we need to provide the information that is missing. In
other words, we need to change the declaration so the type becomes definite. We
can do this by either declaring a definite type or providing constraints in the
variable declaration. For example:

using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3procedure Using_Unconstrained_Type is
 4
 5 subtype Integer_Array_5 is
 6 Integer_Array (1 .. 5);
 7
 8 A1 : Integer_Array_5;
 9 A2 : Integer_Array (1 .. 5);
10
11 subtype Simple_Record_Ext is
12 Simple_Record (Extended => True);
13
14 R1 : Simple_Record_Ext;
15 R2 : Simple_Record (Extended => True);
16
17begin
18 null;
19end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: f8e192537f42eea0ebc7873bdaa898f1

Build output

using_unconstrained_type.adb:8:04: warning: variable "A1" is never read and never assigned [-gnatwv]
using_unconstrained_type.adb:9:04: warning: variable "A2" is never read and never assigned [-gnatwv]
using_unconstrained_type.adb:14:04: warning: variable "R1" is never read and never assigned [-gnatwv]
using_unconstrained_type.adb:15:04: warning: variable "R2" is never read and never assigned [-gnatwv]

In this example, we declare the Integer_Array_5 subtype, which is
definite because we're constraining it to a range from 1 to 5, thereby
defining the information that was missing in the indefinite type
Integer_Array. Because we now have a definite type, we can use it to
declare the A1 variable. Similarly, we can use the indefinite type
Integer_Array directly in the declaration of A2 by specifying the
previously unknown range.

Similarly, in this example, we declare the Simple_Record_Ext subtype,
which is definite because we're initializing the record discriminant
Extended. We can therefore use it in the declaration of the R1
variable. Alternatively, we can simply use the indefinite type
Simple_Record and specify the information required for the
discriminants. This is what we do in the declaration of the R2 variable.

Although we cannot use indefinite types directly in variable declarations,
they're very useful to generalize algorithms. For example, we can use them as
parameters of a subprogram:

show_integer_array.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array (A : Integer_Array);

show_integer_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Integer_Array (A : Integer_Array)
 4is
 5begin
 6 for I in A'Range loop
 7 Put_Line (Positive'Image (I)
 8 & ": "
 9 & Integer'Image (A (I)));
10 end loop;
11 Put_Line ("--------");
12end Show_Integer_Array;

using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2with Show_Integer_Array;
 3
 4procedure Using_Unconstrained_Type is
 5 A_5 : constant Integer_Array (1 .. 5) :=
 6 (1, 2, 3, 4, 5);
 7 A_10 : constant Integer_Array (1 .. 10) :=
 8 (1, 2, 3, 4, 5, others => 99);
 9begin
10 Show_Integer_Array (A_5);
11 Show_Integer_Array (A_10);
12end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: 3f744fa5921a55865bc5361ec4c6eb88

Runtime output

 1: 1
 2: 2
 3: 3
 4: 4
 5: 5

 1: 1
 2: 2
 3: 3
 4: 4
 5: 5
 6: 99
 7: 99
 8: 99
 9: 99
 10: 99

In this particular example, the compiler doesn't know a priori which range is
used for the A parameter of Show_Integer_Array. It could be a
range from 1 to 5 as used for variable A_5 of the
Using_Unconstrained_Type procedure, or it could be a range from 1 to 10
as used for variable A_10, or it could be anything else. Although the
parameter A of Show_Integer_Array is unconstrained, both calls to
Show_Integer_Array — in Using_Unconstrained_Type procedure
— use constrained objects.

Note that we could call the Show_Integer_Array procedure above with
another unconstrained parameter. For example:

show_integer_array_header.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array_Header
4 (AA : Integer_Array;
5 HH : String);

show_integer_array_header.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Show_Integer_Array;
 3
 4procedure Show_Integer_Array_Header
 5 (AA : Integer_Array;
 6 HH : String)
 7is
 8begin
 9 Put_Line (HH);
10 Show_Integer_Array (AA);
11end Show_Integer_Array_Header;

using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3with Show_Integer_Array_Header;
 4
 5procedure Using_Unconstrained_Type is
 6 A_5 : constant Integer_Array (1 .. 5) :=
 7 (1, 2, 3, 4, 5);
 8 A_10 : constant Integer_Array (1 .. 10) :=
 9 (1, 2, 3, 4, 5, others => 99);
10begin
11 Show_Integer_Array_Header (A_5,
12 "First example");
13 Show_Integer_Array_Header (A_10,
14 "Second example");
15end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: dd09f8c4089c6ad4c18410879f80f731

Runtime output

First example
 1: 1
 2: 2
 3: 3
 4: 4
 5: 5

Second example
 1: 1
 2: 2
 3: 3
 4: 4
 5: 5
 6: 99
 7: 99
 8: 99
 9: 99
 10: 99

In this case, we're calling the Show_Integer_Array procedure with
another unconstrained parameter (the AA parameter). However, although we
could have a long chain of procedure calls using indefinite types in their
parameters, we still use a (definite) object at the beginning of this chain.
For example, for the A_5 object, we have this chain:

A_5

 ==> Show_Integer_Array_Header (AA => A_5,
 ...);

 ==> Show_Integer_Array (A => AA);

Therefore, at this specific call to Show_Integer_Array, even though
A is declared as a parameter of indefinite type, the actual argument
is of definite type because A_5 is constrained — and, thus, of
definite type.

Note that we can declare variables based on parameters of indefinite type. For
example:

show_integer_array_plus.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array_Plus
4 (A : Integer_Array;
5 V : Integer);

show_integer_array_plus.adb

 1with Show_Integer_Array;
 2
 3procedure Show_Integer_Array_Plus
 4 (A : Integer_Array;
 5 V : Integer)
 6is
 7 A_Plus : Integer_Array (A'Range);
 8begin
 9 for I in A_Plus'Range loop
10 A_Plus (I) := A (I) + V;
11 end loop;
12 Show_Integer_Array (A_Plus);
13end Show_Integer_Array_Plus;

using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3with Show_Integer_Array_Plus;
 4
 5procedure Using_Unconstrained_Type is
 6 A_5 : constant Integer_Array (1 .. 5) :=
 7 (1, 2, 3, 4, 5);
 8begin
 9 Show_Integer_Array_Plus (A_5, 5);
10end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: e58ae62272ff0b27c5f6e171c88a6880

Runtime output

 1: 6
 2: 7
 3: 8
 4: 9
 5: 10

In the Show_Integer_Array_Plus procedure, we're declaring A_Plus
based on the range of A, which is itself of indefinite type. However,
since the object passed as an argument to Show_Integer_Array_Plus must
have a constraint, A_Plus will also be constrained. For example, in the
call to Show_Integer_Array_Plus using A_5 as an argument, the
declaration of A_Plus becomes A_Plus : Integer_Array (1 .. 5);.
Therefore, it becomes clear that the compiler needs to allocate five elements
for A_Plus.

We'll see later how definite and indefinite types apply to
formal parameters.

In the Ada Reference Manual

	3.3 Objects and Named Numbers[#3]

Constrained Attribute

We can use the Constrained attribute to verify whether an object of
discriminated type is constrained or not. Let's start our discussion by reusing
the Simple_Record type from previous examples. In this version of the
Unconstrained_Types package, we're adding a Reset procedure for
the discriminated record type:

unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3 type Simple_Record
 4 (Extended : Boolean := False) is
 5 record
 6 V : Integer;
 7 case Extended is
 8 when False =>
 9 null;
10 when True =>
11 V_Float : Float;
12 end case;
13 end record;
14
15 procedure Reset (R : in out Simple_Record);
16
17end Unconstrained_Types;

unconstrained_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Unconstrained_Types is
 4
 5 procedure Reset (R : in out Simple_Record) is
 6 Zero_Not_Extended : constant
 7 Simple_Record := (Extended => False,
 8 V => 0);
 9
10 Zero_Extended : constant
11 Simple_Record := (Extended => True,
12 V => 0,
13 V_Float => 0.0);
14 begin
15 Put_Line ("---- Reset: R'Constrained => "
16 & R'Constrained'Image);
17
18 if not R'Constrained then
19 R := Zero_Extended;
20 else
21 if R.Extended then
22 R := Zero_Extended;
23 else
24 R := Zero_Not_Extended;
25 end if;
26 end if;
27 end Reset;
28
29end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Constrained_Attribute
MD5: b56e6d71fd4f05e8490412d7fe40b923

As the name indicates, the Reset procedure initializes all record
components with zero. Note that we use the Constrained attribute to
verify whether objects are constrained before assigning to them. For objects
that are not constrained, we can simply assign another object to it — as
we do with the R := Zero_Extended statement. When an object is
constrained, however, the discriminants must match. If we assign an object to
R, the discriminant of that object must match the discriminant of
R. This is the kind of verification that we do in the else part
of that procedure: we check the state of the Extended discriminant
before assigning an object to the R parameter.

The Using_Constrained_Attribute procedure below declares two objects of
Simple_Record type: R1 and R2. Because the
Simple_Record type has a default value for its discriminant, we can
declare objects of this type without specifying a value for the discriminant.
This is exactly what we do in the declaration of R1. Here, we don't
specify any constraints, so that it takes the default value
(Extended => False). In the declaration of R2, however, we
explicitly set Extended to False:

using_constrained_attribute.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Unconstrained_Types; use Unconstrained_Types;
 4
 5procedure Using_Constrained_Attribute is
 6 R1 : Simple_Record;
 7 R2 : Simple_Record (Extended => False);
 8
 9 procedure Show_Rs is
10 begin
11 Put_Line ("R1'Constrained => "
12 & R1'Constrained'Image);
13 Put_Line ("R1.Extended => "
14 & R1.Extended'Image);
15 Put_Line ("--");
16 Put_Line ("R2'Constrained => "
17 & R2'Constrained'Image);
18 Put_Line ("R2.Extended => "
19 & R2.Extended'Image);
20 Put_Line ("----------------");
21 end Show_Rs;
22begin
23 Show_Rs;
24
25 Reset (R1);
26 Reset (R2);
27 Put_Line ("----------------");
28
29 Show_Rs;
30end Using_Constrained_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Constrained_Attribute
MD5: f7517fcd3c68a784f55064f188d4e7bb

Runtime output

R1'Constrained => FALSE
R1.Extended => FALSE
--
R2'Constrained => TRUE
R2.Extended => FALSE

---- Reset: R'Constrained => FALSE
---- Reset: R'Constrained => TRUE

R1'Constrained => FALSE
R1.Extended => TRUE
--
R2'Constrained => TRUE
R2.Extended => FALSE

When we run this code, the user messages from Show_Rs indicate to us
that R1 is not constrained, while R2 is constrained.
Because we declare R1 without specifying a value for the Extended
discriminant, R1 is not constrained. In the declaration of
R2, on the other hand, the explicit value for the Extended
discriminant makes this object constrained. Note that, for both R1 and
R2, the value of Extended is False in the declarations.

As we were just discussing, the Reset procedure includes checks to avoid
mismatches in discriminants. When we don't have those checks, we might get
exceptions at runtime. We can force this situation by replacing the
implementation of the Reset procedure with the following lines:

-- [...]
begin
 Put_Line ("---- Reset: R'Constrained => "
 & R'Constrained'Image);
 R := Zero_Extended;
end Reset;

Running the code now generates a runtime exception:

raised CONSTRAINT_ERROR : unconstrained_types.adb:12 discriminant check failed

This exception is raised during the call to Reset (R2). As see in the
code, R2 is constrained. Also, its Extended discriminant is set
to False, which means that it doesn't have the V_Float
component. Therefore, R2 is not compatible with the constant
Zero_Extended object, so we cannot assign Zero_Extended to
R2. Also, because R2 is constrained, its Extended
discriminant cannot be modified.

The behavior is different for the call to Reset (R1), which works fine.
Here, when we pass R1 as an argument to the Reset procedure, its
Extended discriminant is False by default. Thus, R1 is
also not compatible with the Zero_Extended object. However, because
R1 is not constrained, the assignment modifies R1 (by changing
the value of the Extended discriminant). Therefore, with the call to
Reset, the Extended discriminant of R1 changes from
False to True.

In the Ada Reference Manual

	3.7.2 Operations of Discriminated Types[#4]

Incomplete types

Incomplete types — as the name suggests — are types that have
missing information in their declaration. This is a simple example:

type Incomplete;

Because this type declaration is incomplete, we need to provide the missing
information at some later point. Consider the incomplete type R in the
following example:

incomplete_type_example.ads

 1package Incomplete_Type_Example is
 2
 3 type R;
 4 -- Incomplete type declaration!
 5
 6 type R is record
 7 I : Integer;
 8 end record;
 9 -- type R is now complete!
10
11end Incomplete_Type_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types
MD5: 5ca250595f2b0cc101df286ab319982f

The first declaration of type R is incomplete. However, in the second
declaration of R, we specify that R is a record. By providing
this missing information, we're completing the type declaration of R.

It's also possible to declare an incomplete type in the private part of a
package specification and its complete form in the package body. Let's rewrite
the example above accordingly:

incomplete_type_example.ads

1package Incomplete_Type_Example is
2
3private
4
5 type R;
6 -- Incomplete type declaration!
7
8end Incomplete_Type_Example;

incomplete_type_example.adb

1package body Incomplete_Type_Example is
2
3 type R is record
4 I : Integer;
5 end record;
6 -- type R is now complete!
7
8end Incomplete_Type_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types_2
MD5: fd2f0301b4a63887add1cb2093692ddb

A typical application of incomplete types is to create linked lists using
access types based on those incomplete types. This kind of type is called
a recursive type. For example:

linked_list_example.ads

 1package Linked_List_Example is
 2
 3 type Integer_List;
 4
 5 type Next is access Integer_List;
 6
 7 type Integer_List is record
 8 I : Integer;
 9 N : Next;
10 end record;
11
12end Linked_List_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Linked_List_Example
MD5: b2d3a048473d498bbe691bc6e38ca1e9

Here, the N component of Integer_List is essentially giving us
access to the next element of Integer_List type. Because the Next
type is both referring to the Integer_List type and being used in the
declaration of the Integer_List type, we need to start with an
incomplete declaration of the Integer_List type and then complete it
after the declaration of Next.

Incomplete types are useful to declare
mutually dependent types, as we'll
see later on. Also, we can also have formal incomplete types, as
we'll discuss later.

In the Ada Reference Manual

	3.10.1 Incomplete Type Declarations[#5]

Type view

Ada distinguishes between the partial and the full view of a type. The full
view is a type declaration that contains all the information needed by the
compiler. For example, the following declaration of type R represents
the full view of this type:

full_view.ads

1package Full_View is
2
3 -- Full view of the R type:
4 type R is record
5 I : Integer;
6 end record;
7
8end Full_View;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Full_View
MD5: d37792287d08f9aa3d32499e233516df

As soon as we start applying encapsulation and information hiding — via
the private keyword — to a specific type, we are introducing a
partial view and making only that view compile-time visible to clients. Doing
so requires us to introduce the private part of the package (unless already
present). For example:

partial_full_views.ads

 1package Partial_Full_Views is
 2
 3 -- Partial view of the R type:
 4 type R is private;
 5
 6private
 7
 8 -- Full view of the R type:
 9 type R is record
10 I : Integer;
11 end record;
12
13end Partial_Full_Views;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: b0cf748e43b23ea6c845e283c4266ff3

As indicated in the example, the type R is private declaration is the
partial view of the R type, while the type R is record [...]
declaration in the private part of the package is the full view.

Although the partial view doesn't contain the full type declaration, it
contains very important information for the users of the package where it's
declared. In fact, the partial view of a private type is all that users
actually need to know to effectively use this type, while the full view is only
needed by the compiler.

In the previous example, the partial view indicates that R is a private
type, which means that, even though users cannot directly access any
information stored in this type — for example, read the value of the
I component of R —, they can use the R type to
declare objects. For example:

main.adb

 1with Partial_Full_Views; use Partial_Full_Views;
 2
 3procedure Main is
 4 -- Partial view of R indicates that
 5 -- R exists as a private type, so we
 6 -- can declare objects of this type:
 7 C : R;
 8begin
 9 -- But we cannot directly access any
10 -- information declared in the full
11 -- view of R:
12 --
13 -- C.I := 42;
14 --
15 null;
16end Main;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: 05bc9a75406d0a46f6d009d97885d010

Build output

main.adb:7:04: warning: variable "C" is never read and never assigned [-gnatwv]

In many cases, the restrictions applied to the partial and full views must
match. For example, if we declare a limited type in the full view of a private
type, its partial view must also be limited:

limited_private_example.ads

 1package Limited_Private_Example is
 2
 3 -- Partial view must be limited,
 4 -- since the full view is limited.
 5 type R is limited private;
 6
 7private
 8
 9 type R is limited record
10 I : Integer;
11 end record;
12
13end Limited_Private_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Limited_Private
MD5: 23d01b93fe052a500c8ca6ff76a2fd51

There are, however, situations where the full view may contain additional
requirements that aren't mentioned in the partial view. For example, a type may
be declared as non-tagged in the partial view, but, at the same time, be tagged
in the full view:

tagged_full_view_example.ads

 1package Tagged_Full_View_Example is
 2
 3 -- Partial view using non-tagged type:
 4 type R is private;
 5
 6private
 7
 8 -- Full view using tagged type:
 9 type R is tagged record
10 I : Integer;
11 end record;
12
13end Tagged_Full_View_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Tagged_Full_View
MD5: 0ff9142b1ee086695b98b72a9d0f50ac

In this case, from a user's perspective, the R type is non-tagged, so
that users cannot use any object-oriented programming features for this type.
In the package body of Tagged_Full_View_Example, however, this type is
tagged, so that all object-oriented programming features are available for
subprograms of the package body that make use of this type. Again, the partial
view of the private type contains the most important information for users that
want to declare objects of this type.

Important

Although it's very common to declare private types as record types, this is
not the only option. In fact, we could declare any type in the full view
— scalars, for example —, so we could declare a "private
integer" type:

private_integers.ads

 1package Private_Integers is
 2
 3 -- Partial view of private Integer type:
 4 type Private_Integer is private;
 5
 6private
 7
 8 -- Full view of private Integer type:
 9 type Private_Integer is new Integer;
10
11end Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: f1fcbed95e0f66a6f67d1bfd9ba9df1c

This code compiles as expected, but isn't very useful. We can improve it by
adding operators to it, for example:

private_integers.ads

 1package Private_Integers is
 2
 3 -- Partial view of private Integer type:
 4 type Private_Integer is private;
 5
 6 function "+" (Left, Right : Private_Integer)
 7 return Private_Integer;
 8
 9private
10
11 -- Full view of private Integer type:
12 type Private_Integer is new Integer;
13
14end Private_Integers;

private_integers.adb

 1package body Private_Integers is
 2
 3 function "+" (Left, Right : Private_Integer)
 4 return Private_Integer
 5 is
 6 Res : constant Integer :=
 7 Integer (Left) + Integer (Right);
 8 -- Note that we're converting Left
 9 -- and Right to Integer, which calls
10 -- the "+" operator of the Integer
11 -- type. Writing "Left + Right" would
12 -- have called the "+" operator of
13 -- Private_Integer, which leads to
14 -- recursive calls, as this is the
15 -- operator we're currently in.
16 begin
17 return Private_Integer (Res);
18 end "+";
19
20end Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: ac161cb5debfde16465c45949cf682d7

Now, we can use the + operator as a common integer variable:

show_private_integers.adb

1with Private_Integers; use Private_Integers;
2
3procedure Show_Private_Integers is
4 A, B : Private_Integer;
5begin
6 A := A + B;
7end Show_Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: 5933779ce5f0802b448df96c42e65a8d

Build output

show_private_integers.adb:4:07: warning: variable "B" is read but never assigned [-gnatwv]
show_private_integers.adb:6:09: warning: "A" may be referenced before it has a value [enabled by default]

In the Ada Reference Manual

	7.3 Private Types and Private Extensions[#6]

Type conversion

An important operation when dealing with objects of different types is type
conversion, which we already discussed in the
Introduction to Ada course. In fact, we can
convert an object Obj_X of an operand type X to a similar,
closely related target type Y by simply indicating the target type:
Y (Obj_X). In this section, we discuss type conversions for different
kinds of types.

Ada distinguishes between two kinds of conversion: value conversion and view
conversion. The main difference is the way how the operand (argument) of the
conversion is evaluated:

	in a value conversion, the operand is evaluated as an
expression;

	in a view conversion, the operand is evaluated as a name.

In other words, we cannot use expressions such as 2 * A in a view
conversion, but only A. In a value conversion, we could use both forms.

In the Ada Reference Manual

	4.6 Type Conversions[#7]

Value conversion

Value conversions are possible for various types. In this section, we see some
examples, starting with types derived from scalar types up to array
conversions.

Root and derived types

Let's start with the conversion between a scalar type and its derived types.
For example, we can convert back-and-forth between the Integer type and
the derived Int type:

custom_integers.ads

 1package Custom_Integers is
 2
 3 type Int is new Integer
 4 with Dynamic_Predicate => Int /= 0;
 5
 6 function Double (I : Integer)
 7 return Integer is
 8 (I * 2);
 9
10end Custom_Integers;

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5 Int_Var : Int := 1;
 6 Integer_Var : Integer := 2;
 7begin
 8 -- Int to Integer conversion
 9 Integer_Var := Integer (Int_Var);
10
11 Put_Line ("Integer_Var : "
12 & Integer_Var'Image);
13
14 -- Int to Integer conversion
15 -- as an actual parameter
16 Integer_Var := Double (Integer (Int_Var));
17
18 Put_Line ("Integer_Var : "
19 & Integer_Var'Image);
20
21 -- Integer to Int conversion
22 -- using an expression
23 Int_Var := Int (Integer_Var * 2);
24
25 Put_Line ("Int_Var : "
26 & Int_Var'Image);
27end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_Conversion
MD5: 7cd324f308edc34de3bc4bccce63f1ee

Runtime output

Integer_Var : 1
Integer_Var : 2
Int_Var : 4

In the Show_Conversion procedure from this example, we first convert
from Int to Integer. Then, we do the same conversion while
providing the resulting value as an actual parameter for the Double
function. Finally, we convert the Integer_Var * 2 expression from
Integer to Int.

Note that the converted value must conform to any constraints that the target
type might have. In the example above, Int has a predicate that dictates
that its value cannot be zero. This (dynamic) predicate is checked at runtime,
so an exception is raised if it fails:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5 Int_Var : Int;
 6 Integer_Var : Integer;
 7begin
 8 Integer_Var := 0;
 9 Int_Var := Int (Integer_Var);
10
11 Put_Line ("Int_Var : "
12 & Int_Var'Image);
13end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_Conversion
MD5: 4150cdffd4c1fed39fa1728a77fa599f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_conversion.adb:9

In this case, the conversion from Integer to Int fails because,
while zero is a valid integer value, it doesn't obey Int's predicate.

Numeric type conversion

A typical conversion is the one between integer and floating-point values. For
example:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Conversion is
 4 F : Float := 1.0;
 5 I : Integer := 2;
 6begin
 7 I := Integer (F);
 8
 9 Put_Line ("I : "
10 & I'Image);
11
12 I := 4;
13 F := Float (I);
14
15 Put_Line ("F : "
16 & F'Image);
17end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_Conversion
MD5: f64649c786377617b0bc9ff49475ba55

Runtime output

I : 1
F : 4.00000E+00

Also, we can convert between fixed-point types and floating-point or integer
types:

fixed_point_defs.ads

 1package Fixed_Point_Defs is
 2 S : constant := 32;
 3 Exp : constant := 15;
 4 D : constant := 2.0 ** (-S + Exp + 1);
 5
 6 type TQ15_31 is delta D
 7 range -1.0 * 2.0 ** Exp ..
 8 1.0 * 2.0 ** Exp - D;
 9
10 pragma Assert (TQ15_31'Size = S);
11end Fixed_Point_Defs;

show_conversion.adb

 1with Fixed_Point_Defs; use Fixed_Point_Defs;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_Conversion is
 5 F : Float;
 6 FP : TQ15_31;
 7 I : Integer;
 8begin
 9 FP := TQ15_31 (10.25);
10 I := Integer (FP);
11
12 Put_Line ("FP : "
13 & FP'Image);
14 Put_Line ("I : "
15 & I'Image);
16
17 I := 128;
18 FP := TQ15_31 (I);
19 F := Float (FP);
20
21 Put_Line ("FP : "
22 & FP'Image);
23 Put_Line ("F : "
24 & F'Image);
25end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_Conversion
MD5: 70714ba396b03469397b982e00299561

Runtime output

FP : 10.25000
I : 10
FP : 128.00000
F : 1.28000E+02

As we can see in the examples above, converting between different numeric types
works in all directions. (Of course, rounding is applied when converting from
floating-point to integer types, but this is expected.)

Enumeration conversion

We can also convert between an enumeration type and a type derived from it:

custom_enumerations.ads

1package Custom_Enumerations is
2
3 type Priority is (Low, Mid, High);
4
5 type Important_Priority is new
6 Priority range Mid .. High;
7
8end Custom_Enumerations;

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Enumerations; use Custom_Enumerations;
 3
 4procedure Show_Conversion is
 5 P : Priority := Low;
 6 IP : Important_Priority := High;
 7begin
 8 P := Priority (IP);
 9
10 Put_Line ("P: "
11 & P'Image);
12
13 P := Mid;
14 IP := Important_Priority (P);
15
16 Put_Line ("IP: "
17 & IP'Image);
18end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_Conversion
MD5: b1e42cbd8b57291d3b3a9968c41efdd7

Runtime output

P: HIGH
IP: MID

In this example, we have the Priority type and the derived type
Important_Priority. As expected, the conversion works fine when the
converted value is in the range of the target type. If not, an exception is
raised:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Enumerations; use Custom_Enumerations;
 3
 4procedure Show_Conversion is
 5 P : Priority;
 6 IP : Important_Priority;
 7begin
 8 P := Low;
 9 IP := Important_Priority (P);
10
11 Put_Line ("IP: "
12 & IP'Image);
13end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_Conversion
MD5: 6bbc777d4b44023bf572ca5dc6c2b4f8

Build output

show_conversion.adb:9:10: warning: value not in range of type "Important_Priority" defined at custom_enumerations.ads:5 [enabled by default]
show_conversion.adb:9:10: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_conversion.adb:9 range check failed

In this example, an exception is raised because Low is not in the Important_Priority type's range.

Array conversion

Similarly, we can convert between array types. For example, if we have the
array type Integer_Array and its derived type
Derived_Integer_Array, we can convert between those array types:

custom_arrays.ads

1package Custom_Arrays is
2
3 type Integer_Array is
4 array (Positive range <>) of Integer;
5
6 type Derived_Integer_Array is new
7 Integer_Array;
8
9end Custom_Arrays;

show_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Custom_Arrays; use Custom_Arrays;
 5
 6procedure Show_Conversion is
 7 subtype Common_Range is Positive range 1 .. 3;
 8
 9 AI : Integer_Array (Common_Range);
10 AI_D : Derived_Integer_Array (Common_Range);
11begin
12 AI_D := [1, 2, 3];
13 AI := Integer_Array (AI_D);
14
15 Put_Line ("AI: "
16 & AI'Image);
17
18 AI := [4, 5, 6];
19 AI_D := Derived_Integer_Array (AI);
20
21 Put_Line ("AI_D: "
22 & AI_D'Image);
23end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_Conversion
MD5: e0a9fd519685b418a06dc7a3d0dab1c0

Runtime output

AI:
[1, 2, 3]
AI_D:
[4, 5, 6]

Note that both arrays must have the same number of components in order for the
conversion to be successful. (Sliding is fine, though.) In this example, both
arrays have the same range: Common_Range.

We can also convert between array types that aren't derived one from the
other. As long as the components and the index subtypes are of the same type,
the conversion between those types is possible. To be more precise, these are
the requirements for the array conversion to be accepted:

	The component types must be the same type.

	The index types (or subtypes) must be the same or, at least, convertible.

	The dimensionality of the arrays must be the same.

	The bounds must be compatible (but not necessarily equal).

Converting between different array types can be very handy, especially when
we're dealing with array types that were not declared in the same package. For
example:

custom_arrays_1.ads

1package Custom_Arrays_1 is
2
3 type Integer_Array_1 is
4 array (Positive range <>) of Integer;
5
6 type Float_Array_1 is
7 array (Positive range <>) of Float;
8
9end Custom_Arrays_1;

custom_arrays_2.ads

1package Custom_Arrays_2 is
2
3 type Integer_Array_2 is
4 array (Positive range <>) of Integer;
5
6 type Float_Array_2 is
7 array (Positive range <>) of Float;
8
9end Custom_Arrays_2;

show_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Custom_Arrays_1; use Custom_Arrays_1;
 5with Custom_Arrays_2; use Custom_Arrays_2;
 6
 7procedure Show_Conversion is
 8 subtype Common_Range is Positive range 1 .. 3;
 9
10 AI_1 : Integer_Array_1 (Common_Range);
11 AI_2 : Integer_Array_2 (Common_Range);
12 AF_1 : Float_Array_1 (Common_Range);
13 AF_2 : Float_Array_2 (Common_Range);
14begin
15 AI_2 := [1, 2, 3];
16 AI_1 := Integer_Array_1 (AI_2);
17
18 Put_Line ("AI_1: "
19 & AI_1'Image);
20
21 AI_1 := [4, 5, 6];
22 AI_2 := Integer_Array_2 (AI_1);
23
24 Put_Line ("AI_2: "
25 & AI_2'Image);
26
27 -- ERROR: Cannot convert arrays whose
28 -- components have different types:
29 --
30 -- AF_1 := Float_Array_1 (AI_1);
31 --
32 -- Instead, use array aggregate where each
33 -- component is converted from integer to
34 -- float:
35 --
36 AF_1 := [for I in AF_1'Range =>
37 Float (AI_1 (I))];
38
39 Put_Line ("AF_1: "
40 & AF_1'Image);
41
42 AF_2 := Float_Array_2 (AF_1);
43
44 Put_Line ("AF_2: "
45 & AF_2'Image);
46end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_Conversion
MD5: 5c62f7cf94eedf8b0b223c24a83cc8d3

Runtime output

AI_1:
[1, 2, 3]
AI_2:
[4, 5, 6]
AF_1:
[4.00000E+00, 5.00000E+00, 6.00000E+00]
AF_2:
[4.00000E+00, 5.00000E+00, 6.00000E+00]

As we can see in this example, the fact that Integer_Array_1 and
Integer_Array_2 have the same component type (Integer) allows us
to convert between them. The same applies to the Float_Array_1 and
Float_Array_2 types.

A conversion is not possible when the component types don't match. Even though
we can convert between integer and floating-point types, we cannot convert an
array of integers to an array of floating-point directly. Therefore, we cannot
write a statement such as AF_1 := Float_Array_1 (AI_1);.

However, when the components don't match, we can of course implement the array
conversion by converting the individual components. For the example above, we
used an iterated component association in an array aggregate:
[for I in AF_1'Range => Float (AI_1 (I))];. (We discuss this topic later
in another chapter.)

We may also encounter array types originating from the instantiation of generic
packages. In this case as well, we can use array conversions. Consider the
following generic package:

custom_arrays.ads

1generic
2 type T is private;
3package Custom_Arrays is
4 type T_Array is
5 array (Positive range <>) of T;
6end Custom_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_Conversion
MD5: 8b3a963a1292a90d99d83c6d81ce3995

We could instantiate this generic package and reuse parts of the previous code
example:

show_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Custom_Arrays;
 5
 6procedure Show_Conversion is
 7 package CA_Int_1 is
 8 new Custom_Arrays (T => Integer);
 9 package CA_Int_2 is
10 new Custom_Arrays (T => Integer);
11
12 subtype Common_Range is Positive range 1 .. 3;
13
14 AI_1 : CA_Int_1.T_Array (Common_Range);
15 AI_2 : CA_Int_2.T_Array (Common_Range);
16begin
17 AI_2 := [1, 2, 3];
18 AI_1 := CA_Int_1.T_Array (AI_2);
19
20 Put_Line ("AI_1: "
21 & AI_1'Image);
22
23 AI_1 := [4, 5, 6];
24 AI_2 := CA_Int_2.T_Array (AI_1);
25
26 Put_Line ("AI_2: "
27 & AI_2'Image);
28end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_Conversion
MD5: 956186d864763924b93b6a9d807525b6

Runtime output

AI_1:
[1, 2, 3]
AI_2:
[4, 5, 6]

As we can see in this example, each of the instantiated CA_Int_1 and
CA_Int_2 packages has a T_Array type. Even though these
T_Array types have the same name, they're actually completely unrelated
types. However, we can still convert between them in the same way as we did in
the previous code examples.

View conversion

As mentioned before, view conversions just allow names to be converted. Thus,
we cannot use expressions in this case.

Note that a view conversion never changes the value during the conversion. We
could say that a view conversion is simply making us view an object from a
different angle. The object itself is still the same for both the original and
the target types.

For example, consider this package:

some_tagged_types.ads

 1package Some_Tagged_Types is
 2
 3 type T is tagged record
 4 A : Integer;
 5 end record;
 6
 7 type T_Derived is new T with record
 8 B : Float;
 9 end record;
10
11 Obj : T_Derived;
12
13end Some_Tagged_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Types_View
MD5: 2e18ba972682f1ae1d38e38842fde48e

Here, Obj is an object of type T_Derived. When we view this
object, we notice that it has two components: A and B. However,
we could view this object as being of type T. From that perspective,
this object only has one component: A. (Note that changing the
perspective doesn't change the object itself.) Therefore, a view conversion
from T_Derived to T just makes us view the object Obj
from a different angle.

In this sense, a view conversion changes the view of a given object to the
target type's view, both in terms of components that exist and operations that
are available. It doesn't really change anything at all in the value itself.

There are basically two kinds of view conversions: the ones using tagged types
and the ones using untagged types. We discuss these kinds of conversion in this
section.

View conversion of tagged types

A conversion between tagged types is a view conversion. Let's consider a
typical code example that declares one, two and three-dimensional points:

points.ads

 1package Points is
 2
 3 type Point_1D is tagged record
 4 X : Float;
 5 end record;
 6
 7 procedure Display (P : Point_1D);
 8
 9 type Point_2D is new Point_1D with record
10 Y : Float;
11 end record;
12
13 procedure Display (P : Point_2D);
14
15 type Point_3D is new Point_2D with record
16 Z : Float;
17 end record;
18
19 procedure Display (P : Point_3D);
20
21end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_1D) is
 6 begin
 7 Put_Line ("(X => " & P.X'Image & ")");
 8 end Display;
 9
10 procedure Display (P : Point_2D) is
11 begin
12 Put_Line ("(X => " & P.X'Image
13 & ", Y => " & P.Y'Image & ")");
14 end Display;
15
16 procedure Display (P : Point_3D) is
17 begin
18 Put_Line ("(X => " & P.X'Image
19 & ", Y => " & P.Y'Image
20 & ", Z => " & P.Z'Image & ")");
21 end Display;
22
23end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_Conversion
MD5: 0acc05ae2310ab4ba038dfdb6bae0495

We can use the types from the Points package and convert between each
other:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Points; use Points;
 3
 4procedure Show_Conversion is
 5 P_1D : Point_1D;
 6 P_3D : Point_3D;
 7begin
 8 P_3D := (X => 0.1, Y => 0.5, Z => 0.3);
 9 P_1D := Point_1D (P_3D);
10
11 Put ("P_3D : ");
12 Display (P_3D);
13
14 Put ("P_1D : ");
15 Display (P_1D);
16end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_Conversion
MD5: fb8e07c8f2399cfae935179d8f413150

Runtime output

P_3D : (X => 1.00000E-01, Y => 5.00000E-01, Z => 3.00000E-01)
P_1D : (X => 1.00000E-01)

In this example, as expected, we're able to convert from the Point_3D
type (which has three components) to the Point_1D type, which has only
one component.

View conversion of untagged types

For untagged types, a view conversion is the one that happens when we have an
object of an untagged type as an actual parameter for a formal in out
or out parameter.

Let's see a code example. Consider the following simple procedure:

double.ads

1procedure Double (X : in out Float);

double.adb

1procedure Double (X : in out Float) is
2begin
3 X := X * 2.0;
4end Double;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 31f4409d9faeaf213c5940de65eeb014

The Double procedure has an in out parameter of Float
type. We can call this procedure using an integer variable I as the
actual parameter. For example:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Double;
 3
 4procedure Show_Conversion is
 5 I : Integer;
 6begin
 7 I := 2;
 8 Put_Line ("I : "
 9 & I'Image);
10
11 -- Calling Double with
12 -- Integer parameter:
13 Double (Float (I));
14 Put_Line ("I : "
15 & I'Image);
16end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 2256d3c120d569789dcd4c9959ed9d0f

Runtime output

I : 2
I : 4

In this case, the Float (I) conversion in the call to Double
creates a temporary floating-point variable. This is the same as if we had
written the following code:

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Double;
 3
 4procedure Show_Conversion is
 5 I : Integer;
 6begin
 7 I := 2;
 8 Put_Line ("I : "
 9 & I'Image);
10
11 declare
12 F : Float := Float (I);
13 begin
14 Double (F);
15 I := Integer (F);
16 end;
17 Put_Line ("I : "
18 & I'Image);
19end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 3b90caf789952710ece42141a7b60968

Runtime output

I : 2
I : 4

In this sense, the view conversion that happens in Double (Float (I))
can be considered syntactic sugar, as it allows us to elegantly write two
conversions in a single statement.

Implicit conversions

Implicit conversions are only possible when we have a type T and a
subtype S related to the T type. For example:

custom_integers.ads

 1package Custom_Integers is
 2
 3 type Int is new Integer
 4 with Dynamic_Predicate => Int /= 0;
 5
 6 subtype Sub_Int_1 is Integer
 7 with Dynamic_Predicate => Sub_Int_1 /= 0;
 8
 9 subtype Sub_Int_2 is Sub_Int_1
10 with Dynamic_Predicate => Sub_Int_2 /= 1;
11
12end Custom_Integers;

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5 Int_Var : Int;
 6 Sub_Int_1_Var : Sub_Int_1;
 7 Sub_Int_2_Var : Sub_Int_2;
 8 Integer_Var : Integer;
 9begin
10 Integer_Var := 5;
11 Int_Var := Int (Integer_Var);
12
13 Put_Line ("Int_Var : "
14 & Int_Var'Image);
15
16 -- Implicit conversions:
17 -- no explicit conversion required!
18 Sub_Int_1_Var := Integer_Var;
19 Sub_Int_2_Var := Integer_Var;
20
21 Put_Line ("Sub_Int_1_Var : "
22 & Sub_Int_1_Var'Image);
23 Put_Line ("Sub_Int_2_Var : "
24 & Sub_Int_2_Var'Image);
25end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Implicit_Subtype_Conversion
MD5: dbbe498fa66701ca94f48119b1bc1a91

Runtime output

Int_Var : 5
Sub_Int_1_Var : 5
Sub_Int_2_Var : 5

In this example, we declare the Int type and the Sub_Int_1 and
Sub_Int_2 subtypes:

	the Int type is derived from the Integer type,

	Sub_Int_1 is a subtype of the Integer type, and

	Sub_Int_2 is a subtype of the Sub_Int_1 subtype.

We need an explicit conversion when converting between the Integer and
Int types. However, as the conversion is implicit for subtypes, we can
simply write Sub_Int_1_Var := Integer_Var;. (Of course, writing the
explicit conversion Sub_Int_1 (Integer_Var) in the assignment is
possible as well.) Also, the same applies to the Sub_Int_2 subtype: we
can write an implicit conversion in the Sub_Int_2_Var := Integer_Var;
statement.

Conversion of other types

For other kinds of types, such as records, a direct conversion as we've seen so
far isn't possible. In this case, we have to write a conversion function
ourselves. A common convention in Ada is to name this function
To_Typename. For example, if we want to convert from any type to
Integer or Float, we implement the To_Integer and
To_Float functions, respectively. (Obviously, because Ada supports
subprogram overloading, we can have multiple To_Typename functions for
different operand types.)

Let's see a code example:

custom_rec.ads

 1package Custom_Rec is
 2
 3 type Rec is record
 4 X : Integer;
 5 end record;
 6
 7 function To_Integer (R : Rec)
 8 return Integer is
 9 (R.X);
10
11end Custom_Rec;

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Rec; use Custom_Rec;
 3
 4procedure Show_Conversion is
 5 R : Rec;
 6 I : Integer;
 7begin
 8 R := (X => 2);
 9 I := To_Integer (R);
10
11 Put_Line ("I : " & I'Image);
12end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Other_Type_Conversions
MD5: d52a4fde48243a7dd6942f0b2b91ce62

Runtime output

I : 2

In this example, we have the To_Integer function that converts from the
Rec type to the Integer type.

In other languages

In C++, you can define conversion operators to cast between objects of
different classes. Also, you can overload the = operator.
Consider this example:

#include <iostream>

class T1 {
public:
 T1 (float x) :
 x(x) {}

 // If class T3 is declared before class
 // T1, we can overload the "=" operator.
 //
 // void operator=(T3 v) {
 // x = static_cast<float>(v);
 // }

 void display();
private:
 float x;
};

class T3 {
public:
 T3 (float x, float y, float z) :
 x(x), y(y), z(z) {}

 // implicit conversion
 operator float() const {
 return (x + y + z) / 3.0;
 }

 // implicit conversion
 //
 // operator T1() const {
 // return T1((x + y + z) / 3.0);
 // }

 // explicit conversion (C++11)
 explicit operator T1() const {
 return T1(float(*this));
 }

 void display();

private:
 float x, y, z;
};

void T1::display()
{
 std::cout << "(x => " << x
 << ")" << std::endl;
}

void T3::display()
{
 std::cout << "(x => " << x
 << "y => " << y
 << "z => " << z
 << ")" << std::endl;
}

int main ()
{
 const T3 t_3 (0.5, 0.4, 0.6);
 T1 t_1 (0.0);
 float f;

 // Implicit conversion
 f = t_3;

 std::cout << "f : " << f
 << std::endl;

 // Explicit conversion
 f = static_cast<float>(t_3);

 // f = (float)t_3;

 std::cout << "f : " << f
 << std::endl;

 // Explicit conversion
 t_1 = static_cast<T1>(t_3);

 // t_1 = (T1)t_3;

 std::cout << "t_1 : ";
 t_1.display();
 std::cout << std::endl;
}

Here, we're using operator float() and operator T1() to
cast from an object of class T3 to a floating-point value and an
object of class T1, respectively. (If we switch the order and
declare the T3 class before the T1 class, we could overload
the = operator, as you can see in the commented-out lines.)

In Ada, this kind of conversions isn't available. Instead, we have to
implement conversion functions such as the To_Integer function from
the previous code example. This is the corresponding implementation:

custom_defs.ads

 1package Custom_Defs is
 2
 3 type T1 is private;
 4
 5 function Init (X : Float)
 6 return T1;
 7
 8 procedure Display (Obj : T1);
 9
10 type T3 is private;
11
12 function Init (X, Y, Z : Float)
13 return T3;
14
15 function To_Float (Obj : T3)
16 return Float;
17
18 function To_T1 (Obj : T3)
19 return T1;
20
21 procedure Display (Obj : T3);
22
23private
24 type T1 is record
25 X : Float;
26 end record;
27
28 function Init (X : Float)
29 return T1 is
30 (X => X);
31
32 type T3 is record
33 X, Y, Z : Float;
34 end record;
35
36 function Init (X, Y, Z : Float)
37 return T3 is
38 (X => X, Y => Y, Z => Z);
39
40end Custom_Defs;

custom_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Defs is
 4
 5 procedure Display (Obj : T1) is
 6 begin
 7 Put_Line ("(X => "
 8 & Obj.X'Image & ")");
 9 end Display;
10
11 function To_Float (Obj : T3)
12 return Float is
13 ((Obj.X + Obj.Y + Obj.Z) / 3.0);
14
15 function To_T1 (Obj : T3)
16 return T1 is
17 (Init (To_Float (Obj)));
18
19 procedure Display (Obj : T3) is
20 begin
21 Put_Line ("(X => " & Obj.X'Image
22 & ", Y => " & Obj.Y'Image
23 & ", Z => " & Obj.Z'Image
24 & ")");
25 end Display;
26
27end Custom_Defs;

show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Defs; use Custom_Defs;
 3
 4procedure Show_Conversion is
 5 T_3 : constant T3 := Init (0.5, 0.4, 0.6);
 6 T_1 : T1 := Init (0.0);
 7 F : Float;
 8begin
 9 -- Explicit conversion from
10 -- T3 to Float type
11 F := To_Float (T_3);
12
13 Put_Line ("F : " & F'Image);
14
15 -- Explicit conversion from
16 -- T3 to T1 type
17 T_1 := To_T1 (T_3);
18
19 Put ("T_1 : ");
20 Display (T_1);
21end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Explicit_Rec_Conversion
MD5: b3e7be5488fb8026b4386063ba16aaeb

Runtime output

F : 5.00000E-01
T_1 : (X => 5.00000E-01)

In this example, we translate the casting operators from the C++ version
by implementing the To_Float and To_T1 functions.
(In addition to that, we replace the C++ constructors by Init
functions.)

Qualified Expressions

We already saw qualified expressions in the
Introduction to Ada course. As
mentioned there, a qualified expression specifies the exact type or subtype
that the target expression will be resolved to, and it can be either any
expression in parentheses, or an aggregate:

simple_integers.ads

1package Simple_Integers is
2
3 type Int is new Integer;
4
5 subtype Int_Not_Zero is Int
6 with Dynamic_Predicate => Int_Not_Zero /= 0;
7
8end Simple_Integers;

show_qualified_expressions.adb

1with Simple_Integers; use Simple_Integers;
2
3procedure Show_Qualified_Expressions is
4 I : Int;
5begin
6 -- Using qualified expression Int'(N)
7 I := Int'(0);
8end Show_Qualified_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 0a83e10b51c72827e322984bd5c8009d

Here, the qualified expression Int'(0) indicates that the value zero is
of Int type.

In the Ada Reference Manual

	4.7 Qualified Expressions[#8]

Verifying subtypes

Note

This feature was introduced in Ada 2022.

We can use qualified expressions to verify a subtype's predicate:

show_qualified_expressions.adb

1with Simple_Integers; use Simple_Integers;
2
3procedure Show_Qualified_Expressions is
4 I : Int;
5begin
6 I := Int_Not_Zero'(0);
7end Show_Qualified_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 3c4ab8ad7bf75ae029047f673aa15d70

Build output

show_qualified_expressions.adb:6:23: warning: expression fails predicate check on "Int_Not_Zero" [enabled by default]
show_qualified_expressions.adb:6:23: warning: check will fail at run time [-gnatw.a]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_qualified_expressions.adb:6

Here, the qualified expression Int_Not_Zero'(0) checks the dynamic
predicate of the subtype. (This predicate check fails at runtime.)

Default initial values

In the
Introduction to Ada course,
we've seen that record components can have default values. For example:

defaults.ads

1package Defaults is
2
3 type R is record
4 X : Positive := 1;
5 Y : Positive := 10;
6 end record;
7
8end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_1
MD5: e230be602cbb24a854e71c8176c7148c

In this section, we'll extend the concept of default values to other kinds of
type declarations, such as scalar types and arrays.

To assign a default value for a scalar type declaration — such as an
enumeration and a new integer —, we use the Default_Value aspect:

defaults.ads

1package Defaults is
2
3 type E is (E1, E2, E3)
4 with Default_Value => E1;
5
6 type T is new Integer
7 with Default_Value => -1;
8
9end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_2
MD5: e6cd8261b099278ceeb5fda91d318f6e

Note that we cannot specify a default value for a subtype:

defaults.ads

1package Defaults is
2
3 subtype T is Integer
4 with Default_Value => -1;
5 -- ERROR!!
6
7end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_3
MD5: beef68e4a7a3714cfa3e547bdcda9a0c

Build output

defaults.ads:4:11: error: aspect "Default_Value" cannot apply to subtype
gprbuild: *** compilation phase failed

For array types, we use the Default_Component_Value aspect:

defaults.ads

1package Defaults is
2
3 type Arr is
4 array (Positive range <>) of Integer
5 with Default_Component_Value => -1;
6
7end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_4
MD5: 2c390e3900e4af42498381025a37955e

This is a package containing the declarations we've just seen:

defaults.ads

 1package Defaults is
 2
 3 type E is (E1, E2, E3)
 4 with Default_Value => E1;
 5
 6 type T is new Integer
 7 with Default_Value => -1;
 8
 9 -- We cannot specify default
10 -- values for subtypes:
11 --
12 -- subtype T is Integer
13 -- with Default_Value => -1;
14
15 type R is record
16 X : Positive := 1;
17 Y : Positive := 10;
18 end record;
19
20 type Arr is
21 array (Positive range <>) of Integer
22 with Default_Component_Value => -1;
23
24end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: e9263ff5b96523c129a3d2d9bbb5a4dd

In the example below, we declare variables of the types from the
Defaults package:

use_defaults.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Defaults; use Defaults;
 3
 4procedure Use_Defaults is
 5 E1 : E;
 6 T1 : T;
 7 R1 : R;
 8 A1 : Arr (1 .. 5);
 9begin
10 Put_Line ("Enumeration: "
11 & E'Image (E1));
12 Put_Line ("Integer type: "
13 & T'Image (T1));
14 Put_Line ("Record type: "
15 & Positive'Image (R1.X)
16 & ", "
17 & Positive'Image (R1.Y));
18
19 Put ("Array type: ");
20 for V of A1 loop
21 Put (Integer'Image (V) & " ");
22 end loop;
23 New_Line;
24end Use_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: f8e55d31cbda2447fe14eb07eaad1975

Runtime output

Enumeration: E1
Integer type: -1
Record type: 1, 10
Array type: -1 -1 -1 -1 -1

As we see in the Use_Defaults procedure, all variables still have their
default values, since we haven't assigned any value to them.

In the Ada Reference Manual

	3.5 Scalar Types[#9]

	3.6 Array Types[#10]

Deferred Constants

Deferred constants are declarations where the value of the constant is not
specified immediately, but rather deferred to a later point. In that sense,
if a constant declaration is deferred, it is actually declared twice:

	in the deferred constant declaration, and

	in the full constant declaration.

The simplest form of deferred constant is the one that has a full constant
declaration in the private part of the package specification. For example:

deferred_constants.ads

 1package Deferred_Constants is
 2
 3 type Speed is new Long_Float;
 4
 5 Light : constant Speed;
 6 -- ^ deferred constant declaration
 7
 8private
 9
10 Light : constant Speed := 299_792_458.0;
11 -- ^ full constant declaration
12
13end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Private
MD5: f76e42326889f70fa7e1e216576f9771

Another form of deferred constant is the one that imports a constant from an
external implementation — using the Import keyword. We can use
this to import a constant declaration from an implementation in C. For example,
we can declare the light constant in a C file:

constants.c

1double light = 299792458.0;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_C
MD5: 71194a329dc5adaac3e01aff143a9943

Then, we can import this constant in the Deferred_Constants package:

deferred_constants.ads

 1package Deferred_Constants is
 2
 3 type Speed is new Long_Float;
 4
 5 Light : constant Speed with
 6 Import, Convention => C;
 7 -- ^^^^ deferred constant
 8 -- declaration; imported
 9 -- from C file
10
11end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_C
MD5: 9355d194e973c6c6540485178b2259c9

In this case, we don't have a full declaration in the Deferred_Constants
package, as the Light constant is imported from the constants.c
file.

As a rule, the deferred and the full declarations should match — except,
of course, for the actual value that is missing in the deferred declaration.
For instance, we're not allowed to use different types in both declarations.
However, we may use a subtype in the full declaration — as long as it's
compatible with the type that was used in the deferred declaration. For
example:

deferred_constants.ads

 1package Deferred_Constants is
 2
 3 type Speed is new Long_Float;
 4
 5 subtype Positive_Speed is
 6 Speed range 0.0 .. Speed'Last;
 7
 8 Light : constant Speed;
 9 -- ^ deferred constant declaration
10
11private
12
13 Light : constant Positive_Speed :=
14 299_792_458.0;
15 -- ^ full constant declaration
16 -- using a subtype
17
18end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Subtype
MD5: ad6e13e30bacb6d97ccfa6c7345ffb67

Here, we're using the Speed type in the deferred declaration of the
Light constant, but we're using the Positive_Speed subtype in
the full declaration.

A useful application of deferred constants is when the value of the constant is
calculated using entities not meant to be compile-time visible to clients.
As such, these other entities are only visible in the private part of the
package, so that's where the value of the deferred constant must be computed.
For example, the full constant declaration may be computed by a call to an
expression function:

deferred_constants.ads

 1package Deferred_Constants is
 2
 3 type Speed is new Long_Float;
 4
 5 Light : constant Speed;
 6 -- ^ deferred constant declaration
 7
 8private
 9
10 function Calculate_Light return Speed is
11 (299_792_458.0);
12
13 Light : constant Speed := Calculate_Light;
14 -- ^ full constant declaration
15 -- calling a private function
16
17end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Function
MD5: f0b1a9521af31a4b48bbd54891f1c32b

Here, we call the Calculate_Light function — declared in the
private part of the Deferred_Constants package — for the full
declaration of the Light constant.

In the Ada Reference Manual

	7.4 Deferred Constants[#11]

User-defined literals

Note

This feature was introduced in Ada 2022.

Any type definition has a kind of literal associated with it. For example,
integer types are associated with integer literals. Therefore, we can
initialize an object of integer type with an integer literal:

simple_integer_literal.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Simple_Integer_Literal is
4 V : Integer;
5begin
6 V := 10;
7
8 Put_Line (Integer'Image (V));
9end Simple_Integer_Literal;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Simple_Integer_Literal
MD5: 9f65e7c319be2b292dc1fdf02dd7cfb4

Runtime output

 10

Here, 10 is the integer literal that we use to initialize the integer
variable V. Other examples of literals are real literals and string
literals, as we'll see later.

When we declare an enumeration type, we limit the set of literals that we can
use to initialize objects of that type:

simple_enumeration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Enumeration is
 4 type Activation_State is (Unknown, Off, On);
 5
 6 S : Activation_State;
 7begin
 8 S := On;
 9 Put_Line (Activation_State'Image (S));
10end Simple_Enumeration;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Simple_Enumeration
MD5: 075df146fcb567817dadfdb245659773

Runtime output

ON

For objects of Activation_State type, such as S, the only
possible literals that we can use are Unknown, Off and On.
In this sense, types have a constrained set of literals that can be used for
objects of that type.

User-defined literals allow us to extend this set of literals. We could, for
example, extend the type declaration of Activation_State and allow the
use of integer literals for objects of that type. In this case, we need to use
the Integer_Literal aspect and specify a function that implements the
conversion from literals to the type we're declaring. For this conversion from
integer literals to the Activation_State type, we could specify that 0
corresponds to Off, 1 corresponds to On and other values
correspond to Unknown. We'll see the corresponding implementation later.

These are the three kinds of literals and their corresponding aspect:

	Literal

	Example

	Aspect

	Integer

	1

	Integer_Literal

	Real

	1.0

	Real_Literal

	String

	"On"

	String_Literal

For our previous Activation_States type, we could declare a function
Integer_To_Activation_State that converts integer literals to one of the
enumeration literals that we've specified for the Activation_States
type:

activation_states.ads

 1package Activation_States is
 2
 3 type Activation_State is (Unknown, Off, On)
 4 with Integer_Literal =>
 5 Integer_To_Activation_State;
 6
 7 function Integer_To_Activation_State
 8 (S : String)
 9 return Activation_State;
10
11end Activation_States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.User_Defined_Literals
MD5: 67b6d96f049ab6cde962aefda96bffca

Based on this specification, we can now use an integer literal to initialize an
object S of Activation_State type:

S : Activation_State := 1;

Note that we have a string parameter in the declaration of the
Integer_To_Activation_State function, even though the function itself is
only used to convert integer literals (but not string literals) to the
Activation_State type. It's our job to process that string parameter in
the implementation of the Integer_To_Activation_State function and
convert it to an integer value — using Integer'Value, for example:

activation_states.adb

 1package body Activation_States is
 2
 3 function Integer_To_Activation_State
 4 (S : String)
 5 return Activation_State is
 6 begin
 7 case Integer'Value (S) is
 8 when 0 => return Off;
 9 when 1 => return On;
10 when others => return Unknown;
11 end case;
12 end Integer_To_Activation_State;
13
14end Activation_States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.User_Defined_Literals
MD5: 104a835915b93ea3b860bce03fd709a3

Let's look at a complete example that makes use of all three kinds of literals:

activation_states.ads

 1package Activation_States is
 2
 3 type Activation_State is (Unknown, Off, On)
 4 with String_Literal =>
 5 To_Activation_State,
 6 Integer_Literal =>
 7 Integer_To_Activation_State,
 8 Real_Literal =>
 9 Real_To_Activation_State;
10
11 function To_Activation_State
12 (S : Wide_Wide_String)
13 return Activation_State;
14
15 function Integer_To_Activation_State
16 (S : String)
17 return Activation_State;
18
19 function Real_To_Activation_State
20 (S : String)
21 return Activation_State;
22
23end Activation_States;

activation_states.adb

 1package body Activation_States is
 2
 3 function To_Activation_State
 4 (S : Wide_Wide_String)
 5 return Activation_State
 6 is
 7 begin
 8 if S = "Off" then
 9 return Off;
10 elsif S = "On" then
11 return On;
12 else
13 return Unknown;
14 end if;
15 end To_Activation_State;
16
17 function Integer_To_Activation_State
18 (S : String)
19 return Activation_State
20 is
21 begin
22 case Integer'Value (S) is
23 when 0 => return Off;
24 when 1 => return On;
25 when others => return Unknown;
26 end case;
27 end Integer_To_Activation_State;
28
29 function Real_To_Activation_State
30 (S : String)
31 return Activation_State
32 is
33 V : constant Float := Float'Value (S);
34 begin
35 if V < 0.0 then
36 return Unknown;
37 elsif V < 1.0 then
38 return Off;
39 else
40 return On;
41 end if;
42 end Real_To_Activation_State;
43
44end Activation_States;

activation_examples.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Activation_Examples is
 5 S : Activation_State;
 6begin
 7 S := "Off";
 8 Put_Line ("String: Off => "
 9 & Activation_State'Image (S));
10
11 S := 1;
12 Put_Line ("Integer: 1 => "
13 & Activation_State'Image (S));
14
15 S := 1.5;
16 Put_Line ("Real: 1.5 => "
17 & Activation_State'Image (S));
18end Activation_Examples;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_States
MD5: 186b7b898e4c16bfd8dcd683e8f0379d

Runtime output

String: Off => OFF
Integer: 1 => ON
Real: 1.5 => ON

In this example, we're extending the declaration of the Activation_State
type to include string and real literals. For string literals, we use the
To_Activation_State function, which converts:

	the "Off" string to Off,

	the "On" string to On, and

	any other string to Unknown.

For real literals, we use the Real_To_Activation_State function, which
converts:

	any negative number to Unknown,

	a value in the interval [0, 1) to Off, and

	a value equal or above 1.0 to On.

Note that the string parameter of To_Activation_State function —
which converts string literals — is of Wide_Wide_String type, and
not of String type, as it's the case for the other conversion functions.

In the Activation_Examples procedure, we show how we can initialize an
object of Activation_State type with all kinds of literals (string,
integer and real literals).

With the definition of the Activation_State type that we've seen in the
complete example, we can initialize an object of this type with an enumeration
literal or a string, as both forms are defined in the type specification:

using_string_literal.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Using_String_Literal is
 5 S1 : constant Activation_State := On;
 6 S2 : constant Activation_State := "On";
 7begin
 8 Put_Line (Activation_State'Image (S1));
 9 Put_Line (Activation_State'Image (S2));
10end Using_String_Literal;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_States
MD5: 6ca6aa79b88058801688fc2dfb186091

Runtime output

ON
ON

Note we need to be very careful when designing conversion functions. For
example, the use of string literals may limit the kind of checks that we can
do. Consider the following misspelling of the Off literal:

misspelling_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Misspelling_Example is
 5 S : constant Activation_State :=
 6 Offf;
 7 -- ^ Error: Off is misspelled.
 8begin
 9 Put_Line (Activation_State'Image (S));
10end Misspelling_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_States
MD5: ebc1036a58e460a9212106606461b014

Build output

misspelling_example.adb:6:10: error: "Offf" is undefined
misspelling_example.adb:6:10: error: possible misspelling of "Off"
gprbuild: *** compilation phase failed

As expected, the compiler detects this error. However, this error is accepted
when using the corresponding string literal:

misspelling_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Misspelling_Example is
 5 S : constant Activation_State :=
 6 "Offf";
 7 -- ^ Error: Off is misspelled.
 8begin
 9 Put_Line (Activation_State'Image (S));
10end Misspelling_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_States
MD5: 99f74c67712a9b55c146b9d57405e47f

Runtime output

UNKNOWN

Here, our implementation of To_Activation_State simply returns
Unknown. In some cases, this might be exactly the behavior that we want.
However, let's assume that we'd prefer better error handling instead. In this
case, we could change the implementation of To_Activation_State to check
all literals that we want to allow, and indicate an error otherwise — by
raising an exception, for example. Alternatively, we could specify this in the
preconditions of the conversion function:

function To_Activation_State
 (S : Wide_Wide_String)
 return Activation_State
 with Pre => S = "Off" or
 S = "On" or
 S = "Unknown";

In this case, the precondition explicitly indicates which string literals are
allowed for the To_Activation_State type.

User-defined literals can also be used for more complex types, such as records.
For example:

silly_records.ads

 1package Silly_Records is
 2
 3 type Silly is record
 4 X : Integer;
 5 Y : Float;
 6 end record
 7 with String_Literal => To_Silly;
 8
 9 function To_Silly (S : Wide_Wide_String)
10 return Silly;
11end Silly_Records;

silly_records.adb

 1package body Silly_Records is
 2
 3 function To_Silly (S : Wide_Wide_String)
 4 return Silly
 5 is
 6 begin
 7 if S = "Magic" then
 8 return (X => 42, Y => 42.0);
 9 else
10 return (X => 0, Y => 0.0);
11 end if;
12 end To_Silly;
13
14end Silly_Records;

silly_magic.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Silly_Records; use Silly_Records;
3
4procedure Silly_Magic is
5 R1 : Silly;
6begin
7 R1 := "Magic";
8 Put_Line (R1.X'Image & ", " & R1.Y'Image);
9end Silly_Magic;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Record_Literals
MD5: 2a077045f058a8d5c09c43f66fc128be

Runtime output

 42, 4.20000E+01

In this example, when we initialize an object of Silly type with a
string, its components are:

	set to 42 when using the "Magic" string; or

	simply set to zero when using any other string.

Obviously, this example isn't particularly useful. However, the goal is to
show that this approach is useful for more complex types where a string literal
(or a numeric literal) might simplify handling those types. Used-defined
literals let you design types in ways that, otherwise, would only be possible
when using a preprocessor or a domain-specific language.

In the Ada Reference Manual

	4.2.1 User-Defined Literals[#12]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-3-5-1.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-3-3.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-7-2.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-7-3.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-4-6.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-4-7.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-7-4.html

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-4-2-1.html

Types and Representation

Enumeration Representation Clauses

We have talked about the internal code of an enumeration
in another section.
We may change this internal code by using a representation clause, which has
the following format:

for Primary_Color is (Red => 1,
 Green => 5,
 Blue => 1000);

The value of each code in a representation clause must be distinct. However, as
you can see above, we don't need to use sequential values — the values
must, however, increase for each enumeration.

We can rewrite the previous example using a representation clause:

days.ads

 1package Days is
 2
 3 type Day is (Mon, Tue, Wed,
 4 Thu, Fri,
 5 Sat, Sun);
 6
 7 for Day use (Mon => 2#00000001#,
 8 Tue => 2#00000010#,
 9 Wed => 2#00000100#,
10 Thu => 2#00001000#,
11 Fri => 2#00010000#,
12 Sat => 2#00100000#,
13 Sun => 2#01000000#);
14
15end Days;

show_days.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Days; use Days;
 3
 4procedure Show_Days is
 5begin
 6 for D in Day loop
 7 Put_Line (Day'Image (D)
 8 & " position = "
 9 & Integer'Image (Day'Pos (D)));
10 Put_Line (Day'Image (D)
11 & " internal code = "
12 & Integer'Image
13 (Day'Enum_Rep (D)));
14 end loop;
15end Show_Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Enumeration_Representation_Clauses.Enumeration_Values
MD5: a70c3f8a967c355a4bf8f2d669f9c541

Runtime output

MON position = 0
MON internal code = 1
TUE position = 1
TUE internal code = 2
WED position = 2
WED internal code = 4
THU position = 3
THU internal code = 8
FRI position = 4
FRI internal code = 16
SAT position = 5
SAT internal code = 32
SUN position = 6
SUN internal code = 64

Now, the value of the internal code is the one that we've specified in the
representation clause instead of being equivalent to the value of the
enumeration position.

In the example above, we're using binary values for each enumeration —
basically viewing the integer value as a bit-field and assigning one bit for
each enumeration. As long as we maintain an increasing order, we can use
totally arbitrary values as well. For example:

days.ads

 1package Days is
 2
 3 type Day is (Mon, Tue, Wed,
 4 Thu, Fri,
 5 Sat, Sun);
 6
 7 for Day use (Mon => 5,
 8 Tue => 9,
 9 Wed => 42,
10 Thu => 49,
11 Fri => 50,
12 Sat => 66,
13 Sun => 99);
14
15end Days;

Data Representation

This section provides a glimpse on attributes and aspects used for data
representation. They are usually used for embedded applications because of
strict requirements that are often found there. Therefore, unless you have
very specific requirements for your application, in most cases, you won't need
them. However, you should at least have a rudimentary understanding of them.
To read a thorough overview on this topic, please refer to the
Introduction to Embedded Systems Programming
course.

In the Ada Reference Manual

	13.2 Packed Types[#1]

	13.3 Operational and Representation Attributes[#2]

	13.5.3 Bit Ordering[#3]

Sizes

Ada offers multiple attributes to retrieve the size of a type or an object:

	Attribute

	Description

	Size

	Size of the representation of a subtype or an
object (in bits).

	Object_Size

	Size of a component or an aliased object (in bits).

	Component_Size

	Size of a component of an array (in bits).

	Storage_Size

	Number of storage elements reserved for an access
type or a task object.

For the first three attributes, the size is measured in bits. In the case of
Storage_Size, the size is measured in storage elements. Note that the
size information depends your target architecture. We'll discuss some examples
to better understand the differences among those attributes.

Important

A storage element is the smallest element we can use to store data in
memory. As we'll see soon, a storage element corresponds to a byte in
many architectures.

The size of a storage element is represented by the
System.Storage_Unit constant. In other words, the storage unit
corresponds to the number of bits used for a single storage element.

In typical architectures, System.Storage_Unit is 8 bits. In this
specific case, a storage element is equal to a byte in memory. Note,
however, that System.Storage_Unit might have a value different than
eight in certain architectures.

Size attribute and aspect

Let's start with a code example using the Size attribute:

custom_types.ads

1package Custom_Types is
2
3 type UInt_7 is range 0 .. 127;
4
5 type UInt_7_S32 is range 0 .. 127
6 with Size => 32;
7
8end Custom_Types;

show_sizes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Sizes is
 6 V1 : UInt_7;
 7 V2 : UInt_7_S32;
 8begin
 9 Put_Line ("UInt_7'Size: "
10 & UInt_7'Size'Image);
11 Put_Line ("UInt_7'Object_Size: "
12 & UInt_7'Object_Size'Image);
13 Put_Line ("V1'Size: "
14 & V1'Size'Image);
15 New_Line;
16
17 Put_Line ("UInt_7_S32'Size: "
18 & UInt_7_S32'Size'Image);
19 Put_Line ("UInt_7_S32'Object_Size: "
20 & UInt_7_S32'Object_Size'Image);
21 Put_Line ("V2'Size: "
22 & V2'Size'Image);
23end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: e0da7cd23dc6989bea3d2902221f033e

Build output

show_sizes.adb:6:04: warning: variable "V1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "V2" is read but never assigned [-gnatwv]

Runtime output

UInt_7'Size: 7
UInt_7'Object_Size: 8
V1'Size: 8

UInt_7_S32'Size: 32
UInt_7_S32'Object_Size: 32
V2'Size: 32

Depending on your target architecture, you may see this output:

UInt_7'Size: 7
UInt_7'Object_Size: 8
V1'Size: 8

UInt_7_S32'Size: 32
UInt_7_S32'Object_Size: 32
V2'Size: 32

When we use the Size attribute for a type T, we're retrieving the
minimum number of bits necessary to represent objects of that type. Note that
this is not the same as the actual size of an object of type T because
the compiler will select an object size that is appropriate for the target
architecture.

In the example above, the size of the UInt_7 is 7 bits, while the most
appropriate size to store objects of this type in the memory of our target
architecture is 8 bits. To be more specific, the range of UInt_7
(0 .. 127) can be perfectly represented in 7 bits. However, most target
architectures don't offer 7-bit registers or 7-bit memory storage, so 8 bits is
the most appropriate size in this case.

We can retrieve the size of an object of type T by using the
Object_Size. Alternatively, we can use the Size attribute
directly on objects of type T to retrieve their actual size — in
our example, we write V1'Size to retrieve the size of V1.

In the example above, we've used both the Size attribute (for example,
UInt_7'Size) and the Size aspect (with Size => 32).
While the size attribute is a function that returns the size, the size aspect
is a request to the compiler to verify that the expected size can be used on
the target platform. You can think of this attribute as a dialog between the
developer and the compiler:

(Developer) "I think that UInt_7_S32 should be stored using at
least 32 bits. Do you agree?"

(Ada compiler) "For the target platform that you selected, I can confirm
that this is indeed the case."

Depending on the target platform, however, the conversation might play out like
this:

(Developer) "I think that UInt_7_S32 should be stored using at
least 32 bits. Do you agree?"

(Ada compiler) "For the target platform that you selected, I cannot
possibly do it! COMPILATION ERROR!"

Component size

Let's continue our discussion on sizes with an example that makes use of the
Component_Size attribute:

custom_types.ads

 1package Custom_Types is
 2
 3 type UInt_7 is range 0 .. 127;
 4
 5 type UInt_7_Array is
 6 array (Positive range <>) of UInt_7;
 7
 8 type UInt_7_Array_Comp_32 is
 9 array (Positive range <>) of UInt_7
10 with Component_Size => 32;
11
12end Custom_Types;

show_sizes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Sizes is
 6 Arr_1 : UInt_7_Array (1 .. 20);
 7 Arr_2 : UInt_7_Array_Comp_32 (1 .. 20);
 8begin
 9 Put_Line
10 ("UInt_7_Array'Size: "
11 & UInt_7_Array'Size'Image);
12 Put_Line
13 ("UInt_7_Array'Object_Size: "
14 & UInt_7_Array'Object_Size'Image);
15 Put_Line
16 ("UInt_7_Array'Component_Size: "
17 & UInt_7_Array'Component_Size'Image);
18 Put_Line
19 ("Arr_1'Component_Size: "
20 & Arr_1'Component_Size'Image);
21 Put_Line
22 ("Arr_1'Size: "
23 & Arr_1'Size'Image);
24 New_Line;
25
26 Put_Line
27 ("UInt_7_Array_Comp_32'Object_Size: "
28 & UInt_7_Array_Comp_32'Size'Image);
29 Put_Line
30 ("UInt_7_Array_Comp_32'Object_Size: "
31 & UInt_7_Array_Comp_32'Object_Size'Image);
32 Put_Line
33 ("UInt_7_Array_Comp_32'Component_Size: "
34 &
35 UInt_7_Array_Comp_32'Component_Size'Image);
36 Put_Line
37 ("Arr_2'Component_Size: "
38 & Arr_2'Component_Size'Image);
39 Put_Line
40 ("Arr_2'Size: "
41 & Arr_2'Size'Image);
42 New_Line;
43end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: e316bcb827e014075dfbf044935827ae

Build output

show_sizes.adb:6:04: warning: variable "Arr_1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "Arr_2" is read but never assigned [-gnatwv]

Runtime output

UInt_7_Array'Size: 17179869176
UInt_7_Array'Object_Size: 17179869176
UInt_7_Array'Component_Size: 8
Arr_1'Component_Size: 8
Arr_1'Size: 160

UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Component_Size: 32
Arr_2'Component_Size: 32
Arr_2'Size: 640

Depending on your target architecture, you may see this output:

UInt_7_Array'Size: 17179869176
UInt_7_Array'Object_Size: 17179869176
UInt_7_Array'Component_Size: 8
Arr_1'Component_Size: 8
Arr_1'Size: 160

UInt_7_Array_Comp_32'Size: 68719476704
UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Component_Size: 32
Arr_2'Component_Size: 32
Arr_2'Size: 640

Here, the value we get for Component_Size of the UInt_7_Array
type is 8 bits, which matches the UInt_7'Object_Size — as we've
seen in the previous subsection. In general, we expect the component size to
match the object size of the underlying type.

However, we might have component sizes that aren't equal to the object size of
the component's type. For example, in the declaration of the
UInt_7_Array_Comp_32 type, we're using the Component_Size aspect
to query whether the size of each component can be 32 bits:

type UInt_7_Array_Comp_32 is
 array (Positive range <>) of UInt_7
 with Component_Size => 32;

If the code compiles, we see this value when we use the Component_Size
attribute. In this case, even though UInt_7'Object_Size is 8 bits, the
component size of the array type (UInt_7_Array_Comp_32'Component_Size)
is 32 bits.

Note that we can use the Component_Size attribute with data types, as
well as with actual objects of that data type. Therefore, we can write
UInt_7_Array'Component_Size and Arr_1'Component_Size, for
example.

This big number (17179869176 bits) for UInt_7_Array'Size and
UInt_7_Array'Object_Size might be surprising for you. This is due to the
fact that Ada is reporting the size of the UInt_7_Array type for the
case when the complete range is used. Considering that we specified a positive
range in the declaration of the UInt_7_Array type, the maximum length
on this machine is 231 - 1. The object size of an array type is
calculated by multiplying the maximum length by the component size. Therefore,
the object size of the UInt_7_Array type corresponds to the
multiplication of 231 - 1 components (maximum length) by 8 bits
(component size).

Storage size

To complete our discussion on sizes, let's look at this example of storage
sizes:

custom_types.ads

1package Custom_Types is
2
3 type UInt_7 is range 0 .. 127;
4
5 type UInt_7_Access is access UInt_7;
6
7end Custom_Types;

show_sizes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7 AV1, AV2 : UInt_7_Access;
 8begin
 9 Put_Line
10 ("UInt_7_Access'Storage_Size: "
11 & UInt_7_Access'Storage_Size'Image);
12 Put_Line
13 ("UInt_7_Access'Storage_Size (bits): "
14 & Integer'Image (UInt_7_Access'Storage_Size
15 * System.Storage_Unit));
16
17 Put_Line
18 ("UInt_7'Size: "
19 & UInt_7'Size'Image);
20 Put_Line
21 ("UInt_7_Access'Size: "
22 & UInt_7_Access'Size'Image);
23 Put_Line
24 ("UInt_7_Access'Object_Size: "
25 & UInt_7_Access'Object_Size'Image);
26 Put_Line
27 ("AV1'Size: "
28 & AV1'Size'Image);
29 New_Line;
30
31 Put_Line ("Allocating AV1...");
32 AV1 := new UInt_7;
33 Put_Line ("Allocating AV2...");
34 AV2 := new UInt_7;
35 New_Line;
36
37 Put_Line
38 ("AV1.all'Size: "
39 & AV1.all'Size'Image);
40 New_Line;
41end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: 5e652ee25b8550ac331f3ce98e24f7ba

Runtime output

UInt_7_Access'Storage_Size: 0
UInt_7_Access'Storage_Size (bits): 0
UInt_7'Size: 7
UInt_7_Access'Size: 64
UInt_7_Access'Object_Size: 64
AV1'Size: 64

Allocating AV1...
Allocating AV2...

AV1.all'Size: 8

Depending on your target architecture, you may see this output:

UInt_7_Access'Storage_Size: 0
UInt_7_Access'Storage_Size (bits): 0

UInt_7'Size: 7
UInt_7_Access'Size: 64
UInt_7_Access'Object_Size: 64
AV1'Size: 64

Allocating AV1...
Allocating AV2...

AV1.all'Size: 8

As we've mentioned earlier on, Storage_Size corresponds to the number of
storage elements reserved for an access type or a task object. In this case,
we see that the storage size of the UInt_7_Access type is zero. This is
because we haven't indicated that memory should be reserved for this data type.
Thus, the compiler doesn't reserve memory and simply sets the size to zero.

Because Storage_Size gives us the number of storage elements, we have
to multiply this value by System.Storage_Unit to get the total
storage size in bits. (In this particular example, however, the multiplication
doesn't make any difference, as the number of storage elements is zero.)

Note that the size of our original data type UInt_7 is 7 bits, while the
size of its corresponding access type UInt_7_Access (and the access
object AV1) is 64 bits. This is due to the fact that the access type
doesn't contain an object, but rather memory information about an object. You
can retrieve the size of an object allocated via new by first
dereferencing it — in our example, we do this by writing
AV1.all'Size.

Now, let's use the Storage_Size aspect to actually reserve memory for
this data type:

custom_types.ads

1package Custom_Types is
2
3 type UInt_7 is range 0 .. 127;
4
5 type UInt_7_Reserved_Access is access UInt_7
6 with Storage_Size => 8;
7
8end Custom_Types;

show_sizes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7 RAV1, RAV2 : UInt_7_Reserved_Access;
 8begin
 9 Put_Line
10 ("UInt_7_Reserved_Access'Storage_Size: "
11 & UInt_7_Reserved_Access'Storage_Size'Image);
12
13 Put_Line
14 ("UInt_7_Reserved_Access'Storage_Size (bits): "
15 & Integer'Image
16 (UInt_7_Reserved_Access'Storage_Size
17 * System.Storage_Unit));
18
19 Put_Line
20 ("UInt_7_Reserved_Access'Size: "
21 & UInt_7_Reserved_Access'Size'Image);
22 Put_Line
23 ("UInt_7_Reserved_Access'Object_Size: "
24 & UInt_7_Reserved_Access'Object_Size'Image);
25 Put_Line
26 ("RAV1'Size: "
27 & RAV1'Size'Image);
28 New_Line;
29
30 Put_Line ("Allocating RAV1...");
31 RAV1 := new UInt_7;
32 Put_Line ("Allocating RAV2...");
33 RAV2 := new UInt_7;
34 New_Line;
35end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: 6ac085d8467a61ba4f9cd138c024442d

Runtime output

UInt_7_Reserved_Access'Storage_Size: 8
UInt_7_Reserved_Access'Storage_Size (bits): 64
UInt_7_Reserved_Access'Size: 64
UInt_7_Reserved_Access'Object_Size: 64
RAV1'Size: 64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

Depending on your target architecture, you may see this output:

UInt_7_Reserved_Access'Storage_Size: 8
UInt_7_Reserved_Access'Storage_Size (bits): 64

UInt_7_Reserved_Access'Size: 64
UInt_7_Reserved_Access'Object_Size: 64
RAV1'Size: 64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

In this case, we're reserving 8 storage elements in the declaration of
UInt_7_Reserved_Access.

type UInt_7_Reserved_Access is access UInt_7
 with Storage_Size => 8;

Since each storage element corresponds to one byte (8 bits) in this
architecture, we're reserving a maximum of 64 bits (or 8 bytes) for the
UInt_7_Reserved_Access type.

This example raises an exception at runtime — a storage error, to be more
specific. This is because the maximum reserved size is 64 bits, and the size of
a single access object is 64 bits as well. Therefore, after the first
allocation, the reserved storage space is already consumed, so we cannot
allocate a second access object.

This behavior might be quite limiting in many cases. However, for certain
applications where memory is very constrained, this might be exactly what we
want to see. For example, having an exception being raised when the allocated
memory for this data type has reached its limit might allow the application to
have enough memory to at least handle the exception gracefully.

Alignment

For many algorithms, it's important to ensure that we're using the appropriate
alignment. This can be done by using the Alignment attribute and the
Alignment aspect. Let's look at this example:

custom_types.ads

1package Custom_Types is
2
3 type UInt_7 is range 0 .. 127;
4
5 type Aligned_UInt_7 is new UInt_7
6 with Alignment => 4;
7
8end Custom_Types;

show_alignment.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Alignment is
 6 V : constant UInt_7 := 0;
 7 Aligned_V : constant Aligned_UInt_7 := 0;
 8begin
 9 Put_Line
10 ("UInt_7'Alignment: "
11 & UInt_7'Alignment'Image);
12 Put_Line
13 ("UInt_7'Size: "
14 & UInt_7'Size'Image);
15 Put_Line
16 ("UInt_7'Object_Size: "
17 & UInt_7'Object_Size'Image);
18 Put_Line
19 ("V'Alignment: "
20 & V'Alignment'Image);
21 Put_Line
22 ("V'Size: "
23 & V'Size'Image);
24 New_Line;
25
26 Put_Line
27 ("Aligned_UInt_7'Alignment: "
28 & Aligned_UInt_7'Alignment'Image);
29 Put_Line
30 ("Aligned_UInt_7'Size: "
31 & Aligned_UInt_7'Size'Image);
32 Put_Line
33 ("Aligned_UInt_7'Object_Size: "
34 & Aligned_UInt_7'Object_Size'Image);
35 Put_Line
36 ("Aligned_V'Alignment: "
37 & Aligned_V'Alignment'Image);
38 Put_Line
39 ("Aligned_V'Size: "
40 & Aligned_V'Size'Image);
41 New_Line;
42end Show_Alignment;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Alignment
MD5: a2fea340559193c293ccaee226de2558

Runtime output

UInt_7'Alignment: 1
UInt_7'Size: 7
UInt_7'Object_Size: 8
V'Alignment: 1
V'Size: 8

Aligned_UInt_7'Alignment: 4
Aligned_UInt_7'Size: 7
Aligned_UInt_7'Object_Size: 32
Aligned_V'Alignment: 4
Aligned_V'Size: 32

Depending on your target architecture, you may see this output:

UInt_7'Alignment: 1
UInt_7'Size: 7
UInt_7'Object_Size: 8
V'Alignment: 1
V'Size: 8

Aligned_UInt_7'Alignment: 4
Aligned_UInt_7'Size: 7
Aligned_UInt_7'Object_Size: 32
Aligned_V'Alignment: 4
Aligned_V'Size: 32

In this example, we're reusing the UInt_7 type that we've already been
using in previous examples. Because we haven't specified any alignment for the
UInt_7 type, it has an alignment of 1 storage unit (or 8 bits). However,
in the declaration of the Aligned_UInt_7 type, we're using the
Alignment aspect to request an alignment of 4 storage units (or 32
bits):

type Aligned_UInt_7 is new UInt_7
 with Alignment => 4;

When using the Alignment attribute for the Aligned_UInt_7 type,
we can confirm that its alignment is indeed 4 storage units (bytes).

Note that we can use the Alignment attribute for both data types and
objects — in the code above, we're using UInt_7'Alignment and
V'Alignment, for example.

Because of the alignment we're specifying for the Aligned_UInt_7 type,
its size — indicated by the Object_Size attribute — is 32
bits instead of 8 bits as for the UInt_7 type.

Note that you can also retrieve the alignment associated with a class using
S'Class'Alignment. For example:

show_class_alignment.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Class_Alignment is
 4
 5 type Point_1D is tagged record
 6 X : Integer;
 7 end record;
 8
 9 type Point_2D is new Point_1D with record
10 Y : Integer;
11 end record
12 with Alignment => 16;
13
14 type Point_3D is new Point_2D with record
15 Z : Integer;
16 end record;
17
18begin
19 Put_Line ("1D_Point'Alignment: "
20 & Point_1D'Alignment'Image);
21 Put_Line ("1D_Point'Class'Alignment: "
22 & Point_1D'Class'Alignment'Image);
23 Put_Line ("2D_Point'Alignment: "
24 & Point_2D'Alignment'Image);
25 Put_Line ("2D_Point'Class'Alignment: "
26 & Point_2D'Class'Alignment'Image);
27 Put_Line ("3D_Point'Alignment: "
28 & Point_3D'Alignment'Image);
29 Put_Line ("3D_Point'Class'Alignment: "
30 & Point_3D'Class'Alignment'Image);
31end Show_Class_Alignment;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Class_Alignment
MD5: 4eb28d59439d1eb86cd23fb08acd3493

Runtime output

1D_Point'Alignment: 8
1D_Point'Class'Alignment: 8
2D_Point'Alignment: 16
2D_Point'Class'Alignment: 16
3D_Point'Alignment: 16
3D_Point'Class'Alignment: 16

Overlapping Storage

Algorithms can be designed to perform in-place or out-of-place processing. In
other words, they can take advantage of the fact that input and output arrays
share the same storage space or not.

We can use the Has_Same_Storage and the Overlaps_Storage
attributes to retrieve more information about how the storage space of two
objects related to each other:

	the Has_Same_Storage attribute indicates whether two objects have the
exact same storage.

	A typical example is when both objects are exactly the same, so they
obviously share the same storage. For example, for array A,
A'Has_Same_Storage (A) is always True.

	the Overlaps_Storage attribute indicates whether two objects have at
least one bit in common.

	Note that, if two objects have the same storage, this implies that their
storage also overlaps. In other words, A'Has_Same_Storage (B) = True
implies that A'Overlaps_Storage (B) = True.

Let's look at this example:

int_array_processing.ads

 1package Int_Array_Processing is
 2
 3 type Int_Array is
 4 array (Positive range <>) of Integer;
 5
 6 procedure Show_Storage (X : Int_Array;
 7 Y : Int_Array);
 8
 9 procedure Process (X : Int_Array;
10 Y : out Int_Array);
11
12end Int_Array_Processing;

int_array_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Array_Processing is
 4
 5 procedure Show_Storage (X : Int_Array;
 6 Y : Int_Array) is
 7 begin
 8 if X'Has_Same_Storage (Y) then
 9 Put_Line
10 ("Info: X and Y have the same storage.");
11 else
12 Put_Line
13 ("Info: X and Y don't have"
14 & "the same storage.");
15 end if;
16 if X'Overlaps_Storage (Y) then
17 Put_Line
18 ("Info: X and Y overlap.");
19 else
20 Put_Line
21 ("Info: X and Y don't overlap.");
22 end if;
23 end Show_Storage;
24
25 procedure Process (X : Int_Array;
26 Y : out Int_Array) is
27 begin
28 Put_Line ("==== PROCESS ====");
29 Show_Storage (X, Y);
30
31 if X'Has_Same_Storage (Y) then
32 Put_Line ("In-place processing...");
33 else
34 if not X'Overlaps_Storage (Y) then
35 Put_Line
36 ("Out-of-place processing...");
37 else
38 Put_Line
39 ("Cannot process "
40 & "overlapping arrays...");
41 end if;
42 end if;
43 New_Line;
44 end Process;
45
46end Int_Array_Processing;

main.adb

 1with Int_Array_Processing;
 2use Int_Array_Processing;
 3
 4procedure Main is
 5 A : Int_Array (1 .. 20) := (others => 3);
 6 B : Int_Array (1 .. 20) := (others => 4);
 7begin
 8 Process (A, A);
 9 -- In-place processing:
10 -- sharing the exact same storage
11
12 Process (A (1 .. 10), A (10 .. 20));
13 -- Overlapping one component: A (10)
14
15 Process (A (1 .. 10), A (11 .. 20));
16 -- Out-of-place processing:
17 -- same array, but not sharing any storage
18
19 Process (A, B);
20 -- Out-of-place processing:
21 -- two different arrays
22end Main;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Overlapping_Storage
MD5: 0f599163c6f24c3ef46ec6577b501c21

Build output

int_array_processing.adb:29:24: warning: "Y" may be referenced before it has a value [enabled by default]

Runtime output

==== PROCESS ====
Info: X and Y have the same storage.
Info: X and Y overlap.
In-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y overlap.
Cannot process overlapping arrays...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...

In this code example, we implement two procedures:

	Show_Storage, which shows storage information about two arrays by
using the Has_Same_Storage and Overlaps_Storage attributes.

	Process, which are supposed to process an input array X and
store the processed data in the output array Y.

	Note that the implementation of this procedure is actually just a
mock-up, so that no processing is actually taking place.

We have four different instances of how we can call the Process
procedure:

	in the Process (A, A) call, we're using the same array for the input
and output arrays. This is a perfect example of in-place processing. Because
the input and the output arrays arguments are actually the same object, they
obviously share the exact same storage.

	in the Process (A (1 .. 10), A (10 .. 20)) call, we're using two
slices of the A array as input and output arguments. In this case, a
single component of the A array is shared: A (10). Because the
storage space is overlapping, but not exactly the same, neither in-place nor
out-of-place processing can usually be used in this case.

	in the Process (A (1 .. 10), A (11 .. 20)) call, even though we're
using the same array A for the input and output arguments, we're using
slices that are completely independent from each other, so that the input and
output arrays are not sharing any storage in this case. Therefore, we can use
out-of-place processing.

	in the Process (A, B) call, we have two different arrays — which
obviously don't share any storage space —, so we can use out-of-place
processing.

Packed Representation

As we've seen previously, the minimum number of bits required to represent a
data type might be less than the actual number of bits used to store an object
of that same type. We've seen an example where UInt_7'Size was 7 bits,
while UInt_7'Object_Size was 8 bits. The most extreme case is the one
for the Boolean type: in this case, Boolean'Size is 1 bit, while
Boolean'Object_Size might be 8 bits (or even more on certain
architectures). In such cases, we have 7 (or more) unused bits in memory for
each object of Boolean type. In other words, we're wasting memory. On
the other hand, we're gaining speed of access because we can directly access
each element without having to first change its internal representation back
and forth. We'll come back to this point later.

The situation is even worse when implementing bit-fields, which can be
declared as an array of Boolean components. For example:

flag_definitions.ads

1package Flag_Definitions is
2
3 type Flags is
4 array (Positive range <>) of Boolean;
5
6end Flag_Definitions;

show_flags.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Flags is
 5 Flags_1 : Flags (1 .. 8);
 6begin
 7 Put_Line ("Boolean'Size: "
 8 & Boolean'Size'Image);
 9 Put_Line ("Boolean'Object_Size: "
10 & Boolean'Object_Size'Image);
11 Put_Line ("Flags_1'Size: "
12 & Flags_1'Size'Image);
13 Put_Line ("Flags_1'Component_Size: "
14 & Flags_1'Component_Size'Image);
15end Show_Flags;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Non_Packed_Flags
MD5: 6fd7a913e3c6717e846c2e822c1cbad7

Build output

show_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned [-gnatwv]

Runtime output

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8

Depending on your target architecture, you may see this output:

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8

In this example, we're declaring the Flags type as an array of
Boolean components. As we can see in this case, although the size of the
Boolean type is just 1 bit, an object of this type has a size of 8 bits.
Consequently, each component of the Flags type has a size of 8 bits.
Moreover, an array with 8 components of Boolean type — such as
the Flags_1 array — has a size of 64 bits.

Therefore, having a way to compact the representation — so that we can
store multiple objects without wasting storage space — may help us
improving memory usage. This is actually possible by using the Pack
aspect. For example, we could extend the previous example and declare a
Packed_Flags type that makes use of this aspect:

flag_definitions.ads

 1package Flag_Definitions is
 2
 3 type Flags is
 4 array (Positive range <>) of Boolean;
 5
 6 type Packed_Flags is
 7 array (Positive range <>) of Boolean
 8 with Pack;
 9
10end Flag_Definitions;

show_packed_flags.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Packed_Flags is
 5 Flags_1 : Flags (1 .. 8);
 6 Flags_2 : Packed_Flags (1 .. 8);
 7begin
 8 Put_Line ("Boolean'Size: "
 9 & Boolean'Size'Image);
10 Put_Line ("Boolean'Object_Size: "
11 & Boolean'Object_Size'Image);
12 Put_Line ("Flags_1'Size: "
13 & Flags_1'Size'Image);
14 Put_Line ("Flags_1'Component_Size: "
15 & Flags_1'Component_Size'Image);
16 Put_Line ("Flags_2'Size: "
17 & Flags_2'Size'Image);
18 Put_Line ("Flags_2'Component_Size: "
19 & Flags_2'Component_Size'Image);
20end Show_Packed_Flags;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Packed_Flags
MD5: c71cf68dc8bc41d0df2a5e3eb61b51fd

Build output

show_packed_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned [-gnatwv]
show_packed_flags.adb:6:04: warning: variable "Flags_2" is read but never assigned [-gnatwv]

Runtime output

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8
Flags_2'Size: 8
Flags_2'Component_Size: 1

Depending on your target architecture, you may see this output:

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8
Flags_2'Size: 8
Flags_2'Component_Size: 1

In this example, we're declaring the Flags_2 array of
Packed_Flags type. Its size is 8 bits — instead of the 64 bits
required for the Flags_1 array. Because the array type
Packed_Flags is packed, we can now effectively use this type to store an
object of Boolean type using just 1 bit of the memory, as indicated by
the Flags_2'Component_Size attribute.

In many cases, we need to convert between a normal representation (such as
the one used for the Flags_1 array above) to a packed representation
(such as the one for the Flags_2 array). In many programming languages,
this conversion may require writing custom code with manual bit-shifting and
bit-masking to get the proper target representation. In Ada, however, we just
need to indicate the actual type conversion, and the compiler takes care of
generating code containing bit-shifting and bit-masking to performs the type
conversion.

Let's modify the previous example and introduce this type conversion:

flag_definitions.ads

 1package Flag_Definitions is
 2
 3 type Flags is
 4 array (Positive range <>) of Boolean;
 5
 6 type Packed_Flags is
 7 array (Positive range <>) of Boolean
 8 with Pack;
 9
10 Default_Flags : constant Flags :=
11 (True, True, False, True,
12 False, False, True, True);
13
14end Flag_Definitions;

show_flag_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Flag_Conversion is
 5 Flags_1 : Flags (1 .. 8);
 6 Flags_2 : Packed_Flags (1 .. 8);
 7begin
 8 Flags_1 := Default_Flags;
 9 Flags_2 := Packed_Flags (Flags_1);
10
11 for I in Flags_2'Range loop
12 Put_Line (I'Image & ": "
13 & Flags_1 (I)'Image & ", "
14 & Flags_2 (I)'Image);
15 end loop;
16end Show_Flag_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Flag_Conversion
MD5: faff2079f6779097b6e0f7cd6cd48612

Runtime output

 1: TRUE, TRUE
 2: TRUE, TRUE
 3: FALSE, FALSE
 4: TRUE, TRUE
 5: FALSE, FALSE
 6: FALSE, FALSE
 7: TRUE, TRUE
 8: TRUE, TRUE

In this extended example, we're now declaring Default_Flags as an array
of constant flags, which we use to initialize Flags_1.

The actual conversion happens with Flags_2 := Packed_Flags (Flags_1).
Here, the type conversion Packed_Flags() indicates that we're converting
from the normal representation (used for the Flags type) to the packed
representation (used for Packed_Flags type). We don't need to write more
code than that to perform the correct type conversion.

Also, by using the same strategy, we could read information from a packed
representation. For example:

Flags_1 := Flags (Flags_2);

In this case, we use Flags() to convert from a packed representation to
the normal representation.

We elaborate on the topic of converting between data representations in the
section on changing data representation.

Trade-offs

As indicated previously, when we're using a packed representation (vs. using a
standard unpacked representation), we're trading off speed of access for less
memory consumption. The following table summarizes this:

	Representation

	More speed of access

	Less memory consumption

	Unpacked

	X

	

	Packed

	
	X

On one hand, we have better memory usage when we apply packed representations
because we may save many bits for each object. On the other hand, there's a
cost associated with accessing those packed objects because they need to be
unpacked before we can actually access them. In fact, the compiler generates
code — using bit-shifting and bit-masking — that converts a packed
representation into an unpacked representation, which we can then access. Also,
when storing a packed object, the compiler generates code that converts the
unpacked representation of the object into the packed representation.

This packing and unpacking mechanism has a performance cost associated with it,
which results in less speed of access for packed objects. As usual in those
circumstances, before using packed representation, we should assess whether
memory constraints are more important than speed in our target architecture.

Record Representation and storage clauses

In this section, we discuss how to use record representation clauses to specify
how a record is represented in memory. Our goal is to provide a brief
introduction into the topic. If you're interested in more details, you can find
a thorough discussion about record representation clauses in the
Introduction to Embedded Systems Programming
course.

Let's start with the simple approach of declaring a record type without
providing further information. In this case, we're basically asking the
compiler to select a reasonable representation for that record in the memory of
our target architecture.

Let's see a simple example:

p.ads

1package P is
2
3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7
8end P;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_1
MD5: 88171257118810bb7e02cea60ffb1ad9

Considering a typical 64-bit PC architecture with 8-bit storage units, and
Integer defined as a 32-bit type, we get this memory representation:

[image: digraph foo { "Record_R" [label = "{ position | component } | { { 0 | 1 | 2 | 3 } | A } | { { 4 | 5 | 6 | 7 } | B }" shape = "record"]; }]

Each storage unit is a position in memory. In the graph above, the numbers on
the top (0, 1, 2, ...) represent those positions for record R.

In addition, we can show the bits that are used for components A and
B:

[image: digraph foo { "Record_R" [label = "{ position | bits | component } | { { { 0 | #0 .. 7 } | { 1 | #8 .. #15 } | { 2 | #16 .. #23 } | { 3 | #24 .. #31 } } | A } | { { { 4 | #0 .. 7 } | { 5 | #8 .. #15 } | { 6 | #16 .. #23 } | { 7 | #24 .. #31 } } | B }" shape = "record"]; }]

The memory representation we see in the graph above can be described in Ada
using representation clauses, as you can see in the code starting at the
for R use record line in the code example below — we'll discuss
the syntax and further details right after this example.

p.ads

 1package P is
 2
 3 type R is record
 4 A : Integer;
 5 B : Integer;
 6 end record;
 7
 8 -- Representation clause for record R:
 9 for R use record
10 A at 0 range 0 .. 31;
11 -- ^ starting memory position
12 B at 4 range 0 .. 31;
13 -- ^ first bit .. last bit
14 end record;
15
16end P;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_2
MD5: b6be86ae7e1a5c2e7d981fe37bad49ed

Here, we're specifying that the A component is stored in the bits #0 up
to #31 starting at position #0. Note that the position itself doesn't represent
an absolute address in the device's memory; instead, it's relative to the
memory space reserved for that record. The B component has the same
32-bit range, but starts at position #4.

This is a generalized view of the syntax:

for Record_Type use record
 Component_Name at Start_Position
 range First_Bit .. Last_Bit;
end record;

These are the elements we see above:

	Component_Name: name of the component (from the record type
declaration);

	Start_Position: start position — in storage units — of the
memory space reserved for that component;

	First_Bit: first bit (in the start position) of the component;

	Last_Bit: last bit of the component.

Note that the last bit of a component might be in a different storage unit.
Since the Integer type has a larger width (32 bits) than the storage
unit (8 bits), components of that type span over multiple storage units.
Therefore, in our example, the first bit of component A is at position
#0, while the last bit is at position #3.

Also note that the last eight bits of component A are bits #24 .. #31.
If we think in terms of storage units, this corresponds to bits #0 .. #7 of
position #3. However, when specifying the last bit in Ada, we always use the
First_Bit value as a reference, not the position where those bits might
end up. Therefore, we write range 0 .. 31, well knowing that those 32
bits span over four storage units (positions #0 .. #3).

In the Ada Reference Manual

	13.5.1 Record Representation Clauses[#4]

Storage Place Attributes

We can retrieve information about the start position, and the first and last
bits of a component by using the storage place attributes:

	Position, which retrieves the start position of a component;

	First_Bit, which retrieves the first bit of a component;

	Last_Bit, which retrieves the last bit of a component.

Note, however, that these attributes can only be used with actual records, and
not with record types.

We can revisit the previous example and verify how the compiler represents the
R type in memory:

p.ads

1package P is
2
3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7
8end P;

show_storage.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with P; use P;
 5
 6procedure Show_Storage is
 7 R1 : R;
 8begin
 9 Put_Line ("R'Size: "
10 & R'Size'Image);
11 Put_Line ("R'Object_Size: "
12 & R'Object_Size'Image);
13 New_Line;
14
15 Put_Line ("System.Storage_Unit: "
16 & System.Storage_Unit'Image);
17 New_Line;
18
19 Put_Line ("R1.A'Position : "
20 & R1.A'Position'Image);
21 Put_Line ("R1.A'First_Bit : "
22 & R1.A'First_Bit'Image);
23 Put_Line ("R1.A'Last_Bit : "
24 & R1.A'Last_Bit'Image);
25 New_Line;
26
27 Put_Line ("R1.B'Position : "
28 & R1.B'Position'Image);
29 Put_Line ("R1.B'First_Bit : "
30 & R1.B'First_Bit'Image);
31 Put_Line ("R1.B'Last_Bit : "
32 & R1.B'Last_Bit'Image);
33end Show_Storage;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Storage_Place_Attributes
MD5: 05a402585ce71eb47cf972e68c02835e

Build output

show_storage.adb:7:04: warning: variable "R1" is read but never assigned [-gnatwv]

Runtime output

R'Size: 64
R'Object_Size: 64

System.Storage_Unit: 8

R1.A'Position : 0
R1.A'First_Bit : 0
R1.A'Last_Bit : 31

R1.B'Position : 4
R1.B'First_Bit : 0
R1.B'Last_Bit : 31

First of all, we see that the size of the R type is 64 bits, which can
be explained by those two 32-bit integer components. Then, we see that
components A and B start at positions #0 and #4, and each one
makes use of bits in the range from #0 to #31. This matches the graph we've
seen above.

In the Ada Reference Manual

	13.5.2 Storage Place Attributes[#5]

Using Representation Clauses

We can use representation clauses to change the way the compiler handles
memory for a record type. For example, let's say we want to have an empty
storage unit between components A and B. We can use a
representation clause where we specify that component B starts at
position #5 instead of #4, leaving an empty byte after component A and
before component B:

[image: digraph foo { "Record_R" [label = "{ position | bits | component } | { { { 0 | #0 .. 7 } | { 1 | #8 .. #15 } | { 2 | #16 .. #23 } | { 3 | #24 .. #31 } } | A } | { 4 | | } | { { { 5 | #0 .. 7 } | { 6 | #8 .. #15 } | { 7 | #16 .. #23 } | { 8 | #24 .. #31 } } | B }" shape = "record"]; }]

This is the code that implements that:

p.ads

 1package P is
 2
 3 type R is record
 4 A : Integer;
 5 B : Integer;
 6 end record;
 7
 8 for R use record
 9 A at 0 range 0 .. 31;
10 B at 5 range 0 .. 31;
11 end record;
12
13end P;

show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Show_Empty_Byte is
 6begin
 7 Put_Line ("R'Size: "
 8 & R'Size'Image);
 9 Put_Line ("R'Object_Size: "
10 & R'Object_Size'Image);
11end Show_Empty_Byte;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Empty_Byte
MD5: c616e534e95a06f2e8b3052a3e8a9aab

Runtime output

R'Size: 72
R'Object_Size: 96

When running the application above, we see that, due to the extra byte in the
record representation, the sizes increase. On a typical 64-bit PC,
R'Size is now 76 bits, which reflects the additional eight bits that we
introduced between components A and B. Depending on the target
architecture, you may also see that R'Object_Size is now 96 bits, which
is the size the compiler selects as the most appropriate for this record type.
As we've mentioned in the previous section, we can use aspects to request a
specific size to the compiler. In this case, we could use the
Object_Size aspect:

p.ads

 1package P is
 2
 3 type R is record
 4 A : Integer;
 5 B : Integer;
 6 end record
 7 with Object_Size => 72;
 8
 9 for R use record
10 A at 0 range 0 .. 31;
11 B at 5 range 0 .. 31;
12 end record;
13
14end P;

show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Show_Empty_Byte is
 6begin
 7 Put_Line ("R'Size: "
 8 & R'Size'Image);
 9 Put_Line ("R'Object_Size: "
10 & R'Object_Size'Image);
11end Show_Empty_Byte;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Empty_Byte
MD5: 9d7bae2b2aabeda4bc03752544cee9b9

Runtime output

R'Size: 72
R'Object_Size: 72

If the code compiles, R'Size and R'Object_Size should now have
the same value.

Derived Types And Representation Clauses

In some cases, you might want to modify the memory representation of a record
without impacting existing code. For example, you might want to use a record
type that was declared in a package that you're not allowed to change. Also,
you would like to modify its memory representation in your application. A nice
strategy is to derive a type and use a representation clause for the derived
type.

We can apply this strategy on our previous example. Let's say we would like to
use record type R from package P in our application, but we're
not allowed to modify package P — or the record type, for that
matter. In this case, we could simply derive R as R_New and use a
representation clause for R_New. This is exactly what we do in the
specification of the child package P.Rep:

p.ads

1package P is
2
3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7
8end P;

p-rep.ads

 1package P.Rep is
 2
 3 type R_New is new R
 4 with Object_Size => 72;
 5
 6 for R_New use record
 7 A at 0 range 0 .. 31;
 8 B at 5 range 0 .. 31;
 9 end record;
10
11end P.Rep;

show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4with P.Rep; use P.Rep;
 5
 6procedure Show_Empty_Byte is
 7begin
 8 Put_Line ("R'Size: "
 9 & R'Size'Image);
10 Put_Line ("R'Object_Size: "
11 & R'Object_Size'Image);
12
13 Put_Line ("R_New'Size: "
14 & R_New'Size'Image);
15 Put_Line ("R_New'Object_Size: "
16 & R_New'Object_Size'Image);
17end Show_Empty_Byte;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Derived_Rep_Clauses_Empty_Byte
MD5: 3a1e0837f8bd8250f20fc7b274b869d5

Runtime output

R'Size: 64
R'Object_Size: 64
R_New'Size: 72
R_New'Object_Size: 72

When running this example, we see that the R type retains the memory
representation selected by the compiler for the target architecture, while the
R_New has the memory representation that we specified.

Representation on Bit Level

A very common application of representation clauses is to specify individual
bits of a record. This is particularly useful, for example, when mapping
registers or implementing protocols.

Let's consider the following fictitious register as an example:

[image: digraph foo { "Record_R" [label = "{ bit | component } | { { 0 | 1 } | S } | { { 2 | 3 } | (reserved) } | { 4 | Error } | { { 5 | 6 | 7 } | V1 }" shape = "record"]; }]

Here, S is the current status, Error is a flag, and V1
contains a value. Due to the fact that we can use representation clauses to
describe individual bits of a register as records, the implementation becomes
as simple as this:

p.ads

 1package P is
 2
 3 type Status is (Ready, Waiting,
 4 Processing, Done);
 5 type UInt_3 is range 0 .. 2 ** 3 - 1;
 6
 7 type Simple_Reg is record
 8 S : Status;
 9 Error : Boolean;
10 V1 : UInt_3;
11 end record;
12
13 for Simple_Reg use record
14 S at 0 range 0 .. 1;
15 -- Bit #2 and 3: reserved!
16 Error at 0 range 4 .. 4;
17 V1 at 0 range 5 .. 7;
18 end record;
19
20end P;

show_simple_reg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Show_Simple_Reg is
 6begin
 7 Put_Line ("Simple_Reg'Size: "
 8 & Simple_Reg'Size'Image);
 9 Put_Line ("Simple_Reg'Object_Size: "
10 & Simple_Reg'Object_Size'Image);
11end Show_Simple_Reg;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Simple_Reg
MD5: cbac444336572460062f922767c226a5

Runtime output

Simple_Reg'Size: 8
Simple_Reg'Object_Size: 8

As we can see in the declaration of the Simple_Reg type, each component
represents a field from our register, and it has a fixed location (which
matches the register representation we see in the graph above). Any operation
on the register is as simple as accessing the record component. For example:

show_simple_reg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Show_Simple_Reg is
 6 Default : constant Simple_Reg :=
 7 (S => Ready,
 8 Error => False,
 9 V1 => 0);
10
11 R : Simple_Reg := Default;
12begin
13 Put_Line ("R.S: " & R.S'Image);
14
15 R.V1 := 4;
16
17 Put_Line ("R.V1: " & R.V1'Image);
18end Show_Simple_Reg;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Simple_Reg
MD5: e442396e43d6609c1c837165bbc21641

Runtime output

R.S: READY
R.V1: 4

As we can see in the example, to retrieve the current status of the register,
we just have to write R.S. To update the V1 field of the register with
the value 4, we just have to write R.V1 := 4. No extra code —
such as bit-masking or bit-shifting — is needed here.

In other languages

Some programming languages require that developers use complicated,
error-prone approaches — which may include manually bit-shifting and
bit-masking variables — to retrieve information from or store
information to individual bits or registers. In Ada, however, this is
efficiently handled by the compiler, so that developers only need to
correctly describe the register mapping using representation clauses.

Changing Data Representation

Note

This section was originally written by Robert Dewar and published as
Gem #27: Changing Data Representation[#6]
and Gem #28[#7].

A powerful feature of Ada is the ability to specify the exact data layout. This
is particularly important when you have an external device or program that
requires a very specific format. Some examples are:

communication.ads

 1package Communication is
 2
 3 type Com_Packet is record
 4 Key : Boolean;
 5 Id : Character;
 6 Val : Integer range 100 .. 227;
 7 end record;
 8
 9 for Com_Packet use record
10 Key at 0 range 0 .. 0;
11 Id at 0 range 1 .. 8;
12 Val at 0 range 9 .. 15;
13 end record;
14
15end Communication;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Com_Packet
MD5: cbd7f5547c5b0458853ac21d03aa41f8

Build output

communication.ads:12:11: warning: component clause forces biased representation for "Val" [-gnatw.b]

which lays out the fields of a record, and in the case of Val, forces a
biased representation in which all zero bits represents 100. Another example
is:

array_representation.ads

1package Array_Representation is
2
3 type Val is (A, B, C, D, E, F, G, H);
4
5 type Arr is array (1 .. 16) of Val
6 with Component_Size => 3;
7
8end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: 7eb17fc2cd415acb7c53a363fa336807

which forces the components to take only 3 bits, crossing byte boundaries as
needed. A final example is:

enumeration_representation.ads

1package Enumeration_Representation is
2
3 type Status is (Off, On, Unknown);
4 for Status use (Off => 2#001#,
5 On => 2#010#,
6 Unknown => 2#100#);
7
8end Enumeration_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Enum_Rep
MD5: 3c3e9f4ae11e9bb2482588d27ba43c30

which allows specified values for an enumeration type, instead of the efficient
default values of 0, 1, 2.

In all these cases, we might use these representation clauses to match external
specifications, which can be very useful. The disadvantage of such layouts is
that they are inefficient, and accessing individual components, or, in the case
of the enumeration type, looping through the values can increase space and
time requirements for the program code.

One approach that is often effective is to read or write the data in question
in this specified form, but internally in the program represent the data in the
normal default layout, allowing efficient access, and do all internal
computations with this more efficient form.

To follow this approach, you will need to convert between the efficient format
and the specified format. Ada provides a very convenient method for doing this,
as described in RM 13.6 "Change of Representation"[#8].

The idea is to use type derivation, where one type has the specified format and
the other has the normal default format. For instance for the array case above,
we would write:

array_representation.ads

1package Array_Representation is
2
3 type Val is (A, B, C, D, E, F, G, H);
4 type Arr is array (1 .. 16) of Val;
5
6 type External_Arr is new Arr
7 with Component_Size => 3;
8
9end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: d4e90f6ef8ff81771980771356eab235

Now we read and write the data using the External_Arr type. When we want
to convert to the efficient form, Arr, we simply use a type conversion.

using_array_for_io.adb

 1with Array_Representation;
 2use Array_Representation;
 3
 4procedure Using_Array_For_IO is
 5 Input_Data : External_Arr;
 6 Work_Data : Arr;
 7 Output_Data : External_Arr;
 8begin
 9 -- (read data into Input_Data)
10
11 -- Now convert to internal form
12 Work_Data := Arr (Input_Data);
13
14 -- (computations using efficient
15 -- Work_Data form)
16
17 -- Convert back to external form
18 Output_Data := External_Arr (Work_Data);
19
20end Using_Array_For_IO;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: 88efe4b8a7f07e0c32f11131d6eafbc1

Build output

using_array_for_io.adb:5:04: warning: variable "Input_Data" is read but never assigned [-gnatwv]

Using this approach, the quite complex task of copying all the data of the
array from one form to another, with all the necessary masking and shift
operations, is completely automatic.

Similar code can be used in the record and enumeration type cases. It is even
possible to specify two different representations for the two types, and
convert from one form to the other, as in:

enumeration_representation.ads

 1package Enumeration_Representation is
 2
 3 type Status_In is (Off, On, Unknown);
 4 type Status_Out is new Status_In;
 5
 6 for Status_In use (Off => 2#001#,
 7 On => 2#010#,
 8 Unknown => 2#100#);
 9 for Status_Out use (Off => 103,
10 On => 1045,
11 Unknown => 7700);
12
13end Enumeration_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Enum_Rep
MD5: f78c3718280f9265ff54270c5834b458

There are two restrictions that must be kept in mind when using this feature.
First, you have to use a derived type. You can't put representation clauses on
subtypes, which means that the conversion must always be explicit. Second,
there is a rule RM 13.1[#9] (10) that restricts the placement of
interesting representation clauses:

10 For an untagged derived type, no type-related representation items are
allowed if the parent type is a by-reference type, or has any user-defined
primitive subprograms.

All the representation clauses that are interesting from the point of view of
change of representation are "type related", so for example, the following
sequence would be illegal:

array_representation.ads

 1package Array_Representation is
 2
 3 type Val is (A, B, C, D, E, F, G, H);
 4 type Arr is array (1 .. 16) of Val;
 5
 6 procedure Rearrange (Arg : in out Arr);
 7
 8 type External_Arr is new Arr
 9 with Component_Size => 3;
10
11end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep_2
MD5: 70201932d40e3fb356bc1d8ab188f2df

Build output

array_representation.ads:9:11: error: representation item not permitted before Ada 2022
array_representation.ads:9:11: error: parent type "Arr" has primitive operations
gprbuild: *** compilation phase failed

Why these restrictions? Well, the answer is a little complex, and has to do
with efficiency considerations, which we will address below.

Restrictions

In the previous subsection, we discussed the use of derived types and
representation clauses to achieve automatic change of representation. More
accurately, this feature is not completely automatic, since it requires you to
write an explicit conversion. In fact there is a principle behind the design
here which says that a change of representation should never occur implicitly
behind the back of the programmer without such an explicit request by means of
a type conversion.

The reason for that is that the change of representation operation can be very
expensive, since in general it can require component by component copying,
changing the representation on each component.

Let's have a look at the -gnatG expanded code to see what is hidden under
the covers here. For example, the conversion Arr (Input_Data) from the
previous example generates the following expanded code:

B26b : declare
 [subtype p__TarrD1 is integer range 1 .. 16]
 R25b : p__TarrD1 := 1;
begin
 for L24b in 1 .. 16 loop
 [subtype p__arr___XP3 is
 system__unsigned_types__long_long_unsigned range 0 ..
 16#FFFF_FFFF_FFFF#]
 work_data := p__arr___XP3!((work_data and not shift_left!(
 16#7#, 3 * (integer(L24b - 1)))) or shift_left!(p__arr___XP3!
 (input_data (R25b)), 3 * (integer(L24b - 1))));
 R25b := p__TarrD1'succ(R25b);
 end loop;
end B26b;

That's pretty horrible! In fact, we could have simplified it for this section,
but we have left it in its original form, so that you can see why it is nice to
let the compiler generate all this stuff so you don't have to worry about it
yourself.

Given that the conversion can be pretty inefficient, you don't want to convert
backwards and forwards more than you have to, and the whole approach is only
worthwhile if we'll be doing extensive computations involving the value.

The expense of the conversion explains two aspects of this feature that are not
obvious. First, why do we require derived types instead of just allowing
subtypes to have different representations, avoiding the need for an explicit
conversion?

The answer is precisely that the conversions are expensive, and you don't want
them happening behind your back. So if you write the explicit conversion, you
get all the gobbledygook listed above, but you can be sure that this never
happens unless you explicitly ask for it.

This also explains the restriction we mentioned in previous subsection from
RM 13.1[#10] (10):

10 For an untagged derived type, no type-related representation items are
allowed if the parent type is a by-reference type, or has any user-defined
primitive subprograms.

It turns out this restriction is all about avoiding implicit changes of
representation. Let's have a look at how type derivation works when there are
primitive subprograms defined at the point of derivation. Consider this
example:

my_ints.ads

 1package My_Ints is
 2
 3 type My_Int_1 is range 1 .. 10;
 4
 5 function Odd (Arg : My_Int_1)
 6 return Boolean;
 7
 8 type My_Int_2 is new My_Int_1;
 9
10end My_Ints;

my_ints.adb

1package body My_Ints is
2
3 function Odd (Arg : My_Int_1)
4 return Boolean is
5 (True);
6 -- Dummy implementation!
7
8end My_Ints;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: a29401698307998288f02b349d04d1d2

Now when we do the type derivation, we inherit the function Odd for
My_Int_2. But where does this function come from? We haven't
written it explicitly, so the compiler somehow materializes this new implicit
function. How does it do that?

We might think that a complete new function is created including a body in
which My_Int_2 replaces My_Int_1, but that would be impractical
and expensive. The actual mechanism avoids the need to do this by use of
implicit type conversions. Suppose after the above declarations, we write:

using_my_int.adb

 1with My_Ints; use My_Ints;
 2
 3procedure Using_My_Int is
 4 Var : My_Int_2;
 5begin
 6
 7 if Odd (Var) then
 8 -- ^ Calling Odd function
 9 -- for My_Int_2 type.
10 null;
11 end if;
12
13end Using_My_Int;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: f68272d55e68687b7102885313c7831b

Build output

using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]

The compiler translates this as:

using_my_int.adb

 1with My_Ints; use My_Ints;
 2
 3procedure Using_My_Int is
 4 Var : My_Int_2;
 5begin
 6
 7 if Odd (My_Int_1 (Var)) then
 8 -- ^ Converting My_Int_2 to
 9 -- My_Int_1 type before
10 -- calling Odd function.
11 null;
12 end if;
13
14end Using_My_Int;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: b3d0053c61412a2b985cd580b645e048

Build output

using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]

This implicit conversion is a nice trick, it means that we can get the effect
of inheriting a new operation without actually having to create it.
Furthermore, in a case like this, the type conversion generates no code,
since My_Int_1 and My_Int_2 have the same representation.

But the whole point is that they might not have the same representation if one
of them had a representation clause that made the representations different,
and in this case the implicit conversion inserted by the compiler could be
expensive, perhaps generating the junk we quoted above for the Arr case.
Since we never want that to happen implicitly, there is a rule to prevent it.

The business of forbidding by-reference types (which includes all tagged
types) is also driven by this consideration. If the representations are the
same, it is fine to pass by reference, even in the presence of the conversion,
but if there was a change of representation, it would force a copy, which would
violate the by-reference requirement.

So to summarize this section, on the one hand Ada gives you a very convenient
way to trigger these complex conversions between different representations. On
the other hand, Ada guarantees that you never get these potentially expensive
conversions happening unless you explicitly ask for them.

Valid Attribute

When receiving data from external sources, we're subjected to problems such as
transmission errors. If not handled properly, erroneous data can lead to major
issues in an application.

One of those issues originates from the fact that transmission errors might
lead to invalid information stored in memory. When proper checks are active,
using invalid information is detected at runtime and an exception is raised at
this point, which might then be handled by the application.

Instead of relying on exception handling, however, we could instead ensure that
the information we're about to use is valid. We can do this by using the
Valid attribute. For example, if we have a variable Var, we can
verify that the value stored in Var is valid by writing
Var'Valid, which returns a Boolean value. Therefore, if the value
of Var isn't valid, Var'Valid returns False, so we can
have code that handles this situation before we actually make use of
Var. In other words, instead of handling a potential exception in other
parts of the application, we can proactively verify that input information is
correct and avoid that an exception is raised.

In the next example, we show an application that

	generates a file containing mock-up data, and then

	reads information from this file as state values.

The mock-up data includes valid and invalid states.

create_test_file.ads

1procedure Create_Test_File (File_Name : String);

create_test_file.adb

 1with Ada.Sequential_IO;
 2
 3procedure Create_Test_File (File_Name : String)
 4is
 5 package Integer_Sequential_IO is new
 6 Ada.Sequential_IO (Integer);
 7 use Integer_Sequential_IO;
 8
 9 F : File_Type;
10begin
11 Create (F, Out_File, File_Name);
12 Write (F, 1);
13 Write (F, 2);
14 Write (F, 4);
15 Write (F, 3);
16 Write (F, 2);
17 Write (F, 10);
18 Close (F);
19end Create_Test_File;

states.ads

 1with Ada.Sequential_IO;
 2
 3package States is
 4
 5 type State is (Off, On, Waiting)
 6 with Size => Integer'Size;
 7
 8 for State use (Off => 1,
 9 On => 2,
10 Waiting => 4);
11
12 package State_Sequential_IO is new
13 Ada.Sequential_IO (State);
14
15 procedure Read_Display_States
16 (File_Name : String);
17
18end States;

states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5 procedure Read_Display_States
 6 (File_Name : String)
 7 is
 8 use State_Sequential_IO;
 9
10 F : State_Sequential_IO.File_Type;
11 S : State;
12
13 procedure Display_State (S : State) is
14 begin
15 -- Before displaying the value,
16 -- check whether it's valid or not.
17 if S'Valid then
18 Put_Line (S'Image);
19 else
20 Put_Line ("Invalid value detected!");
21 end if;
22 end Display_State;
23
24 begin
25 Open (F, In_File, File_Name);
26
27 while not End_Of_File (F) loop
28 Read (F, S);
29 Display_State (S);
30 end loop;
31
32 Close (F);
33 end Read_Display_States;
34
35end States;

show_states_from_file.adb

1with States; use States;
2with Create_Test_File;
3
4procedure Show_States_From_File is
5 File_Name : constant String := "data.bin";
6begin
7 Create_Test_File (File_Name);
8 Read_Display_States (File_Name);
9end Show_States_From_File;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Valid_Attribute.Valid_States
MD5: f7af2946ebe663932494448a0d3d3020

Runtime output

OFF
ON
WAITING
Invalid value detected!
ON
Invalid value detected!

Let's start our discussion on this example with the States package,
which contains the declaration of the State type. This type is a simple
enumeration containing three states: Off, On and Waiting.
We're assigning specific integer values for this type by declaring an
enumeration representation clause. Note that we're using the Size aspect
to request that objects of this type have the same size as the Integer
type. This becomes important later on when parsing data from the file.

In the Create_Test_File procedure, we create a file containing integer
values, which is parsed later by the Read_Display_States procedure. The
Create_Test_File procedure doesn't contain any reference to the
State type, so we're not constrained to just writing information that is
valid for this type. On the contrary, this procedure makes use of the
Integer type, so we can write any integer value to the file. We use this
strategy to write both valid and invalid values of State to the file.
This allows us to simulate an environment where transmission errors occur.

We call the Read_Display_States procedure to read information from the
file and display each state stored in the file. In the main loop of this
procedure, we call Read to read a state from the file and store it in
the S variable. We then call the nested Display_State procedure
to display the actual state stored in S. The most important line of code
in the Display_State procedure is the one that uses the Valid
attribute:

if S'Valid then

In this line, we're verifying that the S variable contains a valid state
before displaying the actual information from S. If the value stored in
S isn't valid, we can handle the issue accordingly. In this case, we're
simply displaying a message indicating that an invalid value was detected. If
we didn't have this check, the Constraint_Error exception would be
raised when trying to use invalid data stored in S — this would
happen, for example, after reading the integer value 3 from the input file.

In summary, using the Valid attribute is a good strategy we can employ
when we know that information stored in memory might be corrupted.

In the Ada Reference Manual

	13.9.2 The Valid Attribute[#11]

Unchecked Union

We've introduced variant records back in the
Introduction to Ada course.
In simple terms, a variant record is a record with discriminants that allows
for changing its structure. Basically, it's a record containing a case.

The State_Or_Integer declaration in the States package below is
an example of a variant record:

states.ads

 1package States is
 2
 3 type State is (Off, On, Waiting)
 4 with Size => Integer'Size;
 5
 6 for State use (Off => 1,
 7 On => 2,
 8 Waiting => 4);
 9
10 type State_Or_Integer (Use_Enum : Boolean) is
11 record
12 case Use_Enum is
13 when False => I : Integer;
14 when True => S : State;
15 end case;
16 end record;
17
18 procedure Display_State_Value
19 (V : State_Or_Integer);
20
21end States;

states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5 procedure Display_State_Value
 6 (V : State_Or_Integer)
 7 is
 8 begin
 9 Put_Line ("State: " & V.S'Image);
10 Put_Line ("Value: " & V.I'Image);
11 end Display_State_Value;
12
13end States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: fa72f52a4396a2e66931ff6932c567fc

As mentioned in the previous course, if you try to access a component that is
not valid for your record, a Constraint_Error exception is raised. For
example, in the implementation of the Display_State_Value procedure,
we're trying to retrieve the value of the integer component (I) of the
V record. When calling this procedure, the Constraint_Error
exception is raised as expected because Use_Enum is set to True,
so that the I component is invalid — only the S component
is valid in this case.

show_variant_rec_error.adb

1with States; use States;
2
3procedure Show_Variant_Rec_Error is
4 V : State_Or_Integer (Use_Enum => True);
5begin
6 V.S := On;
7 Display_State_Value (V);
8end Show_Variant_Rec_Error;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: b8cf215dd55bfdec6950df35c7bc19b9

Runtime output

State: ON

raised CONSTRAINT_ERROR : states.adb:10 discriminant check failed

In addition to not being able to read the value of a component that isn't
valid, assigning a value to a component that isn't valid also raises an
exception at runtime. In this example, we cannot assign to V.I:

show_variant_rec_error.adb

1with States; use States;
2
3procedure Show_Variant_Rec_Error is
4 V : State_Or_Integer (Use_Enum => True);
5begin
6 V.I := 4;
7 -- Error: V.I cannot be accessed because
8 -- Use_Enum is set to True.
9end Show_Variant_Rec_Error;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: 985a84faccc3d590ac767e914bea0c1d

Build output

show_variant_rec_error.adb:4:04: warning: variable "V" is never read and never assigned [-gnatwv]
show_variant_rec_error.adb:6:05: warning: component not present in subtype of "State_Or_Integer" defined at line 4 [enabled by default]
show_variant_rec_error.adb:6:05: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_variant_rec_error.adb:6 discriminant check failed

We may circumvent this limitation by using the Unchecked_Union aspect.
For example, we can derive a new type from State_Or_Integer and use
this aspect in its declaration. We do this in the declaration of the
Unchecked_State_Or_Integer type below.

states.ads

 1package States is
 2
 3 type State is (Off, On, Waiting)
 4 with Size => Integer'Size;
 5
 6 for State use (Off => 1,
 7 On => 2,
 8 Waiting => 4);
 9
10 type State_Or_Integer (Use_Enum : Boolean) is
11 record
12 case Use_Enum is
13 when False => I : Integer;
14 when True => S : State;
15 end case;
16 end record;
17
18 type Unchecked_State_Or_Integer
19 (Use_Enum : Boolean) is new
20 State_Or_Integer (Use_Enum)
21 with Unchecked_Union;
22
23 procedure Display_State_Value
24 (V : Unchecked_State_Or_Integer);
25
26end States;

states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5 procedure Display_State_Value
 6 (V : Unchecked_State_Or_Integer)
 7 is
 8 begin
 9 Put_Line ("State: " & V.S'Image);
10 Put_Line ("Value: " & V.I'Image);
11 end Display_State_Value;
12
13end States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: e97271a24aab23d2db450308401667ac

Because we now use the Unchecked_State_Or_Integer type for the input
parameter of the Display_State_Value procedure, no exception is raised
at runtime, as both components are now accessible. For example:

show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4 V : State_Or_Integer (Use_Enum => True);
5begin
6 V.S := On;
7 Display_State_Value
8 (Unchecked_State_Or_Integer (V));
9end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: 331cc1ab6709ab7e0062d64c55a75a6c

Runtime output

State: ON
Value: 2

Note that, in the call to the Display_State_Value procedure, we first
need to convert the V argument from the State_Or_Integer to the
Unchecked_State_Or_Integer type.

Also, we can assign to any of the components of a record that has the
Unchecked_Union aspect. In our example, we can now assign to both the
S and the I components of the V record:

show_unchecked_union.adb

 1with States; use States;
 2
 3procedure Show_Unchecked_Union is
 4 V : Unchecked_State_Or_Integer
 5 (Use_Enum => True);
 6begin
 7 V := (Use_Enum => True, S => On);
 8 Display_State_Value (V);
 9
10 V := (Use_Enum => False, I => 4);
11 Display_State_Value (V);
12end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: bb472e91c5e7b7e63d6246dbcf5226a0

Runtime output

State: ON
Value: 2
State: WAITING
Value: 4

In the example above, we're use an aggregate in the assignments to V. By
doing so, we avoid that Use_Enum is set to the wrong component. For
example:

show_unchecked_union.adb

 1with States; use States;
 2
 3procedure Show_Unchecked_Union is
 4 V : Unchecked_State_Or_Integer
 5 (Use_Enum => True);
 6begin
 7 V.S := On;
 8 Display_State_Value (V);
 9
10 V.I := 4;
11 -- Error: cannot directly assign to V.I,
12 -- as Use_Enum is set to True.
13
14 Display_State_Value (V);
15end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: 74ac11a3effdafd3959fface295a86da

Build output

show_unchecked_union.adb:10:05: warning: component not present in subtype of "Unchecked_State_Or_Integer" defined at line 4 [enabled by default]
show_unchecked_union.adb:10:05: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

State: ON
Value: 2

raised CONSTRAINT_ERROR : show_unchecked_union.adb:10 discriminant check failed

Here, even though the record has the Unchecked_Union attribute, we
cannot directly assign to the I component because Use_Enum is set
to True, so only the S is accessible. We can, however, read its
value, as we do in the Display_State_Value procedure.

Be aware that, due to the fact the union is not checked, we might write invalid
data to the record. In the example below, we initialize the I component
with 3, which is a valid integer value, but results in an invalid value for
the S component, as the value 3 cannot be mapped to the representation
of the State type.

show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6begin
7 V := (Use_Enum => False, I => 3);
8 Display_State_Value (V);
9end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: f63e64df137cfc3c29e41f784306f0e4

Runtime output

raised CONSTRAINT_ERROR : states.adb:9 invalid data

To mitigate this problem, we could use the Valid attribute —
discussed in the previous section — for the S component before
trying to use its value in the implementation of the Display_State_Value
procedure:

states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5 procedure Display_State_Value
 6 (V : Unchecked_State_Or_Integer)
 7 is
 8 begin
 9 if V.S'Valid then
10 Put_Line ("State: " & V.S'Image);
11 else
12 Put_Line ("State: <invalid>");
13 end if;
14 Put_Line ("Value: " & V.I'Image);
15 end Display_State_Value;
16
17end States;

show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6begin
7 V := (Use_Enum => False, I => 3);
8 Display_State_Value (V);
9end Show_Unchecked_Union;

However, in general, you should avoid using the Unchecked_Union aspect
due to the potential issues you might introduce into your application. In the
majority of the cases, you don't need it at all — except for special
cases such as when interfacing with C code that makes use of union types or
solving very specific problems when doing low-level programming.

In the Ada Reference Manual

	B.3.3 Unchecked Union Types[#12]

Shared variable control

Ada has built-in support for handling both volatile and atomic data. Let's
start by discussing volatile objects.

In the Ada Reference Manual

	C.6 Shared Variable Control[#13]

Volatile

A volatile[#14]
object can be described as an object in memory whose value may change between
two consecutive memory accesses of a process A — even if process A itself
hasn't changed the value. This situation may arise when an object in memory is
being shared by multiple threads. For example, a thread B may modify the
value of that object between two read accesses of a thread A. Another typical
example is the one of
memory-mapped I/O[#15], where
the hardware might be constantly changing the value of an object in memory.

Because the value of a volatile object may be constantly changing, a compiler
cannot generate code to store the value of that object in a register and then
use the value from the register in subsequent operations. Storing into a
register is avoided because, if the value is stored there, it would be outdated
if another process had changed the volatile object in the meantime. Instead,
the compiler generates code in such a way that the process must read the value
of the volatile object from memory for each access.

Let's look at a simple example:

show_volatile_object.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Object is
 4 Val : Long_Float with Volatile;
 5begin
 6 Val := 0.0;
 7 for I in 0 .. 999 loop
 8 Val := Val + 2.0 * Long_Float (I);
 9 end loop;
10
11 Put_Line ("Val: " & Long_Float'Image (Val));
12end Show_Volatile_Object;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Volatile_Object_Ada
MD5: aa1e276e64e69813bfc3e3ef39f3dd47

Runtime output

Val: 9.99000000000000E+05

In this example, Val has the Volatile aspect, which makes the
object volatile. We can also use the Volatile aspect in type
declarations. For example:

shared_var_types.ads

1package Shared_Var_Types is
2
3 type Volatile_Long_Float is new
4 Long_Float with Volatile;
5
6end Shared_Var_Types;

show_volatile_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Shared_Var_Types; use Shared_Var_Types;
 3
 4procedure Show_Volatile_Type is
 5 Val : Volatile_Long_Float;
 6begin
 7 Val := 0.0;
 8 for I in 0 .. 999 loop
 9 Val := Val + 2.0 * Volatile_Long_Float (I);
10 end loop;
11
12 Put_Line ("Val: "
13 & Volatile_Long_Float'Image (Val));
14end Show_Volatile_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Volatile_Type
MD5: 0d31156d47b2edcfb94debd016c8bb87

Runtime output

Val: 9.99000000000000E+05

Here, we're declaring a new type Volatile_Long_Float in the
Shared_Var_Types package. This type is based on the Long_Float
type and uses the Volatile aspect. Any object of this type is
automatically volatile.

In addition to that, we can declare components of an array to be volatile. In
this case, we can use the Volatile_Components aspect in the array
declaration. For example:

show_volatile_array_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Array_Components is
 4 Arr : array (1 .. 2) of Long_Float
 5 with Volatile_Components;
 6begin
 7 Arr := (others => 0.0);
 8
 9 for I in 0 .. 999 loop
10 Arr (1) := Arr (1) + 2.0 * Long_Float (I);
11 Arr (2) := Arr (2) + 10.0 * Long_Float (I);
12 end loop;
13
14 Put_Line ("Arr (1): "
15 & Long_Float'Image (Arr (1)));
16 Put_Line ("Arr (2): "
17 & Long_Float'Image (Arr (2)));
18end Show_Volatile_Array_Components;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Volatile_Array_Components
MD5: 05b3ee20f08c5a85f5872727a61c148d

Runtime output

Arr (1): 9.99000000000000E+05
Arr (2): 4.99500000000000E+06

Note that it's possible to use the Volatile aspect for the array
declaration as well:

shared_var_types.ads

1package Shared_Var_Types is
2
3private
4 Arr : array (1 .. 2) of Long_Float
5 with Volatile;
6
7end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Volatile_Array
MD5: c9b7b9f94f1fac295753c7e7b9426fb2

Note that, if the Volatile aspect is specified for an object, then the
Volatile_Components aspect is also specified automatically — if it
makes sense in the context, of course. In the example above, even though
Volatile_Components isn't specified in the declaration of the Arr
array , it's automatically set as well.

Independent

When you write code to access a single object in memory, you might actually be
accessing multiple objects at once. For example, when you declare types that
make use of representation clauses — as we've seen in previous sections
—, you might be accessing multiple objects that are grouped together in
a single storage unit. For example, if you have components A and
B stored in the same storage unit, you cannot update A without
actually writing (the same value) to B. Those objects aren't
independently addressable because, in order to access one of them, we have to
actually address multiple objects at once.

When an object is independently addressable, we call it an independent object.
In this case, we make sure that, when accessing that object, we won't be
simultaneously accessing another object. As a consequence, this feature limits
the way objects can be represented in memory, as we'll see next.

To indicate that an object is independent, we use the Independent
aspect:

shared_var_types.ads

1package Shared_Var_Types is
2
3 I : Integer with Independent;
4
5end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Object
MD5: d90fef37584ca8802b8a3e3858c0095b

Similarly, we can use this aspect when declaring types:

shared_var_types.ads

 1package Shared_Var_Types is
 2
 3 type Independent_Boolean is new Boolean
 4 with Independent;
 5
 6 type Flags is record
 7 F1 : Independent_Boolean;
 8 F2 : Independent_Boolean;
 9 end record;
10
11end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Type
MD5: 7bcbee5b73067149b14c4b1b061f803c

In this example, we're declaring the Independent_Boolean type and using
it in the declaration of the Flag record type. Let's now derive the
Flags type and use a representation clause for the derived type:

shared_var_types-representation.ads

 1package Shared_Var_Types.Representation is
 2
 3 type Rep_Flags is new Flags;
 4
 5 for Rep_Flags use record
 6 F1 at 0 range 0 .. 0;
 7 F2 at 0 range 1 .. 1;
 8 -- ^ ERROR: start position of
 9 -- F2 is wrong!
10 -- ^ ERROR: F1 and F2 share the
11 -- same storage unit!
12 end record;
13
14end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Type
MD5: bb9d5badf33401660e7e20a7cd612dab

Build output

shared_var_types-representation.ads:6:26: error: size for independent "F1" must be multiple of Storage_Unit
shared_var_types-representation.ads:7:21: error: position for independent "F2" must be multiple of Storage_Unit
shared_var_types-representation.ads:7:26: error: size for independent "F2" must be multiple of Storage_Unit
gprbuild: *** compilation phase failed

As you can see when trying to compile this example, the representation clause
that we used for Rep_Flags isn't following these limitations:

	The size of each independent component must be a multiple of a storage unit.

	The start position of each independent component must be a multiple of a
storage unit.

For example, for architectures that have a storage unit of one byte —
such as standard desktop computers —, this means that the size and the
position of independent components must be a multiple of a byte. Let's correct
the issues in the code above by:

	setting the size of each independent component to correspond to
Storage_Unit — using a range between 0 and
Storage_Unit - 1 —, and

	setting the start position to zero.

This is the corrected version:

shared_var_types-representation.ads

 1with System;
 2
 3package Shared_Var_Types.Representation is
 4
 5 type Rep_Flags is new Flags;
 6
 7 for Rep_Flags use record
 8 F1 at 0 range 0 .. System.Storage_Unit - 1;
 9 F2 at 1 range 0 .. System.Storage_Unit - 1;
10 end record;
11
12end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Type
MD5: ed57e57cd746698909a4f7ce40a29dfc

Note that the representation that we're now using for Rep_Flags is most
likely the representation that the compiler would have chosen for this data
type. We could, however, have added an empty storage unit between F1 and
F2 — by simply writing F2 at 2 ...:

shared_var_types-representation.ads

 1with System;
 2
 3package Shared_Var_Types.Representation is
 4
 5 type Rep_Flags is new Flags;
 6
 7 for Rep_Flags use record
 8 F1 at 0 range 0 .. System.Storage_Unit - 1;
 9 F2 at 2 range 0 .. System.Storage_Unit - 1;
10 end record;
11
12end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Type
MD5: 71fedf8aac7c19bca1ba3b487efa9b17

As long as we follow the rules for independent objects, we're still allowed to
use representation clauses that don't correspond to the one that the compiler
might select.

For arrays, we can use the Independent_Components aspect:

shared_var_types.ads

1package Shared_Var_Types is
2
3 Flags : array (1 .. 8) of Boolean
4 with Independent_Components;
5
6end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Independent_Components
MD5: b331d0a13adf45624b664839fe4ba42c

We've just seen in a previous example that some representation clauses might
not work with objects and types that have the Independent aspect. The
same restrictions apply when we use the Independent_Components aspect.
For example, this aspect prevents that array components are packed when the
Pack aspect is used. Let's discuss the following erroneous code example:

shared_var_types.ads

1package Shared_Var_Types is
2
3 type Flags is
4 array (Positive range <>) of Boolean
5 with Independent_Components, Pack;
6
7 F : Flags (1 .. 8) with Size => 8;
8
9end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Packed_Independent_Components
MD5: dbaff4f2559ef8a449dad251f42cddc0

Build output

shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))
shared_var_types.ads:7:36: error: size for "F" too small, minimum allowed is 64
gprbuild: *** compilation phase failed

As expected, this code doesn't compile. Here, we can have either independent
components, or packed components. We cannot have both at the same time because
packed components aren't independently addressable. The compiler warns us that
the Pack aspect won't have any effect on independent components. When we
use the Size aspect in the declaration of F, we confirm this
limitation. If we remove the Size aspect, however, the code is compiled
successfully because the compiler ignores the Pack aspect and allocates
a larger size for F:

shared_var_types.ads

1package Shared_Var_Types is
2
3 type Flags is
4 array (Positive range <>) of Boolean
5 with Independent_Components, Pack;
6
7end Shared_Var_Types;

show_flags_size.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with Shared_Var_Types; use Shared_Var_Types;
 5
 6procedure Show_Flags_Size is
 7 F : Flags (1 .. 8);
 8begin
 9 Put_Line ("Flags'Size: "
10 & F'Size'Image & " bits");
11 Put_Line ("Flags (1)'Size: "
12 & F (1)'Size'Image & " bits");
13 Put_Line ("# storage units: "
14 & Integer'Image
15 (F'Size /
16 System.Storage_Unit));
17end Show_Flags_Size;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Packed_Independent_Components
MD5: b96f921b08b1d8207749517f833fc121

Build output

show_flags_size.adb:7:04: warning: variable "F" is read but never assigned [-gnatwv]
shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))

Runtime output

Flags'Size: 64 bits
Flags (1)'Size: 8 bits
storage units: 8

As you can see in the output of the application, even though we specify the
Pack aspect for the Flags type, the compiler allocates eight
storage units, one per each component of the F array.

Atomic

An atomic object is an object that only accepts atomic reads and updates. The
Ada standard specifies that "for an atomic object (including an atomic
component), all reads and updates of the object as a whole are indivisible."
In this case, the compiler must generate Assembly code in such a way that reads
and updates of an atomic object must be done in a single instruction, so that
no other instruction could execute on that same object before the read or
update completes.

In other contexts

Generally, we can say that operations are said to be atomic when they can
be completed without interruptions. This is an important requirement when
we're performing operations on objects in memory that are shared between
multiple processes.

This definition of atomicity above is used, for example, when implementing
databases. However, for this section, we're using the term "atomic"
differently. Here, it really means that reads and updates must be performed
with a single Assembly instruction.

For example, if we have a 32-bit object composed of four 8-bit bytes, the
compiler cannot generate code to read or update the object using four 8-bit
store / load instructions, or even two 16-bit store / load instructions.
In this case, in order to maintain atomicity, the compiler must generate
code using one 32-bit store / load instruction.

Because of this strict definition, we might have objects for which the
Atomic aspect cannot be specified. Lots of machines support integer
types that are larger than the native word-sized integer. For example, a
16-bit machine probably supports both 16-bit and 32-bit integers, but only
16-bit integer objects can be marked as atomic — or, more generally,
only objects that fit into at most 16 bits.

Atomicity may be important, for example, when dealing with shared hardware
registers. In fact, for certain architectures, the hardware may require that
memory-mapped registers are handled atomically. In Ada, we can use the
Atomic aspect to indicate that an object is atomic. This is how we can
use the aspect to declare a shared hardware register:

shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5private
 6 R : Integer
 7 with Atomic,
 8 Address =>
 9 System'To_Address (16#FFFF00A0#);
10
11end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Object
MD5: 5c2d8e0a9615084c2a15f896c61adaa6

Note that the Address aspect allows for assigning a variable to a
specific location in the memory. In this example, we're using this aspect to
specify the address of the memory-mapped register.

Later on, we talk again about the
Address aspect and the GNAT-specific
System'To_Address attribute.

In addition to atomic objects, we can declare atomic types — similar to
what we've seen before for volatile objects. For example:

shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5 type Atomic_Integer is new Integer
 6 with Atomic;
 7
 8private
 9 R : Atomic_Integer
10 with Address =>
11 System'To_Address (16#FFFF00A0#);
12
13end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Types
MD5: 009632ba0155d70def8281ba590f3d12

In this example, we're declaring the Atomic_Integer type, which is an
atomic type. Objects of this type — such as R in this example
— are automatically atomic.

We can also declare atomic array components:

shared_var_types.ads

1package Shared_Var_Types is
2
3private
4 Arr : array (1 .. 2) of Integer
5 with Atomic_Components;
6
7end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Array_Components
MD5: 7501bdf618621a822d451da8d731ef75

This example shows the declaration of the Arr array, which has atomic
components — the atomicity of its components is indicated by the
Atomic_Components aspect.

Note that if an object is atomic, it is also volatile and independent. In other
words, these type declarations are equivalent:

shared_var_types.ads

 1package Shared_Var_Types is
 2
 3 type Atomic_Integer_1 is new Integer
 4 with Atomic;
 5
 6 type Atomic_Integer_2 is new Integer
 7 with Atomic,
 8 Volatile,
 9 Independent;
10
11end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Volatile_Independent
MD5: 3034c7a07698491f961d9b4fb74f03d8

A simular rule applies to components of an array. When we use the
Atomic_Components, the following aspects are implied: Volatile,
Volatile_Components and Independent_Components. For example,
these array declarations are equivalent:

shared_var_types.ads

 1package Shared_Var_Types is
 2
 3 Arr_1 : array (1 .. 2) of Integer
 4 with Atomic_Components;
 5
 6 Arr_2 : array (1 .. 2) of Integer
 7 with Atomic_Components,
 8 Volatile,
 9 Volatile_Components,
10 Independent_Components;
11
12end Shared_Var_Types;

Addresses

In other languages, such as C, the concept of pointers and addresses plays
a prominent role. (In fact, in C, many optimizations rely on the usage of
pointer arithmetic.) The concept of addresses does exist in Ada, but it's
mainly reserved for very specific applications, mostly related to low-level
programming. In general, other approaches — such as using access types
— are more than sufficient. (We discuss
access types in another chapter.
Also, later on in that chapter, we discuss the
relation between access types and addresses.)
In this section, we discuss some details about using addresses in Ada.

We make use of the Address type, which is defined in the System
package, to handle addresses. In contrast to other programming languages (such
as C or C++), an address in Ada isn't an integer value: its definition depends
on the compiler implementation, and it's actually driven directly by the
hardware. For now, let's consider it to usually be a private type — this
can be seen as an attempt to achieve application code portability, given the
variations in hardware that result in different definitions of what an address
actually is.

The Address type has support for
address comparison and
address arithmetic (also
known as pointer arithmetic in C). We discuss these topics later in this
section. First, let's talk about the Address attribute and the
Address aspect.

In the Ada Reference Manual

	13.7 The Package System[#16]

Address attribute

The Address attribute allows us to get the address of an object.
For example:

use_address.adb

1with System; use System;
2
3procedure Use_Address is
4 I : aliased Integer := 5;
5 A : Address;
6begin
7 A := I'Address;
8end Use_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Attribute
MD5: 1ee71b7cd3ed278647eb72f383da877f

Here, we're assigning the address of the I object to the A address.

In the GNAT toolchain

GNAT offers a very useful extension to the System package to
retrieve a string for an address: System.Address_Image. This is the
function profile:

function System.Address_Image
 (A : System.Address) return String;

We can use this function to display the address in an user message, for
example:

show_address_attribute.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with System.Address_Image;
3
4procedure Show_Address_Attribute is
5 I : aliased Integer := 5;
6begin
7 Put_Line ("Address : "
8 & System.Address_Image (I'Address));
9end Show_Address_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_Address_Attribute
MD5: 72efddedc57701665594de5ee1939d3d

Runtime output

Address : 00007FFE56DFCB04

In the Ada Reference Manual

	13.3 Operational and Representation Attributes[#17]

	13.7 The Package System[#18]

Address aspect

Usually, we let the compiler select the address of an object in memory, or let
it use a register to store that object. However, we can specify the address of
an object with the Address aspect. In this case, the compiler won't
select an address automatically, but use the address that we're specifying. For
example:

show_address.adb

 1with System; use System;
 2with System.Address_Image;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Address is
 7
 8 I_Main : aliased Integer;
 9 I_Mapped : Integer
10 with Address => I_Main'Address;
11begin
12 Put_Line ("I_Main'Address : "
13 & System.Address_Image
14 (I_Main'Address));
15 Put_Line ("I_Mapped'Address : "
16 & System.Address_Image
17 (I_Mapped'Address));
18end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Aspect
MD5: 6339c743b1ca2b1adf58c977540b43d5

Runtime output

I_Main'Address : 00007FFE05BD0794
I_Mapped'Address : 00007FFE05BD0794

This approach allows us to create an overlay. For example:

simple_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Overlay is
 4 type State is (Off, State_1, State_2)
 5 with Size => Integer'Size;
 6
 7 for State use (Off => 0,
 8 State_1 => 32,
 9 State_2 => 64);
10
11 S : State;
12 I : Integer
13 with Address => S'Address, Import, Volatile;
14begin
15 S := State_2;
16 Put_Line ("I = " & Integer'Image (I));
17end Simple_Overlay;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Simple_Overlay
MD5: a65057882518824d3ea173d193a7ae67

Runtime output

I = 64

Here, I is an overlay of S, as it uses S'Address. With
this approach, we can either use the enumeration directly (by using the
S object of State type) or its integer representation (by using
the I variable).

In the GNAT toolchain

We could call the GNAT-specific System'To_Address attribute when using
the Address aspect, as we did while talking about the
Atomic aspect:

shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5private
 6 R : Integer
 7 with Atomic,
 8 Address =>
 9 System'To_Address (16#FFFF00A0#);
10
11end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_Access_Address
MD5: 5c2d8e0a9615084c2a15f896c61adaa6

In this case, R will refer to the address in memory that we're
specifying (16#FFFF00A0# in this case).

As explained in the
GNAT Reference Manual[#19],
the System'To_Address attribute denotes a function identical to
To_Address (from the System.Storage_Elements package) except
that it is a static attribute. (We talk about the
To_Address function function later on.)

In the Ada Reference Manual

	13.3 Operational and Representation Attributes[#20]

	13.7 The Package System[#21]

	13.7.1 The Package System.Storage_Elements[#22]

Address comparison

We can compare addresses using the common comparison operators. For example:

show_address.adb

 1with System; use System;
 2with System.Address_Image;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Address is
 7
 8 I, J : Integer;
 9begin
10 Put_Line ("I'Address : "
11 & System.Address_Image
12 (I'Address));
13 Put_Line ("J'Address : "
14 & System.Address_Image
15 (J'Address));
16
17 if I'Address = J'Address then
18 Put_Line ("I'Address = J'Address");
19 elsif I'Address < J'Address then
20 Put_Line ("I'Address < J'Address");
21 else
22 Put_Line ("I'Address > J'Address");
23 end if;
24end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Aspect
MD5: 24ddb7d05159f26ef3b2ff6bcc2691e8

Runtime output

I'Address : 00007FFC2B2D105C
J'Address : 00007FFC2B2D1058
I'Address > J'Address

In this example, we compare the address of the I object with the address
of the J object using the =, < and > operators.

In the Ada Reference Manual

	13.7 The Package System[#23]

Address to integer conversion

The System.Storage_Elements package offers an integer representation of
an address via the Integer_Address type, which is an integer type
unrelated to common integer types such as Integer and
Long_Integer. (The actual definition of Integer_Address is
compiler-dependent, and it can be a signed or modular integer subtype.)

We can convert between the Address and Integer_Address types by
using the To_Address and To_Integer functions. Let's see an
example:

show_address.adb

 1with System; use System;
 2
 3with System.Storage_Elements;
 4use System.Storage_Elements;
 5
 6with System.Address_Image;
 7
 8with Ada.Text_IO; use Ada.Text_IO;
 9
10procedure Show_Address is
11 I : Integer;
12 A1, A2 : Address;
13 IA : Integer_Address;
14begin
15 A1 := I'Address;
16 IA := To_Integer (A1);
17 A2 := To_Address (IA);
18
19 Put_Line ("A1 : "
20 & System.Address_Image (A1));
21 Put_Line ("IA : "
22 & Integer_Address'Image (IA));
23 Put_Line ("A2 : "
24 & System.Address_Image (A2));
25end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_Ada
MD5: 69e053886fb8e8571d6c94247dc9f30f

Runtime output

A1 : 00007FFDE05F3E2C
IA : 140728367791660
A2 : 00007FFDE05F3E2C

Here, we retrieve the address of the I object and store it in the
A1 address. Then, we convert A1 to an integer address by calling
To_Integer (and store it in IA). Finally, we convert this
integer address back to an actual address by calling To_Address.

In the Ada Reference Manual

	13.7.1 The Package System.Storage_Elements[#24]

Address arithmetic

Although Ada supports address arithmetic, which we discuss in this section, it
should be reserved for very specific applications such as low-level
programming. However, even in situations that require close access to the
underlying hardware, using address arithmetic might not be the approach you
should consider — make sure to evaluate other options first!

Ada supports address arithmetic via the System.Storage_Elements package,
which includes operators such as + and - for addresses. Let's see
a code example where we iterate over an array by incrementing an address that
points to each component in memory:

show_address.adb

 1with System; use System;
 2
 3with System.Storage_Elements;
 4use System.Storage_Elements;
 5
 6with System.Address_Image;
 7
 8with Ada.Text_IO; use Ada.Text_IO;
 9
10procedure Show_Address is
11
12 Arr : array (1 .. 10) of Integer;
13 A : Address := Arr'Address;
14 -- ^^^^^^^^^^^
15 -- Initializing address object with
16 -- address of the first component of Arr.
17 --
18 -- We could write this as well:
19 -- ___ := Arr (1)'Address
20
21begin
22 for I in Arr'Range loop
23 declare
24 Curr : Integer
25 with Address => A;
26 begin
27 Curr := I;
28 Put_Line ("Curr'Address : "
29 & System.Address_Image
30 (Curr'Address));
31 end;
32
33 --
34 -- Address arithmetic
35 --
36 A := A + Storage_Offset (Integer'Size)
37 / Storage_Unit;
38 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
39 -- Moving to next component
40 end loop;
41
42 for I in Arr'Range loop
43 Put_Line ("Arr ("
44 & Integer'Image (I)
45 & ") :"
46 & Integer'Image (Arr (I)));
47 end loop;
48end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_Ada
MD5: 2c1cdd6874036fb9a527baae63a312d9

Runtime output

Curr'Address : 00007FFFC5DFD040
Curr'Address : 00007FFFC5DFD044
Curr'Address : 00007FFFC5DFD048
Curr'Address : 00007FFFC5DFD04C
Curr'Address : 00007FFFC5DFD050
Curr'Address : 00007FFFC5DFD054
Curr'Address : 00007FFFC5DFD058
Curr'Address : 00007FFFC5DFD05C
Curr'Address : 00007FFFC5DFD060
Curr'Address : 00007FFFC5DFD064
Arr (1) : 1
Arr (2) : 2
Arr (3) : 3
Arr (4) : 4
Arr (5) : 5
Arr (6) : 6
Arr (7) : 7
Arr (8) : 8
Arr (9) : 9
Arr (10) : 10

In this example, we initialize the address A by retrieving the address
of the first component of the array Arr. (Note that we could have
written Arr(1)'Address instead of Arr'Address. In any
case, the language guarantees that Arr'Address gives us the address of
the first component, i.e. Arr'Address = Arr(1)'Address.)

Then, in the loop, we declare
an overlay Curr using the current value of the A address. We can
then operate on this overlay — here, we assign I to Curr.
Finally, in the loop, we increment address A and make it point to the
next component in the Arr array — to do so, we calculate the size
of an Integer component in storage units. (For details on storage units,
see the section on
storage size attribute.)

In other languages

The code example above corresponds (more or less) to the following C code:

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int i;
 6 int arr[10];
 7
 8 int *a = arr;
 9 /* int *a = &arr[0]; */
10
11 for (i = 0; i < 10; i++)
12 {
13 *a++ = i;
14 printf("curr address: %p\n", a);
15 }
16
17 for (i = 0; i < 10; i++)
18 {
19 printf("arr[%d]: %d\n", i, arr[i]);
20 }
21
22 return 0;
23}

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_C
MD5: 7aa709a4d7ed6ce2346dbabc853e28c0

Runtime output

curr address: 0x7ffef2fa8084
curr address: 0x7ffef2fa8088
curr address: 0x7ffef2fa808c
curr address: 0x7ffef2fa8090
curr address: 0x7ffef2fa8094
curr address: 0x7ffef2fa8098
curr address: 0x7ffef2fa809c
curr address: 0x7ffef2fa80a0
curr address: 0x7ffef2fa80a4
curr address: 0x7ffef2fa80a8
arr[0]: 0
arr[1]: 1
arr[2]: 2
arr[3]: 3
arr[4]: 4
arr[5]: 5
arr[6]: 6
arr[7]: 7
arr[8]: 8
arr[9]: 9

While pointer arithmetic is very common in C, using address arithmetic in
Ada is far from common, and it should be only used when it's really
necessary to do so.

In the Ada Reference Manual

	13.3 Operational and Representation Attributes[#25]

	13.7.1 The Package System.Storage_Elements[#26]

Discarding names

As we know, we can use the Image attribute of a type to get a string
associated with this type. This is useful for example when we want to display a
user message for an enumeration type:

show_enumeration_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Enumeration_Image is
 4
 5 type Months is
 6 (January, February, March, April,
 7 May, June, July, August, September,
 8 October, November, December);
 9
10 M : constant Months := January;
11begin
12 Put_Line ("Month: "
13 & Months'Image (M));
14end Show_Enumeration_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Enumeration_Image
MD5: 3863c5e06641d96b59edb9e76daa7560

Runtime output

Month: JANUARY

This is similar to having this code:

show_enumeration_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Enumeration_Image is
 4
 5 type Months is
 6 (January, February, March, April,
 7 May, June, July, August, September,
 8 October, November, December);
 9
10 M : constant Months := January;
11
12 function Months_Image (M : Months)
13 return String is
14 begin
15 case M is
16 when January => return "JANUARY";
17 when February => return "FEBRUARY";
18 when March => return "MARCH";
19 when April => return "APRIL";
20 when May => return "MAY";
21 when June => return "JUNE";
22 when July => return "JULY";
23 when August => return "AUGUST";
24 when September => return "SEPTEMBER";
25 when October => return "OCTOBER";
26 when November => return "NOVEMBER";
27 when December => return "DECEMBER";
28 end case;
29 end Months_Image;
30
31begin
32 Put_Line ("Month: "
33 & Months_Image (M));
34end Show_Enumeration_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Enumeration_Image
MD5: 2db86044d2045bd9d4c3998cca36d51c

Runtime output

Month: JANUARY

Here, the Months_Image function associates a string with each month of
the Months enumeration. As expected, the compiler needs to store the
strings used in the Months_Image function when compiling this code.
Similarly, the compiler needs to store strings for the Months
enumeration for the Image attribute.

Sometimes, we don't need to call the Image attribute for a type. In
this case, we could save some storage by eliminating the strings associated
with the type. Here, we can use the Discard_Names aspect to request the
compiler to reduce — as much as possible — the amount of storage
used for storing names for this type. Let's see an example:

show_discard_names.adb

 1procedure Show_Discard_Names is
 2 pragma Warnings (Off, "is not referenced");
 3
 4 type Months is
 5 (January, February, March, April,
 6 May, June, July, August, September,
 7 October, November, December)
 8 with Discard_Names;
 9
10 M : constant Months := January;
11begin
12 null;
13end Show_Discard_Names;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Discard_Names
MD5: 7891caac459a4be2096d443ca3190036

In this example, the compiler attempts to not store strings associated with
the Months type duration compilation.

Note that the Discard_Names aspect is available for enumerations,
exceptions, and tagged types.

In the GNAT toolchain

If we add this statement to the Show_Discard_Names procedure above:

Put_Line ("Month: "
 & Months'Image (M));

we see that the application displays "0" instead of "JANUARY". This is
because GNAT doesn't store the strings associated with the Months
type when we use the Discard_Names aspect for the Months
type. (Therefore, the Months'Image attribute doesn't have that
information.) Instead, the compiler uses the integer value of the
enumeration, so that Months'Image returns the corresponding string
for this integer value.

In the Ada Reference Manual

	Aspect Discard_Names[#27]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-13-2.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-13-5-3.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-13-5-1.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-13-5-2.html

[#6]
https://www.adacore.com/gems/gem-27

[#7]
https://www.adacore.com/gems/gem-28

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-13-6.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-13-9-2.html

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-B-3-3.html

[#13]
http://www.ada-auth.org/standards/22rm/html/RM-C-6.html

[#14]
https://en.wikipedia.org/wiki/Volatile_(computer_programming)

[#15]
https://en.wikipedia.org/wiki/Memory-mapped_I/O

[#16]
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

[#17]
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

[#18]
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

[#19]
https://gcc.gnu.org/onlinedocs/gnat_rm/Attribute-To_005fAddress.html

[#20]
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

[#21]
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

[#22]
http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

[#23]
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

[#24]
http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

[#25]
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

[#26]
http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

[#27]
http://www.ada-auth.org/standards/22rm/html/RM-C-5.html

Records

Mutually dependent types

In this section, we discuss how to use
incomplete types to declare mutually
dependent types. Let's start with this example:

mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3 type T1 is record
 4 B : T2;
 5 end record;
 6
 7 type T2 is record
 8 A : T1;
 9 end record;
10
11end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: ffa8d6ab83a1172dcbae0978952dacb2

Build output

mutually_dependent.ads:4:11: error: "T2" is undefined
gprbuild: *** compilation phase failed

When you try to compile this example, you get a compilation error. The first
problem with this code is that, in the declaration of the T1 record, the
compiler doesn't know anything about T2. We could solve this by
declaring an incomplete type (type T2;) before the declaration of
T1. This, however, doesn't solve all the problems in the code: the
compiler still doesn't know the size of T2, so we cannot create a
component of this type. We could, instead, declare an access type and use it
here. By doing this, even though the compiler doesn't know the size of
T2, it knows the size of an access type designating T2, so the
record component can be of such an access type.

To summarize, in order to solve the compilation error above, we need to:

	use at least one incomplete type;

	declare at least one component as an access to an object.

For example, we could declare an incomplete type T2 and then declare
the component B of the T1 record as an access to T2.
This is the corrected version:

mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3 type T2;
 4 type T2_Access is access T2;
 5
 6 type T1 is record
 7 B : T2_Access;
 8 end record;
 9
10 type T2 is record
11 A : T1;
12 end record;
13
14end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: 1ae10638624a97fa18b9d8f96bfa74ed

We could strive for consistency and declare two incomplete types and two
accesses, but this isn't strictly necessary in this case. Here's the adapted
code:

mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3 type T1;
 4 type T1_Access is access T1;
 5
 6 type T2;
 7 type T2_Access is access T2;
 8
 9 type T1 is record
10 B : T2_Access;
11 end record;
12
13 type T2 is record
14 A : T1_Access;
15 end record;
16
17end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: 9a9899cd0dd2525bd27d67d6629a0071

Later on, we'll see that these code examples can be written using
anonymous access types.

In the Ada Reference Manual

	3.10.1 Incomplete Type Declarations[#1]

Null records

A null record is a record that doesn't have any components. Consequently, it
cannot store any information. When declaring a null record, we simply
write null instead of declaring actual components, as we usually do for
records. For example:

null_recs.ads

1package Null_Recs is
2
3 type Null_Record is record
4 null;
5 end record;
6
7end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3c82da822710342354134fa71a03452a

Note that the syntax can be simplified to is null record, which is much
more common than the previous form:

null_recs.ads

1package Null_Recs is
2
3 type Null_Record is null record;
4
5end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 1da1746ce5b0a237276272d2b620e282

Although a null record doesn't have components, we can still specify
subprograms for it. For example, we could specify an addition operation for it:

null_recs.ads

1package Null_Recs is
2
3 type Null_Record is null record;
4
5 function "+" (A, B : Null_Record)
6 return Null_Record;
7
8end Null_Recs;

null_recs.adb

 1package body Null_Recs is
 2
 3 function "+" (A, B : Null_Record)
 4 return Null_Record
 5 is
 6 pragma Unreferenced (A, B);
 7 begin
 8 return (null record);
 9 end "+";
10
11end Null_Recs;

show_null_rec.adb

1with Null_Recs; use Null_Recs;
2
3procedure Show_Null_Rec is
4 A, B : Null_Record;
5begin
6 B := A + A;
7 A := A + B;
8end Show_Null_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3a1c2fbae75541dfb0b2ff4c14d22039

In the Ada Reference Manual

	4.3.1 Record Aggregates[#2]

Simple Prototyping

A null record doesn't provide much functionality on itself, as we're not
storing any information in it. However, it's far from being useless. For
example, we can make use of null records to design an API, which we can then
use in an application without having to implement the actual functionality of
the API. This allows us to design a prototype without having to think about all
the implementation details of the API in the first stage.

Consider this example:

devices.ads

 1package Devices is
 2
 3 type Device is private;
 4
 5 function Create
 6 (Active : Boolean)
 7 return Device;
 8
 9 procedure Reset
10 (D : out Device) is null;
11
12 procedure Process
13 (D : in out Device) is null;
14
15 procedure Activate
16 (D : in out Device) is null;
17
18 procedure Deactivate
19 (D : in out Device) is null;
20
21private
22
23 type Device is null record;
24
25 function Create (Active : Boolean)
26 return Device is
27 (null record);
28
29end Devices;

show_device.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Devices; use Devices;
 3
 4procedure Show_Device is
 5 A : Device;
 6begin
 7 Put_Line ("Creating device...");
 8 A := Create (Active => True);
 9
10 Put_Line ("Processing on device...");
11 Process (A);
12
13 Put_Line ("Deactivating device...");
14 Deactivate (A);
15
16 Put_Line ("Activating device...");
17 Activate (A);
18
19 Put_Line ("Resetting device...");
20 Reset (A);
21end Show_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 7d2fce20ac33607f7081381b307a564a

Runtime output

Creating device...
Processing on device...
Deactivating device...
Activating device...
Resetting device...

In the Devices package, we're declaring the Device type and its
primitive subprograms: Create, Reset, Process,
Activate and Deactivate. This is the API that we use in our
prototype. Note that, although the Device type is declared as a private
type, it's still defined as a null record in the full view.

In this example, the Create function, implemented as an expression
function in the private part, simply returns a null record. As expected, this
null record returned by Create matches the definition of the
Device type.

All procedures associated with the Device type are implemented as null
procedures, which means they don't actually have an implementation nor have any
effect. We'll discuss this topic
later on in the course.

In the Show_Device procedure — which is an application
that implements our prototype —, we declare an object of Device
type and call all subprograms associated with that type.

Extending the prototype

Because we're either using expression functions or null procedures in the
specification of the Devices package, we don't have a package body for
it (as there's nothing to be implemented). We could, however, move those user
messages from the Show_Devices procedure to a dummy implementation of
the Devices package. This is the adapted code:

devices.ads

 1package Devices is
 2
 3 type Device is null record;
 4
 5 function Create (Active : Boolean)
 6 return Device;
 7
 8 procedure Reset (D : out Device);
 9
10 procedure Process (D : in out Device);
11
12 procedure Activate (D : in out Device);
13
14 procedure Deactivate (D : in out Device);
15
16end Devices;

devices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Devices is
 4
 5 function Create (Active : Boolean)
 6 return Device
 7 is
 8 pragma Unreferenced (Active);
 9 begin
10 Put_Line ("Creating device...");
11 return (null record);
12 end Create;
13
14 procedure Reset (D : out Device)
15 is
16 pragma Unreferenced (D);
17 begin
18 Put_Line ("Processing on device...");
19 end Reset;
20
21 procedure Process (D : in out Device)
22 is
23 pragma Unreferenced (D);
24 begin
25 Put_Line ("Deactivating device...");
26 end Process;
27
28 procedure Activate (D : in out Device)
29 is
30 pragma Unreferenced (D);
31 begin
32 Put_Line ("Activating device...");
33 end Activate;
34
35 procedure Deactivate (D : in out Device)
36 is
37 pragma Unreferenced (D);
38 begin
39 Put_Line ("Resetting device...");
40 end Deactivate;
41
42end Devices;

show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4 A : Device;
 5begin
 6 A := Create (Active => True);
 7 Process (A);
 8 Deactivate (A);
 9 Activate (A);
10 Reset (A);
11end Show_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 1a21b41f3847f6c132ccbc9696ab7689

Runtime output

Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...

As we changed the specification of the Devices package to not use null
procedures, we now need a corresponding package body for it. In this package
body, we implement the operations on the Device type, which actually
just display a user message indicating which operation is being called.

Let's focus on this updated version of the Show_Device procedure. Now
that we've removed all those calls to Put_Line from this procedure and
just have the calls to operations associated with the Device type, it
becomes more apparent that, even though Device is just a null record, we
can design an application with a sequence of various commands operating on it.
Also, when we just read the source-code of the Show_Device procedure,
there's no clear indication that the Device type doesn't actually hold
any information.

More complex applications

As we've just seen, we can use null records like any other type and create
complex prototypes with them. We could, for instance, design an application
that makes use of many null records, or even have types that depend on or
derive from null records. Let's see a simple example:

many_devices.ads

 1package Many_Devices is
 2
 3 type Device is null record;
 4
 5 type Device_Config is null record;
 6
 7 function Create (Config : Device_Config)
 8 return Device is
 9 (null record);
10
11 type Derived_Device is new Device;
12
13 procedure Process (D : Derived_Device) is null;
14
15end Many_Devices;

show_derived_device.adb

 1with Many_Devices; use Many_Devices;
 2
 3procedure Show_Derived_Device is
 4 A : Device;
 5 B : Derived_Device;
 6 C : Device_Config;
 7begin
 8 A := Create (Config => C);
 9 B := Create (Config => C);
10
11 Process (B);
12end Show_Derived_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Derived_Device
MD5: 757a3def24c8333a27b64943727d8d4e

In this example, the Create function has a null record parameter
(of Device_Config type) and returns a null record (of Device
type). Also, we derive the Derived_Device type from the Device
type. Consequently, Derived_Device is also a null record (since it's
derived from a null record). In the Show_Derived_Device procedure, we
declare objects of those types (A, B and C) and call
primitive subprograms to operate on them.

This example shows that, even though the types we've declared are just null
records, they can still be used to represent dependencies in our application.

Implementing the API

Let's focus again on the previous example. After we have an initial prototype,
we can start implementing some of the functionality needed for the
Device type. For example, we can store information about the current
activation state in the record:

devices.ads

 1package Devices is
 2
 3 type Device is private;
 4
 5 function Create (Active : Boolean)
 6 return Device;
 7
 8 procedure Reset (D : out Device);
 9
10 procedure Process (D : in out Device);
11
12 procedure Activate (D : in out Device);
13
14 procedure Deactivate (D : in out Device);
15
16private
17
18 type Device is record
19 Active : Boolean;
20 end record;
21
22end Devices;

devices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Devices is
 4
 5 function Create (Active : Boolean)
 6 return Device
 7 is
 8 pragma Unreferenced (Active);
 9 begin
10 Put_Line ("Creating device...");
11 return (Active => Active);
12 end Create;
13
14 procedure Reset (D : out Device)
15 is
16 pragma Unreferenced (D);
17 begin
18 Put_Line ("Processing on device...");
19 end Reset;
20
21 procedure Process (D : in out Device)
22 is
23 pragma Unreferenced (D);
24 begin
25 Put_Line ("Deactivating device...");
26 end Process;
27
28 procedure Activate (D : in out Device)
29 is
30 begin
31 Put_Line ("Activating device...");
32 D.Active := True;
33 end Activate;
34
35 procedure Deactivate (D : in out Device)
36 is
37 begin
38 Put_Line ("Resetting device...");
39 D.Active := False;
40 end Deactivate;
41
42end Devices;

show_device.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Devices; use Devices;
 3
 4procedure Show_Device is
 5 A : Device;
 6begin
 7 A := Create (Active => True);
 8 Process (A);
 9 Deactivate (A);
10 Activate (A);
11 Reset (A);
12end Show_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 348ce0c110b47a6b6fd1c9fe73ef0558

Build output

devices.adb:11:25: warning: pragma Unreferenced given for "Active" [enabled by default]

Runtime output

Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...

Now, the Device record contains an Active component, which is
used in the updated versions of Create, Activate and
Deactivate.

Note that we haven't done any change to the implementation of the
Show_Device procedure: it's still the same application as before. As
we've been hinting in the beginning, using null records makes it easy for us to
first create a prototype — as we did in the Show_Device procedure
— and postpone the API implementation to a later phase of the project.

Tagged null records

A null record may be tagged, as we can see in this example:

null_recs.ads

1package Null_Recs is
2
3 type Tagged_Null_Record is
4 tagged null record;
5
6 type Abstract_Tagged_Null_Record is
7 abstract tagged null record;
8
9end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Tagged_Null_Record
MD5: 918572d2c50911b84c80a9c601b75439

As we see in this example, a type can be tagged, or even
abstract tagged. We discuss abstract types
later on in the course.

As expected, in addition to deriving from tagged types, we can also extend
them. For example:

devices.ads

 1package Devices is
 2
 3 type Device is private;
 4
 5 function Create (Active : Boolean)
 6 return Device;
 7
 8 type Derived_Device is private;
 9
10private
11
12 type Device is tagged null record;
13
14 function Create (Active : Boolean)
15 return Device is
16 (null record);
17
18 type Derived_Device is new Device with record
19 Active : Boolean;
20 end record;
21
22 function Create (Active : Boolean)
23 return Derived_Device is
24 (Active => Active);
25
26end Devices;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Extended_Device
MD5: 15e06a5115cbcb131477b5224a6594db

In this example, we derive Derived_Device from the Device type
and extend it with the Active component. (Because we have a type
extension, we also need to override the Create function.)

Since we're now introducing elements from object-oriented programming, we could
consider using interfaces instead of null records. We'll discuss this topic
later on in the course.

Per-Object Expressions

In record type declarations, we might want to define a component that makes use
of a name that refers to a discriminant of the record type, or to the record
type itself. The expression where we use that name is called a per-object
expression.

The term "per-object" comes from the fact that, in the component definition,
we're referring to a piece of information that will be known just when creating
an object of that type. For example, if the per-object expression refers to a
discriminant of a type T, the actual value of that discriminant will
only be specified when we declare an object of type T. Therefore, the
component definition is specific for that individual object — but not
necessarily for other objects of the same type, as we might use different
values for the discriminant.

The constraint that contains a per-object expression is called a per-object
constraint. The actual constraint of that component isn't completely known when
we declare the record type, but only later on when an object of that type is
created.

In addition to referring to discriminants, per-object expressions can also
refer to the record type itself, as we'll see later.

Let's start with a simple record declaration:

rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3 type Stack (S : Positive) is private;
 4
 5private
 6
 7 type Integer_Array is
 8 array (Positive range <>) of Integer;
 9
10 type Stack (S : Positive) is record
11 Arr : Integer_Array (1 .. S);
12 -- ^^^^^^
13 --
14 -- S
15 -- ^
16 -- Per-object expression
17 --
18 -- 1 .. S
19 -- ^^^^^^
20 -- Per-object constraint
21
22 Top : Natural := 0;
23 end record;
24
25end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression
MD5: 27ef174fae1ddf13c374cc1fabe67984

In this example, we see the Stack record type with a discriminant
S. In the declaration of the Arr component of the that type,
S is a per-object expression, as it refers to the S discriminant.
Also, 1 .. S is a per-object constraint.

Let's look at another example using anonymous access types:

rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3 type T is private;
 4
 5 type T_Processor (Selected_T : access T) is
 6 private;
 7
 8private
 9
10 type T is null record;
11
12 type T_Container (Selected_T : access T) is
13 null record;
14
15 type T_Processor (Selected_T : access T) is
16 record
17 E : T_Container (Selected_T);
18 -- ^^^^^^^^^^
19 -- Per-object expression
20 -- Per-object constraint
21 end record;
22
23end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Access_Discriminant
MD5: abbb4cc9d48c5c9e7a3c13aa0b2c430e

Let's focus on the T_Processor type from this example. The
Selected_T discriminant is being used in the definition of the E
component. In this case, Selected_T is at the same time a per-object
expression and a per-object constraint.

Finally, per-object expressions can also refer to the record type we're
declaring. For example:

rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3 type T is limited private;
 4
 5private
 6
 7 type T_Processor (Selected_T : access T) is
 8 null record;
 9
10 type T is limited record
11 E : T_Processor (T'Access);
12 -- ^^^^^^^^
13 -- Per-object expression
14 -- Per-object constraint
15 end record;
16
17end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Access_Discriminant
MD5: dcd8e9cba66fc67aab7a01c61f3e8982

In this example, when we write T'Access within the declaration of the
T record type, the actual value for the Access attribute will be
known when an object of T type is created. In that sense,
T'Access is a per-object expression — and a per-object constraint
as well.

Relevant topics

	3.8 Record Types[#3]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-3-8.html

Aggregates

Container Aggregates

Note

This feature was introduced in Ada 2022.

A container aggregate is a list of elements — such as [1, 2, 3]
— that we use to initialize or assign to a container. For example:

show_container_aggregate.adb

 1pragma Ada_2022;
 2
 3with Ada.Containers.Vectors;
 4
 5procedure Show_Container_Aggregate is
 6
 7 package Float_Vec is new
 8 Ada.Containers.Vectors (Positive, Float);
 9
10 V : constant Float_Vec.Vector :=
11 [1.0, 2.0, 3.0];
12
13 pragma Unreferenced (V);
14begin
15 null;
16end Show_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_Container_Aggregate
MD5: ef13386fef0b7be0b3ea999a7752d5f1

In this example, [1.0, 2.0, 3.0] is a container aggregate that we use
to initialize a vector V.

We can specify container aggregates in three forms:

	as a null container aggregate, which indicates a container without any
elements and is represented by the [] syntax;

	as a positional container aggregate, where the elements are simply
listed in a sequence (such as [1, 2]);

	as a named container aggregate, where a key is indicated for each element
of the list (such as [1 => 10, 2 => 15]).

Let's look at a complete example:

show_container_aggregate.adb

 1pragma Ada_2022;
 2
 3with Ada.Containers.Vectors;
 4
 5procedure Show_Container_Aggregate is
 6
 7 package Float_Vec is new
 8 Ada.Containers.Vectors (Positive, Float);
 9
10 -- Null container aggregate
11 Null_V : constant Float_Vec.Vector :=
12 [];
13
14 -- Positional container aggregate
15 Pos_V : constant Float_Vec.Vector :=
16 [1.0, 2.0, 3.0];
17
18 -- Named container aggregate
19 Named_V : constant Float_Vec.Vector :=
20 [1 => 1.0,
21 2 => 2.0,
22 3 => 3.0];
23
24 pragma Unreferenced (Null_V, Pos_V, Named_V);
25begin
26 null;
27end Show_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_Container_Aggregate
MD5: 15ed6370377423044368a5d56402e940

In this example, we see the three forms of container aggregates. The difference
between positional and named container aggregates is that:

	for positional container aggregates, the vector index is implied by
its position;

while

	for named container aggregates, the index (or key) of each element is
explicitly indicated.

Also, the named container aggregate in this example (Named_V) is using
an index as the name (i.e. it's an indexed aggregate). Another option is to use
non-indexed aggregates, where we use actual keys — as we do in maps.
For example:

show_named_container_aggregate.adb

 1pragma Ada_2022;
 2
 3with Ada.Containers.Vectors;
 4with Ada.Containers.Indefinite_Hashed_Maps;
 5with Ada.Strings.Hash;
 6
 7procedure Show_Named_Container_Aggregate is
 8
 9 package Float_Vec is new
10 Ada.Containers.Vectors (Positive, Float);
11
12 package Float_Hashed_Maps is new
13 Ada.Containers.Indefinite_Hashed_Maps
14 (Key_Type => String,
15 Element_Type => Float,
16 Hash => Ada.Strings.Hash,
17 Equivalent_Keys => "=");
18
19 -- Named container aggregate
20 -- using an index
21 Indexed_Named_V : constant Float_Vec.Vector :=
22 [1 => 1.0,
23 2 => 2.0,
24 3 => 3.0];
25
26 -- Named container aggregate
27 -- using a key
28 Keyed_Named_V : constant
29 Float_Hashed_Maps.Map :=
30 ["Key_1" => 1.0,
31 "Key_2" => 2.0,
32 "Key_3" => 3.0];
33
34 pragma Unreferenced (Indexed_Named_V,
35 Keyed_Named_V);
36begin
37 null;
38end Show_Named_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Named_Container_Aggregate
MD5: 2eabf312c243856dcb2d6884f71e19e2

In this example, Indexed_Named_V and Keyed_Named_V are both
initialized with a named container aggregate. However:

	the container aggregate for Indexed_Named_V is an indexed aggregate,
so we use an index for each element;

while

	the container aggregate for Keyed_Named_V has a key for each element.

Later on, we'll talk about the
Aggregate aspect, which allows for
defining custom container aggregates for any record type.

In the Ada Reference Manual

	4.3.5 Container Aggregates[#1]

Record aggregates

We've already seen record aggregates in the
Introduction to Ada course, so this is just
a brief overview on the topic.

As we already know, record aggregates can have positional and named component
associations. For example, consider this package:

points.ads

1package Points is
2
3 type Point_3D is record
4 X, Y, Z : Integer;
5 end record;
6
7 procedure Display (P : Point_3D);
8
9end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put_Line ("(X => "
 8 & Integer'Image (P.X)
 9 & ",");
10 Put_Line (" Y => "
11 & Integer'Image (P.Y)
12 & ",");
13 Put_Line (" Z => "
14 & Integer'Image (P.Z)
15 & ")");
16 end Display;
17
18end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: fd01961cf1da9b48d2a6150da30f7377

We can use positional or named record aggregates when assigning to an object
P of Point_3D type:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D;
 5begin
 6 -- Positional component association
 7 P := (0, 1, 2);
 8
 9 Display (P);
10
11 -- Named component association
12 P := (X => 3,
13 Y => 4,
14 Z => 5);
15
16 Display (P);
17end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: fc4cff950e31a633ab4e2ae3d21ddc7b

Runtime output

(X => 0,
 Y => 1,
 Z => 2)
(X => 3,
 Y => 4,
 Z => 5)

Also, we can have a mixture of both:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D;
 5begin
 6 -- Positional and named component associations
 7 P := (3, 4,
 8 Z => 5);
 9
10 Display (P);
11end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 493a2a87b4b28dfb0882ad73acf84710

Runtime output

(X => 3,
 Y => 4,
 Z => 5)

In this case, only the Z component has a named association, while the
other components have a positional association.

Note that a positional association cannot follow a named association, so we
cannot write P := (3, Y => 4, 5);, for example. Once we start using a
named association for a component, we have to continue using it for the
remaining components.

In addition, we can choose multiple components at once and assign the same value
to them. For that, we use the | syntax:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D;
 5begin
 6 -- Multiple component selection
 7 P := (X | Y => 5,
 8 Z => 6);
 9
10 Display (P);
11end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: a4fde562fb60d290caf46d86b13e694b

Runtime output

(X => 5,
 Y => 5,
 Z => 6)

Here, we assign 5 to both X and Y.

In the Ada Reference Manual

	4.3.1 Record Aggregates[#2]

<>

We can use the <> syntax to tell the compiler to use the default value
for specific components. However, if there's no default value for specific
components, that component isn't initialized to a known value. For example:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D;
 5begin
 6 P := (0, 1, 2);
 7 Display (P);
 8
 9 -- Specifying X component.
10 P := (X => 42,
11 Y => <>,
12 Z => <>);
13 Display (P);
14
15 -- Specifying Y and Z components.
16 P := (X => <>,
17 Y => 10,
18 Z => 20);
19 Display (P);
20end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 25145e7cba5a566c518ac4218e550899

Runtime output

(X => 0,
 Y => 1,
 Z => 2)
(X => 42,
 Y => 1,
 Z => 2)
(X => 42,
 Y => 10,
 Z => 20)

Here, as the components of Point_3D don't have a default value, those
components that have <> are not initialized:

	when we write (X => 42, Y => <>, Z => <>), only X is
initialized;

	when we write (X => <>, Y => 10, Z => 20) instead, only X is
uninitialized.

For further reading...

As we've just seen, all components that get a <> are uninitialized
because the components of Point_3D don't have a default value.
As no initialization is taking place for those components of the aggregate,
the actual value that is assigned to the record is undefined. In other
words, the resulting behavior might dependent on the compiler's
implementation.

When using GNAT, writing (X => 42, Y => <>, Z => <>) keeps the value
of Y and Z intact, while (X => <>, Y => 10, Z => 20)
keeps the value of X intact.

If the components of Point_3D had default values, those would have been
used. For example, we may change the type declaration of Point_3D and use
default values for each component:

points.ads

 1package Points is
 2
 3 type Point_3D is record
 4 X : Integer := 10;
 5 Y : Integer := 20;
 6 Z : Integer := 30;
 7 end record;
 8
 9 procedure Display (P : Point_3D);
10
11end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 8a716db129e6f231c4003b77d8b61ea3

Then, writing <> makes use of those default values we've just specified:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D := (0, 0, 0);
 5begin
 6 -- Using default value for
 7 -- all components
 8 P := (X => <>,
 9 Y => <>,
10 Z => <>);
11 Display (P);
12end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: e64c6fe4e4b3dbaa084d9b97b4fb971f

Runtime output

(X => 10,
 Y => 20,
 Z => 30)

Now, as expected, the default values of each component (10, 20 and 30) are used
when we write <>.

Similarly, we can specify a default value for the type of each component. For
example, let's declare a Point_Value type with a default value —
using the Default_Value aspect — and use it in the Point_3D
record type:

points.ads

 1package Points is
 2
 3 type Point_Value is new Float
 4 with Default_Value => 99.9;
 5
 6 type Point_3D is record
 7 X : Point_Value;
 8 Y : Point_Value;
 9 Z : Point_Value;
10 end record;
11
12 procedure Display (P : Point_3D);
13
14end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put_Line ("(X => "
 8 & Point_Value'Image (P.X)
 9 & ",");
10 Put_Line (" Y => "
11 & Point_Value'Image (P.Y)
12 & ",");
13 Put_Line (" Z => "
14 & Point_Value'Image (P.Z)
15 & ")");
16 end Display;
17
18end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Default_Value
MD5: 508d7f5e7d02da1677485f7d588847f6

Then, writing <> makes use of the default value of the Point_Value
type:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D := (0.0, 0.0, 0.0);
 5begin
 6 -- Using default value of Point_Value
 7 -- for all components
 8 P := (X => <>,
 9 Y => <>,
10 Z => <>);
11 Display (P);
12end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Default_Value
MD5: 895799077af4a295c250480c32954a2c

Runtime output

(X => 9.99000E+01,
 Y => 9.99000E+01,
 Z => 9.99000E+01)

In this case, the default value of the Point_Value type (99.9) is used
for all components when we write <>.

others

Also, we can use the others selector to assign a value to all components
that aren't explicitly mentioned in the aggregate. For example:

show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4 P : Point_3D;
 5begin
 6 -- Specifying X component;
 7 -- using 42 for all
 8 -- other components.
 9 P := (X => 42,
10 others => 100);
11 Display (P);
12
13 -- Specifying all components
14 P := (others => 256);
15 Display (P);
16end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 3146363eb36ab4485c7755794fb78bbc

Runtime output

(X => 42,
 Y => 100,
 Z => 100)
(X => 256,
 Y => 256,
 Z => 256)

When we write P := (X => 42, others => 100), we're assigning 42 to
X and 100 to all other components (Y and Z in this case).
Also, when we write P := (others => 256), all components have the
same value (256).

Note that writing a specific value in others — such as
(others => 256) — only works when all components have the same
type. In this example, all components of Point_3D have the same type:
Integer. If we had components with different types in the components
selected by others, say Integer and Float, then
(others => 256) would trigger a compilation error. For example, consider
this package:

custom_records.ads

1package Custom_Records is
2
3 type Integer_Float is record
4 A, B : Integer := 0;
5 Y, Z : Float := 0.0;
6 end record;
7
8end Custom_Records;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: 875e470aa2cbc5fcfefae649ed5528f6

If we had written an aggregate such as (others => 256) for an object of
type Integer_Float, the value (256) would be OK for components A
and B, but not for components Y and Z:

show_record_aggregates_others.adb

 1with Custom_Records; use Custom_Records;
 2
 3procedure Show_Record_Aggregates_Others is
 4 Dummy : Integer_Float;
 5begin
 6 -- ERROR: components selected by
 7 -- others must be of same
 8 -- type.
 9 Dummy := (others => 256);
10end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: d543ee07e24caf63384ab0d140054be2

Build output

show_record_aggregates_others.adb:9:14: error: components in "others" choice must have same type
show_record_aggregates_others.adb:9:24: error: expected type "Standard.Float"
show_record_aggregates_others.adb:9:24: error: found type universal integer
gprbuild: *** compilation phase failed

We can fix this compilation error by making sure that others only refers
to components of the same type:

show_record_aggregates_others.adb

 1with Custom_Records; use Custom_Records;
 2
 3procedure Show_Record_Aggregates_Others is
 4 Dummy : Integer_Float;
 5begin
 6 -- OK: components selected by
 7 -- others have Integer type.
 8 Dummy := (Y | Z => 256.0,
 9 others => 256);
10end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: d01977a49e08d2c6cb6b7788581ed56f

In any case, writing (others => <>) is always accepted by the compiler
because it simply selects the default value of each component, so the type of
those values is unambiguous:

show_record_aggregates_others.adb

1with Custom_Records; use Custom_Records;
2
3procedure Show_Record_Aggregates_Others is
4 Dummy : Integer_Float;
5begin
6 Dummy := (others => <>);
7end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: db9b72ffc933436e76305887276eeafd

This code compiles because <> uses the appropriate default value of each
component.

Record discriminants

When a record type has discriminants, they must appear as components of an
aggregate of that type. For example, consider this package:

points.ads

 1package Points is
 2
 3 type Point_Dimension is (Dim_1, Dim_2, Dim_3);
 4
 5 type Point (D : Point_Dimension) is record
 6 case D is
 7 when Dim_1 =>
 8 X1 : Integer;
 9 when Dim_2 =>
10 X2, Y2 : Integer;
11 when Dim_3 =>
12 X3, Y3, Z3 : Integer;
13 end case;
14 end record;
15
16 procedure Display (P : Point);
17
18end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point) is
 6 begin
 7 Put_Line (Point_Dimension'Image (P.D));
 8
 9 case P.D is
10 when Dim_1 =>
11 Put_Line (" (X => "
12 & Integer'Image (P.X1)
13 & ")");
14 when Dim_2 =>
15 Put_Line (" (X => "
16 & Integer'Image (P.X2)
17 & ",");
18 Put_Line (" Y => "
19 & Integer'Image (P.Y2)
20 & ")");
21 when Dim_3 =>
22 Put_Line (" (X => "
23 & Integer'Image (P.X3)
24 & ",");
25 Put_Line (" Y => "
26 & Integer'Image (P.Y3)
27 & ",");
28 Put_Line (" Z => "
29 & Integer'Image (P.Z3)
30 & ")");
31 end case;
32 end Display;
33
34end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Discriminant
MD5: bd71322a65ca50e1eefa0aedd407931a

To write aggregates of the Point type, we have to specify the D
discriminant as a component of the aggregate. The discriminant must be included
in the aggregate — and must be static — because the compiler must
be able to examine the aggregate to determine if it is both complete and
consistent. All components must be accounted for one way or another, as usual
— but, in addition, references to those components whose existence
depends on the discriminant's values must be consistent with the actual
discriminant value used in the aggregate. For example, for type Point,
an aggregate can only reference the X3, Y3, and Z3
components when Dim_3 is specified for the discriminant D;
otherwise, those three components don't exist in that aggregate. Also, the
discriminant D must be the first one if we use positional component
association. For example:

show_rec_aggregate_discriminant.adb

 1with Points; use Points;
 2
 3procedure Show_Rec_Aggregate_Discriminant is
 4 -- Positional component association
 5 P1 : constant Point := (Dim_1, 0);
 6
 7 -- Named component association
 8 P2 : constant Point := (D => Dim_2,
 9 X2 => 3,
10 Y2 => 4);
11
12 -- Positional / named component association
13 P3 : constant Point := (Dim_3,
14 X3 => 3,
15 Y3 => 4,
16 Z3 => 5);
17begin
18 Display (P1);
19 Display (P2);
20 Display (P3);
21end Show_Rec_Aggregate_Discriminant;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Discriminant
MD5: d487e0c68ea69c3e0f2adb8ac958e31d

Runtime output

DIM_1
 (X => 0)
DIM_2
 (X => 3,
 Y => 4)
DIM_3
 (X => 3,
 Y => 4,
 Z => 5)

As we see in this example, we can use any component association in the
aggregate, as long as we make sure that the discriminants of the type appear as
components — and are the first components in the case of positional
component association.

Full coverage rules for Aggregates

Note

This section was originally written by Robert A. Duff and published as
Gem #1: Limited Types in Ada 2005[#3].

One interesting feature of Ada are the full coverage rules for
aggregates. For example, suppose we have a record type:

persons.ads

 1with Ada.Strings.Unbounded;
 2use Ada.Strings.Unbounded;
 3
 4package Persons is
 5 type Years is new Natural;
 6
 7 type Person is record
 8 Name : Unbounded_String;
 9 Age : Years;
10 end record;
11end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 7755bffa8b4473c425ae5075e9c478e9

We can create an object of the type using an aggregate:

show_aggregate_init.adb

 1with Ada.Strings.Unbounded;
 2use Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Aggregate_Init is
 7
 8 X : constant Person :=
 9 (Name =>
10 To_Unbounded_String ("John Doe"),
11 Age => 25);
12begin
13 null;
14end Show_Aggregate_Init;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 681e665b76265eff4c4d870ec011ba37

The full coverage rules say that every component of Person must be
accounted for in the aggregate. If we later modify type Person by
adding a component:

persons.ads

 1with Ada.Strings.Unbounded;
 2use Ada.Strings.Unbounded;
 3
 4package Persons is
 5 type Years is new Natural;
 6
 7 type Person is record
 8 Name : Unbounded_String;
 9 Age : Natural;
10 Shoe_Size : Positive;
11 end record;
12end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 5fc5b93748d92932bfc9e0f15c0228b7

and we forget to modify X accordingly, the compiler will remind us.
Case statements also have full coverage rules, which serve a similar
purpose.

Of course, we can defeat the full coverage rules by using others
(usually for array aggregates and case
statements, but occasionally useful for
record aggregates):

show_aggregate_init_others.adb

 1with Ada.Strings.Unbounded;
 2use Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Aggregate_Init_Others is
 7
 8 X : constant Person :=
 9 (Name =>
10 To_Unbounded_String ("John Doe"),
11 others => 25);
12begin
13 null;
14end Show_Aggregate_Init_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 6d26de8dd6820682cb9150dcbb40f106

According to the Ada RM, others here means precisely the same thing
as Age | Shoe_Size. But that's wrong: what others really
means is "all the other components, including the ones we might add next
week or next year". That means you shouldn't use others unless
you're pretty sure it should apply to all the cases that haven't been
invented yet.

Later on, we'll discuss
full coverage rules for limited types.

Array aggregates

We've already discussed array aggregates in the
Introduction to Ada course. Therefore,
this section just presents some details about this topic.

In the Ada Reference Manual

	4.3.3 Array Aggregates[#4]

Positional and named array aggregates

Note

The array aggregate syntax using brackets (e.g.: [1, 2, 3]), which we
mention in this section, was introduced in Ada 2022.

Similar to record aggregates, array
aggregates can be positional or named. Consider this package:

points.ads

1package Points is
2
3 type Point_3D is array (1 .. 3) of Integer;
4
5 procedure Display (P : Point_3D);
6
7end Points;

points.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body Points is
 6
 7 procedure Display (P : Point_3D) is
 8 begin
 9 Put_Line ("(X => "
10 & Integer'Image (P (1))
11 & ",");
12 Put_Line (" Y => "
13 & Integer'Image (P (2))
14 & ",");
15 Put_Line (" Z => "
16 & Integer'Image (P (3))
17 & ")");
18 end Display;
19
20end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 7ed70d1c9685bc36900e1713619f3321

We can write positional or named aggregates when assigning to an object P
of Point_3D type:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 -- Positional component association
 9 P := [0, 1, 2];
10
11 Display (P);
12
13 -- Named component association
14 P := [1 => 3,
15 2 => 4,
16 3 => 5];
17
18 Display (P);
19end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 5913ef6f43ea873de4e3f0760265de4b

Runtime output

(X => 0,
 Y => 1,
 Z => 2)
(X => 3,
 Y => 4,
 Z => 5)

In this example, we assign a positional array aggregate ([1, 2, 3]) to
P. Then, we assign a named array aggregate
([1 => 3, 2 => 4, 3 => 5]) to P. In this case, the names are
the indices of the components we're assigning to.

We can also assign array aggregates to slices:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D := [others => 0];
 7begin
 8 -- Positional component association
 9 P (2 .. 3) := [1, 2];
10
11 Display (P);
12
13 -- Named component association
14 P (2 .. 3) := [1 => 3,
15 2 => 4];
16
17 Display (P);
18end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 8b36bd7638bd765f45693b78c5c7b872

Runtime output

(X => 0,
 Y => 1,
 Z => 2)
(X => 0,
 Y => 3,
 Z => 4)

Note that, when using a named array aggregate, the index (name) that we use
in the aggregate doesn't have to match the slice. In this example, we're
assigning the component from index 1 of the aggregate to the component of index
2 of the array P (and so on).

Historically

In the first versions of Ada, we could only write array aggregates using
parentheses.

show_array_aggregates.adb

 1pragma Ada_2012;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 -- Positional component association
 9 P := (0, 1, 2);
10
11 Display (P);
12
13 -- Named component association
14 P := (1 => 3,
15 2 => 4,
16 3 => 5);
17
18 Display (P);
19end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 3d9f1fda006f1d566ae2743240568879

Runtime output

(X => 0,
 Y => 1,
 Z => 2)
(X => 3,
 Y => 4,
 Z => 5)

This syntax is considered obsolescent since Ada 2022: brackets
([1, 2, 3]) should be used instead.

Null array aggregate

Note

This feature was introduced in Ada 2022.

We can also write null array aggregates: []. As the name implies, this
kind of array aggregate doesn't have any components.

Consider this package:

integer_arrays.ads

1package Integer_Arrays is
2
3 type Integer_Array is
4 array (Positive range <>) of Integer;
5
6 procedure Display (A : Integer_Array);
7
8end Integer_Arrays;

integer_arrays.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body Integer_Arrays is
 6
 7 procedure Display (A : Integer_Array) is
 8 begin
 9 Put_Line ("Length = "
10 & A'Length'Image);
11
12 Put_Line ("(");
13 for I in A'Range loop
14 Put (" "
15 & I'Image
16 & " => "
17 & A (I)'Image);
18 if I /= A'Last then
19 Put_Line (",");
20 else
21 New_Line;
22 end if;
23 end loop;
24 Put_Line (")");
25 end Display;
26
27end Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 412ebe9de1dfb9157f5379d31162554d

We can initialize an object N of Integer_Array type with a null
array aggregate:

show_array_aggregates.adb

1pragma Ada_2022;
2
3with Integer_Arrays; use Integer_Arrays;
4
5procedure Show_Array_Aggregates is
6 N : constant Integer_Array := [];
7begin
8 Display (N);
9end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 8cdb9a004ea16f716bf2e2ad5a65358e

Runtime output

Length = 0
(
)

In this example, when we call the Display procedure, we confirm that
N doesn't have any components.

|, <>, others

We've seen the following syntactic elements when we were discussing
record aggregates: |, <> and
others. We can apply them to array aggregates as well:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 -- All components have a value of zero.
 9 P := [others => 0];
10
11 Display (P);
12
13 -- Both first and second components have
14 -- a value of three.
15 P := [1 | 2 => 3,
16 3 => 4];
17
18 Display (P);
19
20 -- The default value is used for the first
21 -- component, and all other components
22 -- have a value of five.
23 P := [1 => <>,
24 others => 5];
25
26 Display (P);
27end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 053d4f162cc676b61d8e8a720321d40f

Runtime output

(X => 0,
 Y => 0,
 Z => 0)
(X => 3,
 Y => 3,
 Z => 4)
(X => 1692667256,
 Y => 5,
 Z => 5)

In this example, we use the |, <> and others elements in a
very similar way as we did with record aggregates. (See the comments in the code
example for more details.)

Note that, as for record aggregates, the <> makes use of the default
value (if it is available). We discuss this topic in more details
later on.

..

We can also use the range syntax (..) with array aggregates:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 -- All components have a value of zero.
 9 P := [1 .. 3 => 0];
10
11 Display (P);
12
13 -- Both first and second components have
14 -- a value of three.
15 P := [1 .. 2 => 3,
16 3 => 4];
17
18 Display (P);
19
20 -- The default value is used for the first
21 -- component, and all other components
22 -- have a value of five.
23 P := [1 => <>,
24 2 .. 3 => 5];
25
26 Display (P);
27end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: bb36de6dcddf4b0bdcd5aa730f0988b1

Runtime output

(X => 0,
 Y => 0,
 Z => 0)
(X => 3,
 Y => 3,
 Z => 4)
(X => 1258466920,
 Y => 5,
 Z => 5)

This example is a variation of the previous one. However, in this case, we're
using ranges instead of the | and others syntax.

Missing components

All aggregate components must have an associated value. If we don't specify a
value for a certain component, an exception is raised:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 P := [1 => 4];
 9 -- ERROR: value of components at indices
10 -- 2 and 3 are missing
11
12 Display (P);
13end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 40d3a65f7fc0602782e548385ae07769

Build output

show_array_aggregates.adb:8:09: warning: too few elements for type "Point_3D" defined at points.ads:3 [enabled by default]
show_array_aggregates.adb:8:09: warning: expected 3 elements; found 1 element [enabled by default]
show_array_aggregates.adb:8:09: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_array_aggregates.adb:8 range check failed

We can use others to specify a value to all components that
haven't been explicitly mentioned in the aggregate:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 P := [1 => 4, others => 0];
 9 -- OK: unspecified components have a
10 -- value of zero
11
12 Display (P);
13end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 63b60de44e7c08eeae19a6a9117818f5

Runtime output

(X => 4,
 Y => 0,
 Z => 0)

However, others can only be used when the range is known —
compilation fails otherwise:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Integer_Arrays; use Integer_Arrays;
 4
 5procedure Show_Array_Aggregates is
 6 N1 : Integer_Array := [others => 0];
 7 -- ERROR: range is unknown
 8
 9 N2 : Integer_Array (1 .. 3) := [others => 0];
10 -- OK: range is known
11begin
12 Display (N1);
13 Display (N2);
14end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 65b457e017a4eca6051aac777cc429f4

Build output

show_array_aggregates.adb:6:27: error: "others" choice not allowed here
show_array_aggregates.adb:6:27: error: qualify the aggregate with a constrained subtype to provide bounds for it
gprbuild: *** compilation phase failed

Of course, we could fix the declaration of N1 by specifying a range
— e.g. N1 : Integer_Array (1 .. 10) := [others => 0];.

Iterated component association

Note

This feature was introduced in Ada 2022.

We can use an iterated component association to specify an aggregate. This is
the general syntax:

-- All components have a value of zero
P := [for I in 1 .. 3 => 0];

Let's see a complete example:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D;
 7begin
 8 -- All components have a value of zero
 9 P := [for I in 1 .. 3 => 0];
10
11 Display (P);
12
13 -- Both first and second components have
14 -- a value of three
15 P := [for I in 1 .. 3 =>
16 (if I = 1 or I = 2
17 then 3
18 else 4)];
19
20 Display (P);
21
22 -- The first component has a value of 99
23 -- and all other components have a value
24 -- that corresponds to its index
25 P := [1 => 99,
26 for I in 2 .. 3 => I];
27
28 Display (P);
29end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: f11b3119e3fc1ece08f0b01d7e02576d

Runtime output

(X => 0,
 Y => 0,
 Z => 0)
(X => 3,
 Y => 3,
 Z => 4)
(X => 99,
 Y => 2,
 Z => 3)

In this example, we use iterated component associations in different ways:

	We write a simple iteration ([for I in 1 .. 3 => 0]).

	We use a conditional expression in the iteration:
[for I in 1 .. 3 => (if I = 1 or I = 2 then 3 else 4)].

	We use a named association for the first element, and then iterated component
association for the remaining components:
[1 => 99, for I in 2 .. 3 => I].

So far, we've used a discrete choice list (in the for I in Range form) in
the iterated component association. We could use an iterator (in the
for E of form) instead. For example:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Array_Aggregates is
 6 P : Point_3D := [for I in Point_3D'Range => I];
 7begin
 8 -- Each component is doubled
 9 P := [for E of P => E * 2];
10
11 Display (P);
12
13 -- Each component is increased
14 -- by one
15 P := [for E of P => E + 1];
16
17 Display (P);
18end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: b8c1878c1fa516005d1861f1a37c4fb0

Runtime output

(X => 2,
 Y => 4,
 Z => 6)
(X => 3,
 Y => 5,
 Z => 7)

In this example, we use iterators in different ways:

	We write [for E of P => E * 2] to double the value of each component.

	We write [for E of P => E + 1] to increase the value of each component
by one.

Of course, we could write more complex operations on E in the iterators.

Multidimensional array aggregates

So far, we've discussed one-dimensional array aggregates. We can also use the
same constructs when dealing with multidimensional arrays. Consider, for
example, this package:

matrices.ads

1package Matrices is
2
3 type Matrix is array (Positive range <>,
4 Positive range <>)
5 of Integer;
6
7 procedure Display (M : Matrix);
8
9end Matrices;

matrices.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body Matrices is
 6
 7 procedure Display (M : Matrix) is
 8
 9 procedure Display_Row (M : Matrix;
10 I : Integer) is
11 begin
12 Put_Line (" (");
13 for J in M'Range (2) loop
14 Put (" "
15 & J'Image
16 & " => "
17 & M (I, J)'Image);
18 if J /= M'Last (2) then
19 Put_Line (",");
20 else
21 New_Line;
22 end if;
23 end loop;
24 Put (")");
25 end Display_Row;
26
27 begin
28 Put_Line ("Length (1) = "
29 & M'Length (1)'Image);
30 Put_Line ("Length (2) = "
31 & M'Length (2)'Image);
32
33 Put_Line ("(");
34 for I in M'Range (1) loop
35 Display_Row (M, I);
36 if I /= M'Last (1) then
37 Put_Line (",");
38 else
39 New_Line;
40 end if;
41 end loop;
42 Put_Line (")");
43
44 end Display;
45
46end Matrices;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_Aggregates
MD5: 748c7c695dfef43d7d4926edf5ddd3ae

We can assign multidimensional aggregates to a matrix M using
positional or named component association:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Matrices; use Matrices;
 4
 5procedure Show_Array_Aggregates is
 6 M : Matrix (1 .. 2, 1 .. 3);
 7begin
 8 -- Positional component association
 9 M := [[0, 1, 2],
10 [3, 4, 5]];
11
12 Display (M);
13
14 -- Named component association
15 M := [[1 => 3,
16 2 => 4,
17 3 => 5],
18 [1 => 6,
19 2 => 7,
20 3 => 8]];
21
22 Display (M);
23
24end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_Aggregates
MD5: 78e1fad3b90c4f4d0f9d45f299e5ae10

Runtime output

Length (1) = 2
Length (2) = 3
(
 (
 1 => 0,
 2 => 1,
 3 => 2
),
 (
 1 => 3,
 2 => 4,
 3 => 5
)
)
Length (1) = 2
Length (2) = 3
(
 (
 1 => 3,
 2 => 4,
 3 => 5
),
 (
 1 => 6,
 2 => 7,
 3 => 8
)
)

The first aggregate we use in this example is [[0, 1, 2], [3, 4, 5]].
Here, [0, 1, 2] and [3, 4, 5] are subaggregates of the
multidimensional aggregate. Subaggregates don't have a type themselves, but are
rather just considered part of a multidimensional aggregate (which, of course,
has an array type). In this sense, a subaggregate such as [0, 1, 2] is
different from a one-dimensional aggregate (such as [0, 1, 2]), even
though they are written in the same way.

Strings in subaggregates

In the case of matrices using characters, we can use strings in the
corresponding array aggregates. Consider this package:

string_lists.ads

1package String_Lists is
2
3 type String_List is array (Positive range <>,
4 Positive range <>)
5 of Character;
6
7 procedure Display (SL : String_List);
8
9end String_Lists;

string_lists.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body String_Lists is
 6
 7 procedure Display (SL : String_List) is
 8
 9 procedure Display_Row (SL : String_List;
10 I : Integer) is
11 begin
12 Put (" (");
13 for J in SL'Range (2) loop
14 Put (SL (I, J));
15 end loop;
16 Put (")");
17 end Display_Row;
18
19 begin
20 Put_Line ("Length (1) = "
21 & SL'Length (1)'Image);
22 Put_Line ("Length (2) = "
23 & SL'Length (2)'Image);
24
25 Put_Line ("(");
26 for I in SL'Range (1) loop
27 Display_Row (SL, I);
28 if I /= SL'Last (1) then
29 Put_Line (",");
30 else
31 New_Line;
32 end if;
33 end loop;
34 Put_Line (")");
35 end Display;
36
37end String_Lists;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_Aggregates
MD5: 87b2e593cab823218a39c07d85f40c22

Then, when assigning to an object SL of String_List type, we can
use strings in the aggregates:

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with String_Lists; use String_Lists;
 4
 5procedure Show_Array_Aggregates is
 6 SL : String_List (1 .. 2, 1 .. 3);
 7begin
 8 -- Positional component association
 9 SL := ["ABC",
10 "DEF"];
11
12 Display (SL);
13
14 -- Named component associations
15 SL := [[1 => 'A',
16 2 => 'B',
17 3 => 'C'],
18 [1 => 'D',
19 2 => 'E',
20 3 => 'F']];
21
22 Display (SL);
23
24 SL := [[1 => 'X',
25 2 => 'Y',
26 3 => 'Z'],
27 [others => ' ']];
28
29 Display (SL);
30end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_Aggregates
MD5: 82e376269e3be935d5cbd66202f26ec7

Runtime output

Length (1) = 2
Length (2) = 3
(
 (ABC),
 (DEF)
)
Length (1) = 2
Length (2) = 3
(
 (ABC),
 (DEF)
)
Length (1) = 2
Length (2) = 3
(
 (XYZ),
 ()
)

In the first assignment to SL, we have the aggregate
["ABC", "DEF"], which uses strings as subaggregates. (Of course, we can
use a named aggregate and assign characters to the individual components.)

<> and default values

As we indicated earlier, the <> syntax sets a component to its default
value — if such a default value is available. If a default value isn't
defined, however, the component will remain uninitialized, so that the behavior
is undefined. Let's look at more complex example to illustrate this situation.
Consider this package, for example:

points.ads

 1package Points is
 2
 3 subtype Point_Value is Integer;
 4
 5 type Point_3D is record
 6 X, Y, Z : Point_Value;
 7 end record;
 8
 9 procedure Display (P : Point_3D);
10
11 type Point_3D_Array is
12 array (Positive range <>) of Point_3D;
13
14 procedure Display (PA : Point_3D_Array);
15
16end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put (" (X => "
 8 & Point_Value'Image (P.X)
 9 & ",");
10 New_Line;
11 Put (" Y => "
12 & Point_Value'Image (P.Y)
13 & ",");
14 New_Line;
15 Put (" Z => "
16 & Point_Value'Image (P.Z)
17 & ")");
18 end Display;
19
20 procedure Display (PA : Point_3D_Array) is
21 begin
22 Put_Line ("(");
23 for I in PA'Range (1) loop
24 Put_Line (" "
25 & Integer'Image (I)
26 & " =>");
27 Display (PA (I));
28 if I /= PA'Last (1) then
29 Put_Line (",");
30 else
31 New_Line;
32 end if;
33 end loop;
34 Put_Line (")");
35 end Display;
36
37end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_Aggregates
MD5: ffaf3745621a30362c6aadaec2c3cef2

Then, let's use <> for the array components:

show_record_aggregates.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Record_Aggregates is
 6 PA : Point_3D_Array (1 .. 2);
 7begin
 8 PA := [(X => 3,
 9 Y => 4,
10 Z => 5),
11 (X => 6,
12 Y => 7,
13 Z => 8)];
14 Display (PA);
15
16 -- Array components are
17 -- uninitialized.
18 PA := [1 => <>,
19 2 => <>];
20 Display (PA);
21end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_Aggregates
MD5: 1dee9505222fe9837cd5aa3bf119ee3a

Runtime output

(
 1 =>
 (X => 3,
 Y => 4,
 Z => 5),
 2 =>
 (X => 6,
 Y => 7,
 Z => 8)
)
(
 1 =>
 (X => 0,
 Y => 0,
 Z => -1773610355),
 2 =>
 (X => 32742,
 Y => -1772095808,
 Z => 32742)
)

Because the record components (of the Point_3D type) don't have default
values, they remain uninitialized when we write [1 => <>, 2 => <>].
(In fact, you may see garbage in the values displayed by the Display
procedure.)

When a default value is specified, it is used whenever <> is
specified. For example, we could use a type that has the Default_Value
aspect in its specification:

integer_arrays.ads

 1package Integer_Arrays is
 2
 3 type Value is new Integer
 4 with Default_Value => 99;
 5
 6 type Integer_Array is
 7 array (Positive range <>) of Value;
 8
 9 procedure Display (A : Integer_Array);
10
11end Integer_Arrays;

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Integer_Arrays; use Integer_Arrays;
 4
 5procedure Show_Array_Aggregates is
 6 N : Integer_Array (1 .. 4);
 7begin
 8 N := [for I in N'Range => Value (I)];
 9 Display (N);
10
11 N := [others => <>];
12 Display (N);
13end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 17641d696172b052925d5549f53b9712

Runtime output

Length = 4
(
 1 => 1,
 2 => 2,
 3 => 3,
 4 => 4
)
Length = 4
(
 1 => 99,
 2 => 99,
 3 => 99,
 4 => 99
)

When writing an aggregate for the Point_3D type, any component that has
<> gets the default value of the Point type (99):

For further reading...

Similarly, we could specify the Default_Component_Value aspect
(which we discussed earlier on)
in the declaration of the array type:

integer_arrays.ads

 1package Integer_Arrays is
 2
 3 type Value is new Integer;
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Value
 7 with Default_Component_Value => 9999;
 8
 9 procedure Display (A : Integer_Array);
10
11end Integer_Arrays;

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Integer_Arrays; use Integer_Arrays;
 4
 5procedure Show_Array_Aggregates is
 6 N : Integer_Array (1 .. 4);
 7begin
 8 N := [for I in N'Range => Value (I)];
 9 Display (N);
10
11 N := [others => <>];
12 Display (N);
13end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: c6b38711937a1a7bbb92ddb4c207404e

Runtime output

Length = 4
(
 1 => 1,
 2 => 2,
 3 => 3,
 4 => 4
)
Length = 4
(
 1 => 9999,
 2 => 9999,
 3 => 9999,
 4 => 9999
)

In this case, when writing <> for a component, the value specified in
the Default_Component_Value aspect is used.

Finally, we might want to use both Default_Value (which we discussed
previously) and
Default_Component_Value aspects at the same time. In this case, the
value specified in the Default_Component_Value aspect has higher
priority:

integer_arrays.ads

 1package Integer_Arrays is
 2
 3 type Value is new Integer
 4 with Default_Value => 99;
 5
 6 type Integer_Array is
 7 array (Positive range <>) of Value
 8 with Default_Component_Value => 9999;
 9
10 procedure Display (A : Integer_Array);
11
12end Integer_Arrays;

show_array_aggregates.adb

 1pragma Ada_2022;
 2
 3with Integer_Arrays; use Integer_Arrays;
 4
 5procedure Show_Array_Aggregates is
 6 N : Integer_Array (1 .. 4);
 7begin
 8 N := [for I in N'Range => Value (I)];
 9 Display (N);
10
11 N := [others => <>];
12 Display (N);
13end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: c5b6d45576d59e2d3ba1634953c58b02

Runtime output

Length = 4
(
 1 => 1,
 2 => 2,
 3 => 3,
 4 => 4
)
Length = 4
(
 1 => 9999,
 2 => 9999,
 3 => 9999,
 4 => 9999
)

Here, 9999 is used when we specify <> for a component.

Extension Aggregates

Extension aggregates provide a convenient way to express an aggregate for a
type that extends — adds components to — some existing type (the
"ancestor"). Although mainly a matter of convenience, an extension aggregate is
essential when we want to express an aggregate for an extension of a private
ancestor type, that is, when we don't have compile-time visibility to the
ancestor type's components.

In the Ada Reference Manual

	4.3.2 Extension Aggregates[#5]

Assignments to objects of derived types

Before we discuss extension aggregates in more detail, though, let's start
with a simple use-case. Let's say we have:

	an object A of tagged type T1, and

	an object B of tagged type T2, which extends T1.

We can initialize object B by:

	copying the T1 specific information from A to B, and

	initializing the T2 specific components of B.

We can translate the description above to the following code:

 A : T1;
 B : T2;
begin
 T1 (B) := A;

 B.Extended_Component_1 := Some_Value;
 -- [...]

Here, we use T1 (B) to select the ancestor view of object B, and
we copy all the information from A to this part of B. Then, we
initialize the remaining components of B. We'll elaborate on this kind
of assignments later on.

Example: Points

To present a more concrete example, let's start with a package that defines
one, two and three-dimensional point types:

points.ads

 1package Points is
 2
 3 type Point_1D is tagged record
 4 X : Float;
 5 end record;
 6
 7 procedure Display (P : Point_1D);
 8
 9 type Point_2D is new Point_1D with record
10 Y : Float;
11 end record;
12
13 procedure Display (P : Point_2D);
14
15 type Point_3D is new Point_2D with record
16 Z : Float;
17 end record;
18
19 procedure Display (P : Point_3D);
20
21end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_1D) is
 6 begin
 7 Put_Line ("(X => " & P.X'Image & ")");
 8 end Display;
 9
10 procedure Display (P : Point_2D) is
11 begin
12 Put_Line ("(X => " & P.X'Image
13 & ", Y => " & P.Y'Image & ")");
14 end Display;
15
16 procedure Display (P : Point_3D) is
17 begin
18 Put_Line ("(X => " & P.X'Image
19 & ", Y => " & P.Y'Image
20 & ", Z => " & P.Z'Image & ")");
21 end Display;
22
23end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 0acc05ae2310ab4ba038dfdb6bae0495

Let's now focus on the Show_Points procedure below, where we initialize
a two-dimensional point using a one-dimensional point.

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4 P_1D : Point_1D;
 5 P_2D : Point_2D;
 6begin
 7 P_1D := (X => 0.5);
 8 Display (P_1D);
 9
10 Point_1D (P_2D) := P_1D;
11 -- Equivalent to: "P_2D.X := P_1D.X;"
12
13 P_2D.Y := 0.7;
14
15 Display (P_2D);
16end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 68ae6fa8e6f779aebea97085bd75e082

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)

In this example, we're initializing P_2D using the information stored in
P_1D. By writing Point_1D (P_2D) on the left side of the
assignment, we specify that we want to limit our focus on the Point_1D
view of the P_2D object. Then, we assign P_1D to the
Point_1D view of the P_2D object. This assignment initializes the
X component of the P_2D object. The Point_2D specific
components are not changed by this assignment. (In other words, this is
equivalent to just writing P_2D.X := P_1D.X, as the Point_1D type
only has the X component.) Finally, in the next line, we initialize the
Y component with 0.7.

Using extension aggregates

Note that, in the assignment to P_1D, we use a record aggregate.
Extension aggregates are similar to record aggregates, but they include the
with keyword — for example: (Obj1 with Y => 0.5). This
allows us to assign to an object with information from another object
Obj1 of a parent type and, in the same expression, set the value of the
Y component of the type extension.

Let's rewrite the previous Show_Points procedure using extension
aggregates:

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4 P_1D : Point_1D;
 5 P_2D : Point_2D;
 6begin
 7 P_1D := (X => 0.5);
 8 Display (P_1D);
 9
10 P_2D := (P_1D with Y => 0.7);
11 Display (P_2D);
12end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 4d03f6a565126b602d6f21fe5ee6dd27

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)

When we write P_2D := (P_1D with Y => 0.7), we're initializing
P_2D using:

	the information from the P_1D object — of Point_1D type,
which is an ancestor of the Point_2D type —, and

	the information from the record component association list for the
remaining components of the Point_2D type. (In this case, the only
remaining component of the Point_2D type is Y.)

We could also specify the type of the extension aggregate. For example, in the
previous assignment to P_2D, we could write Point_2D'(...) to
indicate that we expect the Point_2D type for the extension aggregate.

-- Explicitly state that the type of the
-- extension aggregate is Point_2D:

P_2D := Point_2D'(P_1D with Y => 0.7);

Also, we don't have to use named association in extension aggregates. We
could just use positional association instead. Therefore, we could simplify the
assignment to P_2D in the previous example by just writing:

P_2D := (P_1D with 0.7);

More extension aggregates

We can use extension aggregates for descendants of the Point_2D type as
well. For example, let's extend our previous code example by declaring an
object of Point_3D type (called P_3D) and use extension
aggregates in assignments to this object:

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4 P_1D : Point_1D;
 5 P_2D : Point_2D;
 6 P_3D : Point_3D;
 7begin
 8 P_1D := (X => 0.5);
 9 Display (P_1D);
10
11 P_2D := (P_1D with Y => 0.7);
12 Display (P_2D);
13
14 P_3D := (P_2D with Z => 0.3);
15 Display (P_3D);
16
17 P_3D := (P_1D with Y | Z => 0.1);
18 Display (P_3D);
19end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 2ec6831557c43f697bffce8496962b53

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 5.00000E-01, Y => 1.00000E-01, Z => 1.00000E-01)

In the first assignment to P_3D in the example above, we're
initializing this object with information from P_2D and specifying
the value of the Z component. Then, in the next assignment to the
P_3D object, we're using an aggregate with information from P_1
and specifying values for the Y and Z components. (Just as a
reminder, we can write Y | Z => 0.1 to assign 0.1 to both Y and
Z components.)

with others

Other versions of extension aggregates are possible as well. For example, we
can combine keywords and write with others to focus on all remaining
components of an extension aggregate.

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4 P_1D : Point_1D;
 5 P_2D : Point_2D;
 6 P_3D : Point_3D;
 7begin
 8 P_1D := (X => 0.5);
 9 P_2D := (P_1D with Y => 0.7);
10
11 -- Initialize P_3D with P_1D and set other
12 -- components to 0.6.
13 --
14 P_3D := (P_1D with others => 0.6);
15 Display (P_3D);
16
17 -- Initialize P_3D with P_2D, and other
18 -- components with their default value.
19 --
20 P_3D := (P_2D with others => <>);
21 Display (P_3D);
22end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 0594586fc59ead106258cef8682927e9

Runtime output

(X => 5.00000E-01, Y => 6.00000E-01, Z => 6.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01, Z => 5.93170E-39)

In this example, the first assignment to P_3D has an aggregate with
information from P_1D, while the remaining components — in this
case, Y and Z — are just set to 0.6.

Continuing with this example, in the next assignment to P_3D, we're
using information from P_2 in the extension aggregate. This covers the
Point_2D part of the P_3D object — components X and
Y, to be more specific. The Point_3D specific components of
P_3D — component Z in this case — receive their
corresponding default value. In this specific case, however, we haven't
specified a default value for component Z in the declaration of the
Point_3D type, so we cannot rely on any specific value being assigned to
that component when using others => <>.

with null record

We can also use extension aggregates with null records. Let's focus on the
P_3D_Ext object of Point_3D_Ext type. This object is declared in
the Show_Points procedure of the next code example.

points-extensions.ads

1package Points.Extensions is
2
3 type Point_3D_Ext is new
4 Point_3D with null record;
5
6end Points.Extensions;

show_points.adb

 1with Points; use Points;
 2with Points.Extensions; use Points.Extensions;
 3
 4procedure Show_Points is
 5 P_3D : Point_3D;
 6 P_3D_Ext : Point_3D_Ext;
 7begin
 8 P_3D := (X => 0.0, Y => 0.5, Z => 0.4);
 9
10 P_3D_Ext := (P_3D with null record);
11 Display (P_3D_Ext);
12end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 8ec3ddb3a1f2a6e550ac4d622e97124c

Runtime output

(X => 0.00000E+00, Y => 5.00000E-01, Z => 4.00000E-01)

The P_3D_Ext object is of Point_3D_Ext type, which is declared in
the Points.Extensions package and derived from the Point_3D type.
Note that we're not extending Point_3D_Ext with new components, but
using a null record instead in the declaration. Therefore, as the
Point_3D_Ext type doesn't own any new components, we just write
(P_3D with null record) to initialize the P_3D_Ext object.

Extension aggregates and descendent types

In the examples above, we've been initializing objects of descendent types by
using objects of ascending types in extension aggregates. We could, however, do
the opposite and initialize objects of ascending types using objects of
descendent type in extension aggregates. Consider this code example:

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4 P_2D : Point_2D;
 5 P_3D : Point_3D;
 6begin
 7 P_3D := (X => 0.5, Y => 0.7, Z => 0.3);
 8 Display (P_3D);
 9
10 P_2D := (Point_1D (P_3D) with Y => 0.3);
11 Display (P_2D);
12end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: ae5e88a36c58b1eb495d5ba8752e50e7

Runtime output

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 5.00000E-01, Y => 3.00000E-01)

Here, we're using Point_1D (P_3D) to select the Point_1D view of
an object of Point_3D type. At this point, we have specified the
Point_1D part of the aggregate, so we still have to specify the
remaining components of the Point_2D type — the Y
component, to be more specific. When we do that, we get the appropriate
aggregate for the Point_2D type. In summary, by carefully selecting the
appropriate view, we're able to initialize an object of ascending type
(Point_2D), which contains less components, using an object of a
descendent type (Point_3D), which contains more components.

Delta Aggregates

Note

This feature was introduced in Ada 2022.

Previously, we've discussed
extension aggregates, which are used to
assign an object Obj_From of a tagged type to an object Obj_To of
a descendent type.

We may want also to assign an object Obj_From of to an object
Obj_To of the same type, but change some of the components in this
assignment. To do this, we use delta aggregates.

Delta Aggregates for Tagged Records

Let's reuse the Points package from a previous example:

points.ads

 1package Points is
 2
 3 type Point_1D is tagged record
 4 X : Float;
 5 end record;
 6
 7 type Point_2D is new Point_1D with record
 8 Y : Float;
 9 end record;
10
11 type Point_3D is new Point_2D with record
12 Z : Float;
13 end record;
14
15 procedure Display (P : Point_3D);
16
17end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put_Line ("(X => " & P.X'Image
 8 & ", Y => " & P.Y'Image
 9 & ", Z => " & P.Z'Image & ")");
10 end Display;
11
12end Points;

show_points.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Points is
 6 P1, P2, P3 : Point_3D;
 7begin
 8 P1 := (X => 0.5, Y => 0.7, Z => 0.3);
 9 Display (P1);
10
11 P2 := (P1 with delta X => 1.0);
12 Display (P2);
13
14 P3 := (P1 with delta X => 0.2, Y => 0.3);
15 Display (P3);
16end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Tagged
MD5: affbd4304a683699de48fc44db44f09e

Runtime output

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 1.00000E+00, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 2.00000E-01, Y => 3.00000E-01, Z => 3.00000E-01)

Here, we assign P1 to P2, but change the X component.
Also, we assign P1 to P3, but change the X and Y
components.

We can use class-wide types with delta aggregates. Consider this example:

show_points.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Points is
 6
 7 P_3D : Point_3D;
 8
 9 function Reset (P_2D : Point_2D'Class)
10 return Point_2D'Class is
11 ((P_2D with delta X | Y => 0.0));
12
13begin
14 P_3D := [X => 0.1, Y => 0.2, Z => 0.3];
15 Display (P_3D);
16
17 P_3D := Point_3D (Reset (P_3D));
18 Display (P_3D);
19
20end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Tagged
MD5: 30e62d564d1b35829a5002223966c101

Runtime output

(X => 1.00000E-01, Y => 2.00000E-01, Z => 3.00000E-01)
(X => 0.00000E+00, Y => 0.00000E+00, Z => 3.00000E-01)

In this example, the Reset function returns an object of
Point_2D'Class where all components of Point_2D'Class type are
zero. We call the Reset function for the P_3D object of
Point_3D type, so that only the Z component remains untouched.

Note that we use the syntax X | Y in the body of the Reset
function and assign the same value to both components.

For further reading...

We could have implemented Reset as a procedure — in this case,
without using delta aggregates:

show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4
 5 P_3D : Point_3D;
 6
 7 procedure Reset
 8 (P_2D : in out Point_2D'Class) is
 9 begin
10 Point_2D (P_2D) := (others => 0.0);
11 end Reset;
12
13begin
14 P_3D := (X => 0.1, Y => 0.2, Z => 0.3);
15 Display (P_3D);
16
17 Reset (P_3D);
18 Display (P_3D);
19
20end Show_Points;

Delta Aggregates for Non-Tagged Records

The examples above use tagged types. We can also use delta aggregates with
non-tagged types. Let's rewrite the Points package and convert
Point_3D to a non-tagged record type.

points.ads

 1package Points is
 2
 3 type Point_3D is record
 4 X : Float;
 5 Y : Float;
 6 Z : Float;
 7 end record;
 8
 9 procedure Display (P : Point_3D);
10
11end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put_Line ("(X => " & P.X'Image
 8 & ", Y => " & P.Y'Image
 9 & ", Z => " & P.Z'Image & ")");
10 end Display;
11
12end Points;

show_points.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Points is
 6 P1, P2, P3 : Point_3D;
 7begin
 8 P1 := (X => 0.5, Y => 0.7, Z => 0.3);
 9 Display (P1);
10
11 P2 := (P1 with delta X => 1.0);
12 Display (P2);
13
14 P3 := (P1 with delta X => 0.2, Y => 0.3);
15 Display (P3);
16end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Non_Tagged
MD5: 71a3b76ee1988ddea7246d0b8f897865

Runtime output

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 1.00000E+00, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 2.00000E-01, Y => 3.00000E-01, Z => 3.00000E-01)

In this example, Point_3D is a non-tagged type. Note that we haven't
changed anything in the Show_Points procedure: it still works as it did
with tagged types.

Delta Aggregates for Arrays

We can use delta aggregates for arrays. Let's change the declaration of
Point_3D and use an array to represent a 3-dimensional point:

points.ads

 1package Points is
 2
 3 type Float_Array is
 4 array (Positive range <>) of Float;
 5
 6 type Point_3D is new Float_Array (1 .. 3);
 7
 8 procedure Display (P : Point_3D);
 9
10end Points;

points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5 procedure Display (P : Point_3D) is
 6 begin
 7 Put ("(");
 8 for I in P'Range loop
 9 Put (I'Image
10 & " => "
11 & P (I)'Image);
12 end loop;
13 Put_Line (")");
14 end Display;
15
16end Points;

show_points.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Points is
 6 P1, P2, P3 : Point_3D;
 7begin
 8 P1 := [0.5, 0.7, 0.3];
 9 Display (P1);
10
11 P2 := [P1 with delta 1 => 1.0];
12 Display (P2);
13
14 P3 := [P1 with delta 1 => 0.2, 2 => 0.3];
15 -- Alternatively:
16 -- P3 := [P1 with delta 1 .. 2 => 0.2, 0.3];
17
18 Display (P3);
19end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: d32ba51746d7db9cd30f183e64ab0017

Runtime output

(1 => 5.00000E-01 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 1.00000E+00 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 2.00000E-01 2 => 3.00000E-01 3 => 3.00000E-01)

The implementation of Show_Points in this example is very similar to the
version where use a record type. In this case, we:

	assign P1 to P2, but change the first component, and

	we assign P1 to P3, but change the first and second
components.

Using slices

In the assignment to P3, we can either specify each component of the
delta individually or use a slice: both forms are equivalent. Also, we can use
slices to assign the same number to multiple components:

show_points.adb

 1pragma Ada_2022;
 2
 3with Points; use Points;
 4
 5procedure Show_Points is
 6 P1, P3 : Point_3D;
 7begin
 8 P1 := [0.5, 0.7, 0.3];
 9 Display (P1);
10
11 P3 := [P1 with delta
12 P3'First + 1 .. P3'Last => 0.0];
13 Display (P3);
14end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: 6d1db1634c42a885f7bfce7f7eecc359

Runtime output

(1 => 5.00000E-01 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 5.00000E-01 2 => 0.00000E+00 3 => 0.00000E+00)

In this example, we're assigning P1 to P3, but resetting all
components of the array starting by the second one.

Multiple components

We can also assign multiple components or slices:

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is
4 array (Positive range <>) of Float;
5
6 procedure Display (P : Float_Array);
7
8end Float_Arrays;

float_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Float_Arrays is
 4
 5 procedure Display (P : Float_Array) is
 6 begin
 7
 8 Put ("(");
 9 for I in P'Range loop
10 Put (I'Image
11 & " => "
12 & P (I)'Image);
13 end loop;
14 Put_Line (")");
15
16 end Display;
17
18end Float_Arrays;

show_multiple_delta_slices.adb

 1pragma Ada_2022;
 2
 3with Float_Arrays; use Float_Arrays;
 4
 5procedure Show_Multiple_Delta_Slices is
 6
 7 P1, P2 : Float_Array (1 .. 5);
 8
 9begin
10 P1 := [1.0, 2.0, 3.0, 4.0, 5.0];
11 Display (P1);
12
13 P2 := [P1 with delta
14 P2'First + 1 .. P2'Last - 2 => 0.0,
15 P2'Last - 1 .. P2'Last => 0.2];
16 Display (P2);
17end Show_Multiple_Delta_Slices;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: 4c2860616777428618d1100280699ec2

Runtime output

(1 => 1.00000E+00 2 => 2.00000E+00 3 => 3.00000E+00 4 => 4.00000E+00 5 => 5.00000E+00)
(1 => 1.00000E+00 2 => 0.00000E+00 3 => 0.00000E+00 4 => 2.00000E-01 5 => 2.00000E-01)

In this example, we have two arrays P1 and P2 of
Float_Array type. We assign P1 to P2, but change:

	the second to the last-but-two components to 0.0, and

	the last-but-one and last components to 0.2.

In the Ada Reference Manual

	Delta Aggregates[#6]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-5.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

[#3]
https://www.adacore.com/gems/gem-1

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-3.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-2.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-4.html

Arrays

Unconstrained Arrays

In the
Introduction to Ada course,
we've seen that we can declare array types whose bounds are not fixed: in that
case, the bounds are provided when creating objects of those types. For
example:

measurement_defs.ads

1package Measurement_Defs is
2
3 type Measurements is
4 array (Positive range <>) of Float;
5 -- ^ Bounds are of type Positive,
6 -- but not known at this point.
7
8end Measurement_Defs;

show_measurements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Measurement_Defs; use Measurement_Defs;
 4
 5procedure Show_Measurements is
 6 M : Measurements (1 .. 10);
 7 -- ^ Providing bounds here!
 8begin
 9 Put_Line ("First index: " & M'First'Image);
10 Put_Line ("Last index: " & M'Last'Image);
11end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Unconstrained_Arrays.Unconstrained_Array_Example
MD5: a5cdc74dd61e36476431cf675452d1d5

Build output

show_measurements.adb:6:04: warning: variable "M" is read but never assigned [-gnatwv]

Runtime output

First index: 1
Last index: 10

In this example, the Measurements array type from the
Measurement_Defs package is unconstrained. In the
Show_Measurements procedure, we declare a constrained object (M)
of this type.

The Introduction to Ada course
also highlights the fact that the bounds are fixed once an object is declared:

Although different instances of the same unconstrained array type can
have different bounds, a specific instance has the same bounds
throughout its lifetime. This allows Ada to implement unconstrained
arrays efficiently; instances can be stored on the stack and do not
require heap allocation as in languages like Java.

In the Show_Measurements procedure above, once we declare M, its
bounds are fixed for the whole lifetime of M. We cannot add another
component to this array. In other words, M will have 10 components for
its whole lifetime.

In the Ada Reference Manual

	3.6 Array Types[#1]

Unconstrained Arrays vs. Vectors

If you need, however, the flexibility of increasing the length of an array, you
could use vectors instead. This is how we could rewrite the previous example
using vectors:

measurement_defs.ads

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4package Measurement_Defs is
 5
 6 package Vectors is new Ada.Containers.Vectors
 7 (Index_Type => Positive,
 8 Element_Type => Float);
 9
10 subtype Measurements is Vectors.Vector;
11
12end Measurement_Defs;

show_measurements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Measurement_Defs; use Measurement_Defs;
 4
 5procedure Show_Measurements is
 6 use Measurement_Defs.Vectors;
 7
 8 M : Measurements := To_Vector (10);
 9 -- ^ Creating 10-element
10 -- vector.
11begin
12 Put_Line ("First index: "
13 & M.First_Index'Image);
14 Put_Line ("Last index: "
15 & M.Last_Index'Image);
16
17 Put_Line ("Adding element...");
18 M.Append (1.0);
19
20 Put_Line ("First index: "
21 & M.First_Index'Image);
22 Put_Line ("Last index: "
23 & M.Last_Index'Image);
24end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Unconstrained_Arrays.Unconstrained_Array_Example
MD5: afec7a4b898392be4dd1f60e1519da88

Runtime output

First index: 1
Last index: 10
Adding element...
First index: 1
Last index: 11

In the declaration of M in this example, we're creating a 10-element
vector by calling To_Vector and specifying the element count. Later on,
with the call to Append, we're increasing the length of the M to
11 elements.

As you might expect, the flexibility of vectors comes with a price: every time
we add an element that doesn't fit in the current capacity of the vector, the
container has to reallocate memory in the background due to that new element.
Therefore, arrays are more efficient, as the memory allocation only happens
once for each object.

In the Ada Reference Manual

	3.6 Array Types[#2]

	A.18.2 The Generic Package Containers.Vectors[#3]

Multidimensional Arrays

So far, we've discussed unidimensional arrays, since they are very common in
Ada. However, Ada also supports multidimensional arrays using the same
facilities as for unidimensional arrays. For example, we can use the
First, Last, Range and Length attributes for each
dimension of a multidimensional array. This section presents more details on
this topic.

To create a multidimensional array, we simply separate the ranges of each
dimension with a comma. The following example presents the one-dimensional
array A1, the two-dimensional array A2 and the three-dimensional
array A3:

multidimensional_arrays_decl.ads

 1package Multidimensional_Arrays_Decl is
 2
 3 A1 : array (1 .. 10) of Float;
 4 A2 : array (1 .. 5, 1 .. 10) of Float;
 5 -- ^ first dimension
 6 -- ^ second dimension
 7 A3 : array (1 .. 2, 1 .. 5, 1 .. 10) of Float;
 8 -- ^ first dimension
 9 -- ^ second dimension
10 -- ^ third dimension
11end Multidimensional_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Arrays
MD5: 928243b293c67a078d729c3cac68bb92

The two-dimensional array A2 has 5 components in the first dimension and
10 components in the second dimension. The three-dimensional array A3
has 2 components in the first dimension, 5 components in the second dimension,
and 10 components in the third dimension. Note that the ranges we've selected
for A1, A2 and A3 are completely arbitrary. You may select
ranges for each dimension that are the most appropriate in the context of your
application. Also, the number of dimensions is not limited to three, so you
could declare higher-dimensional arrays if needed.

We can use the Length attribute to retrieve the length of each
dimension. We use an integer value in parentheses to specify which dimension
we're referring to. For example, if we write A'Length (2), we're
referring to the length of the second dimension of a multidimensional array
A. Note that A'Length is equivalent to A'Length (1). The
same equivalence applies to other array-related attributes such as
First, Last and Range.

Let's use the Length attribute for the arrays we declared in the
Multidimensional_Arrays_Decl package:

show_multidimensional_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Multidimensional_Arrays_Decl;
 4use Multidimensional_Arrays_Decl;
 5
 6procedure Show_Multidimensional_Arrays is
 7begin
 8 Put_Line ("A1'Length: "
 9 & A1'Length'Image);
10 Put_Line ("A1'Length (1): "
11 & A1'Length (1)'Image);
12 Put_Line ("A2'Length (1): "
13 & A2'Length (1)'Image);
14 Put_Line ("A2'Length (2): "
15 & A2'Length (2)'Image);
16 Put_Line ("A3'Length (1): "
17 & A3'Length (1)'Image);
18 Put_Line ("A3'Length (2): "
19 & A3'Length (2)'Image);
20 Put_Line ("A3'Length (3): "
21 & A3'Length (3)'Image);
22end Show_Multidimensional_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Arrays
MD5: 70b9b8df7e46302b92613fa484ef71ca

Runtime output

A1'Length: 10
A1'Length (1): 10
A2'Length (1): 5
A2'Length (2): 10
A3'Length (1): 2
A3'Length (2): 5
A3'Length (3): 10

As this simple example shows, we can easily retrieve the length of each
dimension. Also, as we've just mentioned, A1'Length is equal to
A1'Length (1).

Let's consider an application where we make hourly measurements for the first
12 hours of the day, on each day of the week. We can create a two-dimensional
array type called Measurements to store this data. Also, we can have
three procedures for this array:

	Show_Indices, which presents the indices (days and hours) of the
two-dimensional array;

	Show_Values, which presents the values stored in the array; and

	Reset, which resets each value of the array.

This is the complete code for this application:

measurement_defs.ads

 1package Measurement_Defs is
 2
 3 type Days is
 4 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 5
 6 type Hours is range 0 .. 11;
 7
 8 subtype Measurement is Float;
 9
10 type Measurements is
11 array (Days, Hours) of Measurement;
12
13 procedure Show_Indices (M : Measurements);
14
15 procedure Show_Values (M : Measurements);
16
17 procedure Reset (M : out Measurements);
18
19end Measurement_Defs;

measurement_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Measurement_Defs is
 4
 5 procedure Show_Indices (M : Measurements) is
 6 begin
 7 Put_Line ("---- Indices ----");
 8
 9 for D in M'Range (1) loop
10 Put (D'Image & " ");
11
12 for H in M'First (2) ..
13 M'Last (2) - 1
14 loop
15 Put (H'Image & " ");
16 end loop;
17 Put_Line (M'Last (2)'Image);
18 end loop;
19 end Show_Indices;
20
21 procedure Show_Values (M : Measurements) is
22 package H_IO is
23 new Ada.Text_IO.Integer_IO (Hours);
24 package M_IO is
25 new Ada.Text_IO.Float_IO (Measurement);
26
27 procedure Set_IO_Defaults is
28 begin
29 H_IO.Default_Width := 5;
30
31 M_IO.Default_Fore := 1;
32 M_IO.Default_Aft := 2;
33 M_IO.Default_Exp := 0;
34 end Set_IO_Defaults;
35 begin
36 Set_IO_Defaults;
37
38 Put_Line ("---- Values ----");
39 Put (" ");
40 for H in M'Range (2) loop
41 H_IO.Put (H);
42 end loop;
43 New_Line;
44
45 for D in M'Range (1) loop
46 Put (D'Image & " ");
47
48 for H in M'Range (2) loop
49 M_IO.Put (M (D, H));
50 Put (" ");
51 end loop;
52 New_Line;
53 end loop;
54 end Show_Values;
55
56 procedure Reset (M : out Measurements) is
57 begin
58 M := (others => (others => 0.0));
59 end Reset;
60
61end Measurement_Defs;

show_measurements.adb

1with Measurement_Defs; use Measurement_Defs;
2
3procedure Show_Measurements is
4 M : Measurements;
5begin
6 Reset (M);
7 Show_Indices (M);
8 Show_Values (M);
9end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Measurements
MD5: bcffa3913007bd9152149ad9616842b8

Runtime output

---- Indices ----
MON 0 1 2 3 4 5 6 7 8 9 10 11
TUE 0 1 2 3 4 5 6 7 8 9 10 11
WED 0 1 2 3 4 5 6 7 8 9 10 11
THU 0 1 2 3 4 5 6 7 8 9 10 11
FRI 0 1 2 3 4 5 6 7 8 9 10 11
SAT 0 1 2 3 4 5 6 7 8 9 10 11
SUN 0 1 2 3 4 5 6 7 8 9 10 11
---- Values ----
 0 1 2 3 4 5 6 7 8 9 10 11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

We recommend that you spend some time analyzing this example. Also, we'd like
to highlight the following aspects:

	We access a value from a multidimensional array by using commas to separate
the index values within the parentheses. For example:
M (D, H) allows us to access the value on day D and hour
H from the multidimensional array M.

	To loop over the multidimensional array M, we write
for D in M'Range (1) loop and for H in M'Range (2) loop for
the first and second dimensions, respectively.

	To reset all values of the multidimensional array, we use an aggregate with
this form: (others => (others => 0.0)).

In the Ada Reference Manual

	3.6 Array Types[#4]

Unconstrained Multidimensional Arrays

Previously, we've discussed unconstrained arrays for the unidimensional case.
It's possible to declare unconstrained multidimensional arrays as well. For
example:

multidimensional_arrays_decl.ads

 1package Multidimensional_Arrays_Decl is
 2
 3 type F1 is array (Positive range <>) of Float;
 4 type F2 is array (Positive range <>,
 5 Positive range <>) of Float;
 6 type F3 is array (Positive range <>,
 7 Positive range <>,
 8 Positive range <>) of Float;
 9
10end Multidimensional_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Unconstrained_Multidimensional_Arrays
MD5: 8637e93db355fddafa3ffa5ce453a0e1

Here, we're declaring the one-dimensional type F1, the two-dimensional
type F2 and the three-dimensional type F3.

As is the case with unidimensional arrays, we must specify the bounds when
declaring objects of unconstrained multidimensional array types:

show_multidimensional_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Multidimensional_Arrays_Decl;
 4use Multidimensional_Arrays_Decl;
 5
 6procedure Show_Multidimensional_Arrays is
 7 A1 : F1 (1 .. 2);
 8 A2 : F2 (1 .. 4, 10 .. 20);
 9 A3 : F3 (2 .. 3, 1 .. 5, 1 .. 2);
10begin
11 Put_Line ("A1'Length (1): "
12 & A1'Length (1)'Image);
13 Put_Line ("A2'Length (1): "
14 & A2'Length (1)'Image);
15 Put_Line ("A2'Length (2): "
16 & A2'Length (2)'Image);
17 Put_Line ("A3'Length (1): "
18 & A3'Length (1)'Image);
19 Put_Line ("A3'Length (2): "
20 & A3'Length (2)'Image);
21 Put_Line ("A3'Length (3): "
22 & A3'Length (3)'Image);
23end Show_Multidimensional_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Unconstrained_Multidimensional_Arrays
MD5: 9fb007abbfe238345d80cb315bb834c9

Build output

show_multidimensional_arrays.adb:7:04: warning: variable "A1" is read but never assigned [-gnatwv]
show_multidimensional_arrays.adb:8:04: warning: variable "A2" is read but never assigned [-gnatwv]
show_multidimensional_arrays.adb:9:04: warning: variable "A3" is read but never assigned [-gnatwv]

Runtime output

A1'Length (1): 2
A2'Length (1): 4
A2'Length (2): 11
A3'Length (1): 2
A3'Length (2): 5
A3'Length (3): 2

Arrays of arrays

It's important to distinguish between multidimensional arrays and arrays of
arrays. Both are supported in Ada, but they're very distinct from each other.
We can create an array of an array by first specifying a one-dimensional array
type T1, and then specifying another one-dimensional array type
T2 where each component of T2 is of T1 type:

array_of_arrays_decl.ads

 1package Array_Of_Arrays_Decl is
 2
 3 type T1 is
 4 array (Positive range <>) of Float;
 5
 6 type T2 is
 7 array (Positive range <>) of T1 (1 .. 10);
 8 -- ^^^^^^^
 9 -- bounds must be set!
10
11end Array_Of_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Array_Of_Arrays
MD5: fd67739bb21f202615180aa02f5284aa

Note that, in the declaration of T2, we must set the bounds for the
T1 type. This is a major difference to multidimensional arrays, which
allow for unconstrained ranges in multiple dimensions.

We can rewrite the previous application for measurements using arrays of
arrays. This is the adapted code:

measurement_defs.ads

 1package Measurement_Defs is
 2
 3 type Days is
 4 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 5
 6 type Hours is range 0 .. 11;
 7
 8 subtype Measurement is Float;
 9
10 type Hourly_Measurements is
11 array (Hours) of Measurement;
12
13 type Measurements is
14 array (Days) of Hourly_Measurements;
15
16 procedure Show_Indices (M : Measurements);
17
18 procedure Show_Values (M : Measurements);
19
20 procedure Reset (M : out Measurements);
21
22end Measurement_Defs;

measurement_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Measurement_Defs is
 4
 5 procedure Show_Indices (M : Measurements) is
 6 begin
 7 Put_Line ("---- Indices ----");
 8
 9 for D in M'Range loop
10 Put (D'Image & " ");
11
12 for H in M (D)'First ..
13 M (D)'Last - 1
14 loop
15 Put (H'Image & " ");
16 end loop;
17 Put_Line (M (D)'Last'Image);
18 end loop;
19 end Show_Indices;
20
21 procedure Show_Values (M : Measurements) is
22 package H_IO is
23 new Ada.Text_IO.Integer_IO (Hours);
24 package M_IO is
25 new Ada.Text_IO.Float_IO (Measurement);
26
27 procedure Set_IO_Defaults is
28 begin
29 H_IO.Default_Width := 5;
30
31 M_IO.Default_Fore := 1;
32 M_IO.Default_Aft := 2;
33 M_IO.Default_Exp := 0;
34 end Set_IO_Defaults;
35 begin
36 Set_IO_Defaults;
37
38 Put_Line ("---- Values ----");
39 Put (" ");
40 for H in M (M'First)'Range loop
41 H_IO.Put (H);
42 end loop;
43 New_Line;
44
45 for D in M'Range loop
46 Put (D'Image & " ");
47
48 for H in M (D)'Range loop
49 M_IO.Put (M (D) (H));
50 Put (" ");
51 end loop;
52 New_Line;
53 end loop;
54 end Show_Values;
55
56 procedure Reset (M : out Measurements) is
57 begin
58 M := (others => (others => 0.0));
59 end Reset;
60
61end Measurement_Defs;

show_measurements.adb

1with Measurement_Defs; use Measurement_Defs;
2
3procedure Show_Measurements is
4 M : Measurements;
5begin
6 Reset (M);
7 Show_Indices (M);
8 Show_Values (M);
9end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Multidimensional_Measurements
MD5: 5cb66bbb1890787b7c023406b2cafb4d

Runtime output

---- Indices ----
MON 0 1 2 3 4 5 6 7 8 9 10 11
TUE 0 1 2 3 4 5 6 7 8 9 10 11
WED 0 1 2 3 4 5 6 7 8 9 10 11
THU 0 1 2 3 4 5 6 7 8 9 10 11
FRI 0 1 2 3 4 5 6 7 8 9 10 11
SAT 0 1 2 3 4 5 6 7 8 9 10 11
SUN 0 1 2 3 4 5 6 7 8 9 10 11
---- Values ----
 0 1 2 3 4 5 6 7 8 9 10 11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Again, we recommend that you spend some time analyzing this example and
comparing it to the previous version that uses multidimensional arrays. Also,
we'd like to highlight the following aspects:

	We access a value from an array of arrays by specifying the index of each
array separately. For example: M (D) (H) allows us to access the value
on day D and hour H from the array of arrays M.

	To loop over an array of arrays M, we write
for D in M'Range loop for the first level of M and
for H in M (D)'Range loop for the second level of M.

	Resetting all values of an array of arrays is very similar to how we do it
for multidimensional arrays. In fact, we can still use an aggregate with this
form: (others => (others => 0.0)).

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

Strings

Wide and Wide-Wide Strings

We've seen many source-code examples so far that includes strings. In most of
them, we were using the standard string type: String. This type is
useful for the common use-case of displaying messages or dealing with
information in plain English. Here, we define "plain English" as the use of the
language that avoids French accents or German umlaut, for example, and doesn't
make use of any characters in non-Latin alphabets.

There are two additional string types in Ada: Wide_String, and
Wide_Wide_String. These types are particularly important when dealing
with textual information in non-standard English, or in various other
languages, non-Latin alphabets and special symbols.

These string types use different bit widths for their characters. This becomes
more apparent when looking at the type definitions:

type String is
 array (Positive range <>) of Character;

type Wide_String is
 array (Positive range <>) of Wide_Character;

type Wide_Wide_String is
 array (Positive range <>) of
 Wide_Wide_Character;

The following table shows the typical bit-width of each character of the
string types:

	Character Type

	Width

	Character

	8 bits

	Wide_Character

	16 bits

	Wide_Wide_Character

	32 bits

We can see that when running this example:

show_wide_char_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Wide_Char_Types is
 4begin
 5 Put_Line ("Character'Size: "
 6 & Integer'Image
 7 (Character'Size));
 8 Put_Line ("Wide_Character'Size: "
 9 & Integer'Image
10 (Wide_Character'Size));
11 Put_Line ("Wide_Wide_Character'Size: "
12 & Integer'Image
13 (Wide_Wide_Character'Size));
14end Show_Wide_Char_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Char_Types
MD5: a0e9fb9e8d43e9fa707dc8c57f7562f8

Runtime output

Character'Size: 8
Wide_Character'Size: 16
Wide_Wide_Character'Size: 32

Let's look at another example, this time using wide strings:

show_wide_string_types.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Text_IO;
 3with Ada.Wide_Wide_Text_IO;
 4
 5procedure Show_Wide_String_Types is
 6 package TI renames Ada.Text_IO;
 7 package WTI renames Ada.Wide_Text_IO;
 8 package WWTI renames Ada.Wide_Wide_Text_IO;
 9
10 S : constant String := "hello";
11 WS : constant Wide_String := "hello";
12 WWS : constant Wide_Wide_String := "hello";
13begin
14 TI.Put_Line ("String: " & S);
15 TI.Put_Line ("Length: "
16 & Integer'Image (S'Length));
17 TI.Put_Line ("Size: "
18 & Integer'Image (S'Size));
19 TI.Put_Line ("Component_Size: "
20 & Integer'Image
21 (S'Component_Size));
22 TI.Put_Line ("------------------------");
23
24 WTI.Put_Line ("Wide string: " & WS);
25 TI.Put_Line ("Length: "
26 & Integer'Image (WS'Length));
27 TI.Put_Line ("Size: "
28 & Integer'Image (WS'Size));
29 TI.Put_Line ("Component_Size: "
30 & Integer'Image
31 (WS'Component_Size));
32 TI.Put_Line ("------------------------");
33
34 WWTI.Put_Line ("Wide-wide string: " & WWS);
35 TI.Put_Line ("Length: "
36 & Integer'Image (WWS'Length));
37 TI.Put_Line ("Size: "
38 & Integer'Image (WWS'Size));
39 TI.Put_Line ("Component_Size: "
40 & Integer'Image
41 (WWS'Component_Size));
42 TI.Put_Line ("------------------------");
43end Show_Wide_String_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_String_Types
MD5: 137816c6fd78add34287a72e45cf4fb7

Runtime output

String: hello
Length: 5
Size: 40
Component_Size: 8

Wide string: hello
Length: 5
Size: 80
Component_Size: 16

Wide-wide string: hello
Length: 5
Size: 160
Component_Size: 32

Here, all strings (S, WS and WWS) have the same length of
5 characters. However, the size of each character is different — thus,
each string has a different overall size.

The recommendation is to use the String type when the textual
information you're processing is in standard English. In case any kind of
internationalization is needed, using Wide_Wide_String is probably the
best choice, as it covers all possible use-cases.

In the Ada Reference Manual

	3.6.3 String Types[#1]

Text I/O

Note that, in the previous example, we were using different versions of the
Ada.Text_IO package depending on the string type we were using:

	Ada.Text_IO for objects of String type,

	Ada.Wide_Text_IO for objects of Wide_String type,

	Ada.Wide_Wide_Text_IO for objects of Wide_Wide_String type.

In that example, we were also using package renaming to differentiate among
those packages.

Similarly, there are different versions of text I/O packages for individual
types. For example, if we want to display the value of a Long_Integer
variable based on the Wide_Wide_String type, we can select the
Ada.Long_Integer_Wide_Wide_Text_IO package. In fact, the list of
packages resulting from the combination of those types is quite long:

	Scalar Type

	Text I/O Packages

	Integer

	
	Ada.Integer_Text_IO

	Ada.Integer_Wide_Text_IO

	Ada.Integer_Wide_Wide_Text_IO

	Long_Integer

	
	Ada.Long_Integer_Text_IO

	Ada.Long_Integer_Wide_Text_IO

	Ada.Long_Integer_Wide_Wide_Text_IO

	Long_Long_Integer

	
	Ada.Long_Long_Integer_Text_IO

	Ada.Long_Long_Integer_Wide_Text_IO

	Ada.Long_Long_Integer_Wide_Wide_Text_IO

	Float

	
	Ada.Float_Text_IO

	Ada.Float_Wide_Text_IO

	Ada.Float_Wide_Wide_Text_IO

	Long_Float

	
	Ada.Long_Float_Text_IO

	Ada.Long_Float_Wide_Text_IO

	Ada.Long_Float_Wide_Wide_Text_IO

	Long_Long_Float

	
	Ada.Long_Long_Float_Text_IO

	Ada.Long_Long_Float_Wide_Text_IO

	Ada.Long_Long_Float_Wide_Wide_Text_IO

Also, there are different versions of the generic packages Integer_IO
and Float_IO:

	Scalar Type

	Text I/O Packages

	Integer types

	
	Ada.Text_IO.Integer_IO

	Ada.Wide_Text_IO.Integer_IO

	Ada.Wide_Wide_Text_IO.Integer_IO

	Real types

	
	Ada.Text_IO.Float_IO

	Ada.Wide_Text_IO.Float_IO

	Ada.Wide_Wide_Text_IO.Float_IO

In the Ada Reference Manual

	A.10 Text Input-Output[#2]

	A.10.1 The Package Text_IO[#3]

	A.10.8 Input-Output for Integer Types[#4]

	A.10.9 Input-Output for Real Types[#5]

	A.11 Wide Text Input-Output and Wide Wide Text Input-Output[#6]

Wide and Wide-Wide String Handling

As we've just seen, we have different versions of the Ada.Text_IO
package. The same applies to string handling packages. As we've seen in the
Introduction to Ada course,
we can use the Ada.Strings.Fixed and Ada.Strings.Maps packages
for string handling. For other formats, we have these packages:

	Ada.Strings.Wide_Fixed,

	Ada.Strings.Wide_Wide_Fixed,

	Ada.Strings.Wide_Maps,

	Ada.Strings.Wide_Wide_Maps.

Let's look at
this example from the
Introduction to Ada course, which we adapted for wide-wide strings:

show_find_words.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3with Ada.Strings.Wide_Wide_Fixed;
 4use Ada.Strings.Wide_Wide_Fixed;
 5
 6with Ada.Strings.Wide_Wide_Maps;
 7use Ada.Strings.Wide_Wide_Maps;
 8
 9with Ada.Wide_Wide_Text_IO;
10use Ada.Wide_Wide_Text_IO;
11
12procedure Show_Find_Words is
13
14 S : constant Wide_Wide_String :=
15 "Hello" & 3 * " World";
16 F : Positive;
17 L : Natural;
18 I : Natural := 1;
19
20 Whitespace : constant
21 Wide_Wide_Character_Set :=
22 To_Set (' ');
23begin
24 Put_Line ("String: " & S);
25 Put_Line ("String length: "
26 & Integer'Wide_Wide_Image
27 (S'Length));
28
29 while I in S'Range loop
30 Find_Token
31 (Source => S,
32 Set => Whitespace,
33 From => I,
34 Test => Outside,
35 First => F,
36 Last => L);
37
38 exit when L = 0;
39
40 Put_Line ("Found word instance at position "
41 & F'Wide_Wide_Image
42 & ": '" & S (F .. L) & "'");
43
44 I := L + 1;
45 end loop;
46
47end Show_Find_Words;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Wide_String_Handling
MD5: 3b5a4d61e6dc5bd16e85f85580ad82ae

Runtime output

String: Hello World World World
String length: 23
Found word instance at position 1: 'Hello'
Found word instance at position 7: 'World'
Found word instance at position 13: 'World'
Found word instance at position 19: 'World'

In this example, we're using the Find_Token procedure to find the words
from the phrase stored in the S constant. All the operations we're using
here are similar to the ones for String type, but making use of the
Wide_Wide_String type instead. (We talk about the Wide_Wide_Image
attribute later on.)

In the Ada Reference Manual

	A.4.6 String-Handling Sets and Mappings[#7]

	A.4.7 Wide_String Handling[#8]

	A.4.8 Wide_Wide_String Handling[#9]

Bounded and Unbounded Wide and Wide-Wide Strings

We've seen in the Introduction to Ada course
that other kinds of String types are available. For example, we can
use bounded and
unbounded strings — those correspond
to the Bounded_String and Unbounded_String types.

Those kinds of string types are available for Wide_String, and
Wide_Wide_String. The following table shows the available types and
corresponding packages:

	Type

	Package

	Bounded_Wide_String

	Ada.Strings.Wide_Bounded

	Bounded_Wide_Wide_String

	Ada.Strings.Wide_Wide_Bounded

	Unbounded_Wide_String

	Ada.Strings.Wide_Unbounded

	Unbounded_Wide_Wide_String

	Ada.Strings.Wide_Wide_Unbounded

The same applies to text I/O for those strings. For the standard case, we have
Ada.Text_IO.Bounded_IO for the Bounded_String type and
Ada.Text_IO.Unbounded_IO for the Unbounded_String type.

For wider string types, we have:

	Type

	Text I/O Package

	Bounded_Wide_String

	Ada.Wide_Text_IO.Wide_Bounded_IO

	Bounded_Wide_Wide_String

	Ada.Wide_Wide_Text_IO.Wide_Wide_Bounded_IO

	Unbounded_Wide_String

	Ada.Wide_Text_IO.Wide_Unbounded_IO

	Unbounded_Wide_Wide_String

	Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO

Let's look at a simple example:

show_unbounded_wide_wide_string.adb

 1with Ada.Strings.Wide_Wide_Unbounded;
 2use Ada.Strings.Wide_Wide_Unbounded;
 3
 4with Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
 5use Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
 6
 7procedure Show_Unbounded_Wide_Wide_String is
 8 S : Unbounded_Wide_Wide_String
 9 := To_Unbounded_Wide_Wide_String ("Hello");
10begin
11 S := S & Wide_Wide_String'(" hello");
12 Put_Line ("Unbounded wide-wide string: " & S);
13end Show_Unbounded_Wide_Wide_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Unbounded_Wide_Wide_String
MD5: 0d369270e2408b3f1cc8284c13fca806

Runtime output

Unbounded wide-wide string: Hello hello

In this example, we're declaring a variable S and initializing it with
the word "Hello." Then, we're concatenating it with " hello" and displaying it.
All the operations we're using here are similar to the ones for
Unbounded_String type, but they've been adapted for the
Unbounded_Wide_Wide_String type.

In the Ada Reference Manual

	A.4.7 Wide_String Handling[#10]

	A.4.8 Wide_Wide_String Handling[#11]

	A.11 Wide Text Input-Output and Wide Wide Text Input-Output[#12]

String Encoding

Unicode is one of the most widespread standards for encoding writing
systems other than the Latin alphabet. It defines a format called
Unicode Transformation Format (UTF)[#13]
in various versions, which vary
according to the underlying precision, support for backwards-compatibility
and other requirements.

In the Ada Reference Manual

	A.4.11 String Encoding[#14]

UTF-8 encoding and decoding

A common UTF format is UTF-8, which encodes strings using up to four
(8-bit) bytes and is backwards-compatible with the ASCII format. While
encoding of ASCII characters requires only one byte, Chinese characters
require three bytes, for example.

In Ada applications, UTF-8 strings are indicated by using the
UTF_8_String from the Ada.Strings.UTF_Encoding package.
In order to encode from and to UTF-8 strings, we can use the Encode
and Decode functions. Those functions are specified in the child
packages of the Ada.Strings.UTF_Encoding package. We select the appropriate
child package depending on the string type we're using, as you can see in the
following table:

	Child Package of
Ada.Strings.UTF_Encoding

	Convert from / to

	.Strings

	String type

	.Wide_Strings

	Wide_String type

	.Wide_Wide_Strings

	Wide_Wide_String type

Let's look at an example:

show_ww_utf_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Ada.Strings.Wide_Wide_Unbounded;
10use Ada.Strings.Wide_Wide_Unbounded;
11
12procedure Show_WW_UTF_String is
13
14 function To_UWWS
15 (Source : Wide_Wide_String)
16 return Unbounded_Wide_Wide_String
17 renames To_Unbounded_Wide_Wide_String;
18
19 function To_WWS
20 (Source : Unbounded_Wide_Wide_String)
21 return Wide_Wide_String
22 renames To_Wide_Wide_String;
23
24 Hello_World_Arabic : constant
25 UTF_8_String := "مرحبا يا عالم";
26 WWS_Hello_World_Arabic : constant
27 Wide_Wide_String :=
28 Decode (Hello_World_Arabic);
29
30 UWWS : Unbounded_Wide_Wide_String;
31begin
32 UWWS := "Hello World: "
33 & To_UWWS (WWS_Hello_World_Arabic);
34
35 Show_WW_String : declare
36 WWS : constant Wide_Wide_String :=
37 To_WWS (UWWS);
38 begin
39 Put_Line ("Wide_Wide_String Length: "
40 & WWS'Length'Image);
41 Put_Line ("Wide_Wide_String Size: "
42 & WWS'Size'Image);
43 end Show_WW_String;
44
45 Put_Line
46 ("---------------------------------------");
47 Put_Line
48 ("Converting Wide_Wide_String to UTF-8...");
49
50 Show_UTF_8_String : declare
51 S_UTF_8 : constant UTF_8_String :=
52 Encode (To_WWS (UWWS));
53 begin
54 Put_Line ("UTF-8 String: "
55 & S_UTF_8);
56 Put_Line ("UTF-8 String Length: "
57 & S_UTF_8'Length'Image);
58 Put_Line ("UTF-8 String Size: "
59 & S_UTF_8'Size'Image);
60 end Show_UTF_8_String;
61
62end Show_WW_UTF_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_String
MD5: cecfb420bb804f42e7a65b793abcbef5

Runtime output

Wide_Wide_String Length: 26
Wide_Wide_String Size: 832

Converting Wide_Wide_String to UTF-8...
UTF-8 String: Hello World: مرحبا يا عالم
UTF-8 String Length: 37
UTF-8 String Size: 296

In this application, we start by storing a string in Arabic in the
Hello_World_Arabic constant. We then use the Decode function to
convert that string from UTF_8_String type to Wide_Wide_String
type — we store it in the WWS_Hello_World_Arabic constant.

We use a variable of type Unbounded_Wide_Wide_String (UWWS) to
manipulate strings: we append the string in Arabic to the "Hello World: "
string and store it in UWWS.

In the Show_WW_String block, we convert the string — stored in
UWWS — from the Unbounded_Wide_Wide_String type to the
Wide_Wide_String type and display the length and size of the string. We
do something similar in the Show_UTF_8_String block, but there, we
convert to the UTF_8_String type.

Also, in the Show_UTF_8_String block, we use the Encode function
to convert that string from Wide_Wide_String type to then
UTF_8_String type — we store it in the S_UTF_8 constant.

UTF-8 size and length

As you can see when running the last code example from the previous subsection,
we have different sizes and lengths depending on the string type:

	String type

	Size

	Length

	Wide_Wide_String

	832

	26

	UTF_8_String

	296

	37

The size needed for storing the string when using the Wide_Wide_String
type is bigger than the one when using the UTF_8_String type. This is
expected, as the Wide_Wide_String uses 32-bit characters, while the
UTF_8_String type uses 8-bit codes to store the string in a more
efficient way (memory-wise).

The length of the string using the Wide_Wide_String type is equivalent
to the number of symbols we have in the original string: 26 characters /
symbols. When using UTF-8, however, we may need more 8-bit codes to
represent one symbol from the original string, so we may end up with a length
value that is bigger than the actual number of symbols from the original string
— as it is the case in this source-code example.

This difference in sizes might not always be the case. In fact, the sizes
match when encoding a symbol in UTF-8 that requires four 8-bit codes. For
example:

show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9procedure Show_UTF_8 is
10
11 Symbol_UTF_8 : constant UTF_8_String := "𝚡";
12 Symbol_WWS : constant Wide_Wide_String :=
13 Decode (Symbol_UTF_8);
14
15begin
16 Put_Line ("Wide_Wide_String Length: "
17 & Symbol_WWS'Length'Image);
18 Put_Line ("Wide_Wide_String Size: "
19 & Symbol_WWS'Size'Image);
20 Put_Line ("UTF-8 String Length: "
21 & Symbol_UTF_8'Length'Image);
22 Put_Line ("UTF-8 String Size: "
23 & Symbol_UTF_8'Size'Image);
24 New_Line;
25 Put_Line ("UTF-8 String: "
26 & Symbol_UTF_8);
27end Show_UTF_8;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 67653dfd377f04b32421cf09b25939fe

Runtime output

Wide_Wide_String Length: 1
Wide_Wide_String Size: 32
UTF-8 String Length: 4
UTF-8 String Size: 32

UTF-8 String: 𝚡

In this case, both strings — using the Wide_Wide_String type or
the UTF_8_String type — have the same size: 32 bits. (Here, we're
using the 𝚡 symbol from the
Mathematical Alphanumeric Symbols block[#15],
not the standard "x" from the
Basic Latin block[#16].)

UTF-8 encoding in source-code files

In the past, it was common to use different character sets in text files when
writing in different (human) languages. By default, Ada source-code files are
expected to use the Latin-1 coding, which is a 8-bit character set.

Nowadays, however, using UTF-8 coding for text files — including
source-code files — is very common. If your Ada code only uses standard
ASCII characters, but you're saving it in a UTF-8 coded file, there's no need
to worry about character sets, as UTF-8 is backwards compatible with ASCII.

However, you might want to use Unicode symbols in your Ada source code to
declare constants — as we did in the previous sections — and store
the source code in a UTF-8 coded file. In this case, you need be careful about
how this file is parsed by the compiler.

Let's look at this source-code example:

show_utf_8_strings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6procedure Show_UTF_8_Strings is
 7
 8 Symbols_UTF_8 : constant
 9 UTF_8_String := "♥♫";
10
11begin
12 Put_Line ("UTF_8_String: "
13 & Symbols_UTF_8);
14
15 Put_Line ("Length: "
16 & Symbols_UTF_8'Length'Image);
17
18end Show_UTF_8_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_Strings
MD5: fd1aaff161a33365d15adca5bea7b277

Runtime output

UTF_8_String: ♥♫
Length: 6

Here, we're using Unicode symbols to initialize the Symbols_UTF_8
constant of UTF_8_String type.

Now, let's assume this source-code example is stored in a UTF-8 coded file.
Because the "♥♫" string makes use of non-ASCII Unicode symbols,
representing this string in UTF-8 format will require more than 2 bytes.
In fact, each one of those Unicode symbols requires 2 bytes to be encoded in
UTF-8. (Keep in mind that Unicode symbols may require
between 1 to 4 bytes[#17] to be encoded in UTF-8 format.) Also,
in this case, the UTF-8 encoding process is using two additional bytes.
Therefore, the total length of the string is six, which matches what we see
when running the Show_UTF_8_Strings procedure. In other words, the
length of the Symbols_UTF_8 string doesn't refer to those two characters
("♥♫") that we were using in the constant declaration, but the length of
the encoded bytes in its UTF-8 representation.

The UTF-8 format is very useful for storing and transmitting texts. However, if
we want to process Unicode symbols, it's probably better to use string types
with 32-bit characters — such as Wide_Wide_String. For example,
let's say we want to use the "♥♫" string again to initialize a constant
of Wide_Wide_String type:

show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6 package TIO renames Ada.Text_IO;
 7 package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11
12begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15
16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

Wide_Wide_String: ♥♫
Length: 2

In this case, as mentioned above, if we store this source code in a text file
using UTF-8 format, we need to ensure that the UTF-8 coded symbols are
correctly interpreted by the compiler when it parses the text file.
Otherwise, we might get unexpected behavior. (Interpreting the characters in
UTF-8 format as Latin-1 format is certainly an example of what we want to avoid
here.)

In the GNAT toolchain

You can use UTF-8 coding in your source-code file and initialize strings of
32-bit characters. However, as we just mentioned, you need to make sure
that the UTF-8 coded symbols are correctly interpreted by the compiler when
dealing with types such as Wide_Wide_String. For this case, GNAT
offers the -gnatW8 switch. Let's run the previous example using this
switch:

show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6 package TIO renames Ada.Text_IO;
 7 package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11
12begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15
16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

Wide_Wide_String: ♥♫
Length: 2

Because the Wide_Wide_String type has 32-bit characters. we expect
the length of the string to match the number of symbols that we're using.
Indeed, when running the Show_WWS_Strings procedure, we see that
the Symbols_WWS string has a length of two characters, which matches
the number of characters of the "♥♫" string.

When we use the -gnatW8 switch, GNAT converts the UTF-8-coded string
("♥♫") to UTF-32 format, so we get two 32-bit characters. It then
uses the UTF-32-coded string to initialize the Symbols_WWS string.

If we don't use the -gnatW8 switch, however, we get wrong results.
Let's look at the same example again without the switch:

show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6 package TIO renames Ada.Text_IO;
 7 package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11
12begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15
16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_No_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

Wide_Wide_String: ♥♫
Length: 6

Now, the "♥♫" string is being interpreted as a string of six 8-bit
characters. (In other words, the UTF-8-coded string isn't converted to
the UTF-32 format.) Each of those 8-bit characters is then stored in a
32-bit character of the Wide_Wide_String type. This explains why
the Show_WWS_Strings procedure reports a length of 6 components for
the Symbols_WWS string.

Portability of UTF-8 in source-code files

In a previous code example, we were assuming that the format that we use for
the source-code file is UTF-8. This allows us to simply use Unicode symbols
directly in strings:

Symbol_UTF_8 : constant UTF_8_String := "★";

This approach, however, might not be portable. For example, if the compiler
uses a different string encoding for source-code files, it might interpret that
Unicode character as something else — or just throw a compilation error.

If you're afraid that format mismatches might happen in your compilation
environment, you may want to write strings in your code in a completely
portable fashion, which consists in entering the exact sequence of codes in
bytes — using the Character'Val function — for the symbols
you want to use.

We can reuse parts of the previous example and replace the UTF-8 character with
the corresponding UTF-8 code:

show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6procedure Show_UTF_8 is
 7
 8 Symbol_UTF_8 : constant
 9 UTF_8_String :=
10 Character'Val (16#e2#)
11 & Character'Val (16#98#)
12 & Character'Val (16#85#);
13
14begin
15 Put_Line ("UTF-8 String: "
16 & Symbol_UTF_8);
17end Show_UTF_8;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 8ff02bc1793c0c5ac1ff24f62941af73

Runtime output

UTF-8 String: ★

Here, we use a sequence of three calls to the Character'Val(code)
function for the UTF-8 code that corresponds to the "★" symbol.

UTF-16 encoding and decoding

So far, we've discussed the UTF-8 encoding scheme. However, other encoding
schemes exist and are supported as well. In fact, the
Ada.Strings.UTF_Encoding package defines three encoding schemes:

type Encoding_Scheme is (UTF_8,
 UTF_16BE,
 UTF_16LE);

For example, instead of using UTF-8 encoding, we can use UTF-16 encoding
— either in the big-endian or in the little-endian version.
To convert between UTF-8 and UTF-16 encoding schemes, we can make use of the
conversion functions from the Ada.Strings.UTF_Encoding.Conversions
package.

To declare a UTF-16 encoded string, we can use one of the following data types:

	the 8-bit-character based UTF_String type, or

	the 16-bit-character based UTF_16_Wide_String type.

When using the 8-bit version, though, we have to specify the input and output
schemes when converting between UTF-8 and UTF-16 encoding schemes.

Let's see a code example that makes use of both UTF_String and
UTF_16_Wide_String types:

show_utf16_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Conversions;
 7use Ada.Strings.UTF_Encoding.Conversions;
 8
 9procedure Show_UTF16_Types is
10 Symbols_UTF_8 : constant
11 UTF_8_String := "♥♫";
12
13 Symbols_UTF_16 : constant
14 UTF_16_Wide_String :=
15 Convert (Symbols_UTF_8);
16 -- ^ Calling Convert for UTF_8_String
17 -- to UTF_16_Wide_String conversion.
18
19 Symbols_UTF_16BE : constant
20 UTF_String :=
21 Convert (Item => Symbols_UTF_8,
22 Input_Scheme => UTF_8,
23 Output_Scheme => UTF_16BE);
24 -- ^ Calling Convert for UTF_8_String
25 -- to UTF_String conversion in UTF-16BE
26 -- encoding.
27begin
28 Put_Line ("UTF_8_String: "
29 & Symbols_UTF_8);
30
31 Put_Line ("UTF_16_Wide_String: "
32 & Convert (Symbols_UTF_16));
33 -- ^ Calling Convert for
34 -- the UTF_16_Wide_String to
35 -- UTF_8_String conversion.
36
37 Put_Line
38 ("UTF_String / UTF_16BE: "
39 & Convert
40 (Item => Symbols_UTF_16BE,
41 Input_Scheme => UTF_16BE,
42 Output_Scheme => UTF_8));
43end Show_UTF16_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_16_Types
MD5: 905e20e83a6199fdc91a6b15bb71bb01

Runtime output

UTF_8_String: ♥♫
UTF_16_Wide_String: ♥♫
UTF_String / UTF_16BE: ♥♫

In this example, we're declaring a UTF-8 encoded string and storing it in the
Symbols_UTF_8 constant. Then, we're calling the Convert
functions to convert between UTF-8 and UTF-16 encoding schemes. We're using two
versions of this function:

	the Convert function that returns an object of
UTF_16_Wide_String type for an input of UTF_8_String type, and

	the Convert function that returns an object of UTF_String
type for an input of UTF_8_String type.

	In this case, we need to specify the input and output schemes (see
Input_Scheme and Output_Scheme parameters in the code
example).

Previously, we've seen that the
Ada.Strings.UTF_Encoding.Wide_Wide_Strings package offers functions to
convert between UTF-8 and the Wide_Wide_String type. The same kind of
conversion functions exist for UTF-16 strings as well. Let's look at this code
example:

show_ww_utf16_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Ada.Strings.UTF_Encoding.Conversions;
10use Ada.Strings.UTF_Encoding.Conversions;
11
12procedure Show_WW_UTF16_String is
13 Symbols_UTF_16 : constant
14 UTF_16_Wide_String :=
15 Wide_Character'Val (16#2665#) &
16 Wide_Character'Val (16#266B#);
17 -- ^ Calling Wide_Character'Val
18 -- to specify the UTF-16 BE code
19 -- for "♥" and "♫".
20
21 Symbols_WWS : constant
22 Wide_Wide_String :=
23 Decode (Symbols_UTF_16);
24 -- ^ Calling Decode for UTF_16_Wide_String
25 -- to Wide_Wide_String conversion.
26begin
27 Put_Line ("UTF_16_Wide_String: "
28 & Convert (Symbols_UTF_16));
29 -- ^ Calling Convert for the
30 -- UTF_16_Wide_String to
31 -- UTF_8_String conversion.
32
33 Put_Line ("Wide_Wide_String: "
34 & Encode (Symbols_WWS));
35 -- ^ Calling Encode for the
36 -- Wide_Wide_String to
37 -- UTF_8_String conversion.
38end Show_WW_UTF16_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_16_String
MD5: 900af8f5c6aad7303c3e49c1c4a68d73

Runtime output

UTF_16_Wide_String: ♥♫
Wide_Wide_String: ♥♫

In this example, we're calling the Wide_Character'Val function to
specify the UTF-16 BE code of the "♥" and "♫" symbols. We're then using
the Decode function to convert between the UTF_16_Wide_String and
the Wide_Wide_String types.

Image attribute

Overview

In the Introduction to Ada course, we've
seen that the Image attribute returns a string that contains a textual
representation of an object. For example, we write Integer'Image (V) to
get a string for the integer variable V:

show_simple_image.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Simple_Image is
4 V : Integer;
5begin
6 V := 10;
7 Put_Line ("V: " & Integer'Image (V));
8end Show_Simple_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: e38f6f1a0808f12bd53c1f3cf4983353

Runtime output

V: 10

Naturally, we can use the Image attribute with other scalar types. For
example:

show_simple_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Image is
 4 type Status is (Unknown, Off, On);
 5
 6 V : Float;
 7 S : Status;
 8begin
 9 V := 10.0;
10 S := Unknown;
11
12 Put_Line ("V: " & Float'Image (V));
13 Put_Line ("S: " & Status'Image (S));
14end Show_Simple_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: d3369518b610b7bf6c8dcefdecdb0c44

Runtime output

V: 1.00000E+01
S: UNKNOWN

In this example, we retrieve a string representing the floating-point
variable V. Also, we use Status'Image (V) to retrieve a string representing the textual version of the Status.

In the Ada Reference Manual

	Image Attributes[#18]

Type'Image and Obj'Image

We can also apply the Image attribute to an object directly:

show_simple_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Image is
 4 V : Integer;
 5begin
 6 V := 10;
 7 Put_Line ("V: " & V'Image);
 8
 9 -- Equivalent to:
10 -- Put_Line ("V: " & Integer'Image (V));
11end Show_Simple_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: c8b2e458de47b403568dd795b3d3fc24

Runtime output

V: 10

In this example, the Integer'Image (V) and V'Image forms are
equivalent.

Wider versions of Image

Although we've been talking only about the Image attribute, it's
important to mention that each of the wider versions of the string types also
has a corresponding Image attribute. In fact, this is the attribute for
each string type:

	Attribute

	Type of Returned String

	Image

	String

	Wide_Image

	Wide_String

	Wide_Wide_Image

	Wide_Wide_String

Let's see a simple example:

show_wide_wide_image.adb

 1with Ada.Wide_Wide_Text_IO;
 2use Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_Wide_Wide_Image is
 5 F : Float;
 6begin
 7 F := 100.0;
 8 Put_Line ("F = "
 9 & F'Wide_Wide_Image);
10end Show_Wide_Wide_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Wide_Wide_Image
MD5: ff542ef93286529343466c27935d5c21

Runtime output

F = 1.00000E+02

In this example, we use the Wide_Wide_Image attribute to retrieve a
string of Wide_Wide_String type for the floating-point variable
F.

Image attribute for non-scalar types

Note

This feature was introduced in Ada 2022.

In the previous code examples, we were using the Image attribute with
scalar types, but it isn't restricted to those types. In fact, we can also use
this attribute when dealing with non-scalar types. For example:

simple_records.ads

 1package Simple_Records is
 2
 3 type Rec is limited private;
 4
 5 type Rec_Access is access Rec;
 6
 7 function Init return Rec;
 8
 9 type Null_Rec is null record;
10
11private
12
13 type Rec is limited record
14 F : Float;
15 I : Integer;
16 end record;
17
18 function Init return Rec is
19 ((F => 10.0, I => 4));
20
21end Simple_Records;

show_non_scalar_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Ada.Unchecked_Deallocation;
 5
 6with Simple_Records;
 7use Simple_Records;
 8
 9procedure Show_Non_Scalar_Image is
10
11 procedure Free is
12 new Ada.Unchecked_Deallocation
13 (Object => Rec,
14 Name => Rec_Access);
15
16 R_A : Rec_Access :=
17 new Rec'(Init);
18
19 N_R : Null_Rec :=
20 (null record);
21begin
22 R_A := new Rec'(Init);
23 N_R := (null record);
24
25 Put_Line ("R_A: " & R_A'Image);
26 Put_Line ("R_A.all: " & R_A.all'Image);
27 Put_Line ("N_R: " & N_R'Image);
28
29 Free (R_A);
30 Put_Line ("R_A: " & R_A'Image);
31end Show_Non_Scalar_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Non_Scalar_Image
MD5: d7d15e96a03c882995262a5cfca5e771

Runtime output

R_A: (access 22862c0)
R_A.all:
(F => 1.00000E+01,
 I => 4)
N_R: (NULL RECORD)
R_A: null

In the Show_Non_Scalar_Image procedure from this example, we display the
access value of R_A and the contents of the dereferenced access object
(R_A.all). Also, we see the indication that N_R is a null record
and R_A is null after the call to Free.

Historically

Since Ada 2022, the Image attribute is available for all types.
Prior to this version of the language, it was only available for scalar
types. (For other kind of types, programmers had to use the Image
attribute for each component of a record, for example.)

In fact, prior to Ada 2022, the Image attribute was described in
the 3.5 Scalar Types[#19] section of the Ada Reference Manual, as
it was only applied to those types. Now, it is part of the new
Image Attributes[#20] section.

Let's see another example, this time with arrays:

show_array_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Array_Image is
 6
 7 type Float_Array is
 8 array (Positive range <>) of Float;
 9
10 FA_3C : Float_Array (1 .. 3);
11 FA_Null : Float_Array (1 .. 0);
12
13begin
14 FA_3C := [1.0, 3.0, 2.0];
15 FA_Null := [];
16
17 Put_Line ("FA_3C: " & FA_3C'Image);
18 Put_Line ("FA_Null: " & FA_Null'Image);
19end Show_Array_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Array_Image
MD5: 2d3fcdd5e57451f08185618d357b705f

Runtime output

FA_3C:
[1.00000E+00, 3.00000E+00, 2.00000E+00]
FA_Null:
[]

In this example, we display the values of the three components of the
FA_3C array. Also, we display the null array FA_Null.

Image attribute for tagged types

In addition to untagged types, we can also use the Image attribute with
tagged types. For example:

simple_records.ads

 1package Simple_Records is
 2
 3 type Rec is tagged limited private;
 4
 5 function Init return Rec;
 6
 7 type Rec_Child is new Rec with private;
 8
 9 overriding function Init return Rec_Child;
10
11private
12
13 type Status is (Unknown, Off, On);
14
15 type Rec is tagged limited record
16 F : Float;
17 I : Integer;
18 end record;
19
20 function Init return Rec is
21 ((F => 10.0, I => 4));
22
23 type Rec_Child is new Rec with record
24 Z : Status;
25 end record;
26
27 function Init return Rec_Child is
28 (Rec'(Init) with Z => Off);
29
30end Simple_Records;

show_tagged_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Simple_Records; use Simple_Records;
 6
 7procedure Show_Tagged_Image is
 8 R : constant Rec := Init;
 9 R_Class : constant Rec'Class := Rec'(Init);
10 R_C : constant Rec_Child := Init;
11begin
12 Put_Line ("R: " & R'Image);
13 Put_Line ("R_Class: " & R_Class'Image);
14 Put_Line ("R_A: " & R_C'Image);
15end Show_Tagged_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Tagged_Image
MD5: 164bd17c99115acafb09c99f40c1578c

Runtime output

R: {SIMPLE_RECORDS.RECobject}
R_Class: SIMPLE_RECORDS.REC'{SIMPLE_RECORDS.RECobject}
R_A: {SIMPLE_RECORDS.REC_CHILDobject}

In the Show_Tagged_Image procedure from this example, we display the
contents of the R object of Rec type and the R_Class
object of Rec'Class type. Also, we display the contents of the
R_C object of the Rec_Child type, which is derived from the
Rec type.

Image attribute for task and protected types

We can also apply the Image attribute to protected objects and tasks:

simple_tasking.ads

 1package Simple_Tasking is
 2
 3 protected type Protected_Float (I : Integer) is
 4
 5 private
 6 V : Float := Float (I);
 7 end Protected_Float;
 8
 9 protected type Protected_Null is
10 private
11 end Protected_Null;
12
13 task type T is
14 entry Start;
15 end T;
16
17end Simple_Tasking;

simple_tasking.adb

 1package body Simple_Tasking is
 2
 3 protected body Protected_Float is
 4
 5 end Protected_Float;
 6
 7 protected body Protected_Null is
 8
 9 end Protected_Null;
10
11 task body T is
12 begin
13 accept Start;
14 end T;
15
16end Simple_Tasking;

show_protected_task_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Simple_Tasking; use Simple_Tasking;
 6
 7procedure Show_Protected_Task_Image is
 8
 9 PF : Protected_Float (0);
10 PN : Protected_Null;
11 T1 : T;
12
13begin
14 Put_Line ("PF: " & PF'Image);
15 Put_Line ("PN: " & PN'Image);
16 Put_Line ("T1: " & T1'Image);
17
18 T1.Start;
19end Show_Protected_Task_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Protected_Task_Image
MD5: 9d8c667015878eb14e5b3950a70b86b1

Runtime output

PF: (protected object)
PN: (protected object)
T1: (task t1_0000000000A71090)

In this example, we display information about the protected object PF,
the componentless protected object PN and the task T1.

Put_Image aspect

Note

This feature was introduced in Ada 2022.

Overview

In the previous section, we discussed many details about the Image
attribute. In the code examples from that section, we've seen the default
behavior of this attribute: the string returned by the calls to Image
was always in the format defined by the Ada standard.

In some situations, however, we might want to customize the string that is
returned by the Image attribute of a type T. Ada allows us to do
that via the Put_Image aspect. This is what we have to do:

	Specify the Put_Image aspect for the type T and indicate a
procedure with a specific parameter profile — let's say, for example,
a procedure named P.

	Implement the procedure P and write the information we want to use
into a buffer (by calling the routines defined for Root_Buffer_Type,
such as the Put procedure).

We can see these steps performed in the code example below:

show_put_image.ads

 1pragma Ada_2022;
 2
 3with Ada.Strings.Text_Buffers;
 4
 5package Show_Put_Image is
 6
 7 type T is null record
 8 with Put_Image => Put_Image_T;
 9 -- ^ Custom version of Put_Image
10
11 use Ada.Strings.Text_Buffers;
12
13 procedure Put_Image_T
14 (Buffer : in out Root_Buffer_Type'Class;
15 Arg : T);
16
17end Show_Put_Image;

show_put_image.adb

 1package body Show_Put_Image is
 2
 3 procedure Put_Image_T
 4 (Buffer : in out Root_Buffer_Type'Class;
 5 Arg : T) is
 6 pragma Unreferenced (Arg);
 7 begin
 8 -- Call Put with customized
 9 -- information
10 Buffer.Put ("<custom info>");
11 end Put_Image_T;
12
13end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Simple_Put_Image
MD5: cbdd77a9e6cc30f3604c0901536d87aa

In the Show_Put_Image package, we use the Put_Image aspect in
the declaration of the T type. There, we indicate that the
Image attribute shall use the Put_Image_T procedure instead
of the default version.

In the body of the Put_Image_T procedure, we implement our custom
version of the Image attribute. We do that by calling the
Put procedure with the information we want to provide in the
Image attribute. Here, we access a buffer of Root_Buffer_Type
type, which is defined in the Ada.Strings.Text_Buffers package. (We
discuss more about this package
later on.)

In the Ada Reference Manual

	Image Attributes[#21]

Complete Example of Put_Image

Let's see a complete example in which we use the Put_Image aspect and
write useful information to the buffer:

custom_numerics.ads

 1pragma Ada_2022;
 2
 3with Ada.Strings.Text_Buffers;
 4
 5package Custom_Numerics is
 6
 7 type Float_Integer is record
 8 F : Float := 0.0;
 9 I : Integer := 0;
10 end record
11 with Dynamic_Predicate =>
12 Integer (Float_Integer.F) =
13 Float_Integer.I,
14 Put_Image => Put_Float_Integer;
15 -- ^ Custom version of Put_Image
16
17 use Ada.Strings.Text_Buffers;
18
19 procedure Put_Float_Integer
20 (Buffer : in out Root_Buffer_Type'Class;
21 Arg : Float_Integer);
22
23end Custom_Numerics;

custom_numerics.adb

 1package body Custom_Numerics is
 2
 3 procedure Put_Float_Integer
 4 (Buffer : in out Root_Buffer_Type'Class;
 5 Arg : Float_Integer) is
 6 begin
 7 -- Call Wide_Wide_Put with customized
 8 -- information
 9 Buffer.Wide_Wide_Put
10 ("(F : " & Arg.F'Wide_Wide_Image & ", "
11 & "I : " & Arg.I'Wide_Wide_Image & ")");
12 end Put_Float_Integer;
13
14end Custom_Numerics;

show_put_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Custom_Numerics; use Custom_Numerics;
 6
 7procedure Show_Put_Image is
 8 V : Float_Integer;
 9begin
10 V := (F => 100.2,
11 I => 100);
12 Put_Line ("V = "
13 & V'Image);
14end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Put_Image_Custom_Numerics
MD5: 18d31150d7a9ff9af0359495543c011f

Runtime output

V = (F : 1.00200E+02, I : 100)

In the Custom_Numerics package of this example, we specify the
Put_Image aspect and indicate the Put_Float_Integer procedure.
In that procedure, we display the information of components F and
I. Then, in the Show_Put_Image procedure, we use the Image
attribute for the V variable and see the information in the exact format
we specified. (If you like to see the default version of the
Put_Image instead, you may comment out the Put_Image aspect part
in the declaration of Float_Integer.)

Relation to the Image attribute

Note that we cannot override the Image attribute directly —
there's no Image aspect that we could specify. However, as we've just
seen, we can do this indirectly by using our own version of the
Put_Image procedure for a type T.

The Image attribute of a type T makes use of the procedure
indicated in the Put_Image aspect. Let's say we have the following
declaration:

type T is null record
 with Put_Image => Put_Image_T;

When we then use the T'Image attribute in our code, the custom
Put_Image_T procedure is automatically called. This is a simplified
example of how the Image function is implemented:

function Image (V : T)
 return String is
 Buffer : Custom_Buffer;
 -- ^ of Root_Buffer_Type'Class
begin
 -- Calling Put_Image procedure
 -- for type T
 Put_Image_T (Buffer, V);

 -- Retrieving the text from the
 -- buffer as a string
 return Buffer.Get;
end Image;

In other words, the Image attribute basically:

	calls the Put_Image procedure specified in the Put_Image
aspect of type T's declaration and passes a buffer;

and

	retrieves the contents of the buffer as a string and returns it.

If the Put_Image aspect of type T isn't specified, the default
version is used. (We've seen the default version of various types
in the previous section about the Image
attribute.)

Put_Image and derived types

Types that were derived from untagged types (or null extensions) make use of
the Put_Image procedure that was specified for
their parent type — either a custom procedure indicated in the
Put_Image aspect or the default one. Naturally, if a derived type
has the Put_Image aspect, the procedure indicated in the aspect is used
instead. For example:

untagged_put_image.ads

 1pragma Ada_2022;
 2
 3with Ada.Strings.Text_Buffers;
 4
 5package Untagged_Put_Image is
 6
 7 use Ada.Strings.Text_Buffers;
 8
 9 type T is null record
10 with Put_Image => Put_Image_T;
11
12 procedure Put_Image_T
13 (Buffer : in out Root_Buffer_Type'Class;
14 Arg : T);
15
16 type T_Derived_1 is new T;
17
18 type T_Derived_2 is new T
19 with Put_Image => Put_Image_T_Derived_2;
20
21 procedure Put_Image_T_Derived_2
22 (Buffer : in out Root_Buffer_Type'Class;
23 Arg : T_Derived_2);
24
25end Untagged_Put_Image;

untagged_put_image.adb

 1package body Untagged_Put_Image is
 2
 3 procedure Put_Image_T
 4 (Buffer : in out Root_Buffer_Type'Class;
 5 Arg : T) is
 6 pragma Unreferenced (Arg);
 7 begin
 8 Buffer.Wide_Wide_Put ("Put_Image_T");
 9 end Put_Image_T;
10
11 procedure Put_Image_T_Derived_2
12 (Buffer : in out Root_Buffer_Type'Class;
13 Arg : T_Derived_2) is
14 pragma Unreferenced (Arg);
15 begin
16 Buffer.Wide_Wide_Put
17 ("Put_Image_T_Derived_2");
18 end Put_Image_T_Derived_2;
19
20end Untagged_Put_Image;

show_untagged_put_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Untagged_Put_Image; use Untagged_Put_Image;
 6
 7procedure Show_Untagged_Put_Image is
 8 Obj_T : T;
 9 Obj_T_Derived_1 : T_Derived_1;
10 Obj_T_Derived_2 : T_Derived_2;
11begin
12 Put_Line ("T'Image : "
13 & Obj_T'Image);
14 Put_Line ("T_Derived_1'Image : "
15 & Obj_T_Derived_1'Image);
16 Put_Line ("T_Derived_2'Image : "
17 & Obj_T_Derived_2'Image);
18end Show_Untagged_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Untagged_Put_Image
MD5: b0a115967ec5f2deaea19967d22266b4

Runtime output

T'Image : Put_Image_T
T_Derived_1'Image : Put_Image_T
T_Derived_2'Image : Put_Image_T_Derived_2

In this example, we declare the type T and its derived types
T_Derived_1 and T_Derived_2. When running this code, we see that:

	T_Derived_1 makes use of the Put_Image_T procedure from its
parent.

	Note that, if we remove the Put_Image aspect from the declaration
of T, the default version of the Put_Image procedure is
used for both T and T_Derived_1 types.

	T_Derived_2 makes use of the Put_Image_T_Derived_2 procedure,
which was indicated in the Put_Image aspect of that type, instead of
its parent's procedure.

Put_Image and tagged types

Types that are derived from a tagged type may also inherit the Put_Image
aspect. However, there are a couple of small differences in comparison to
untagged types, as we can see in the following example:

tagged_put_image.ads

 1pragma Ada_2022;
 2
 3with Ada.Strings.Text_Buffers;
 4
 5package Tagged_Put_Image is
 6
 7 use Ada.Strings.Text_Buffers;
 8
 9 type T is tagged record
10 I : Integer := 0;
11 end record
12 with Put_Image => Put_Image_T;
13
14 procedure Put_Image_T
15 (Buffer : in out Root_Buffer_Type'Class;
16 Arg : T);
17
18 type T_Child_1 is new T with record
19 I1 : Integer;
20 end record;
21
22 type T_Child_2 is new T with null record;
23
24 type T_Child_3 is new T with record
25 I3 : Integer := 0;
26 end record
27 with Put_Image => Put_Image_T_Child_3;
28
29 procedure Put_Image_T_Child_3
30 (Buffer : in out Root_Buffer_Type'Class;
31 Arg : T_Child_3);
32
33end Tagged_Put_Image;

tagged_put_image.adb

 1package body Tagged_Put_Image is
 2
 3 procedure Put_Image_T
 4 (Buffer : in out Root_Buffer_Type'Class;
 5 Arg : T) is
 6 pragma Unreferenced (Arg);
 7 begin
 8 Buffer.Wide_Wide_Put ("Put_Image_T");
 9 end Put_Image_T;
10
11 procedure Put_Image_T_Child_3
12 (Buffer : in out Root_Buffer_Type'Class;
13 Arg : T_Child_3) is
14 pragma Unreferenced (Arg);
15 begin
16 Buffer.Wide_Wide_Put
17 ("Put_Image_T_Child_3");
18 end Put_Image_T_Child_3;
19
20end Tagged_Put_Image;

show_tagged_put_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Tagged_Put_Image; use Tagged_Put_Image;
 6
 7procedure Show_Tagged_Put_Image is
 8 Obj_T : T;
 9 Obj_T_Child_1 : T_Child_1;
10 Obj_T_Child_2 : T_Child_2;
11 Obj_T_Child_3 : T_Child_3;
12begin
13 Put_Line ("T'Image : "
14 & Obj_T'Image);
15 Put_Line ("--------------------");
16 Put_Line ("T_Child_1'Image : "
17 & Obj_T_Child_1'Image);
18 Put_Line ("--------------------");
19 Put_Line ("T_Child_2'Image : "
20 & Obj_T_Child_2'Image);
21 Put_Line ("--------------------");
22 Put_Line ("T_Child_3'Image : "
23 & Obj_T_Child_3'Image);
24 Put_Line ("--------------------");
25 Put_Line ("T'Class'Image : "
26 & T'Class (Obj_T_Child_1)'Image);
27end Show_Tagged_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Tagged_Put_Image
MD5: 74d29ea54f1ad79fea7de2ad7c1dcb31

Runtime output

T'Image : Put_Image_T

T_Child_1'Image :
(Put_Image_T with I1 => 0)

T_Child_2'Image :
(Put_Image_T)

T_Child_3'Image : Put_Image_T_Child_3

T'Class'Image : TAGGED_PUT_IMAGE.T_CHILD_1'
(Put_Image_T with I1 => 0)

In this example, we declare the type T and its derived types
T_Child_1, T_Child_2 and T_Child_3. When running this
code, we see that:

	for both T_Child_1 and T_Child_2, the parent's
Put_Image aspect (the Put_Image_T procedure) is called and its
information is combined with the information from the type extension;

	The information from the parent's Put_Image_T procedure is
presented in an aggregate syntax — in this case, this results in
(Put_Image_T).

	For the T_Child_1 type, the I1 component of the type
extension is displayed by calling a default version of the
Put_Image procedure for that component —
(Put_Image_T with I1 => 0) is displayed.

	For the T_Child_2 type, no additional information is displayed
because this type has a null extension.

	for the T_Child_3 type, the Put_Image_T_Child_3 procedure,
which was indicated in the Put_Image aspect of the type, is used.

Finally, class-wide types (such as T'Class) include additional
information. Here, the tag of the specific derived type is displayed first
— in this case, the tag of the T_Child_1 type — and
then the actual information for the derived type is displayed.

Universal text buffer

In the previous section, we've seen that the
first parameter of the procedure indicated in the Put_Image aspect has
the Root_Buffer_Type'Class type, which is defined in the
Ada.Strings.Text_Buffers package. In this section, we talk more about
this type and additional procedures associated with this type.

Note

This feature was introduced in Ada 2022.

Overview

We use the Root_Buffer_Type'Class type to implement a universal text
buffer that is used to store and retrieve information about data types. Because
this text buffer isn't associated with specific data types, it is universal
— in the sense that we can really use it for any data type, regardless of
the characteristics of this type.

In theory, we could use Ada's universal text buffer to implement applications
that actually process text in some form — for example, when implementing
a text editor. However, in general, Ada programmers are only expected to make
use of the Root_Buffer_Type'Class type when implementing a procedure for
the Put_Image aspect. For this reason, we won't discuss any kind of
type derivation — or any other kind of usages of this type — in
this section. Instead, we'll just focus on additional subprograms from the
Ada.Strings.Text_Buffers package.

In the Ada Reference Manual

	Universal Text Buffers[#22]

Additional procedures

In the previous section, we used the Put procedure — and the
related Wide_Put and Wide_Wide_Put procedures — from the
Ada.Strings.Text_Buffers package. In addition to these procedures, the
package also includes:

	the New_Line procedure, which writes a new line marker to the text
buffer;

	the Increase_Indent procedure, which increases the indentation in the
text buffer; and

	the Decrease_Indent procedure, which decreases the indentation in the
text buffer.

The Ada.Strings.Text_Buffers package also includes the
Current_Indent function, which retrieves the current indentation
counter.

Let's revisit an example from the previous section and use the procedures
mentioned above:

custom_numerics.ads

 1pragma Ada_2022;
 2
 3with Ada.Strings.Text_Buffers;
 4
 5package Custom_Numerics is
 6
 7 type Float_Integer is record
 8 F : Float;
 9 I : Integer;
10 end record
11 with Dynamic_Predicate =>
12 Integer (Float_Integer.F) =
13 Float_Integer.I,
14 Put_Image => Put_Float_Integer;
15 -- ^ Custom version of Put_Image
16
17 use Ada.Strings.Text_Buffers;
18
19 procedure Put_Float_Integer
20 (Buffer : in out Root_Buffer_Type'Class;
21 Arg : Float_Integer);
22
23end Custom_Numerics;

custom_numerics.adb

 1package body Custom_Numerics is
 2
 3 procedure Put_Float_Integer
 4 (Buffer : in out Root_Buffer_Type'Class;
 5 Arg : Float_Integer) is
 6 begin
 7 Buffer.Wide_Wide_Put ("(");
 8 Buffer.New_Line;
 9
10 Buffer.Increase_Indent;
11
12 Buffer.Wide_Wide_Put
13 ("F : "
14 & Arg.F'Wide_Wide_Image);
15 Buffer.New_Line;
16
17 Buffer.Wide_Wide_Put
18 ("I : "
19 & Arg.I'Wide_Wide_Image);
20
21 Buffer.Decrease_Indent;
22 Buffer.New_Line;
23
24 Buffer.Wide_Wide_Put (")");
25 end Put_Float_Integer;
26
27end Custom_Numerics;

show_put_image.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Custom_Numerics; use Custom_Numerics;
 6
 7procedure Show_Put_Image is
 8 V : Float_Integer;
 9begin
10 V := (F => 100.2,
11 I => 100);
12 Put_Line ("V = "
13 & V'Image);
14end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Universal_Text_Buffer.Put_Image_Custom_Numerics
MD5: af95f9fe4064e8a9d7aebe14d7f561f7

Runtime output

V = (
 F : 1.00200E+02
 I : 100
)

In the body of the Put_Float_Integer procedure, we're using the
New_Line, Increase_Indent and Decrease_Indent procedures
to improve the format of the string returned by the Float_Integer'Image
attribute. Using these procedures, you can create any kind of output format
for your custom type.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-6-3.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-A-10.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-A-10-1.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-A-10-8.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-A-10-9.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-A-11.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-6.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-A-11.html

[#13]
https://unicode.org/faq/utf_bom.html#gen2

[#14]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-11.html

[#15]
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols

[#16]
https://en.wikipedia.org/wiki/Basic_Latin_(Unicode_block)

[#17]
https://en.wikipedia.org/wiki/UTF-8

[#18]
http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

[#19]
http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

[#20]
http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

[#21]
http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

[#22]
http://www.ada-auth.org/standards/22rm/html/RM-A-4-12.html

Numerics

Modular Types

In the Introduction to Ada course, we've seen that Ada has two kinds of integer
type: signed and
modular types. For example:

num_types.ads

1package Num_Types is
2
3 type Signed_Integer is range 1 .. 1_000_000;
4 type Modular is mod 2**32;
5
6end Num_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 2dff9fe22c6bbe52f964befccf68debf

In this section, we discuss two attributes of modular types: Modulus
and Mod. We also discuss operations on modular types.

In the Ada Reference Manual

	3.5.4 Integer Types[#1]

Modulus Attribute

The Modulus attribute returns the modulus of the modular type as a
universal integer value. Let's get the modulus of the 32-bit Modular
type that we've declared in the Num_Types package of the previous
example:

show_modular.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3with Num_Types; use Num_Types;
4
5procedure Show_Modular is
6 Modulus_Value : constant := Modular'Modulus;
7begin
8 Put_Line (Modulus_Value'Image);
9end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 336254ebc8c09ee9921633f6919994fe

Runtime output

 4294967296

When we run this example, we get 4294967296, which is equal to 2**32.

Mod Attribute

Note

This section was originally written by Robert A. Duff and published as
Gem #26: The Mod Attribute[#2].

Operations on signed integers can overflow: if the result is outside the base
range, Constraint_Error will be raised. In our previous example, we
declared the Signed_Integer type:

type Signed_Integer is range 1 .. 1_000_000;

The base range of Signed_Integer is the range of
Signed_Integer'Base, which is chosen by the compiler, but is likely to
be something like -2**31 .. 2**31 - 1. (Note: we discussed the
Base attribute in this section.)

Operations on modular integers use modular (wraparound) arithmetic. For
example:

show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types; use Num_Types;
 4
 5procedure Show_Modular is
 6 X : Modular;
 7begin
 8 X := 1;
 9 Put_Line (X'Image);
10
11 X := -X;
12 Put_Line (X'Image);
13end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e9ac61d2e43585f002fe2b79544ef9d7

Runtime output

 1
 4294967295

Negating X gives -1, which wraps around to 2**32 - 1, i.e.
all-one-bits.

But what about a type conversion from signed to modular? Is that a signed
operation (so it should overflow) or is it a modular operation (so it should
wrap around)? The answer in Ada is the former — that is, if you try to
convert, say, Integer'(-1) to Modular, you will get
Constraint_Error:

show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types; use Num_Types;
 4
 5procedure Show_Modular is
 6 I : Integer := -1;
 7 X : Modular := 1;
 8begin
 9 X := Modular (I); -- raises Constraint_Error
10 Put_Line (X'Image);
11end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e8e1a1924efcbe770c719c29547bb863

Build output

show_modular.adb:9:09: warning: value not in range of type "Modular" defined at num_types.ads:4 [enabled by default]
show_modular.adb:9:09: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_modular.adb:9 range check failed

To solve this problem, we can use the Mod attribute:

show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types; use Num_Types;
 4
 5procedure Show_Modular is
 6 I : constant Integer := -1;
 7 X : Modular := 1;
 8begin
 9 X := Modular'Mod (I);
10 Put_Line (X'Image);
11end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 572a753de946b7578c5f1b6a795ede98

Runtime output

 4294967295

The Mod attribute will correctly convert from any integer type to a
given modular type, using wraparound semantics.

Historically

In older versions of Ada — such as Ada 95 —, the only way to do
this conversion is to use Unchecked_Conversion, which is somewhat
uncomfortable. Furthermore, if you're trying to convert to a generic formal
modular type, how do you know what size of signed integer type to use? Note
that Unchecked_Conversion might malfunction if the source and target
types are of different sizes.

The Mod attribute was added to Ada 2005 to solve this problem.
Also, we can now safely use this attribute in generics. For example:

mod_attribute.ads

1generic
2 type Formal_Modular is mod <>;
3package Mod_Attribute is
4 function F return Formal_Modular;
5end Mod_Attribute;

mod_attribute.adb

 1package body Mod_Attribute is
 2
 3 A_Signed_Integer : Integer := -1;
 4
 5 function F return Formal_Modular is
 6 begin
 7 return Formal_Modular'Mod
 8 (A_Signed_Integer);
 9 end F;
10
11end Mod_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Attribute
MD5: b2f227b8d4f14cd36508bf33c403f751

In this example, F will return the all-ones bit pattern, for
whatever modular type is passed to Formal_Modular.

Operations on modular types

Modular types are particularly useful for bit manipulation. For example, we
can use the and, or, xor and not operators for
modular types.

Also, we can perform bit-shifting by multiplying or dividing a modular object
with a power of two. For example, if M is a variable of modular type,
then M := M * 2 ** 3; shifts the bits to the left by three bits.
Likewise, M := M / 2 ** 3 shifts the bits to the right. Note that the
compiler selects the appropriate shifting operator when translating these
operations to machine code — no actual multiplication or division will be
performed.

Let's see a simple implementation of the CRC-CCITT (0x1D0F) algorithm:

crc_defs.ads

 1package Crc_Defs is
 2
 3 type Byte is mod 2 ** 8;
 4 type Crc is mod 2 ** 16;
 5
 6 type Byte_Array is
 7 array (Positive range <>) of Byte;
 8
 9 function Crc_CCITT (A : Byte_Array)
10 return Crc;
11
12 procedure Display (Crc_A : Crc);
13
14 procedure Display (A : Byte_Array);
15
16end Crc_Defs;

crc_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Crc_Defs is
 4
 5 package Byte_IO is new Modular_IO (Byte);
 6 package Crc_IO is new Modular_IO (Crc);
 7
 8 function Crc_CCITT (A : Byte_Array)
 9 return Crc
10 is
11 X : Byte;
12 Crc_A : Crc := 16#1d0f#;
13 begin
14 for I in A'Range loop
15 X := Byte (Crc_A / 2 ** 8) xor A (I);
16 X := X xor (X / 2 ** 4);
17 declare
18 Crc_X : constant Crc := Crc (X);
19 begin
20 Crc_A := Crc_A * 2 ** 8 xor
21 Crc_X * 2 ** 12 xor
22 Crc_X * 2 ** 5 xor
23 Crc_X;
24 end;
25 end loop;
26
27 return Crc_A;
28 end Crc_CCITT;
29
30 procedure Display (Crc_A : Crc) is
31 begin
32 Crc_IO.Put (Crc_A);
33 New_Line;
34 end Display;
35
36 procedure Display (A : Byte_Array) is
37 begin
38 for E of A loop
39 Byte_IO.Put (E);
40 Put (", ");
41 end loop;
42 New_Line;
43 end Display;
44
45begin
46 Byte_IO.Default_Width := 1;
47 Byte_IO.Default_Base := 16;
48 Crc_IO.Default_Width := 1;
49 Crc_IO.Default_Base := 16;
50end Crc_Defs;

show_crc.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Crc_Defs; use Crc_Defs;
 3
 4procedure Show_Crc is
 5 AA : constant Byte_Array :=
 6 (16#0#, 16#20#, 16#30#);
 7 Crc_A : Crc;
 8begin
 9 Crc_A := Crc_CCITT (AA);
10
11 Put ("Input array: ");
12 Display (AA);
13
14 Put ("CRC-CCITT: ");
15 Display (Crc_A);
16end Show_Crc;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Crc_CCITT_Ada
MD5: 9c66abfadcce92231295cbccad087912

Runtime output

Input array: 16#0#, 16#20#, 16#30#,
CRC-CCITT: 16#21B9#

In this example, the core of the algorithm is implemented in the
Crc_CCITT function. There, we use bit shifting — for instance,
* 2 ** 8 and / 2 ** 8, which shift left and right, respectively,
by eight bits. We also use the xor operator.

Numeric Literals

Classification

We've already discussed basic characteristics of numeric literals in the
Introduction to Ada course — although we haven't used this terminology
there. There are two kinds of numeric literals in Ada: integer literals and
real literals. They are distinguished by the absence or presence of a radix
point. For example:

real_integer_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Real_Integer_Literals is
 4 Integer_Literal : constant := 365;
 5 Real_Literal : constant := 365.2564;
 6begin
 7 Put_Line ("Integer Literal: "
 8 & Integer_Literal'Image);
 9 Put_Line ("Real Literal: "
10 & Real_Literal'Image);
11end Real_Integer_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Real_Integer_Literals
MD5: ba1cc348cad054f3ab86c05e051b40fa

Runtime output

Integer Literal: 365
Real Literal: 3.65256400000000000E+02

Another classification takes the use of a base indicator into account.
(Remember that, when writing a literal such as 2#1011#, the base is the
element before the first # sign.) So here we distinguish between decimal
literals and based literals. For example:

decimal_based_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Decimal_Based_Literals is
 4
 5 package F_IO is new
 6 Ada.Text_IO.Float_IO (Float);
 7
 8 --
 9 -- DECIMAL LITERALS
10 --
11
12 Dec_Integer : constant := 365;
13
14 Dec_Real : constant := 365.2564;
15 Dec_Real_Exp : constant := 0.365_256_4e3;
16
17 --
18 -- BASED LITERALS
19 --
20
21 Based_Integer : constant := 16#16D#;
22 Based_Integer_Exp : constant := 5#243#e1;
23
24 Based_Real : constant :=
25 2#1_0110_1101.0100_0001_1010_0011_0111#;
26 Based_Real_Exp : constant :=
27 7#1.031_153_643#e3;
28begin
29 F_IO.Default_Fore := 3;
30 F_IO.Default_Aft := 4;
31 F_IO.Default_Exp := 0;
32
33 Put_Line ("Dec_Integer: "
34 & Dec_Integer'Image);
35
36 Put ("Dec_Real: ");
37 F_IO.Put (Item => Dec_Real);
38 New_Line;
39
40 Put ("Dec_Real_Exp: ");
41 F_IO.Put (Item => Dec_Real_Exp);
42 New_Line;
43
44 Put_Line ("Based_Integer: "
45 & Based_Integer'Image);
46 Put_Line ("Based_Integer_Exp: "
47 & Based_Integer_Exp'Image);
48
49 Put ("Based_Real: ");
50 F_IO.Put (Item => Based_Real);
51 New_Line;
52
53 Put ("Based_Real_Exp: ");
54 F_IO.Put (Item => Based_Real_Exp);
55 New_Line;
56end Decimal_Based_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Decimal_Based_Literals
MD5: bde8f422c3844826819348d18fb48a33

Runtime output

Dec_Integer: 365
Dec_Real: 365.2564
Dec_Real_Exp: 365.2564
Based_Integer: 365
Based_Integer_Exp: 365
Based_Real: 365.2564
Based_Real_Exp: 365.2564

Based literals use the base#number# format. Also, they aren't limited to
simple integer literals such as 16#16D#. In fact, we can use a radix
point or an exponent in based literals, as well as underscores. In addition, we
can use any base from 2 up to 16. We discuss these aspects further in the next
section.

Features and Flexibility

Note

This section was originally written by Franco Gasperoni and published as
Gem #7: The Beauty of Numeric Literals in Ada[#3].

Ada provides a simple and elegant way of expressing numeric literals. One of
those simple, yet powerful aspects is the ability to use underscores to
separate groups of digits. For example,
3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510 is more
readable and less error prone to type than
3.14159265358979323846264338327950288419716939937510. Here's the
complete code:

ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3 procedure Ada_Numeric_Literals is
 4 Pi : constant :=
 5 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510;
 6
 7 Pi2 : constant :=
 8 3.14159265358979323846264338327950288419716939937510;
 9
10 Z : constant := Pi - Pi2;
11 pragma Assert (Z = 0.0);
12
13 use Ada.Text_IO;
14 begin
15 Put_Line ("Z = " & Float'Image (Z));
16 end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Pi_Literals
MD5: 8f6516730fa98f08234b159488431aaf

Runtime output

Z = 0.00000E+00

Also, when using based literals, Ada allows any base from 2 to 16. Thus, we can
write the decimal number 136 in any one of the following notations:

ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4 Bin_136 : constant := 2#1000_1000#;
 5 Oct_136 : constant := 8#210#;
 6 Dec_136 : constant := 10#136#;
 7 Hex_136 : constant := 16#88#;
 8 pragma Assert (Bin_136 = 136);
 9 pragma Assert (Oct_136 = 136);
10 pragma Assert (Dec_136 = 136);
11 pragma Assert (Hex_136 = 136);
12
13 use Ada.Text_IO;
14
15begin
16 Put_Line ("Bin_136 = "
17 & Integer'Image (Bin_136));
18 Put_Line ("Oct_136 = "
19 & Integer'Image (Oct_136));
20 Put_Line ("Dec_136 = "
21 & Integer'Image (Dec_136));
22 Put_Line ("Hex_136 = "
23 & Integer'Image (Hex_136));
24end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Based_Literals
MD5: 0959ec5e4aafcde245c5a15597ac9b7e

Runtime output

Bin_136 = 136
Oct_136 = 136
Dec_136 = 136
Hex_136 = 136

In other languages

The rationale behind the method to specify based literals in the C
programming language is strange and unintuitive. Here, you have only three
possible bases: 8, 10, and 16 (why no base 2?). Furthermore, requiring
that numbers in base 8 be preceded by a zero feels like a bad joke on us
programmers. For example, what values do 0210 and 210 represent
in C?

When dealing with microcontrollers, we might encounter I/O devices that are
memory mapped. Here, we have the ability to write:

Lights_On : constant := 2#1000_1000#;
Lights_Off : constant := 2#0111_0111#;

and have the ability to turn on/off the lights as follows:

Output_Devices := Output_Devices or Lights_On;
Output_Devices := Output_Devices and Lights_Off;

Here's the complete example:

ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4 Lights_On : constant := 2#1000_1000#;
 5 Lights_Off : constant := 2#0111_0111#;
 6
 7 type Byte is mod 256;
 8 Output_Devices : Byte := 0;
 9
10 -- for Output_Devices'Address
11 -- use 16#DEAD_BEEF#;
12 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^
13 -- Memory mapped Output
14
15 use Ada.Text_IO;
16begin
17 Output_Devices := Output_Devices or
18 Lights_On;
19
20 Put_Line ("Output_Devices (lights on) = "
21 & Byte'Image (Output_Devices));
22
23 Output_Devices := Output_Devices and
24 Lights_Off;
25
26 Put_Line ("Output_Devices (lights off) = "
27 & Byte'Image (Output_Devices));
28end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Lights
MD5: c3e72b25366d8d815a1f425f2695ad0b

Runtime output

Output_Devices (lights on) = 136
Output_Devices (lights off) = 0

Of course, we can also use
records with representation clauses
to do the above, which is even more elegant.

The notion of base in Ada allows for exponents, which is particularly pleasant.
For instance, we can write:

literal_binaries.ads

 1package Literal_Binaries is
 2 Kilobyte : constant := 2#1#e+10;
 3 Megabyte : constant := 2#1#e+20;
 4 Gigabyte : constant := 2#1#e+30;
 5 Terabyte : constant := 2#1#e+40;
 6 Petabyte : constant := 2#1#e+50;
 7 Exabyte : constant := 2#1#e+60;
 8 Zettabyte : constant := 2#1#e+70;
 9 Yottabyte : constant := 2#1#e+80;
10end Literal_Binaries;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 98d971e0f170db570069f8868e442d6d

In based literals, the exponent — like the base — uses the regular
decimal notation and specifies the power of the base that the based literal
should be multiplied with to obtain the final value. For instance
2#1#e+10 = 1 x 210 = 1_024 (in base 10), whereas
16#F#e+2 = 15 x 162 = 15 x 256 = 3_840 (in
base 10).

Based numbers apply equally well to real literals. We can, for instance, write:

One_Third : constant := 3#0.1#;
-- ^^^^^^
-- same as 1.0/3

Whether we write 3#0.1# or 1.0 / 3, or even 3#1.0#e-1, Ada
allows us to specify exactly rational numbers for which decimal literals cannot
be written.

The last nice feature is that Ada has an open-ended set of integer and real
types. As a result, numeric literals in Ada do not carry with them their type
as, for example, in C. The actual type of the literal is determined from the
context. This is particularly helpful in avoiding overflows, underflows, and
loss of precision.

In other languages

In C, a source of confusion can be the distinction between 32l and
321. Although both look similar, they're actually very different from
each other.

And this is not all: all constant computations done at compile time are done in
infinite precision, be they integer or real. This allows us to write constants
with whatever size and precision without having to worry about overflow or
underflow. We can for instance write:

Zero : constant := 1.0 - 3.0 * One_Third;

and be guaranteed that constant Zero has indeed value zero. This is very
different from writing:

One_Third_Approx : constant :=
 0.33333333333333333333333333333;
Zero_Approx : constant :=
 1.0 - 3.0 * One_Third_Approx;

where Zero_Approx is really 1.0e-29 — and that will show up
in your numerical computations. The above is quite handy when we want to write
fractions without any loss of precision. Here's the complete code:

ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4 One_Third : constant := 3#1.0#e-1;
 5 -- same as 1.0/3.0
 6
 7 Zero : constant := 1.0 - 3.0 * One_Third;
 8 pragma Assert (Zero = 0.0);
 9
10 One_Third_Approx : constant :=
11 0.33333333333333333333333333333;
12 Zero_Approx : constant :=
13 1.0 - 3.0 * One_Third_Approx;
14
15 use Ada.Text_IO;
16
17begin
18 Put_Line ("Zero = "
19 & Float'Image (Zero));
20 Put_Line ("Zero_Approx = "
21 & Float'Image (Zero_Approx));
22end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literals
MD5: ee604245b34e8cb878a8ebdb21cd564e

Runtime output

Zero = 0.00000E+00
Zero_Approx = 1.00000E-29

Along these same lines, we can write:

ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3with Literal_Binaries; use Literal_Binaries;
 4
 5procedure Ada_Numeric_Literals is
 6
 7 Big_Sum : constant := 1 +
 8 Kilobyte +
 9 Megabyte +
10 Gigabyte +
11 Terabyte +
12 Petabyte +
13 Exabyte +
14 Zettabyte;
15
16 Result : constant := (Yottabyte - 1) /
17 (Kilobyte - 1);
18
19 Nil : constant := Result - Big_Sum;
20 pragma Assert (Nil = 0);
21
22 use Ada.Text_IO;
23
24begin
25 Put_Line ("Nil = "
26 & Integer'Image (Nil));
27end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 7bda6442e68271d12bdb827b63f0d702

Runtime output

Nil = 0

and be guaranteed that Nil is equal to zero.

Floating-Point Types

In this section, we discuss various attributes related to floating-point types.

In the Ada Reference Manual

	3.5.8 Operations of Floating Point Types[#4]

	A.5.3 Attributes of Floating Point Types[#5]

Representation-oriented attributes

In this section, we discuss attributes related to the representation of
floating-point types.

Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware
representation of a type. For example:

show_machine_radix.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Radix is
 4begin
 5 Put_Line
 6 ("Float'Machine_Radix: "
 7 & Float'Machine_Radix'Image);
 8 Put_Line
 9 ("Long_Float'Machine_Radix: "
10 & Long_Float'Machine_Radix'Image);
11 Put_Line
12 ("Long_Long_Float'Machine_Radix: "
13 & Long_Long_Float'Machine_Radix'Image);
14end Show_Machine_Radix;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Radix
MD5: 88680df680f1db4ff803912850370551

Runtime output

Float'Machine_Radix: 2
Long_Float'Machine_Radix: 2
Long_Long_Float'Machine_Radix: 2

Usually, this value is two, as the radix is based on a binary system.

Attributes: Machine_Mantissa

Machine_Mantissa is an attribute that returns the number of bits
reserved for the mantissa of the floating-point type. For example:

show_machine_mantissa.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Mantissa is
 4begin
 5 Put_Line
 6 ("Float'Machine_Mantissa: "
 7 & Float'Machine_Mantissa'Image);
 8 Put_Line
 9 ("Long_Float'Machine_Mantissa: "
10 & Long_Float'Machine_Mantissa'Image);
11 Put_Line
12 ("Long_Long_Float'Machine_Mantissa: "
13 & Long_Long_Float'Machine_Mantissa'Image);
14end Show_Machine_Mantissa;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Mantissa
MD5: da946a90a454c6e8f68cbff1ec54c7d3

Runtime output

Float'Machine_Mantissa: 24
Long_Float'Machine_Mantissa: 53
Long_Long_Float'Machine_Mantissa: 64

On a typical desktop PC, as indicated by Machine_Mantissa, we have 24
bits for the floating-point mantissa of the Float type.

Machine_Emin and Machine_Emax

The Machine_Emin and Machine_Emax attributes return the minimum
and maximum value, respectively, of the machine exponent the floating-point
type. Note that, in all cases, the returned value is a universal integer. For
example:

show_machine_emin_emax.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Emin_Emax is
 4begin
 5 Put_Line
 6 ("Float'Machine_Emin: "
 7 & Float'Machine_Emin'Image);
 8 Put_Line
 9 ("Float'Machine_Emax: "
10 & Float'Machine_Emax'Image);
11 Put_Line
12 ("Long_Float'Machine_Emin: "
13 & Long_Float'Machine_Emin'Image);
14 Put_Line
15 ("Long_Float'Machine_Emax: "
16 & Long_Float'Machine_Emax'Image);
17 Put_Line
18 ("Long_Long_Float'Machine_Emin: "
19 & Long_Long_Float'Machine_Emin'Image);
20 Put_Line
21 ("Long_Long_Float'Machine_Emax: "
22 & Long_Long_Float'Machine_Emax'Image);
23end Show_Machine_Emin_Emax;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Emin_Emax
MD5: 9766e06faaf1fc2ca48dd0bc0461b247

Runtime output

Float'Machine_Emin: -125
Float'Machine_Emax: 128
Long_Float'Machine_Emin: -1021
Long_Float'Machine_Emax: 1024
Long_Long_Float'Machine_Emin: -16381
Long_Long_Float'Machine_Emax: 16384

On a typical desktop PC, the value of Float'Machine_Emin and
Float'Machine_Emax is -125 and 128, respectively.

To get the actual minimum and maximum value of the exponent for a specific
type, we need to use the Machine_Radix attribute that we've seen
previously. Let's calculate the minimum and maximum value of the exponent for
the Float type on a typical PC:

	Value of minimum exponent: Float'Machine_Radix ** Float'Machine_Emin.

	In our target platform, this is
2-125 = 2.35098870164457501594 x 10-38.

	Value of maximum exponent: Float'Machine_Radix ** Float'Machine_Emax.

	In our target platform, this is
2128 = 3.40282366920938463463 x 1038.

Attribute: Digits

Digits is an attribute that returns the requested decimal precision of
a floating-point subtype. Let's see an example:

show_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Digits is
 4begin
 5 Put_Line ("Float'Digits: "
 6 & Float'Digits'Image);
 7 Put_Line ("Long_Float'Digits: "
 8 & Long_Float'Digits'Image);
 9 Put_Line ("Long_Long_Float'Digits: "
10 & Long_Long_Float'Digits'Image);
11end Show_Digits;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Digits
MD5: cd1c88054f7d54703760a852d08acb6d

Runtime output

Float'Digits: 6
Long_Float'Digits: 15
Long_Long_Float'Digits: 18

Here, the requested decimal precision of the Float type is six digits.

Note that we said that Digits is the requested level of precision,
which is specified as part of declaring a floating point type. We can retrieve
the actual decimal precision with Base'Digits. For example:

show_base_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Base_Digits is
 4 type Float_D3 is new Float digits 3;
 5begin
 6 Put_Line ("Float_D3'Digits: "
 7 & Float_D3'Digits'Image);
 8 Put_Line ("Float_D3'Base'Digits: "
 9 & Float_D3'Base'Digits'Image);
10end Show_Base_Digits;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Base_Digits
MD5: a2deb352f93511ab2a39d41f0b3f9512

Runtime output

Float_D3'Digits: 3
Float_D3'Base'Digits: 6

The requested decimal precision of the Float_D3 type is three digits,
while the actual decimal precision is six digits (on a typical desktop PC).

Attributes: Denorm, Signed_Zeros, Machine_Rounds, Machine_Overflows

In this section, we discuss attributes that return Boolean values
indicating whether a feature is available or not in the target architecture:

	Denorm is an attribute that indicates whether the target architecture
uses denormalized numbers[#6].

	Signed_Zeros is an attribute that indicates whether the type uses a
sign for zero values, so it can represent both -0.0 and 0.0.

	Machine_Rounds is an attribute that indicates whether
rounding-to-nearest is used, rather than some other choice (such as
rounding-toward-zero).

	Machine_Overflows is an attribute that indicates whether a
Constraint_Error exception is (or is not) guaranteed to be raised
when an operation with that type produces an overflow or divide-by-zero.

show_boolean_attributes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Boolean_Attributes is
 4begin
 5 Put_Line
 6 ("Float'Denorm: "
 7 & Float'Denorm'Image);
 8 Put_Line
 9 ("Long_Float'Denorm: "
10 & Long_Float'Denorm'Image);
11 Put_Line
12 ("Long_Long_Float'Denorm: "
13 & Long_Long_Float'Denorm'Image);
14 Put_Line
15 ("Float'Signed_Zeros: "
16 & Float'Signed_Zeros'Image);
17 Put_Line
18 ("Long_Float'Signed_Zeros: "
19 & Long_Float'Signed_Zeros'Image);
20 Put_Line
21 ("Long_Long_Float'Signed_Zeros: "
22 & Long_Long_Float'Signed_Zeros'Image);
23 Put_Line
24 ("Float'Machine_Rounds: "
25 & Float'Machine_Rounds'Image);
26 Put_Line
27 ("Long_Float'Machine_Rounds: "
28 & Long_Float'Machine_Rounds'Image);
29 Put_Line
30 ("Long_Long_Float'Machine_Rounds: "
31 & Long_Long_Float'Machine_Rounds'Image);
32 Put_Line
33 ("Float'Machine_Overflows: "
34 & Float'Machine_Overflows'Image);
35 Put_Line
36 ("Long_Float'Machine_Overflows: "
37 & Long_Float'Machine_Overflows'Image);
38 Put_Line
39 ("Long_Long_Float'Machine_Overflows: "
40 & Long_Long_Float'Machine_Overflows'Image);
41end Show_Boolean_Attributes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Rounds_Overflows
MD5: b3f72c212cf00e697fe144a87eb72339

Runtime output

Float'Denorm: TRUE
Long_Float'Denorm: TRUE
Long_Long_Float'Denorm: TRUE
Float'Signed_Zeros: TRUE
Long_Float'Signed_Zeros: TRUE
Long_Long_Float'Signed_Zeros: TRUE
Float'Machine_Rounds: TRUE
Long_Float'Machine_Rounds: TRUE
Long_Long_Float'Machine_Rounds: TRUE
Float'Machine_Overflows: FALSE
Long_Float'Machine_Overflows: FALSE
Long_Long_Float'Machine_Overflows: FALSE

On a typical PC, we have the following information:

	Denorm is true (i.e. the architecture uses denormalized numbers);

	Signed_Zeros is true (i.e. the standard floating-point types use a
sign for zero values);

	Machine_Rounds is true (i.e. rounding-to-nearest is used for
floating-point types);

	Machine_Overflows is false (i.e. there's no guarantee that a
Constraint_Error exception is raised when an operation with a
floating-point type produces an overflow or divide-by-zero).

Primitive function attributes

In this section, we discuss attributes that we can use to manipulate
floating-point values.

Attributes: Fraction, Exponent and Compose

The Exponent and Fraction attributes return "parts" of a
floating-point value:

	Exponent returns the machine exponent, and

	Fraction returns the mantissa part.

Compose is used to return a floating-point value based on a fraction
(the mantissa part) and the machine exponent.

Let's see some examples:

show_exponent_fraction_compose.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Exponent_Fraction_Compose is
 4begin
 5 Put_Line
 6 ("Float'Fraction (1.0): "
 7 & Float'Fraction (1.0)'Image);
 8 Put_Line
 9 ("Float'Fraction (0.25): "
10 & Float'Fraction (0.25)'Image);
11 Put_Line
12 ("Float'Fraction (1.0e-25): "
13 & Float'Fraction (1.0e-25)'Image);
14 Put_Line
15 ("Float'Exponent (1.0): "
16 & Float'Exponent (1.0)'Image);
17 Put_Line
18 ("Float'Exponent (0.25): "
19 & Float'Exponent (0.25)'Image);
20 Put_Line
21 ("Float'Exponent (1.0e-25): "
22 & Float'Exponent (1.0e-25)'Image);
23 Put_Line
24 ("Float'Compose (5.00000e-01, 1): "
25 & Float'Compose (5.00000e-01, 1)'Image);
26 Put_Line
27 ("Float'Compose (5.00000e-01, -1): "
28 & Float'Compose (5.00000e-01, -1)'Image);
29 Put_Line
30 ("Float'Compose (9.67141E-01, -83): "
31 & Float'Compose (9.67141E-01, -83)'Image);
32end Show_Exponent_Fraction_Compose;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Exponent_Fraction
MD5: d2e61b6b9a7a50861145f6b65e9fac39

Runtime output

Float'Fraction (1.0): 5.00000E-01
Float'Fraction (0.25): 5.00000E-01
Float'Fraction (1.0e-25): 9.67141E-01
Float'Exponent (1.0): 1
Float'Exponent (0.25): -1
Float'Exponent (1.0e-25): -83
Float'Compose (5.00000e-01, 1): 1.00000E+00
Float'Compose (5.00000e-01, -1): 2.50000E-01
Float'Compose (9.67141E-01, -83): 1.00000E-25

To understand this code example, we have to take this formula into account:

Value = Fraction x Machine_RadixExponent

Considering that the value of Float'Machine_Radix on a typical PC is
two, we see that the value 1.0 is composed by a fraction of 0.5 and a machine
exponent of one. In other words:

0.5 x 21 = 1.0

For the value 0.25, we get a fraction of 0.5 and a machine exponent of -1,
which is the result of 0.5 x 2-1 = 0.25.
We can use the Compose attribute to perform this calculation. For
example, Float'Compose (0.5, -1) = 0.25.

Note that Fraction is always between 0.5 and 0.999999 (i.e < 1.0),
except for denormalized numbers, where it can be < 0.5.

Attribute: Scaling

Scaling is an attribute that scales a floating-point value based on the
machine radix and a machine exponent passed to the function. For example:

show_scaling.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Scaling is
 4begin
 5 Put_Line ("Float'Scaling (0.25, 1): "
 6 & Float'Scaling (0.25, 1)'Image);
 7 Put_Line ("Float'Scaling (0.25, 2): "
 8 & Float'Scaling (0.25, 2)'Image);
 9 Put_Line ("Float'Scaling (0.25, 3): "
10 & Float'Scaling (0.25, 3)'Image);
11end Show_Scaling;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Scaling
MD5: 9fa821d32911b74ee4b4fde3f3adafd8

Runtime output

Float'Scaling (0.25, 1): 5.00000E-01
Float'Scaling (0.25, 2): 1.00000E+00
Float'Scaling (0.25, 3): 2.00000E+00

The scaling is calculated with this formula:

scaling = value x Machine_Radixmachine exponent

For example, on a typical PC with a machine radix of two,
Float'Scaling (0.25, 3) = 2.0 corresponds to

0.25 x 23 = 2.0

Round-up and round-down attributes

Floor and Ceiling are attributes that returned the rounded-down
or rounded-up value, respectively, of a floating-point value. For example:

show_floor_ceiling.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Floor_Ceiling is
4begin
5 Put_Line ("Float'Floor (0.25): "
6 & Float'Floor (0.25)'Image);
7 Put_Line ("Float'Ceiling (0.25): "
8 & Float'Ceiling (0.25)'Image);
9end Show_Floor_Ceiling;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Floor_Ceiling
MD5: 1344d54ae86b9fd4831d5f078eb655d4

Runtime output

Float'Floor (0.25): 0.00000E+00
Float'Ceiling (0.25): 1.00000E+00

As we can see in this example, the rounded-down value (floor) of 0.25 is 0.0,
while the rounded-up value (ceiling) of 0.25 is 1.0.

Round-to-nearest attributes

In this section, we discuss three attributes used for rounding:
Rounding, Unbiased_Rounding, Machine_Rounding
In all cases, the rounding attributes return the nearest integer value (as a
floating-point value). For example, the rounded value for 4.8 is 5.0 because 5
is the closest integer value.

Let's see a code example:

show_roundings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Roundings is
 4begin
 5 Put_Line
 6 ("Float'Rounding (0.5): "
 7 & Float'Rounding (0.5)'Image);
 8 Put_Line
 9 ("Float'Rounding (1.5): "
10 & Float'Rounding (1.5)'Image);
11 Put_Line
12 ("Float'Rounding (4.5): "
13 & Float'Rounding (4.5)'Image);
14 Put_Line
15 ("Float'Rounding (-4.5): "
16 & Float'Rounding (-4.5)'Image);
17 Put_Line
18 ("Float'Unbiased_Rounding (0.5): "
19 & Float'Unbiased_Rounding (0.5)'Image);
20 Put_Line
21 ("Float'Unbiased_Rounding (1.5): "
22 & Float'Unbiased_Rounding (1.5)'Image);
23 Put_Line
24 ("Float'Machine_Rounding (0.5): "
25 & Float'Machine_Rounding (0.5)'Image);
26 Put_Line
27 ("Float'Machine_Rounding (1.5): "
28 & Float'Machine_Rounding (1.5)'Image);
29end Show_Roundings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Rounding
MD5: 3f78165f092a163339cb9593ff15a50d

Runtime output

Float'Rounding (0.5): 1.00000E+00
Float'Rounding (1.5): 2.00000E+00
Float'Rounding (4.5): 5.00000E+00
Float'Rounding (-4.5): -5.00000E+00
Float'Unbiased_Rounding (0.5): 0.00000E+00
Float'Unbiased_Rounding (1.5): 2.00000E+00
Float'Machine_Rounding (0.5): 1.00000E+00
Float'Machine_Rounding (1.5): 2.00000E+00

The difference between these attributes is the way they handle the case when a
value is exactly in between two integer values. For example, 4.5 could be
rounded up to 5.0 or rounded down to 4.0. This is the way each rounding
attribute works in this case:

	Rounding rounds away from zero. Positive floating-point values are
rounded up, while negative floating-point values are rounded down when the
value is between two integer values. For example:

	4.5 is rounded-up to 5.0, i.e.
Float'Rounding (4.5) = Float'Ceiling (4.5) = 5.0.

	-4.5 is rounded-down to -5.0, i.e.
Float'Rounding (-4.5) = Float'Floor (-4.5) = -5.0.

	Unbiased_Rounding rounds toward the even integer. For example,

	Float'Unbiased_Rounding (0.5) = 0.0 because zero is the closest even
integer, while

	Float'Unbiased_Rounding (1.5) = 2.0 because two is the closest even
integer.

	Machine_Rounding uses the most appropriate rounding instruction
available on the target platform. While this rounding attribute can
potentially have the best performance, its result may be non-portable. For
example, whether the rounding of 4.5 becomes 4.0 or 5.0 depends on the target
platform.

	If an algorithm depends on a specific rounding behavior, it's best to avoid
the Machine_Rounding attribute. On the other hand, if the rounding
behavior won't have a significant impact on the results, we can safely use
this attribute.

Attributes: Truncation, Remainder, Adjacent

The Truncation attribute returns the truncated value of a
floating-point value, i.e. the value corresponding to the integer part of a
number rounded toward zero. This corresponds to the number before the radix
point. For example, the truncation of 1.55 is 1.0 because the integer part of
1.55 is 1.

The Remainder attribute returns the remainder part of a division. For
example, Float'Remainder (1.25, 0.5) = 0.25. Let's briefly discuss the
details of this operations. The result of the division 1.25 / 0.5 is 2.5. Here,
1.25 is the dividend and 0.5 is the divisor. The quotient and remainder of this
division are 2 and 0.25, respectively. (Here, the quotient is an integer number,
and the remainder is the floating-point part that remains.)

Note that the relation between quotient and remainder is defined in such a way
that we get the original dividend back when we use the formula: "quotient x
divisor + remainder = dividend". For the previous example, this means
2 x 0.5 + 0.25 = 1.25.

The Adjacent attribute is the next machine value towards another value.
For example, on a typical PC, the adjacent value of a small value —
say, 1.0 x 10-83 — towards zero is +0.0, while the adjacent
value of this small value towards 1.0 is another small, but greater value
— in fact, it's 1.40130 x 10-45. Note that the first parameter
of the Adjacent attribute is the value we want to analyze and the
second parameter is the Towards value.

Let's see a code example:

show_truncation_remainder_adjacent.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Truncation_Remainder_Adjacent is
 4begin
 5 Put_Line
 6 ("Float'Truncation (1.55): "
 7 & Float'Truncation (1.55)'Image);
 8 Put_Line
 9 ("Float'Truncation (-1.55): "
10 & Float'Truncation (-1.55)'Image);
11 Put_Line
12 ("Float'Remainder (1.25, 0.25): "
13 & Float'Remainder (1.25, 0.25)'Image);
14 Put_Line
15 ("Float'Remainder (1.25, 0.5): "
16 & Float'Remainder (1.25, 0.5)'Image);
17 Put_Line
18 ("Float'Remainder (1.25, 1.0): "
19 & Float'Remainder (1.25, 1.0)'Image);
20 Put_Line
21 ("Float'Remainder (1.25, 2.0): "
22 & Float'Remainder (1.25, 2.0)'Image);
23 Put_Line
24 ("Float'Adjacent (1.0e-83, 0.0): "
25 & Float'Adjacent (1.0e-83, 0.0)'Image);
26 Put_Line
27 ("Float'Adjacent (1.0e-83, 1.0): "
28 & Float'Adjacent (1.0e-83, 1.0)'Image);
29end Show_Truncation_Remainder_Adjacent;

Attributes: Copy_Sign and Leading_Part

Copy_Sign is an attribute that returns a value where the sign of the
second floating-point argument is multiplied by the magnitude of the first
floating-point argument. For example, Float'Copy_Sign (1.0, -10.0) is
-1.0. Here, the sign of the second argument (-10.0) is multiplied by the
magnitude of the first argument (1.0), so the result is -1.0.

Leading_Part is an attribute that returns the approximated version of
the mantissa of a value based on the specified number of leading bits for the
mantissa. Let's see some examples:

	Float'Leading_Part (3.1416, 1) is 2.0 because that's the value we can
represent with one leading bit.

	Note that Float'Fraction (2.0) = 0.5 — which can be
represented with one leading bit in the mantissa — and
Float'Exponent (2.0) = 2.)

	If we increase the number of leading bits of the mantissa to two — by
writing Float'Leading_Part (3.1416, 2) —, we get 3.0 because
that's the value we can represent with two leading bits.

	If we increase again the number of leading bits to five —
Float'Leading_Part (3.1416, 5) —, we get 3.125.

	Note that, in this case Float'Fraction (3.125) = 0.78125
and Float'Exponent (3.125) = 2.

	The binary mantissa is actually 2#110_0100_0000_0000_0000_0000#,
which can be represented with five leading bits as expected:
2#110_01#.

	We can get the binary mantissa by calculating
Float'Fraction (3.125) * Float (Float'Machine_Radix) ** (Float'Machine_Mantissa - 1)
and converting the result to binary format. The -1 value in the formula
corresponds to the sign bit.

Attention

In this explanation about the Leading_Part attribute, we're
talking about leading bits. Strictly speaking, however, this is actually a
simplification, and it's only correct if Machine_Radix is equal to
two — which is the case for most machines. Therefore, in most cases,
the explanation above is perfectly acceptable.

However, if Machine_Radix is not equal to two, we cannot use the
term "bits" anymore, but rather digits of the Machine_Radix.

Let's see some examples:

show_copy_sign_leading_part_machine.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Copy_Sign_Leading_Part_Machine is
 4begin
 5 Put_Line
 6 ("Float'Copy_Sign (1.0, -10.0): "
 7 & Float'Copy_Sign (1.0, -10.0)'Image);
 8 Put_Line
 9 ("Float'Copy_Sign (-1.0, -10.0): "
10 & Float'Copy_Sign (-1.0, -10.0)'Image);
11 Put_Line
12 ("Float'Copy_Sign (1.0, 10.0): "
13 & Float'Copy_Sign (1.0, 10.0)'Image);
14 Put_Line
15 ("Float'Copy_Sign (1.0, -0.0): "
16 & Float'Copy_Sign (1.0, -0.0)'Image);
17 Put_Line
18 ("Float'Copy_Sign (1.0, 0.0): "
19 & Float'Copy_Sign (1.0, 0.0)'Image);
20 Put_Line
21 ("Float'Leading_Part (1.75, 1): "
22 & Float'Leading_Part (1.75, 1)'Image);
23 Put_Line
24 ("Float'Leading_Part (1.75, 2): "
25 & Float'Leading_Part (1.75, 2)'Image);
26 Put_Line
27 ("Float'Leading_Part (1.75, 3): "
28 & Float'Leading_Part (1.75, 3)'Image);
29end Show_Copy_Sign_Leading_Part_Machine;

Attribute: Machine

Not every real number is directly representable as a floating-point value on a
specific machine. For example, let's take a value such as 1.0 x 1015
(or 1,000,000,000,000,000):

show_float_value.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Float_Value is
 4 package F_IO is new
 5 Ada.Text_IO.Float_IO (Float);
 6
 7 V : Float;
 8begin
 9 F_IO.Default_Fore := 3;
10 F_IO.Default_Aft := 1;
11 F_IO.Default_Exp := 0;
12
13 V := 1.0E+15;
14 Put ("1.0E+15 = ");
15 F_IO.Put (Item => V);
16 New_Line;
17
18end Show_Float_Value;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Float_Value
MD5: a7f80f7584ebaf39f2d5f9564c9c7d64

Runtime output

1.0E+15 = 999999986991000.0

If we run this example on a typical PC, we see that the expected value
1_000_000_000_000_000.0 was displayed as 999_999_986_991_000.0.
This is because 1.0 x 1015 isn't
directly representable on this machine, so it has to be modified to a value that
is actually representable (on the machine).

This automatic modification we've just described is actually hidden, so to
say, in the assignment. However, we can make it more visible by using the
Machine (X) attribute, which returns a version of X that is
representable on the target machine. The Machine (X) attribute rounds
(or truncates) X to either one of the adjacent machine numbers for the
specific floating-point type of X. (Of course, if the real value of
X is directly representable on the target machine, no modification is
performed.)

In fact, we could rewrite the V := 1.0E+15 assignment of the code example
as V := Float'Machine (1.0E+15), as we're never assigning a real value
directly to a floating-pointing variable — instead, we're first
converting it to a version of the real value that is representable on the
target machine. In this case, 999999986991000.0 is a representable version of
the real value 1.0 x 1015. Of course, writing V := 1.0E+15 or
V := Float'Machine (1.0E+15) doesn't make any difference to the actual
value that is assigned to V (in the case of this specific target
architecture), as the conversion to a representable value happens automatically
during the assignment to V.

There are, however, instances where using the Machine attribute does
make a difference in the result. For example, let's say we want to calculate
the difference between the original real value in our example
(1.0 x 1015) and the actual value that is assigned to V. We can
do this by using the Machine attribute in the calculation:

show_machine_attribute.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Attribute is
 4 package F_IO is new
 5 Ada.Text_IO.Float_IO (Float);
 6
 7 V : Float;
 8begin
 9 F_IO.Default_Fore := 3;
10 F_IO.Default_Aft := 1;
11 F_IO.Default_Exp := 0;
12
13 Put_Line
14 ("Original value: 1_000_000_000_000_000.0");
15
16 V := 1.0E+15;
17 Put ("Machine value: ");
18 F_IO.Put (Item => V);
19 New_Line;
20
21 V := 1.0E+15 - Float'Machine (1.0E+15);
22 Put ("Difference: ");
23 F_IO.Put (Item => V);
24 New_Line;
25
26end Show_Machine_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Attribute
MD5: c2db2cca028dc5811068f9b7f1bc209d

Runtime output

Original value: 1_000_000_000_000_000.0
Machine value: 999999986991000.0
Difference: 13008896.0

When we run this example on a typical PC, we see that the difference is
roughly 1.3009 x 107. (Actually, the value that we might see is
1.3008896 x 107, which is a version of 1.3009 x 107 that is
representable on the target machine.)

When we write 1.0E+15 - Float'Machine (1.0E+15):

	the first value in the operation is the universal real value
1.0 x 1015, while

	the second value in the operation is a version of the universal real value
1.0 x 1015 that is representable on the target machine.

This also means that, in the assignment to V, we're actually writing
V := Float'Machine (1.0E+15 - Float'Machine (1.0E+15)), so that:

	we first get the intermediate real value that represents the difference
between these values; and then

	we get a version of this intermediate real value that is representable on the
target machine.

This is the reason why we see 1.3008896 x 107 instead of
1.3009 x 107 when we run this application.

Fixed-Point Types

In this section, we discuss various attributes and operations related to
fixed-point types.

In the Ada Reference Manual

	3.5.10 Operations of Fixed Point Types[#7]

	A.5.4 Attributes of Fixed Point Types[#8]

Attributes of fixed-point types

Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware
representation of a type. For example:

show_fixed_machine_radix.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Fixed_Machine_Radix is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6 D : constant := 2.0 ** (-31);
 7 type TQ31 is delta D range -1.0 .. 1.0 - D;
 8begin
 9 Put_Line ("T3_D3'Machine_Radix: "
10 & T3_D3'Machine_Radix'Image);
11 Put_Line ("TQ31'Machine_Radix: "
12 & TQ31'Machine_Radix'Image);
13end Show_Fixed_Machine_Radix;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Machine_Radix
MD5: a09d060a58f76550e948a8245ffb5fde

Runtime output

T3_D3'Machine_Radix: 2
TQ31'Machine_Radix: 2

Usually, this value is two, as the radix is based on a binary system.

Attribute: Machine_Rounds and Machine_Overflows

In this section, we discuss attributes that return Boolean values
indicating whether a feature is available or not in the target architecture:

	Machine_Rounds is an attribute that indicates what happens when the
result of a fixed-point operation is inexact:

	T'Machine_Rounds = True: inexact result is rounded;

	T'Machine_Rounds = False: inexact result is truncated.

	Machine_Overflows is an attribute that indicates whether a
Constraint_Error is guaranteed to be raised when a fixed-point
operation with that type produces an overflow or divide-by-zero.

show_boolean_attributes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Boolean_Attributes is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6 D : constant := 2.0 ** (-31);
 7 type TQ31 is delta D range -1.0 .. 1.0 - D;
 8begin
 9 Put_Line ("T3_D3'Machine_Rounds: "
10 & T3_D3'Machine_Rounds'Image);
11 Put_Line ("TQ31'Machine_Rounds: "
12 & TQ31'Machine_Rounds'Image);
13 Put_Line ("T3_D3'Machine_Overflows: "
14 & T3_D3'Machine_Overflows'Image);
15 Put_Line ("TQ31'Machine_Overflows: "
16 & TQ31'Machine_Overflows'Image);
17end Show_Boolean_Attributes;

Attribute: Small and Delta

The Small and Delta attributes return numbers that indicate the
numeric precision of a fixed-point type. In many cases, the Small of a
type T is equal to the Delta of that type — i.e.
T'Small = T'Delta. Let's discuss each attribute and how they distinguish
from each other.

The Delta attribute returns the value of the delta that was
used in the type definition. For example, if we declare
type T3_D3 is delta 10.0 ** (-3) digits D, then the value of
T3_D3'Delta is the 10.0 ** (-3) that we used in the type
definition.

The Small attribute returns the "small" of a type, i.e. the smallest
value used in the machine representation of the type. The small must be at
least equal to or smaller than the delta — in other words, it must
conform to the T'Small <= T'Delta rule.

For further reading...

The Small and the Delta need not actually be small numbers.
They can be arbitrarily large. For instance, they could be 1.0, or 1000.0.
Consider the following example:

fixed_point_defs.ads

 1package Fixed_Point_Defs is
 2 S : constant := 32;
 3 Exp : constant := 128;
 4 D : constant := 2.0 ** (-S + Exp + 1);
 5
 6 type Fixed is delta D
 7 range -1.0 * 2.0 ** Exp ..
 8 1.0 * 2.0 ** Exp - D;
 9
10 pragma Assert (Fixed'Size = S);
11end Fixed_Point_Defs;

show_fixed_type_info.adb

 1with Fixed_Point_Defs; use Fixed_Point_Defs;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Show_Fixed_Type_Info is
 5begin
 6 Put_Line ("Size : "
 7 & Fixed'Size'Image);
 8 Put_Line ("Small : "
 9 & Fixed'Small'Image);
10 Put_Line ("Delta : "
11 & Fixed'Delta'Image);
12 Put_Line ("First : "
13 & Fixed'First'Image);
14 Put_Line ("Last : "
15 & Fixed'Last'Image);
16end Show_Fixed_Type_Info;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Large_Small_Attribute
MD5: 89672950b355060d250e0f5d7e2d40cb

Runtime output

Size : 32
Small : 1.58456325028528675E+29
Delta : 1.58456325028528675E+29
First : -340282366920938463463374607431768211456.0
Last : 340282366762482138434845932244680310784.0

In this example, the small of the Fixed type is actually quite
large: 1.5845632502852867529. (Also, the first and the last values
are large: -340,282,366,920,938,463,463,374,607,431,768,211,456.0 and
340,282,366,762,482,138,434,845,932,244,680,310,784.0, or approximately
-3.402838 and 3.402838.)

In this case, if we assign 1 or 1,000 to a variable F of this type,
the actual value stored in F is zero. Feel free to try this out!

When we declare an ordinary fixed-point data type, we must specify the delta.
Specifying the small, however, is optional:

	If the small isn't specified, it is automatically selected by the compiler.
In this case, the actual value of the small is an implementation-defined
power of two — always following the rule that says:
T'Small <= T'Delta.

	If we want, however, to specify the small, we can do that by using the
Small aspect. In this case, it doesn't need to be a power of two.

For decimal fixed-point types, we cannot specify the small. In this case,
it's automatically selected by the compiler, and it's always equal to the
delta.

Let's see an example:

fixed_small_delta.ads

 1package Fixed_Small_Delta is
 2 D3 : constant := 10.0 ** (-3);
 3
 4 type T3_D3 is delta D3 digits 3;
 5
 6 type TD3 is delta D3 range -1.0 .. 1.0 - D3;
 7
 8 D31 : constant := 2.0 ** (-31);
 9 D15 : constant := 2.0 ** (-15);
10
11 type TQ31 is delta D31 range -1.0 .. 1.0 - D31;
12
13 type TQ15 is delta D15 range -1.0 .. 1.0 - D15
14 with Small => D31;
15end Fixed_Small_Delta;

show_fixed_small_delta.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Fixed_Small_Delta; use Fixed_Small_Delta;
 4
 5procedure Show_Fixed_Small_Delta is
 6begin
 7 Put_Line ("T3_D3'Small: "
 8 & T3_D3'Small'Image);
 9 Put_Line ("T3_D3'Delta: "
10 & T3_D3'Delta'Image);
11 Put_Line ("T3_D3'Size: "
12 & T3_D3'Size'Image);
13 Put_Line ("--------------------");
14
15 Put_Line ("TD3'Small: "
16 & TD3'Small'Image);
17 Put_Line ("TD3'Delta: "
18 & TD3'Delta'Image);
19 Put_Line ("TD3'Size: "
20 & TD3'Size'Image);
21 Put_Line ("--------------------");
22
23 Put_Line ("TQ31'Small: "
24 & TQ31'Small'Image);
25 Put_Line ("TQ31'Delta: "
26 & TQ31'Delta'Image);
27 Put_Line ("TQ32'Size: "
28 & TQ31'Size'Image);
29 Put_Line ("--------------------");
30
31 Put_Line ("TQ15'Small: "
32 & TQ15'Small'Image);
33 Put_Line ("TQ15'Delta: "
34 & TQ15'Delta'Image);
35 Put_Line ("TQ15'Size: "
36 & TQ15'Size'Image);
37end Show_Fixed_Small_Delta;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_Delta
MD5: 0e811c7c0b92f05483b0ac7c3489dc3d

Runtime output

T3_D3'Small: 1.00000000000000000E-03
T3_D3'Delta: 1.00000000000000000E-03
T3_D3'Size: 11

TD3'Small: 9.76562500000000000E-04
TD3'Delta: 1.00000000000000000E-03
TD3'Size: 11

TQ31'Small: 4.65661287307739258E-10
TQ31'Delta: 4.65661287307739258E-10
TQ32'Size: 32

TQ15'Small: 4.65661287307739258E-10
TQ15'Delta: 3.05175781250000000E-05
TQ15'Size: 32

As we can see in the output of the code example, the Delta attribute
returns the value we used for delta in the type definition of the
T3_D3, TD3, TQ31 and TQ15 types.

The TD3 type is an ordinary fixed-point type with the the same delta as
the decimal T3_D3 type. In this case, however, TD3'Small is not
the same as the TD3'Delta. On a typical desktop PC, TD3'Small is
2-10, while the delta is 10-3. (Remember that, for ordinary
fixed-point types, if we don't specify the small, it's automatically selected
by the compiler as a power of two smaller than or equal to the delta.)

In the case of the TQ15 type, we're specifying the small by using the
Small aspect. In this case, the underlying size of the TQ15
type is 32 bits, while the precision we get when operating with this type is
16 bits. Let's see a specific example for this type:

show_fixed_small_delta.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Fixed_Small_Delta; use Fixed_Small_Delta;
 4
 5procedure Show_Fixed_Small_Delta is
 6 V : TQ15;
 7begin
 8 Put_Line ("V'Size: " & V'Size'Image);
 9
10 V := TQ15'Small;
11 Put_Line ("V: " & V'Image);
12
13 V := TQ15'Delta;
14 Put_Line ("V: " & V'Image);
15end Show_Fixed_Small_Delta;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_Delta
MD5: f2a71db911913d6fbf5343671599c0ae

Runtime output

V'Size: 32
V: 0.00000
V: 0.00003

In the first assignment, we assign TQ15'Small (2-31) to
V. This value is smaller than the type's delta (2-15). Even
though V'Size is 32 bits, V'Delta indicates 16-bit precision, and
TQ15'Small requires 32-bit precision to be represented correctly.
As a result, V has a value of zero after this assignment.

In contrast, after the second assignment — where we assign
TQ15'Delta (2-15) to V — we see, as expected, that
V has the same value as the delta.

Attributes: Fore and Aft

The Fore and Aft attributes indicate the number of characters
or digits needed for displaying a value in decimal representation. To be more
precise:

	The Fore attribute refers to the digits before the decimal point and
it returns the number of digits plus one for the sign indicator (which is
either - or space), and it's always at least two.

	The Aft attribute returns the number of decimal digits that is needed
to represent the delta after the decimal point.

Let's see an example:

show_fixed_fore_aft.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Fixed_Fore_Aft is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6 D : constant := 2.0 ** (-31);
 7 type TQ31 is delta D range -1.0 .. 1.0 - D;
 8
 9 Dec : constant T3_D3 := -0.123;
10 Fix : constant TQ31 := -TQ31'Delta;
11begin
12 Put_Line ("T3_D3'Fore: "
13 & T3_D3'Fore'Image);
14 Put_Line ("T3_D3'Aft: "
15 & T3_D3'Aft'Image);
16
17 Put_Line ("TQ31'Fore: "
18 & TQ31'Fore'Image);
19 Put_Line ("TQ31'Aft: "
20 & TQ31'Aft'Image);
21 Put_Line ("----");
22 Put_Line ("Dec: "
23 & Dec'Image);
24 Put_Line ("Fix: "
25 & Fix'Image);
26end Show_Fixed_Fore_Aft;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Fore_Aft
MD5: d031f74d967a96dee1c6a83ff4bd14cf

Runtime output

T3_D3'Fore: 2
T3_D3'Aft: 3
TQ31'Fore: 2
TQ31'Aft: 10

Dec: -0.123
Fix: -0.0000000005

As we can see in the output of the Dec and Fix variables at the
bottom, the value of Fore is two for both T3_D3 and TQ31.
This value corresponds to the length of the string "-0" displayed in the output
for these variables (the first two characters of "-0.123" and "-0.0000000005").

The value of Dec'Aft is three, which matches the number of digits after
the decimal point in "-0.123". Similarly, the value of Fix'Aft is 10,
which matches the number of digits after the decimal point in "-0.0000000005".

Attributes of decimal fixed-point types

The attributes presented in this subsection are only available for decimal
fixed-point types.

Attribute: Digits

Digits is an attribute that returns the number of significant decimal
digits of a decimal fixed-point subtype. This corresponds to the value that we
use for the digits in the definition of a decimal fixed-point type.

Let's see an example:

show_decimal_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Digits is
 4 type T3_D6 is delta 10.0 ** (-3) digits 6;
 5 subtype T3_D2 is T3_D6 digits 2;
 6begin
 7 Put_Line ("T3_D6'Digits: "
 8 & T3_D6'Digits'Image);
 9 Put_Line ("T3_D2'Digits: "
10 & T3_D2'Digits'Image);
11end Show_Decimal_Digits;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Digits
MD5: d46e67bd0f8b369918e7ab9ab4413ae7

Runtime output

T3_D6'Digits: 6
T3_D2'Digits: 2

In this example, T3_D6'Digits is six, which matches the value that we
used for digits in the type definition of T3_D6. The same logic
applies for subtypes, as we can see in the value of T3_D2'Digits. Here,
the value is two, which was used in the declaration of the T3_D2
subtype.

Attribute: Scale

According to the Ada Reference Manual, the Scale attribute "indicates
the position of the point relative to the rightmost significant digits of
values" of a decimal type. For example:

	If the value of Scale is two, then there are two decimal digits after
the decimal point.

	If the value of Scale is negative, that implies that the
Delta is a power of 10 greater than 1, and it would be the number of
zero digits that every value would end in.

The Scale corresponds to the N used in the delta 10.0 ** (-N)
expression of the type declaration. For example, if we write
delta 10.0 ** (-3) in the declaration of a type T, then the value
of T'Scale is three.

Let's look at this complete example:

show_decimal_scale.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Scale is
 4 type TM3_D6 is delta 10.0 ** 3 digits 6;
 5 type T3_D6 is delta 10.0 ** (-3) digits 6;
 6 type T9_D12 is delta 10.0 ** (-9) digits 12;
 7begin
 8 Put_Line ("TM3_D6'Scale: "
 9 & TM3_D6'Scale'Image);
10 Put_Line ("T3_D6'Scale: "
11 & T3_D6'Scale'Image);
12 Put_Line ("T9_D12'Scale: "
13 & T9_D12'Scale'Image);
14end Show_Decimal_Scale;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Scale
MD5: 56a99848cf31a9c69fe6d91ead73375a

Runtime output

TM3_D6'Scale: -3
T3_D6'Scale: 3
T9_D12'Scale: 9

In this example, we get the following values for the scales:

	TM3_D6'Scale = -3,

	T3_D6'Scale = 3,

	T9_D12 = 9.

As you can see, the value of Scale is directly related to the delta
of the corresponding type declaration.

Attribute: Round

The Round attribute rounds a value of any real type to the nearest
value that is a multiple of the delta of the decimal fixed-point type,
rounding away from zero if exactly between two such multiples.

For example, if we have a type T with three digits, and we use a value
with 10 digits after the decimal point in a call to T'Round, the
resulting value will have three digits after the decimal point.

Note that the X input of an S'Round (X) call is a universal real
value, while the returned value is of S'Base type.

Let's look at this example:

show_decimal_round.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Round is
 4 type T3_D3 is delta 10.0 ** (-3) digits 3;
 5begin
 6 Put_Line ("T3_D3'Round (0.2774): "
 7 & T3_D3'Round (0.2774)'Image);
 8 Put_Line ("T3_D3'Round (0.2777): "
 9 & T3_D3'Round (0.2777)'Image);
10end Show_Decimal_Round;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Round
MD5: 153d9dae52fee750da30dd9152a03c37

Runtime output

T3_D3'Round (0.2774): 0.277
T3_D3'Round (0.2777): 0.278

Here, the T3_D3 has a precision of three digits. Therefore, to fit this
precision, 0.2774 is rounded to 0.277, and 0.2777 is rounded to 0.278.

Big Numbers

As we've seen before, we can define numeric types in Ada with a high degree of
precision. However, these normal numeric types in Ada are limited to what
the underlying hardware actually supports. For example, any signed integer
type — whether defined by the language or the user — cannot have a
range greater than that of System.Min_Int .. System.Max_Int because
those constants reflect the actual hardware's signed integer types. In certain
applications, that precision might not be enough, so we have to rely on
arbitrary-precision arithmetic[#9].
These so-called "big numbers" are limited conceptually only by available
memory, in contrast to the underlying hardware-defined numeric types.

Ada supports two categories of big numbers: big integers and big reals —
both are specified in child packages of the Ada.Numerics.Big_Numbers
package:

	Category

	Package

	Big Integers

	Ada.Numerics.Big_Numbers.Big_Integers

	Big Reals

	Ada.Numerics.Big_Numbers.Big_Real

In the Ada Reference Manual

	Big Numbers[#10]

	Big Integers[#11]

	Big Reals[#12]

Overview

Let's start with a simple declaration of big numbers:

show_simple_big_numbers.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8with Ada.Numerics.Big_Numbers.Big_Reals;
 9use Ada.Numerics.Big_Numbers.Big_Reals;
10
11procedure Show_Simple_Big_Numbers is
12 BI : Big_Integer;
13 BR : Big_Real;
14begin
15 BI := 12345678901234567890;
16 BR := 2.0 ** 1234;
17
18 Put_Line ("BI: " & BI'Image);
19 Put_Line ("BR: " & BR'Image);
20
21 BI := BI + 1;
22 BR := BR + 1.0;
23
24 Put_Line ("BI: " & BI'Image);
25 Put_Line ("BR: " & BR'Image);
26end Show_Simple_Big_Numbers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers
MD5: d25e0c73ef04b6c950f2ab63fc96a353

Runtime output

BI: 12345678901234567890
BR: 295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837184.000
BI: 12345678901234567891
BR: 295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837185.000

In this example, we're declaring the big integer BI and the big real
BR, and we're incrementing them by one.

Naturally, we're not limited to using the + operator (such as in this
example). We can use the same operators on big numbers that we can use with
normal numeric types. In fact, the common unary operators
(+, -, abs) and binary operators (+, -,
*, /, **, Min and Max) are available to us.
For example:

show_simple_big_numbers_operators.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Simple_Big_Numbers_Operators is
 9 BI : Big_Integer;
10begin
11 BI := 12345678901234567890;
12
13 Put_Line ("BI: " & BI'Image);
14
15 BI := -BI + BI / 2;
16 BI := BI - BI * 2;
17
18 Put_Line ("BI: " & BI'Image);
19end Show_Simple_Big_Numbers_Operators;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers_Operators
MD5: c4f405e3ea916bc8a3f309acdeb0606a

Runtime output

BI: 12345678901234567890
BI: 6172839450617283945

In this example, we're applying the four basic operators (+, -,
*, /) on big integers.

Factorial

A typical example is the factorial[#13]: a sequence of the
factorial of consecutive small numbers can quickly lead to big numbers. Let's
take this implementation as an example:

factorial.ads

1function Factorial (N : Integer)
2 return Long_Long_Integer;

factorial.adb

 1function Factorial (N : Integer)
 2 return Long_Long_Integer is
 3 Fact : Long_Long_Integer := 1;
 4begin
 5 for I in 2 .. N loop
 6 Fact := Fact * Long_Long_Integer (I);
 7 end loop;
 8
 9 return Fact;
10end Factorial;

show_factorial.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Factorial;
 4
 5procedure Show_Factorial is
 6begin
 7 for I in 1 .. 50 loop
 8 Put_Line (I'Image & "! = "
 9 & Factorial (I)'Image);
10 end loop;
11end Show_Factorial;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Integer
MD5: 9b20469533706ef025a03b506a07b920

Runtime output

 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
 10! = 3628800
 11! = 39916800
 12! = 479001600
 13! = 6227020800
 14! = 87178291200
 15! = 1307674368000
 16! = 20922789888000
 17! = 355687428096000
 18! = 6402373705728000
 19! = 121645100408832000
 20! = 2432902008176640000

raised CONSTRAINT_ERROR : factorial.adb:6 overflow check failed

Here, we're using Long_Long_Integer for the computation and return type
of the Factorial function. (We're using Long_Long_Integer because
its range is probably the biggest possible on the machine, although that is not
necessarily so.) The last number we're able to calculate
before getting an exception is 20!, which basically shows the limitation of
standard integers for this kind of algorithm. If we use big integers instead,
we can easily display all numbers up to 50! (and more!):

factorial.ads

1pragma Ada_2022;
2
3with Ada.Numerics.Big_Numbers.Big_Integers;
4use Ada.Numerics.Big_Numbers.Big_Integers;
5
6function Factorial (N : Integer)
7 return Big_Integer;

factorial.adb

 1function Factorial (N : Integer)
 2 return Big_Integer is
 3 Fact : Big_Integer := 1;
 4begin
 5 for I in 2 .. N loop
 6 Fact := Fact * To_Big_Integer (I);
 7 end loop;
 8
 9 return Fact;
10end Factorial;

show_big_number_factorial.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Factorial;
 6
 7procedure Show_Big_Number_Factorial is
 8begin
 9 for I in 1 .. 50 loop
10 Put_Line (I'Image & "! = "
11 & Factorial (I)'Image);
12 end loop;
13end Show_Big_Number_Factorial;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Big_Numbers
MD5: 18b6e168dac40422a1f0334fe5e4486e

Runtime output

 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
 10! = 3628800
 11! = 39916800
 12! = 479001600
 13! = 6227020800
 14! = 87178291200
 15! = 1307674368000
 16! = 20922789888000
 17! = 355687428096000
 18! = 6402373705728000
 19! = 121645100408832000
 20! = 2432902008176640000
 21! = 51090942171709440000
 22! = 1124000727777607680000
 23! = 25852016738884976640000
 24! = 620448401733239439360000
 25! = 15511210043330985984000000
 26! = 403291461126605635584000000
 27! = 10888869450418352160768000000
 28! = 304888344611713860501504000000
 29! = 8841761993739701954543616000000
 30! = 265252859812191058636308480000000
 31! = 8222838654177922817725562880000000
 32! = 263130836933693530167218012160000000
 33! = 8683317618811886495518194401280000000
 34! = 295232799039604140847618609643520000000
 35! = 10333147966386144929666651337523200000000
 36! = 371993326789901217467999448150835200000000
 37! = 13763753091226345046315979581580902400000000
 38! = 523022617466601111760007224100074291200000000
 39! = 20397882081197443358640281739902897356800000000
 40! = 815915283247897734345611269596115894272000000000
 41! = 33452526613163807108170062053440751665152000000000
 42! = 1405006117752879898543142606244511569936384000000000
 43! = 60415263063373835637355132068513997507264512000000000
 44! = 2658271574788448768043625811014615890319638528000000000
 45! = 119622220865480194561963161495657715064383733760000000000
 46! = 5502622159812088949850305428800254892961651752960000000000
 47! = 258623241511168180642964355153611979969197632389120000000000
 48! = 12413915592536072670862289047373375038521486354677760000000000
 49! = 608281864034267560872252163321295376887552831379210240000000000
 50! = 30414093201713378043612608166064768844377641568960512000000000000

As we can see in this example, replacing the Long_Long_Integer type by
the Big_Integer type fixes the problem (the runtime exception) that we
had in the previous version.
(Note that we're using the To_Big_Integer function to convert from
Integer to Big_Integer: we discuss these conversions next.)

Note that there is a limit to the upper bounds for big integers. However, this
limit isn't dependent on the hardware types — as it's the case for normal
numeric types —, but rather compiler specific. In other words, the
compiler can decide how much memory it wants to use to represent big integers.

Conversions

Most probably, we want to mix big numbers and standard numbers (i.e. integer
and real numbers) in our application. In this section, we talk about the
conversion between big numbers and standard types.

Validity

The package specifications of big numbers include subtypes that ensure
that a actual value of a big number is valid:

	Type

	Subtype for valid values

	Big Integers

	Valid_Big_Integer

	Big Reals

	Valid_Big_Real

These subtypes include a contract for this check. For example, this is the
definition of the Valid_Big_Integer subtype:

subtype Valid_Big_Integer is Big_Integer
 with Dynamic_Predicate =>
 Is_Valid (Valid_Big_Integer),
 Predicate_Failure =>
 (raise Program_Error);

Any operation on big numbers is actually performing this validity check (via a
call to the Is_Valid function). For example, this is the addition
operator for big integers:

function "+" (L, R : Valid_Big_Integer)
 return Valid_Big_Integer;

As we can see, both the input values to the operator as well as the return
value are expected to be valid — the Valid_Big_Integer subtype
triggers this check, so to say. This approach ensures that an algorithm
operating on big numbers won't be using invalid values.

Conversion functions

These are the most important functions to convert between big number and
standard types:

	Category

	To big number

	From big number

	Big Integers

	
	To_Big_Integer

	
	To_Integer (Integer)

	From_Big_Integer
(other integer types)

	Big Reals

	
	To_Big_Real (floating-point types or
fixed-point types)

	
	From_Big_Real

	
	To_Big_Real (Valid_Big_Integer)

	To_Real (Integer)

	
	Numerator,
Denominator (Integer)

In the following sections, we discuss these functions in more detail.

Big integer to integer

We use the To_Big_Integer and To_Integer functions to convert
back and forth between Big_Integer and Integer types:

show_simple_big_integer_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Simple_Big_Integer_Conversion is
 9 BI : Big_Integer;
10 I : Integer := 10000;
11begin
12 BI := To_Big_Integer (I);
13 Put_Line ("BI: " & BI'Image);
14
15 I := To_Integer (BI + 1);
16 Put_Line ("I: " & I'Image);
17end Show_Simple_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Integer_Conversion
MD5: 84f55568b26bf6c1c6f0b06391e8ac0f

Runtime output

BI: 10000
I: 10001

In addition, we can use the generic Signed_Conversions and
Unsigned_Conversions packages to convert between Big_Integer and
any signed or unsigned integer types:

show_arbitrary_big_integer_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Arbitrary_Big_Integer_Conversion is
 9
10 type Mod_32_Bit is mod 2 ** 32;
11
12 package Long_Long_Integer_Conversions is new
13 Signed_Conversions (Long_Long_Integer);
14 use Long_Long_Integer_Conversions;
15
16 package Mod_32_Bit_Conversions is new
17 Unsigned_Conversions (Mod_32_Bit);
18 use Mod_32_Bit_Conversions;
19
20 BI : Big_Integer;
21 LLI : Long_Long_Integer := 10000;
22 U_32 : Mod_32_Bit := 2 ** 32 + 1;
23
24begin
25 BI := To_Big_Integer (LLI);
26 Put_Line ("BI: " & BI'Image);
27
28 LLI := From_Big_Integer (BI + 1);
29 Put_Line ("LLI: " & LLI'Image);
30
31 BI := To_Big_Integer (U_32);
32 Put_Line ("BI: " & BI'Image);
33
34 U_32 := From_Big_Integer (BI + 1);
35 Put_Line ("U_32: " & U_32'Image);
36
37end Show_Arbitrary_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Arbitrary_Big_Integer_Conversion
MD5: 21466010594cf09f37776bc8cb61ee9c

Runtime output

BI: 10000
LLI: 10001
BI: 1
U_32: 2

In this examples, we declare the Long_Long_Integer_Conversions and the
Mod_32_Bit_Conversions to be able to convert between big integers and
the Long_Long_Integer and the Mod_32_Bit types, respectively.

Note that, when converting from big integer to integer, we used the
To_Integer function, while, when using the instances of the generic
packages, the function is named From_Big_Integer.

Big real to floating-point types

When converting between big real and floating-point types, we have to
instantiate the generic Float_Conversions package:

show_big_real_floating_point_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Reals;
 6use Ada.Numerics.Big_Numbers.Big_Reals;
 7
 8procedure Show_Big_Real_Floating_Point_Conversion
 9is
10 type D10 is digits 10;
11
12 package D10_Conversions is new
13 Float_Conversions (D10);
14 use D10_Conversions;
15
16 package Long_Float_Conversions is new
17 Float_Conversions (Long_Float);
18 use Long_Float_Conversions;
19
20 BR : Big_Real;
21 LF : Long_Float := 2.0;
22 F10 : D10 := 1.999;
23
24begin
25 BR := To_Big_Real (LF);
26 Put_Line ("BR: " & BR'Image);
27
28 LF := From_Big_Real (BR + 1.0);
29 Put_Line ("LF: " & LF'Image);
30
31 BR := To_Big_Real (F10);
32 Put_Line ("BR: " & BR'Image);
33
34 F10 := From_Big_Real (BR + 0.1);
35 Put_Line ("F10: " & F10'Image);
36
37end Show_Big_Real_Floating_Point_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Floating_Point_Conversion
MD5: 531c59a06b46c2074bc5378b5dcddd35

Runtime output

BR: 2.000
LF: 3.00000000000000E+00
BR: 1.999
F10: 2.099000000E+00

In this example, we declare the D10_Conversions and the
Long_Float_Conversions to be able to convert between big reals and
the custom floating-point type D10 and the Long_Float type,
respectively. To do that, we use the To_Big_Real and the
From_Big_Real functions.

Big real to fixed-point types

When converting between big real and ordinary fixed-point types, we have to
instantiate the generic Fixed_Conversions package:

show_big_real_fixed_point_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Reals;
 6use Ada.Numerics.Big_Numbers.Big_Reals;
 7
 8procedure Show_Big_Real_Fixed_Point_Conversion
 9is
10 D : constant := 2.0 ** (-31);
11 type TQ31 is delta D range -1.0 .. 1.0 - D;
12
13 package TQ31_Conversions is new
14 Fixed_Conversions (TQ31);
15 use TQ31_Conversions;
16
17 BR : Big_Real;
18 FQ31 : TQ31 := 0.25;
19
20begin
21 BR := To_Big_Real (FQ31);
22 Put_Line ("BR: " & BR'Image);
23
24 FQ31 := From_Big_Real (BR * 2.0);
25 Put_Line ("FQ31: " & FQ31'Image);
26
27end Show_Big_Real_Fixed_Point_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Fixed_Point_Conversion
MD5: 94a87bfc6ffad70f757cfc8b6ae32530

Runtime output

BR: 0.250
FQ31: 0.5000000000

In this example, we declare the TQ31_Conversions to be able to convert
between big reals and the custom fixed-point type TQ31 type.
Again, we use the To_Big_Real and the From_Big_Real functions for
the conversions.

Note that there's no direct way to convert between decimal fixed-point types
and big real types. (Of course, you could perform this conversion indirectly
by using a floating-point or an ordinary fixed-point type in between.)

Big reals to (big) integers

We can also convert between big reals and big integers (or standard integers):

show_big_real_big_integer_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8with Ada.Numerics.Big_Numbers.Big_Reals;
 9use Ada.Numerics.Big_Numbers.Big_Reals;
10
11procedure Show_Big_Real_Big_Integer_Conversion
12is
13 I : Integer;
14 BI : Big_Integer;
15 BR : Big_Real;
16
17begin
18 I := 12345;
19 BR := To_Real (I);
20 Put_Line ("BR (from I): " & BR'Image);
21
22 BI := 123456;
23 BR := To_Big_Real (BI);
24 Put_Line ("BR (from BI): " & BR'Image);
25
26end Show_Big_Real_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Big_Integer_Conversion
MD5: 9a217c0551bc80269596d7217d2be879

Runtime output

BR (from I): 12345.000
BR (from BI): 123456.000

Here, we use the To_Real and the To_Big_Real and functions for
the conversions.

String conversions

In addition to that, we can use string conversions:

show_big_number_string_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8with Ada.Numerics.Big_Numbers.Big_Reals;
 9use Ada.Numerics.Big_Numbers.Big_Reals;
10
11procedure Show_Big_Number_String_Conversion
12is
13 BI : Big_Integer;
14 BR : Big_Real;
15begin
16 BI := From_String ("12345678901234567890");
17 BR := From_String ("12345678901234567890.0");
18
19 Put_Line ("BI: "
20 & To_String (Arg => BI,
21 Width => 5,
22 Base => 2));
23 Put_Line ("BR: "
24 & To_String (Arg => BR,
25 Fore => 2,
26 Aft => 6,
27 Exp => 18));
28end Show_Big_Number_String_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Number_String_Conversion
MD5: 3819df198ec140b457fa56a65d8876f9

Runtime output

BI: 2#1010101101010100101010011000110011101011000111110000101011010010#
BR: 12.345678E+18

In this example, we use the From_String to convert a string to a big
number. Note that the From_String function is actually called when
converting a literal — because of the corresponding aspect for
user-defined literals in the definitions of the Big_Integer and the
Big_Real types.

For further reading...

Big numbers are implemented using
user-defined literals, which we
discussed previously. In fact, these are the corresponding type
declarations:

-- Declaration from
-- Ada.Numerics.Big_Numbers.Big_Integers;

type Big_Integer is private
 with Integer_Literal => From_Universal_Image,
 Put_Image => Put_Image;

function From_Universal_Image
 (Arg : String)
 return Valid_Big_Integer
 renames From_String;

-- Declaration from
-- Ada.Numerics.Big_Numbers.Big_Reals;

type Big_Real is private
 with Real_Literal => From_Universal_Image,
 Put_Image => Put_Image;

function From_Universal_Image
 (Arg : String)
 return Valid_Big_Real
 renames From_String;

As we can see in these declarations, the From_String function
renames the From_Universal_Image function, which is being used for
the user-defined literals.

Also, we call the To_String function to get a string for the big
numbers. Naturally, using the To_String function instead of the
Image attribute — as we did in previous examples — allows
us to customize the format of the string that we display in the user message.

Other features of big integers

Now, let's look at two additional features of big integers:

	the natural and positive subtypes, and

	other available operators and functions.

Big positive and natural subtypes

Similar to integer types, big integers have the Big_Natural and
Big_Positive subtypes to indicate natural and positive numbers. However,
in contrast to the Natural and Positive subtypes, the
Big_Natural and Big_Positive subtypes are defined via predicates
rather than the simple ranges of normal (ordinary) numeric types:

subtype Natural is
 Integer range 0 .. Integer'Last;

subtype Positive is
 Integer range 1 .. Integer'Last;

subtype Big_Natural is Big_Integer
 with Dynamic_Predicate =>
 (if Is_Valid (Big_Natural)
 then Big_Natural >= 0),
 Predicate_Failure =>
 (raise Constraint_Error);

subtype Big_Positive is Big_Integer
 with Dynamic_Predicate =>
 (if Is_Valid (Big_Positive)
 then Big_Positive > 0),
 Predicate_Failure =>
 (raise Constraint_Error);

Therefore, we cannot simply use attributes such as Big_Natural'First.
However, we can use the subtypes to ensure that a big integer is in the
expected (natural or positive) range:

show_big_positive_natural.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Big_Positive_Natural is
 9 BI, D, N : Big_Integer;
10begin
11 D := 3;
12 N := 2;
13 BI := Big_Natural (D / Big_Positive (N));
14
15 Put_Line ("BI: " & BI'Image);
16end Show_Big_Positive_Natural;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Positive_Natural
MD5: 6debfb86e11c7bfa3dbaf2d81eb24360

Runtime output

BI: 1

By using the Big_Natural and Big_Positive subtypes in the
calculation above (in the assignment to BI), we ensure that we don't
perform a division by zero, and that the result of the calculation is a natural
number.

Other operators for big integers

We can use the mod and rem operators with big integers:

show_big_integer_rem_mod.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Big_Integer_Rem_Mod is
 9 BI : Big_Integer;
10begin
11 BI := 145 mod (-4);
12 Put_Line ("BI (mod): " & BI'Image);
13
14 BI := 145 rem (-4);
15 Put_Line ("BI (rem): " & BI'Image);
16end Show_Big_Integer_Rem_Mod;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Rem_Mod
MD5: 079f2f88f98f52e81ae7719d4629ca08

Runtime output

BI (mod): -5
BI (rem): 1

In this example, we use the mod and rem operators in the
assignments to BI.

Moreover, there's a Greatest_Common_Divisor function for big
integers which, as the name suggests, calculates the greatest common divisor of
two big integer values:

show_big_integer_greatest_common_divisor.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8procedure Show_Big_Integer_Greatest_Common_Divisor
 9is
10 BI : Big_Integer;
11begin
12 BI := Greatest_Common_Divisor (145, 25);
13 Put_Line ("BI: " & BI'Image);
14
15end Show_Big_Integer_Greatest_Common_Divisor;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Greatest_Common_Divisor
MD5: b2d0098fcca6f949f228276b4d862b56

Runtime output

BI: 5

In this example, we retrieve the greatest common divisor of 145 and 25
(i.e.: 5).

Big real and quotients

An interesting feature of big reals is that they support quotients. In fact,
we can simply assign 2/3 to a big real variable. (Note that we're able to
omit the decimal points, as we write 2/3 instead of 2.0 / 3.0.)
For example:

show_big_real_quotient_conversion.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Reals;
 6use Ada.Numerics.Big_Numbers.Big_Reals;
 7
 8procedure Show_Big_Real_Quotient_Conversion
 9is
10 BR : Big_Real;
11begin
12 BR := 2 / 3;
13 -- Same as:
14 -- BR := From_Quotient_String ("2 / 3");
15
16 Put_Line ("BR: " & BR'Image);
17
18 Put_Line ("Q: "
19 & To_Quotient_String (BR));
20
21 Put_Line ("Q numerator: "
22 & Numerator (BR)'Image);
23 Put_Line ("Q denominator: "
24 & Denominator (BR)'Image);
25end Show_Big_Real_Quotient_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Quotient_Conversion
MD5: 4ef8355332e73a1f7da036b8e1e4b898

Runtime output

BR: 0.666
Q: 2 / 3
Q numerator: 2
Q denominator: 3

In this example, we assign 2 / 3 to BR — we could have used
the From_Quotient_String function as well. Also, we use the
To_Quotient_String to get a string that represents the quotient.
Finally, we use the Numerator and Denominator functions to
retrieve the values, respectively, of the numerator and denominator of the
quotient (as big integers) of the big real variable.

Range checks

Previously, we've talked about the Big_Natural and Big_Positive
subtypes. In addition to those subtypes, we have the In_Range function
for big numbers:

show_big_numbers_in_range.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Ada.Numerics.Big_Numbers.Big_Integers;
 6use Ada.Numerics.Big_Numbers.Big_Integers;
 7
 8with Ada.Numerics.Big_Numbers.Big_Reals;
 9use Ada.Numerics.Big_Numbers.Big_Reals;
10
11procedure Show_Big_Numbers_In_Range is
12
13 BI : Big_Integer;
14 BR : Big_Real;
15
16 BI_From : constant Big_Integer := 0;
17 BI_To : constant Big_Integer := 1024;
18
19 BR_From : constant Big_Real := 0.0;
20 BR_To : constant Big_Real := 1024.0;
21
22begin
23 BI := 1023;
24 BR := 1023.9;
25
26 if In_Range (BI, BI_From, BI_To) then
27 Put_Line ("BI ("
28 & BI'Image
29 & ") is in the "
30 & BI_From'Image
31 & " .. "
32 & BI_To'Image
33 & " range");
34 end if;
35
36 if In_Range (BR, BR_From, BR_To) then
37 Put_Line ("BR ("
38 & BR'Image
39 & ") is in the "
40 & BR_From'Image
41 & " .. "
42 & BR_To'Image
43 & " range");
44 end if;
45
46end Show_Big_Numbers_In_Range;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Numbers_In_Range
MD5: 9c85e8374db1095142260f45c4c4e7e1

Runtime output

BI (1023) is in the 0 .. 1024 range
BR (1023.900) is in the 0.000 .. 1024.000 range

In this example, we call the In_Range function to check whether the big
integer number (BI) and the big real number (BR) are in the range
between 0 and 1024.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-5-4.html

[#2]
https://www.adacore.com/gems/gem-26

[#3]
https://www.adacore.com/gems/ada-gem-7

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-5-8.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-A-5-3.html

[#6]
https://en.wikipedia.org/wiki/Subnormal_number

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-3-5-10.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-A-5-4.html

[#9]
https://en.wikipedia.org/wiki/arbitrary-precision_arithmetic

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-A-5-5.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-A-5-6.html

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-A-5-7.html

[#13]
https://en.wikipedia.org/wiki/Factorial

Control Flow

	Expressions
	Expressions: Definition
	Relations and simple expressions

	Numeric expressions

	Other expressions

	Parenthesized expression

	Conditional Expressions

	Quantified Expressions

	Declare Expressions
	Restrictions in the declarative part

	Reduction Expressions
	Value sequences

	Custom reducers

	Other accumulator types

	Statements
	Simple and Compound Statements

	Labels
	Labels and goto statements

	Use-case: Continue

	Labels and compound statements

	Exit loop statement

	If, case and loop statements
	Case statements and expressions

	Block Statements

	Extended return statement
	Other usages of extended return statements

	Subprograms
	Parameter Modes and Associations
	Formal Parameter Modes

	By-copy and by-reference

	Bounded errors

	Aliased parameters

	Parameter Associations

	Operators
	User-defined operators

	Expression functions

	Overloading

	Operator Overloading

	Operator Overriding

	Nonreturning procedures

	Inline subprograms

	Null Procedures
	Null procedures and overriding

	Exceptions
	Asserts

	Assertion policies

	Checks and exceptions
	Access Check

	Discriminant Check

	Division Check

	Index Check

	Length Check

	Overflow Check

	Range Check

	Tag Check

	Accessibility Check

	Allocation Check

	Elaboration Check

	Storage Check

	Ada.Exceptions package
	Retrieving exception information

	Collecting exceptions

	Debugging exceptions in the GNAT toolchain

	Exception renaming

	Out and Uninitialized

	Suppressing checks
	pragma Suppress

	pragma Unsuppress

Footnotes

Expressions

Expressions: Definition

According to the Ada Reference Manual, an expression "is a formula that defines
the computation or retrieval of a value." Also, when an expression is
evaluated, the computed or retrieved value always has an associated type known
at compile-time.

Even though the definition above is very simple, Ada expressions are actually
very flexible — and they can also be very complex. In fact, if you read
the corresponding section[#1] of the Ada Reference Manual, you'll
quickly discover that they include elements such as relations, membership
choices, terms and primaries. Some of these are classic elements of expressions
in programming languages, although some of their forms are unique to Ada. In
this section, we present examples of just some of these elements. For a
complete overview, please refer to the Reference Manual.

In the Ada Reference Manual

	4.4 Expressions[#2]

Relations and simple expressions

Expressions usually consist of relations, which in turn consist of simple
expressions. (There are more details to this, but we'll keep it simple for the
moment.) Let's see a code example with a few expressions, which we dissect into
the corresponding grammatical elements (we're going to discuss them later):

show_expression_elements.adb

 1procedure Show_Expression_Elements is
 2 type Mode is (Off, A, B, C, D);
 3
 4 pragma Unreferenced (B, C, D);
 5
 6 subtype Active_Mode is Mode
 7 range Mode'Succ (Off) .. Mode'Last;
 8
 9 M1, M2 : Mode;
10 Dummy : Boolean;
11begin
12 M1 := A;
13
14 Dummy :=
15 M1 in Active_Mode
16 and then M2 in Off | A;
17 --
18 -- ^^^^^^^^^^^^^^^^^ relation
19 --
20 -- ^^^^^^^^^^^^^^ relation
21 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22 -- expression
23
24 Dummy :=
25 M1 in Active_Mode;
26 -- ^^ name
27 -- ^^ primary
28 -- ^^ factor
29 -- ^^ term
30 -- ^^ simple expression
31 --
32 -- ^^^^^^^^^^^ membership choice
33 -- ^^^^^^^^^^^ membership choice list
34 --
35 -- ^^^^^^^^^^^^^^^^^ relation
36 -- ^^^^^^^^^^^^^^^^^ expression
37
38 Dummy :=
39 M2 in Off | A;
40 -- ^^ name
41 -- ^^ primary
42 -- ^^ factor
43 -- ^^ term
44 -- ^^ simple expression
45 --
46 -- ^^^ membership choice
47 -- ^ membership choice
48 -- ^^^^^^^ membership choice list
49 --
50 -- ^^^^^^^^^^^^^ relation
51 -- ^^^^^^^^^^^^^ expression
52
53end Show_Expression_Elements;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Expression_Elements
MD5: a22e6f2d2bc181ce77097a1de204eb62

Build output

show_expression_elements.adb:9:08: warning: variable "M2" is read but never assigned [-gnatwv]

In this code example, we see three expressions. As we mentioned earlier, every
expression has a type; here, the type of each expression is Boolean.

The first expression (M1 in Active_Mode and then M2 in Off | A) consists
of two relations: M1 in Active_Mode and M2 in Off | A. Let's
discuss some of the details.

The M1 in Active_Mode relation consists of the simple expression
M1 and the membership choice list Active_Mode. (Here, the
in keyword is part of the relation definition.) Also, as we see in the
comments of the source code, the simple expression M1 is, at the same
time, a term, a factor, a primary and a name.

Let's briefly talk about this chain of syntactic elements for simple
expressions. Very roughly said, this is how we can break up simple expressions:

	a simple expression consists of terms;

	a term consists of factors;

	a factor consists of primaries;

	a primary can be one of those:

	a numeric literal;

	null;

	a string literal;

	an aggregate;

	a name;

	an allocator (like new Integer);

	a parenthesized expression;

	a conditional expression;

	a quantified expression;

	a declare expression.

For further reading...

The definition of simple expressions we've just seen is very simplified. In
actuality, these are the grammatical elements specified in the Ada Reference
Manual:

simple_expression ::=
 [unary_adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
 numeric_literal | null | string_literal | aggregate
| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)
| (declare_expression)

Later on in this chapter, we discuss
conditional expressions,
quantified expressions and
declare expressions in more details.

In the relation M2 in Off | A from the code example, Off | A is
a membership choice list, and Off and A are membership choices.

For further reading...

Relations can actually be much more complicated than the one we just
saw. In fact, this is the definition from the Ada Reference Manual:

expression ::=
 relation {and relation}
 | relation {and then relation}
 | relation {or relation}
 | relation {or else relation}
 | relation {xor relation}

relation ::=
 simple_expression
 [relational_operator simple_expression]
 | simple_expression [not] in
 membership_choice_list
 | raise_expression

Again, for more details, please refer to the
section on expressions[#3] of the Ada Reference Manual.

In the Ada Reference Manual

	4.4 Expressions[#4]

	4.5.2 Relational Operators and Membership Tests[#5]

Numeric expressions

The expressions we've seen so far had the Boolean type. Although much
of the grammar described in the Manual exists exclusively for Boolean
operations, we can also write numeric expressions such as the following one:

show_numeric_expressions.adb

 1procedure Show_Numeric_Expressions is
 2 C1 : constant Integer := 5;
 3 Dummy : Integer;
 4begin
 5 Dummy :=
 6 -2 ** 4 + 3 * C1 ** 8;
 7 -- ^ numeric literal
 8 -- ^ primary
 9 -- ^^ name
10 -- ^^ primary
11 -- ^^^^^^^ factor
12 -- ^ multiplying operator
13 -- ^ numeric literal
14 -- ^ primary
15 -- ^ factor
16 -- ^^^^^^^^^^^ term
17 --
18 -- ^ numeric literal
19 -- ^ primary
20 -- ^ numeric literal
21 -- ^ primary
22 -- ^^^^^^ factor
23 -- ^^^^^^ term
24 -- ^ binary adding operator
25 -- ^ unary adding operator
26 --
27 -- ^^^^^^^^^^^^^^^^^^^^^^ simple expression
28 --
29 -- ^^^^^^^^^^^^^^^^^^^^^^ expression
30end Show_Numeric_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Numeric_Expressions
MD5: a3c902c7aa5b0afe30ae220256c3306a

In this code example, the expression - 2 ** 4 + 3 * C1 ** 8 consists of
just a single simple expression. (Note that simple expressions do not have to
be "simple".) This simple expression consists of two terms: 2 ** 4 and
3 * C1 ** 8. While the 2 ** 4 term is also a single factor, the
3 * C1 ** 8 term consists of two factors: 3 and C1 ** 8.
Both the 2 ** 4 and the C1 ** 8 factors consists of two primaries
each:

	the 2 ** 4 factor has the primaries 2 and 4,

	the C1 ** 8 factor has the primaries C1 and 8.

In the Ada Reference Manual

	4.4 Expressions[#6]

Other expressions

Expressions aren't limited to the Boolean type or to numeric types.
Indeed, expressions can be of any type, and the definition of primaries we've
seen earlier on already hints in this direction — as it includes elements
such as allocators. Because expressions are very flexible, covering all possible
variations and combinations in this section is out of scope. Again, please refer
to the section on expressions[#7] of the Ada Reference Manual for
further details.

Parenthesized expression

An interesting aspect of primaries is that, by using parentheses, we can
embed an expression inside another expression. As an example, let's discuss the
following expression and its elements:

show_parenthesized_expressions.adb

 1procedure Show_Parenthesized_Expressions is
 2 C1 : constant Integer := 4;
 3 C2 : constant Integer := 5;
 4
 5 Dummy : Integer;
 6begin
 7 Dummy :=
 8 (2 + C1) * C2;
 9 -- ^^ name
10 -- ^^ primary
11 -- ^^ factor
12 -- ^^ term
13 --
14 -- ^ numeric literal
15 -- ^ primary
16 -- ^ factor
17 -- ^ term
18 --
19 -- ^ binary adding operator
20 -- ^^^^^^^^ simple expression
21 --
22 -- ^^^^^^^^ expression
23 -- ^^^^^^^^ primary
24 -- ^^^^^^^^ factor
25 --
26 -- ^^ factor
27 -- ^^^^^^^^^^^^^ term
28 --
29 -- ^^^^^^^^^^^^^ simple expression
30 --
31 -- ^^^^^^^^^^^^^ expression
32end Show_Parenthesized_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Parenthesized_Expressions
MD5: 5871d2b0cd33e4f562b96381e0f0d293

In this example, we first start with the single expression (2 + C1) * C2,
which is also a simple expression consisting of just one term, which consists of
two factors: (2 + C1) and C2. The (2 + C1) factor is also a
primary. Now, because of the parentheses, we identify that the primary
(2 + C1) is an expression that is embedded in another expression.

Important

To be fair, the existence of parentheses in a primary could also indicate
other kinds of expressions, such as conditional or quantified expressions.
However, differentiating between them is straightforward, as we'll see later
on in this chapter.

We then proceed to parse the (2 + C1) expression, which consists of the
terms 2 and C1. As we've seen in the comments of the code example,
each of these terms consists of one factor, which consists of one primary. In
the end, after parsing the primaries, we identify that 2 is a numeric
literal and C1 is a name.

Note that the usage of parentheses might lead to situations where we have
expressions in potentially unsuspected places. For example, consider the
following code example:

show_name_in_expression.adb

 1procedure Show_Name_In_Expression is
 2 type Mode is (Off, A, B, C, D);
 3
 4 M1 : Mode;
 5begin
 6 M1 := A;
 7
 8 case M1 is
 9 when Off | D =>
10 null;
11 when A | B | C =>
12 M1 := D;
13 end case;
14
15end Show_Name_In_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_In_Expression
MD5: ec8fcbc511e6a372da4f0ad99d2619a5

Here, the case statement expects a selecting expression. In this case, M1
is identified as a name — after being identified as a relation, a simple
expression, a term, a factor and a primary.

However, if we replace case M1 is by case (M1) is, (M1)
is identified as a parenthesized expression, not as a name! This parenthesized
expression is first parsed and evaluated, which might have implications in case
statements, as we'll see
in another chapter.

Let's look at another example, this time with a subprogram call:

increment_by_one.ads

1procedure Increment_By_One (I : in out Integer);

increment_by_one.adb

1procedure Increment_By_One (I : in out Integer) is
2begin
3 I := I + 1;
4end Increment_By_One;

show_name_in_expression.adb

1with Increment_By_One;
2
3procedure Show_Name_In_Expression is
4 V : Integer := 0;
5begin
6 Increment_By_One ((V));
7end Show_Name_In_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_In_Expression
MD5: 4805df49dc702e5cb365252e58742dd2

Build output

show_name_in_expression.adb:6:23: error: actual for "I" must be a variable
gprbuild: *** compilation phase failed

The Increment_By_One procedure from this example expects a variable as an
actual parameter because the parameter mode is in out. However, the
(V) in the call to the procedure is interpreted as an expression, so we
end up providing a value — the result of the expression — as the
actual parameter instead of the V variable. Naturally, this is a
compilation error. (Of course, writing Increment_By_One (V) fixes the
error.)

Conditional Expressions

As we've seen before, we can write simple expressions such as I = 0 or
D.Valid. A conditional expression, as the name implies, is an
expression that contains a condition. This might be an "if-expression" (in the
if ... then ... else form) or a "case-expression" (in the
case ... is when => form).

The Max function in the following code example is an expression function
implemented with a conditional expression — an if-expression, to be more
precise:

expr_func.ads

1package Expr_Func is
2
3 function Max (A, B : Integer) return Integer is
4 (if A >= B then A else B);
5
6end Expr_Func;

Let's say we have a system with four states Off, On,
Waiting, and Invalid. For this system, we want to implement a
function named Toggled that returns the toggled value of a state
S. If the current value of S is either Off or On,
the function toggles from Off to On (or from On
to Off). For other values, the state remains unchanged — i.e. the
returned value is the same as the input value. This is the implementation using
a conditional expression:

expr_func.ads

 1package Expr_Func is
 2
 3 type State is (Off, On, Waiting, Invalid);
 4
 5 function Toggled (S : State) return State is
 6 (if S = Off
 7 then On
 8 elsif S = On
 9 then Off
10 else S);
11
12end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_If_Expressions_1
MD5: 7a99711afecc0b481557f9874dfbf4de

As you can see, if-expressions may contain an elsif branch (and
therefore be more complicated).

The code above corresponds to this more verbose version:

expr_func.ads

1package Expr_Func is
2
3 type State is (Off, On, Waiting, Invalid);
4
5 function Toggled (S : State) return State;
6
7end Expr_Func;

expr_func.adb

 1package body Expr_Func is
 2
 3 function Toggled (S : State) return State is
 4 begin
 5 if S = Off then
 6 return On;
 7 elsif S = On then
 8 return Off;
 9 else
10 return S;
11 end if;
12 end Toggled;
13
14end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_If_Expressions_2
MD5: 9e6cdf53c9c934f37e5717e1d230615a

If we compare the if-block of this code example to the if-expression of the
previous example, we notice that the if-expression is just a simplified version
without the return keyword and the end if;. In fact, converting
an if-block to an if-expression is quite straightforward.

We could also replace the if-expression used in the Toggled function
above with a case-expression. For example:

expr_func.ads

 1package Expr_Func is
 2
 3 type State is (Off, On, Waiting, Invalid);
 4
 5 function Toggled (S : State) return State is
 6 (case S is
 7 when Off => On,
 8 when On => Off,
 9 when others => S);
10
11end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_Case_Expressions_1
MD5: 0dd3a86f0872d1e8c3a81f7a17c44bd5

Note that we use commas in case-expressions to separate the alternatives (the
when expressions). The code above corresponds to this more verbose
version:

expr_func.ads

1package Expr_Func is
2
3 type State is (Off, On, Waiting, Invalid);
4
5 function Toggled (S : State) return State;
6
7end Expr_Func;

expr_func.adb

 1package body Expr_Func is
 2
 3 function Toggled (S : State) return State is
 4 begin
 5 case S is
 6 when Off => return On;
 7 when On => return Off;
 8 when others => return S;
 9 end case;
10 end Toggled;
11
12end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_Case_Expressions_2
MD5: db6a0737e3931c83c31f53e4da3d8a2b

If we compare the case block of this code example to the case-expression of the
previous example, we notice that the case-expression is just a simplified
version of the case block without the return keyword and the
end case;, and with alternatives separated by commas instead of
semicolons.

In the Ada Reference Manual

	4.5.7 Conditional Expressions[#8]

Quantified Expressions

Quantified expressions are for expressions using a quantifier —
which can be either all or some — and a predicate. This
kind of expressions let us formalize statements such as:

	"all values of array A must be zero" into
for all I in A'Range => A (I) = 0, and

	"at least one value of array A must be zero" into
for some I in A'Range => A (I) = 0.

In the quantified expression for all I in A'Range => A (I) = 0, the
quantifier is all and the predicate is A (I) = 0. In the second
expression, the quantifier is some. The result of a quantified
expression is always a Boolean value.

For example, we could use the quantified expressions above and implement these
two functions:

	Is_Zero, which checks whether all components of an array A are
zero, and

	Has_Zero, which checks whether array A has at least one
component of the array A is zero.

This is the complete code:

int_arrays.ads

 1package Int_Arrays is
 2
 3 type Integer_Arr is
 4 array (Positive range <>) of Integer;
 5
 6 function Is_Zero (A : Integer_Arr)
 7 return Boolean is
 8 (for all I in A'Range => A (I) = 0);
 9
10 function Has_Zero (A : Integer_Arr)
11 return Boolean is
12 (for some I in A'Range => A (I) = 0);
13
14 procedure Display_Array (A : Integer_Arr;
15 Name : String);
16
17end Int_Arrays;

int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Arrays is
 4
 5 procedure Display_Array (A : Integer_Arr;
 6 Name : String) is
 7 begin
 8 Put (Name & ": ");
 9 for E of A loop
10 Put (E'Image & " ");
11 end loop;
12 New_Line;
13 end Display_Array;
14
15end Int_Arrays;

test_int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Int_Arrays; use Int_Arrays;
 4
 5procedure Test_Int_Arrays is
 6 A : Integer_Arr := (0, 0, 1);
 7begin
 8 Display_Array (A, "A");
 9 Put_Line ("Is_Zero: "
10 & Boolean'Image (Is_Zero (A)));
11 Put_Line ("Has_Zero: "
12 & Boolean'Image (Has_Zero (A)));
13
14 A := (0, 0, 0);
15
16 Display_Array (A, "A");
17 Put_Line ("Is_Zero: "
18 & Boolean'Image (Is_Zero (A)));
19 Put_Line ("Has_Zero: "
20 & Boolean'Image (Has_Zero (A)));
21end Test_Int_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_1
MD5: 4bbda8a3830272748500f797f23f76fc

Runtime output

A: 0 0 1
Is_Zero: FALSE
Has_Zero: TRUE
A: 0 0 0
Is_Zero: TRUE
Has_Zero: TRUE

As you might have expected, we can rewrite a quantified expression as a loop
in the for I in A'Range loop if ... return ... form. In the code below,
we're implementing Is_Zero and Has_Zero using loops and
conditions instead of quantified expressions:

int_arrays.ads

 1package Int_Arrays is
 2
 3 type Integer_Arr is
 4 array (Positive range <>) of Integer;
 5
 6 function Is_Zero (A : Integer_Arr)
 7 return Boolean;
 8
 9 function Has_Zero (A : Integer_Arr)
10 return Boolean;
11
12 procedure Display_Array (A : Integer_Arr;
13 Name : String);
14
15end Int_Arrays;

int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Arrays is
 4
 5 function Is_Zero (A : Integer_Arr)
 6 return Boolean is
 7 begin
 8 for I in A'Range loop
 9 if A (I) /= 0 then
10 return False;
11 end if;
12 end loop;
13
14 return True;
15 end Is_Zero;
16
17 function Has_Zero (A : Integer_Arr)
18 return Boolean is
19 begin
20 for I in A'Range loop
21 if A (I) = 0 then
22 return True;
23 end if;
24 end loop;
25
26 return False;
27 end Has_Zero;
28
29 procedure Display_Array (A : Integer_Arr;
30 Name : String) is
31 begin
32 Put (Name & ": ");
33 for E of A loop
34 Put (E'Image & " ");
35 end loop;
36 New_Line;
37 end Display_Array;
38
39end Int_Arrays;

test_int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Int_Arrays; use Int_Arrays;
 4
 5procedure Test_Int_Arrays is
 6 A : Integer_Arr := (0, 0, 1);
 7begin
 8 Display_Array (A, "A");
 9 Put_Line ("Is_Zero: "
10 & Boolean'Image (Is_Zero (A)));
11 Put_Line ("Has_Zero: "
12 & Boolean'Image (Has_Zero (A)));
13
14 A := (0, 0, 0);
15
16 Display_Array (A, "A");
17 Put_Line ("Is_Zero: "
18 & Boolean'Image (Is_Zero (A)));
19 Put_Line ("Has_Zero: "
20 & Boolean'Image (Has_Zero (A)));
21end Test_Int_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_2
MD5: a957a8fd60e1849248efe1a84eae6afa

Runtime output

A: 0 0 1
Is_Zero: FALSE
Has_Zero: TRUE
A: 0 0 0
Is_Zero: TRUE
Has_Zero: TRUE

So far, we've seen quantified expressions using indices — e.g.
for all I in A'Range => We could avoid indices in quantified
expressions by simply using the E of A form. In this case, we can just
write for all E of A => Let's adapt the implementation of
Is_Zero and Has_Zero using this form:

int_arrays.ads

 1package Int_Arrays is
 2
 3 type Integer_Arr is
 4 array (Positive range <>) of Integer;
 5
 6 function Is_Zero (A : Integer_Arr)
 7 return Boolean is
 8 (for all E of A => E = 0);
 9
10 function Has_Zero (A : Integer_Arr)
11 return Boolean is
12 (for some E of A => E = 0);
13
14end Int_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_3
MD5: 059d12a6529483ebcc5db23dc6262896

Here, we're checking the components E of the array A and
comparing them against zero.

In the Ada Reference Manual

	4.5.8 Quantified Expressions[#9]

Declare Expressions

So far, we've seen expressions that make use of existing objects declared
outside of the expression. Sometimes, we might want to declare constant objects
inside the expression, so we can use them locally in the expression. Similarly,
we might want to rename an object and use the renamed object in an expression.
In those cases, we can use a declare expression.

A declare expression allows for declaring or renaming objects within an
expression:

p.ads

 1pragma Ada_2022;
 2
 3package P is
 4
 5 function Max (A, B : Integer) return Integer is
 6 (declare
 7 Bigger_A : constant Boolean := (A >= B);
 8 begin
 9 (if Bigger_A then A else B));
10
11end P;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Simple_Declare_Expression
MD5: 5da80e76393645d6eb1cb8cfe88e190a

The declare expression starts with the declare keyword and the usual
object declarations, and it's followed by the begin keyword and the
body. In this example, the body of the declare expression is a conditional
expression.

Of course, the code above isn't really useful, so let's look at a more complete
example:

integer_arrays.ads

 1pragma Ada_2022;
 2
 3package Integer_Arrays is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 function Sum (Arr : Integer_Array)
 9 return Integer;
10
11 --
12 -- Expression function using
13 -- declare expression:
14 --
15 function Avg (Arr : Integer_Array)
16 return Float is
17 (declare
18 A : Integer_Array renames Arr;
19 S : constant Float := Float (Sum (A));
20 L : constant Float := Float (A'Length);
21 begin
22 S / L);
23
24end Integer_Arrays;

integer_arrays.adb

 1package body Integer_Arrays is
 2
 3 function Sum (Arr : Integer_Array)
 4 return Integer is
 5 begin
 6 return Acc : Integer := 0 do
 7 for V of Arr loop
 8 Acc := Acc + V;
 9 end loop;
10 end return;
11 end Sum;
12
13end Integer_Arrays;

show_integer_arrays.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5with Integer_Arrays; use Integer_Arrays;
 6
 7procedure Show_Integer_Arrays is
 8 Arr : constant Integer_Array := [1, 2, 3];
 9begin
10 Put_Line ("Sum: "
11 & Sum (Arr)'Image);
12 Put_Line ("Avg: "
13 & Avg (Arr)'Image);
14end Show_Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_Arrays
MD5: 8e96d49b1676f0aaf95437e271069690

Runtime output

Sum: 6
Avg: 2.00000E+00

In this example, the Avg function is implemented using a declare
expression. In this expression, A renames the Arr array, and
S is a constant initialized with the value returned by the Sum
function.

In the Ada Reference Manual

	4.5.9 Declare Expressions[#10]

Restrictions in the declarative part

The declarative part of a declare expression is more restricted than the
declarative part of a subprogram or declare block. In fact, we cannot:

	declare variables;

	declare constants of limited types;

	rename an object of limited type that is constructed within the declarative
part;

	declare aliased constants;

	declare constants that make use of the Access or
Unchecked_Access attributes in the initialization;

	declare constants of anonymous access type.

Let's see some examples of erroneous declarations:

integer_arrays.ads

 1pragma Ada_2022;
 2
 3package Integer_Arrays is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Integer_Sum is limited private;
 9
10 type Const_Integer_Access is
11 access constant Integer;
12
13 function Sum (Arr : Integer_Array)
14 return Integer;
15
16 function Sum (Arr : Integer_Array)
17 return Integer_Sum;
18
19 --
20 -- Expression function using
21 -- declare expression:
22 --
23 function Avg (Arr : Integer_Array)
24 return Float is
25 (declare
26 A : Integer_Array renames Arr;
27
28 S1 : aliased constant Integer := Sum (A);
29 -- ERROR: aliased constant
30
31 S : Float := Float (S1);
32 L : Float := Float (A'Length);
33 -- ERROR: declaring variables
34
35 S2 : constant Integer_Sum := Sum (A);
36 -- ERROR: declaring constant of
37 -- limited type
38
39 A1 : Const_Integer_Access :=
40 S1'Unchecked_Access;
41 -- ERROR: using 'Unchecked_Access
42 -- attribute
43
44 A2 : access Integer := null;
45 -- ERROR: declaring object of
46 -- anonymous access type
47 begin
48 S / L);
49
50private
51
52 type Integer_Sum is new Integer;
53
54end Integer_Arrays;

integer_arrays.adb

 1package body Integer_Arrays is
 2
 3 function Sum (Arr : Integer_Array)
 4 return Integer is
 5 begin
 6 return Acc : Integer := 0 do
 7 for V of Arr loop
 8 Acc := Acc + V;
 9 end loop;
10 end return;
11 end Sum;
12
13 function Sum (Arr : Integer_Array)
14 return Integer_Sum is
15 (Integer_Sum (Integer'(Sum (Arr))));
16
17end Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_Arrays_Error
MD5: e1f72f817baea87f66fb34b6aa8d1949

Build output

integer_arrays.ads:28:10: error: "aliased" not allowed in declare_expression
integer_arrays.ads:31:10: error: object renaming or constant declaration expected
integer_arrays.ads:32:10: error: object renaming or constant declaration expected
integer_arrays.ads:35:10: error: object renaming or constant declaration expected
integer_arrays.ads:40:19: error: "Unchecked_Access" attribute cannot occur in a declare_expression
integer_arrays.ads:44:15: error: anonymous access type not allowed in declare_expression
gprbuild: *** compilation phase failed

In this version of the Avg function, we see many errors in the
declarative part of the declare expression. If we convert the declare
expression into an actual function implementation, however, those declarations
won't trigger compilation errors. (Feel free to try this out!)

Reduction Expressions

Note

This feature was introduced in Ada 2022.

A reduction expression reduces a list of values into a single value. For
example, we can reduce the list [2, 3, 4] to a single value:

	by adding the values of the list: 2 + 3 + 4 = 9, or

	by multiplying the values of the list: 2 * 3 * 4 = 24.

We write a reduction expression by using the Reduce attribute and
providing the reducer and its initial value:

	the reducer is the operator (e.g.: + or *) that we use to
combine the values of the list;

	the initial value is the value that we use before all other values of the
list.

For example, if we use + as the operator and 0 an the initial
value, we get the reduction expression: 0 + 2 + 3 + 4 = 9. This can be
implemented using an array:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 A : array (1 .. 3) of Integer;
 5 I : Integer;
 6begin
 7 A := [2, 3, 4];
 8 I := A'Reduce ("+", 0);
 9
10 Put_Line ("A = "
11 & A'Image);
12 Put_Line ("I = "
13 & I'Image);
14end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Simple_Reduction_Expression
MD5: 1a0164b3c4768125c8dbbe8a0f4955a1

Runtime output

A =
[2, 3, 4]
I = 9

Here, we have the array A with a list of values. The
A'Reduce ("+", 0) expression reduces the list of values of A into
a single value — in this case, an integer value that is stored in
I. This statement is equivalent to:

I := 0;
for E of A loop
 I := I + E;
end loop;

Naturally, we can reduce the array using the * operator:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 A : array (1 .. 3) of Integer;
 5 I : Integer;
 6begin
 7 A := [2, 3, 4];
 8 I := A'Reduce ("*", 1);
 9
10 Put_Line ("A = "
11 & A'Image);
12 Put_Line ("I = "
13 & I'Image);
14end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Simple_Reduction_Expression
MD5: 415b1ee8b21cca6d2438a34c88e7e2df

Runtime output

A =
[2, 3, 4]
I = 24

In this example, we call A'Reduce ("*", 1) to reduce the list. (Note
that we use an initial value of one because it is the
identity element[#11] of a multiplication, so the
complete operation is: 1 * 2 * 3 * 4 = 24.)

In the Ada Reference Manual

	Reduction Expressions[#12]

Value sequences

In addition to arrays, we can apply reduction expression to value sequences,
which consist of an iterated element association — for example,
[for I in 1 .. 3 => I + 1]. We can simply append the reduction
expression to a value sequence:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 I : Integer;
 5begin
 6 I := [for I in 1 .. 3 =>
 7 I + 1]'Reduce ("+", 0);
 8 Put_Line ("I = "
 9 & I'Image);
10
11 I := [for I in 1 .. 3 =>
12 I + 1]'Reduce ("*", 1);
13 Put_Line ("I = "
14 & I'Image);
15end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Reduction_Expression_Value_Sequences
MD5: e714f69700e3f0387314ee0e531620c4

Runtime output

I = 9
I = 24

In this example, we create the value sequence [for I in 1 .. 3 => I + 1]
and reduce it using the + and * operators. (Note that the
operations in this example have the same results as in the previous examples
using arrays.)

Custom reducers

In the previous examples, we've used standard operators such as + and
* as the reducer. We can, however, write our own reducers and pass
them to the Reduce attribute. For example:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 type Integer_Array is
 5 array (Positive range <>) of Integer;
 6
 7 A : Integer_Array (1 .. 3);
 8 I : Long_Integer;
 9
10 procedure Accumulate
11 (Accumulator : in out Long_Integer;
12 Value : Integer) is
13 begin
14 Accumulator := Accumulator
15 + Long_Integer (Value);
16 end Accumulate;
17
18begin
19 A := [2, 3, 4];
20 I := A'Reduce (Accumulate, 0);
21
22 Put_Line ("A = "
23 & A'Image);
24 Put_Line ("I = "
25 & I'Image);
26end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Custom_Reducer_Procedure
MD5: 3190a1ff6a8027268ca96a75cf214714

Runtime output

A =
[2, 3, 4]
I = 9

In this example, we implement the Accumulate procedure as our reducer,
which is called to accumulate the individual elements (integer values) of the
list. We pass this procedure to the Reduce attribute in the
I := A'Reduce (Accumulate, 0) statement, which is equivalent to:

I := 0;
for E of A loop
 Accumulate (I, E);
end loop;

A custom reducer must have the following parameters:

	The accumulator parameter, which stores the interim result — and the
final result as well, once all elements of the list have been processed.

	The value parameter, which is a single element from the list.

Note that the accumulator type doesn't need to match the type of the individual
components. In this example, we're using Integer as the component type,
while the accumulator type is Long_Integer. (For this kind of reducers,
using Long_Integer instead of Integer for the accumulator type
makes lots of sense due to the risk of triggering overflows while the reducer
is accumulating values — e.g. when accumulating a long list with larger
numbers.)

In the example above, we've implemented the reducer as a procedure. However, we
can also implement it as a function. In this case, the accumulated value is
returned by the function:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 type Integer_Array is
 5 array (Positive range <>) of Integer;
 6
 7 A : Integer_Array (1 .. 3);
 8 I : Long_Integer;
 9
10 function Accumulate
11 (Accumulator : Long_Integer;
12 Value : Integer)
13 return Long_Integer is
14 begin
15 return Accumulator + Long_Integer (Value);
16 end Accumulate;
17
18begin
19 A := [2, 3, 4];
20 I := A'Reduce (Accumulate, 0);
21
22 Put_Line ("A = "
23 & A'Image);
24 Put_Line ("I = "
25 & I'Image);
26end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Custom_Reducer_Function
MD5: ee5d5bb2b151ef7552d752c7e452127d

Runtime output

A =
[2, 3, 4]
I = 9

In this example, we converted the Accumulate procedure into a function
(while the core implementation is essentially the same).

Note that the reduction expression remains the same, independently of whether
we're using a procedure or a function as the reducer. Therefore, the statement
with the reduction expression in this example is the same as in the previous
example: I := A'Reduce (Accumulate, 0);. Now that we're using a
function, this statement is equivalent to:

I := 0;
for E of A loop
 I := Accumulate (I, E);
end loop;

Other accumulator types

The accumulator type isn't restricted to scalars: in fact, we could use record
types as well. For example:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4 type Integer_Array is
 5 array (Positive range <>) of Integer;
 6
 7 A : Integer_Array (1 .. 3);
 8
 9 type Integer_Accumulator is record
10 Value : Long_Integer;
11 Count : Integer;
12 end record;
13
14 function Accumulate
15 (Accumulator : Integer_Accumulator;
16 Value : Integer)
17 return Integer_Accumulator is
18 begin
19 return (Value => Accumulator.Value
20 + Long_Integer (Value),
21 Count => Accumulator.Count + 1);
22 end Accumulate;
23
24 function Zero return Integer_Accumulator is
25 (Value => 0, Count => 0);
26
27 function Average (Acc : Integer_Accumulator)
28 return Float is
29 (Float (Acc.Value) / Float (Acc.Count));
30
31 Acc : Integer_Accumulator;
32
33begin
34 A := [2, 3, 4];
35
36 Acc := A'Reduce (Accumulate, Zero);
37 Put_Line ("Acc = "
38 & Acc'Image);
39 Put_Line ("Avg = "
40 & Average (Acc)'Image);
41end Show_Reduction_Expression;

In this example, we're using the Integer_Accumulator record type in our
reducer — the Accumulate function. In this case, we're not only
accumulating the values, but also counting the number of elements in the
list. (Of course, we could have used A'Length for that as well.)

Also, we're not limited to numeric types: we can also create a reducer using
strings as the accumulator type. In fact, we can display the initial value and
the elements of the list by using unbounded strings:

show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.Unbounded;
 4use Ada.Strings.Unbounded;
 5
 6procedure Show_Reduction_Expression is
 7 type Integer_Array is
 8 array (Positive range <>) of Integer;
 9
10 A : Integer_Array (1 .. 3);
11
12 function Unbounded_String_List
13 (Accumulator : Unbounded_String;
14 Value : Integer)
15 return Unbounded_String is
16 begin
17 return Accumulator
18 & ", " & Value'Image;
19 end Unbounded_String_List;
20
21begin
22 A := [2, 3, 4];
23
24 Put_Line ("A = "
25 & A'Image);
26 Put_Line ("L = "
27 & To_String (A'Reduce
28 (Unbounded_String_List,
29 To_Unbounded_String ("0"))));
30end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Reducer_String_Accumulator
MD5: 43c54e93e404a235c8721db7c691a864

Runtime output

A =
[2, 3, 4]
L = 0, 2, 3, 4

In this case, the "accumulator" is concatenating the initial value and
individual values of the list into a string.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-4-5-2.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-4-5-7.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-4-5-8.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-4-5-9.html

[#11]
https://en.wikipedia.org/wiki/Identity_element

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-4-5-10.html

Statements

Simple and Compound Statements

We can classify statements as either simple or compound. Simple statements
don't contain other statements; think of them as "atomic units" that cannot be
further divided. Compound statements, on the other hand, may contain other
— simple or compound — statements.

Here are some examples from each category:

	Category

	Examples

	Simple statements

	Null statement, assignment, subprogram call, etc.

	Compound statements

	If statement, case statement, loop statement,
block statement

In the Ada Reference Manual

	5.1 Simple and Compound Statements - Sequences of Statements[#1]

Labels

We can use labels to identify statements in the code. They have the following
format: <<Some_Label>>. We write them right before the statement we want
to apply it to. Let's see an example of labels with simple statements:

show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4 pragma Warnings (Off, "is not referenced");
 5begin
 6 <<Show_Hello>> Put_Line ("Hello World!");
 7 <<Show_Test>> Put_Line ("This is a test.");
 8
 9 <<Show_Separator>>
10 <<Show_Block_Separator>>
11 Put_Line ("====================");
12end Show_Statement_Identifier;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Simple_Labels
MD5: 820f5963b476af5c04314fd4373d2286

Runtime output

Hello World!
This is a test.
====================

Here, we're labeling each statement. For example, we use the Show_Hello
label to identify the Put_Line ("Hello World!"); statement. Note that we
can use multiple labels a single statement. In this code example, we use the
Show_Separator and Show_Block_Separator labels for the same
statement.

In the Ada Reference Manual

	5.1 Simple and Compound Statements - Sequences of Statements[#2]

Labels and goto statements

Labels are mainly used in combination with goto statements. (Although
pretty much uncommon, we could potentially use labels to indicate important
statements in the code.) Let's see an example where we use a goto label;
statement to jump to a specific label:

show_cleanup.adb

 1procedure Show_Cleanup is
 2 pragma Warnings (Off, "always false");
 3
 4 Some_Error : Boolean;
 5begin
 6 Some_Error := False;
 7
 8 if Some_Error then
 9 goto Cleanup;
10 end if;
11
12 <<Cleanup>> null;
13end Show_Cleanup;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Goto
MD5: 0ce06582bbefae818d4da3b7d2d3436b

Here, we transfer the control to the cleanup statement as soon as an error is
detected.

Use-case: Continue

Another use-case is that of a Continue label in a loop. Consider a loop
where we want to skip further processing depending on a condition:

show_continue.adb

 1procedure Show_Continue is
 2 function Is_Further_Processing_Needed
 3 (Dummy : Integer)
 4 return Boolean
 5 is
 6 begin
 7 -- Dummy implementation
 8 return False;
 9 end Is_Further_Processing_Needed;
10
11 A : constant array (1 .. 10) of Integer :=
12 (others => 0);
13begin
14 for E of A loop
15
16 -- Some stuff here...
17
18 if Is_Further_Processing_Needed (E) then
19
20 -- Do more stuff...
21
22 null;
23 end if;
24 end loop;
25end Show_Continue;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_1
MD5: 115eeaf08d5fb072d707d6325fe9cfd0

In this example, we call the Is_Further_Processing_Needed (E) function to
check whether further processing is needed or not. If it's needed, we continue
processing in the if statement. We could simplify this code by just using
a Continue label at the end of the loop and a goto statement:

show_continue.adb

 1procedure Show_Continue is
 2 function Is_Further_Processing_Needed
 3 (Dummy : Integer)
 4 return Boolean
 5 is
 6 begin
 7 -- Dummy implementation
 8 return False;
 9 end Is_Further_Processing_Needed;
10
11 A : constant array (1 .. 10) of Integer :=
12 (others => 0);
13begin
14 for E of A loop
15
16 -- Some stuff here...
17
18 if not Is_Further_Processing_Needed (E) then
19 goto Continue;
20 end if;
21
22 -- Do more stuff...
23
24 <<Continue>>
25 end loop;
26end Show_Continue;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_2
MD5: 260b52ead782adf76eee5cf3c4e8332b

Here, we use a Continue label at the end of the loop and jump to it in
the case that no further processing is needed. Note that, in this example, we
don't have a statement after the Continue label because the label itself
is at the end of a statement — to be more specific, at the end of the loop
statement. In such cases, there's an implicit null statement.

Historically

Since Ada 2012, we can simply write:

loop
 -- Some statements...

 <<Continue>>
end loop;

If a label is used at the end of a sequence of statements, a null
statement is implied. In previous versions of Ada, however, that is not the
case. Therefore, when using those versions of the language, we must write at
least a null statement:

loop
 -- Some statements...

 <<Continue>> null;
end loop;

Labels and compound statements

We can use labels with compound statements as well. For example, we can label
a for loop:

show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4 pragma Warnings (Off, "is not referenced");
 5
 6 Arr : constant array (1 .. 5) of Integer :=
 7 (1, 4, 6, 42, 49);
 8 Found : Boolean := False;
 9begin
10 <<Find_42>> for E of Arr loop
11 if E = 42 then
12 Found := True;
13 exit;
14 end if;
15 end loop;
16
17 Put_Line ("Found: " & Found'Image);
18end Show_Statement_Identifier;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Label
MD5: 5ca80b5a379ba0b08ccfaa4c6eab64d5

Runtime output

Found: TRUE

For further reading...

In addition to labels, loops and block statements allow us to use a
statement identifier. In simple terms, instead of writing
<<Some_Label>>, we write Some_Label :.

We could rewrite the previous code example using a loop statement
identifier:

show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4 Arr : constant array (1 .. 5) of Integer :=
 5 (1, 4, 6, 42, 49);
 6 Found : Boolean := False;
 7begin
 8 Find_42 : for E of Arr loop
 9 if E = 42 then
10 Found := True;
11 exit Find_42;
12 end if;
13 end loop Find_42;
14
15 Put_Line ("Found: " & Found'Image);
16end Show_Statement_Identifier;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Statement_Identifier
MD5: e52cb5eea9427addf3cabe64dd73bc2d

Runtime output

Found: TRUE

Loop statement and block statement identifiers are generally preferred over
labels. Later in this chapter, we discuss this topic in more detail.

Exit loop statement

We've introduced bare loops back in the
Introduction to Ada course.
In this section, we'll briefly discuss loop names and exit loop statements.

A bare loop has this form:

loop
 exit when Some_Condition;
end loop;

We can name a loop by using a loop statement identifier:

Loop_Name:
 loop
 exit Loop_Name when Some_Condition;
 end loop Loop_Name;

In this case, we have to use the loop's name after end loop. Also,
having a name for a loop allows us to indicate which loop we're exiting from:
exit Loop_Name when.

Let's see a complete example:

show_vector_cursor_iteration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Containers.Vectors;
 3
 4procedure Show_Vector_Cursor_Iteration is
 5
 6 package Integer_Vectors is new
 7 Ada.Containers.Vectors
 8 (Index_Type => Positive,
 9 Element_Type => Integer);
10
11 use Integer_Vectors;
12
13 V : constant Vector := 20 & 10 & 0 & 13;
14 C : Cursor;
15begin
16 C := V.First;
17 Put_Line ("Vector elements are: ");
18
19 Show_Elements :
20 loop
21 exit Show_Elements when C = No_Element;
22
23 Put_Line ("Element: "
24 & Integer'Image (V (C)));
25 C := Next (C);
26 end loop Show_Elements;
27
28end Show_Vector_Cursor_Iteration;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Exit_Named_Loop
MD5: b77353f6ed98f8ddb32c73c47d249020

Runtime output

Vector elements are:
Element: 20
Element: 10
Element: 0
Element: 13

Naming a loop is particularly useful when we have nested loops and we want to
exit directly from the inner loop:

show_inner_loop_exit.adb

 1procedure Show_Inner_Loop_Exit is
 2 pragma Warnings (Off);
 3
 4 Cond : Boolean := True;
 5begin
 6
 7 Outer_Processing : loop
 8
 9 Inner_Processing : loop
10 exit Outer_Processing when Cond;
11 end loop Inner_Processing;
12
13 end loop Outer_Processing;
14
15end Show_Inner_Loop_Exit;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Inner_Loop_Exit
MD5: b5c7434f1bf23c2cb8f81e4c13a31386

Here, we indicate that we exit from the Outer_Processing loop in case a
condition Cond is met, even if we're actually within the inner loop.

In the Ada Reference Manual

	5.7 Exit Statements[#3]

If, case and loop statements

In the Introduction to Ada course, we talked about
if statements,
loop statements,
and case statements. This is a very simple
code example with these statements:

show_if_case_loop_statements.adb

 1procedure Show_If_Case_Loop_Statements is
 2 pragma Warnings (Off);
 3
 4 Reset : Boolean := False;
 5 Increment : Boolean := True;
 6 Val : Integer := 0;
 7begin
 8 --
 9 -- If statement
10 --
11 if Reset then
12 Val := 0;
13 elsif Increment then
14 Val := Val + 1;
15 else
16 Val := Val - 1;
17 end if;
18
19 --
20 -- Loop statement
21 --
22 for I in 1 .. 5 loop
23 Val := Val * 2 - I;
24 end loop;
25
26 --
27 -- Case statement
28 --
29 case Val is
30 when 0 .. 5 =>
31 null;
32 when others =>
33 Val := 5;
34 end case;
35
36end Show_If_Case_Loop_Statements;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Example
MD5: 4fdc7f00e5218ed59d9eb050339567f1

In this section, we'll look into a more advanced detail about the case
statement.

In the Ada Reference Manual

	5.3 If Statements[#4]

	5.4 Case Statements[#5]

	5.5 Loop Statements[#6]

Case statements and expressions

As we know, the case statement has a choice expression
(case Choice_Expression is), which is expected to be a discrete type.
Also, this expression can be a function call or a type conversion, for example
— in additional to being a variable or a constant.

As we discussed earlier on,
if we use parentheses, the contents between those
parentheses is parsed as an expression. In the context of case statements, the
expression is first evaluated before being used as a choice expression. Consider
the following code example:

scales.ads

 1package Scales is
 2
 3 type Satisfaction_Scale is (Very_Dissatisfied,
 4 Dissatisfied,
 5 OK,
 6 Satisfied,
 7 Very_Satisfied);
 8
 9 type Scale is range 0 .. 10;
10
11 function To_Satisfaction_Scale
12 (S : Scale)
13 return Satisfaction_Scale;
14
15end Scales;

scales.adb

 1package body Scales is
 2
 3 function To_Satisfaction_Scale
 4 (S : Scale)
 5 return Satisfaction_Scale
 6 is
 7 Satisfaction : Satisfaction_Scale;
 8 begin
 9 case (S) is
10 when 0 .. 2 =>
11 Satisfaction := Very_Dissatisfied;
12 when 3 .. 4 =>
13 Satisfaction := Dissatisfied;
14 when 5 .. 6 =>
15 Satisfaction := OK;
16 when 7 .. 8 =>
17 Satisfaction := Satisfied;
18 when 9 .. 10 =>
19 Satisfaction := Very_Satisfied;
20 end case;
21
22 return Satisfaction;
23 end To_Satisfaction_Scale;
24
25end Scales;

show_case_statement_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Scales; use Scales;
 4
 5procedure Show_Case_Statement_Expression is
 6 Score : constant Scale := 0;
 7begin
 8 Put_Line ("Score: "
 9 & Scale'Image (Score)
10 & Satisfaction_Scale'Image (
11 To_Satisfaction_Scale (Score)));
12
13end Show_Case_Statement_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_Statement_Expression
MD5: 353ff771291e0c994ec052e818f9720c

Build output

scales.adb:9:07: error: missing case values: -128 .. -1
scales.adb:9:07: error: missing case values: 11 .. 127
gprbuild: *** compilation phase failed

When we try to compile this code example, the compiler complains about missing
values in the To_Satisfaction_Scale function. As we mentioned in the
Introduction to Ada course, every possible
value for the choice expression needs to be covered by a unique branch of the
case statement. In principle, it seems that we're actually covering all
possible values of the Scale type, which ranges from 0 to 10. However,
we've written case (S) is instead of case S is. Because of the
parentheses, (S) is evaluated as an expression. In this case, the
expected range of the case statement is not Scale'Range, but the range of
its base type Scale'Base'Range.

In other languages

In C, the switch-case statement requires parentheses for the choice
expression:

main.c

 1
 2#include <stdio.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 int s = 0;
 7
 8 switch (s)
 9 {
10 case 0:
11 case 1:
12 printf("Value in the 0 -- 1 range\n");
13 default:
14 printf("Value > 1\n");
15 }
16}

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_Statement_C
MD5: 64ef6b15f1bdf14ca9273964ec5e1755

Runtime output

Value in the 0 -- 1 range
Value > 1

In Ada, parentheses aren't expected in the choice expression. Therefore,
we shouldn't write case (S) is in a C-like fashion —
unless, of course, we really want to evaluate an expression in the case
statement.

Block Statements

We've introduced block statements back in the
Introduction to Ada course.
They have this simple form:

show_block_statement.adb

 1procedure Show_Block_Statement is
 2 pragma Warnings (Off);
 3begin
 4
 5 -- BLOCK STARTS HERE:
 6 declare
 7 I : Integer;
 8 begin
 9 I := 0;
10 end;
11
12end Show_Block_Statement;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Simple_Block_Statement
MD5: 61134b3899620c6d9ed68974fae33b5e

We can use an identifier when writing a block statement. (This is similar to
loop statement identifiers that we discussed in the previous section.) In this
example, we implement a block called Simple_Block:

show_block_statement.adb

 1procedure Show_Block_Statement is
 2 pragma Warnings (Off);
 3begin
 4
 5 Simple_Block : declare
 6 I : Integer;
 7 begin
 8 I := 0;
 9 end Simple_Block;
10
11end Show_Block_Statement;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Block_Statement_Identifier
MD5: b327b7675931d9b994637671c806c7c3

Note that we must write end Simple_Block; when we use the
Simple_Block identifier.

Block statement identifiers are useful:

	to indicate the begin and the end of a block — as some blocks might be
long or nested in other blocks;

	to indicate the purpose of the block (i.e. as code documentation).

In the Ada Reference Manual

	5.6 Block Statements[#7]

Extended return statement

A common idiom in Ada is to build up a function result in a local
object, and then return that object:

show_return.adb

 1procedure Show_Return is
 2
 3 type Array_Of_Natural is
 4 array (Positive range <>) of Natural;
 5
 6 function Sum (A : Array_Of_Natural)
 7 return Natural
 8 is
 9 Result : Natural := 0;
10 begin
11 for Index in A'Range loop
12 Result := Result + A (Index);
13 end loop;
14 return Result;
15 end Sum;
16
17begin
18 null;
19end Show_Return;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Simple_Return
MD5: 16e85a8cba869802f912627c40a64c20

Since Ada 2005, a notation called the extended return statement is available:
this allows you to declare the result object and return it as part of one
statement. It looks like this:

show_extended_return.adb

 1procedure Show_Extended_Return is
 2
 3 type Array_Of_Natural is
 4 array (Positive range <>) of Natural;
 5
 6 function Sum (A : Array_Of_Natural)
 7 return Natural
 8 is
 9 begin
10 return Result : Natural := 0 do
11 for Index in A'Range loop
12 Result := Result + A (Index);
13 end loop;
14 end return;
15 end Sum;
16
17begin
18 null;
19end Show_Extended_Return;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Extended_Return
MD5: d6d6edaf800a0e346ff8ede13cbbe100

The return statement here creates Result, initializes it to
0, and executes the code between do and end return.
When end return is reached, Result is automatically returned
as the function result.

In the Ada Reference Manual

	6.5 Return Statements[#8]

Other usages of extended return statements

Note

This section was originally written by Robert A. Duff and published as
Gem #10: Limited Types in Ada 2005[#9].

While the extended_return_statement was added to the language
specifically to support
limited constructor functions,
it comes in handy whenever you want a local name for the function result:

show_string_construct.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_String_Construct is
 4
 5 function Make_String
 6 (S : String;
 7 Prefix : String;
 8 Use_Prefix : Boolean) return String
 9 is
10 Length : Natural := S'Length;
11 begin
12 if Use_Prefix then
13 Length := Length + Prefix'Length;
14 end if;
15
16 return Result : String (1 .. Length) do
17
18 -- fill in the characters
19 if Use_Prefix then
20 Result
21 (1 .. Prefix'Length) := Prefix;
22
23 Result
24 (Prefix'Length + 1 .. Length) := S;
25 else
26 Result := S;
27 end if;
28
29 end return;
30 end Make_String;
31
32 S1 : String := "Ada";
33 S2 : String := "Make_With_";
34begin
35 Put_Line ("No prefix: "
36 & Make_String (S1, S2, False));
37 Put_Line ("With prefix: "
38 & Make_String (S1, S2, True));
39end Show_String_Construct;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Extended_Return_Other_Usages
MD5: a2b26ceed06a0ab66aff6c2b59c02003

Runtime output

No prefix: Ada
With prefix: Make_With_Ada

In this example, we first calculate the length of the string and store it in
Length. We then use this information to initialize the return object of
the Make_String function.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-5-7.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-5-3.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-5-4.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-5-5.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-5-6.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-6-5.html

[#9]
https://www.adacore.com/gems/ada-gem-10

Subprograms

Parameter Modes and Associations

In this section, we discuss some details about parameter modes and associations.
First of all, as we know, parameters can be either formal or actual:

	Formal parameters are the ones we see in a subprogram declaration and
implementation;

	Actual parameters are the ones we see in a subprogram call.

	Note that actual parameters are also called subprogram arguments in other
languages.

We define parameter associations as the connection between an actual parameter
in a subprogram call and its declaration as a formal parameter in a subprogram
specification or body.

In the Ada Reference Manual

	6.2 Formal Parameter Modes[#1]

	6.4.1 Parameter Associations[#2]

Formal Parameter Modes

We already discussed formal parameter modes in the
Introduction to Ada course:

	in

	Parameter can only be read, not written

	out

	Parameter can be written to, then read

	in out

	Parameter can be both read and written

As this topic was already discussed in that course — and we used parameter
modes extensively in all code examples from that course —, we won't
introduce the topic again here. Instead, we'll look into some of the more
advanced details.

By-copy and by-reference

In the Introduction to Ada course, we saw
that parameter modes don't correspond directly to how parameters are
actually passed. In fact, an in out parameter could be passed by copy.
For example:

check_param_passing.ads

1with System;
2
3procedure Check_Param_Passing
4 (Formal : System.Address;
5 Actual : System.Address);

check_param_passing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System.Address_Image;
 3
 4procedure Check_Param_Passing
 5 (Formal : System.Address;
 6 Actual : System.Address) is
 7begin
 8 Put_Line ("Formal parameter at "
 9 & System.Address_Image (Formal));
10 Put_Line ("Actual parameter at "
11 & System.Address_Image (Actual));
12 if System.Address_Image (Formal) =
13 System.Address_Image (Actual)
14 then
15 Put_Line
16 ("Parameter is passed by reference.");
17 else
18 Put_Line
19 ("Parameter is passed by copy.");
20 end if;
21end Check_Param_Passing;

machine_x.ads

1with System;
2
3package Machine_X is
4
5 procedure Update_Value
6 (V : in out Integer;
7 AV : System.Address);
8
9end Machine_X;

machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5 procedure Update_Value
 6 (V : in out Integer;
 7 AV : System.Address) is
 8 begin
 9 V := V + 1;
10 Check_Param_Passing (Formal => V'Address,
11 Actual => AV);
12 end Update_Value;
13
14end Machine_X;

show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5begin
6 Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: e437d3432703124496f0a217177959eb

Runtime output

Formal parameter at 00007FFF9468020C
Actual parameter at 00007FFF9468022C
Parameter is passed by copy.

As we can see by running this example,

	the integer variable A in the Show_By_Copy_By_Ref_Params
procedure

and

	the V parameter in the Update_Value procedure

have different addresses, so they are different objects. Therefore, we conclude
that this parameter is being passed by value, even though it has the
in out mode. (We talk more about addresses and the 'Address
attribute later on).

As we know, when a parameter is passed by copy, it is first copied to a
temporary object. In the case of a parameter with in out mode, the
temporary object is copied back to the original (actual) parameter at the end of
the subprogram call. In our example, the temporary object indicated by V
is copied back to A at the end of the call to Update_Value.

In Ada, it's not the parameter mode that determines whether a parameter is
passed by copy or by reference, but rather its type. We can distinguish between
three categories:

	By-copy types;

	By-reference types;

	Unspecified types.

Obviously, parameters of by-copy types are passed by copy and parameters of
by-reference type are passed by reference. However, if a category isn't
specified — i.e. when the type is neither a by-copy nor a by-reference
type —, the decision is essentially left to the compiler.

As a rule of thumb, we can say that;

	elementary types — and any type that is essentially elementary, such as
a private type whose full view is an elementary type — are passed by
copy;

	tagged and explicitly limited types — and other types that are
essentially tagged, such as task types — are passed by reference.

The following table provides more details:

	Type category

	Parameter passing

	List of types

	By copy

	By copy

	
	Elementary types

	Descendant of a private type
whose full type is a by-copy
type

	By reference

	By reference

	
	Tagged types

	Task and protected types

	Explicitly limited record types

	Composite types with at least
one subcomponent of a
by-reference type

	Private types whose full type
is a by-reference type

	Any descendant of the types
mentioned above

	Unspecified

	Either by copy or
by reference

	
	Any type not mentioned above

Note that, for parameters of limited types, only those parameters whose type is
explicitly limited are always passed by reference. We discuss this topic in
more details in another chapter.

Let's see an example:

machine_x.ads

 1with System;
 2
 3package Machine_X is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Rec is record
 9 A : Integer;
10 end record;
11
12 type Rec_Array is record
13 A : Integer;
14 Arr : Integer_Array (1 .. 100);
15 end record;
16
17 type Tagged_Rec is tagged record
18 A : Integer;
19 end record;
20
21 procedure Update_Value
22 (R : in out Rec;
23 AR : System.Address);
24
25 procedure Update_Value
26 (RA : in out Rec_Array;
27 ARA : System.Address);
28
29 procedure Update_Value
30 (R : in out Tagged_Rec;
31 AR : System.Address);
32
33end Machine_X;

machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5 procedure Update_Value
 6 (R : in out Rec;
 7 AR : System.Address)
 8 is
 9 begin
10 R.A := R.A + 1;
11 Check_Param_Passing (Formal => R'Address,
12 Actual => AR);
13 end Update_Value;
14
15 procedure Update_Value
16 (RA : in out Rec_Array;
17 ARA : System.Address)
18 is
19 begin
20 RA.A := RA.A + 1;
21 Check_Param_Passing (Formal => RA'Address,
22 Actual => ARA);
23 end Update_Value;
24
25 procedure Update_Value
26 (R : in out Tagged_Rec;
27 AR : System.Address)
28 is
29 begin
30 R.A := R.A + 1;
31 Check_Param_Passing (Formal => R'Address,
32 Actual => AR);
33 end Update_Value;
34
35end Machine_X;

show_by_copy_by_ref_params.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_X; use Machine_X;
 3
 4procedure Show_By_Copy_By_Ref_Params is
 5 TR : Tagged_Rec := (A => 5);
 6 R : Rec := (A => 5);
 7 RA : Rec_Array := (A => 5,
 8 Arr => (others => 0));
 9begin
10 Put_Line ("Tagged record");
11 Update_Value (TR, TR'Address);
12
13 Put_Line ("Untagged record");
14 Update_Value (R, R'Address);
15
16 Put_Line ("Untagged record with array");
17 Update_Value (RA, RA'Address);
18end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 3ca46380c4df36af9393041181ff2f17

Runtime output

Tagged record
Formal parameter at 00007FFD9ECEE620
Actual parameter at 00007FFD9ECEE620
Parameter is passed by reference.
Untagged record
Formal parameter at 00007FFD9ECEE46C
Actual parameter at 00007FFD9ECEE61C
Parameter is passed by copy.
Untagged record with array
Formal parameter at 00007FFD9ECEE480
Actual parameter at 00007FFD9ECEE480
Parameter is passed by reference.

When we run this example, we see that the object of tagged type
(Tagged_Rec) is passed by reference to the Update_Value procedure.
In the case of the objects of untagged record types, you might see this:

	the parameter of Rec type — which is an untagged record with a
single component of integer type —, the parameter is passed by copy;

	the parameter of Rec_Array type — which is an untagged record
with a large array of 100 components —, the parameter is passed by
reference.

Because Rec and Rec_Array are neither by-copy nor by-reference
types, the decision about how to pass them to the Update_Value procedure
is made by the compiler. (Thus, it is possible that you see different results
when running the code above.)

Bounded errors

When we use parameters of types that are neither by-copy nor by-reference types,
we might encounter the situation where we have the same object bound to
different names in a subprogram. For example, if:

	we use a global object Global_R of a record type Rec

and

	we have a subprogram with an in-out parameter of the same record type
Rec

and

	we pass Global_R as the actual parameter for the in-out parameter of
this subprogram,

then we have two access paths to this object: one of them using the global
variable directly, and the other one using it indirectly via the in-out
parameter. This situation could lead to undefined behavior or to a program
error. Consider the following code example:

machine_x.ads

 1with System;
 2
 3package Machine_X is
 4
 5 type Rec is record
 6 A : Integer;
 7 end record;
 8
 9 Global_R : Rec := (A => 0);
10
11 procedure Update_Value
12 (R : in out Rec;
13 AR : System.Address);
14
15end Machine_X;

machine_x.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Check_Param_Passing;
 4
 5package body Machine_X is
 6
 7 procedure Update_Value
 8 (R : in out Rec;
 9 AR : System.Address)
10 is
11 procedure Show_Vars is
12 begin
13 Put_Line ("Global_R.A: "
14 & Integer'Image (Global_R.A));
15 Put_Line ("R.A: "
16 & Integer'Image (R.A));
17 end Show_Vars;
18 begin
19 Check_Param_Passing (Formal => R'Address,
20 Actual => AR);
21
22 Put_Line ("Incrementing Global_R.A...");
23 Global_R.A := Global_R.A + 1;
24 Show_Vars;
25
26 Put_Line ("Incrementing R.A...");
27 R.A := R.A + 5;
28 Show_Vars;
29 end Update_Value;
30
31end Machine_X;

show_by_copy_by_ref_params.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_X; use Machine_X;
 3
 4procedure Show_By_Copy_By_Ref_Params is
 5begin
 6 Put_Line ("Calling Update_Value...");
 7 Update_Value (Global_R, Global_R'Address);
 8
 9 Put_Line ("After call to Update_Value...");
10 Put_Line ("Global_R.A: "
11 & Integer'Image (Global_R.A));
12end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 96be7054b7ff64a304705edf6b15f031

Runtime output

Calling Update_Value...
Formal parameter at 00007FFC6A70B16C
Actual parameter at 00000000008003BC
Parameter is passed by copy.
Incrementing Global_R.A...
Global_R.A: 1
R.A: 0
Incrementing R.A...
Global_R.A: 1
R.A: 5
After call to Update_Value...
Global_R.A: 5

In the Update_Value procedure, because Global_R and R
have a type that is neither a by-pass nor a by-reference type, the language does
not specify whether the old or the new value would be read in the calls to
Put_Line. In other words, the actual behavior is undefined. Also, this
situation might raise the Program_Error exception.

Important

As a general advice:

	you should be very careful when using global variables and

	you should avoid passing them as parameters in situations such as the one
illustrated in the code example above.

Aliased parameters

When a parameter is specified as aliased, it is always passed by
reference, independently of the type we're using. In this sense, we can use this
keyword to circumvent the rules mentioned so far. (We discuss more about
aliasing and
aliased parameters later on.)

Let's rewrite a previous code example that has a parameter of elementary type
and change it to aliased:

machine_x.ads

1with System;
2
3package Machine_X is
4
5 procedure Update_Value
6 (V : aliased in out Integer;
7 AV : System.Address);
8
9end Machine_X;

machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5 procedure Update_Value
 6 (V : aliased in out Integer;
 7 AV : System.Address)
 8 is
 9 begin
10 V := V + 1;
11 Check_Param_Passing (Formal => V'Address,
12 Actual => AV);
13 end Update_Value;
14
15end Machine_X;

show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4 A : aliased Integer := 5;
5begin
6 Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: c066af3a7081815d0a7598733f9e6aec

Runtime output

Formal parameter at 00007FFC510D988C
Actual parameter at 00007FFC510D988C
Parameter is passed by reference.

As we can see, A is now passed by reference.

Note that we can only pass aliased objects to aliased parameters. If we try to
pass a non-aliased object, we get a compilation error:

show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5begin
6 Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 9e6586e0b771de68040131cae81799b8

Build output

show_by_copy_by_ref_params.adb:6:18: error: actual for aliased formal "V" must be aliased object
gprbuild: *** compilation phase failed

Again, we discuss more about
aliased parameters and
aliased objects later on in the context of
access types.

Parameter Associations

When actual parameters are associated with formal parameters, some rules are
checked. As a typical example, the type of each actual parameter must match the
type of the corresponding actual parameter. In this section, we see some details
about how this association is made and some of the potential errors.

In the Ada Reference Manual

	6.4.1 Parameter Associations[#3]

Parameter order and association

As we already know, when calling subprograms, we can use positional or named
parameter association — or a mixture of both. Also, parameters can have
default values. Let's see some examples:

operations.ads

1package Operations is
2
3 procedure Add (Left : in out Integer;
4 Right : Float := 1.0);
5
6end Operations;

operations.adb

1package body Operations is
2
3 procedure Add (Left : in out Integer;
4 Right : Float := 1.0) is
5 begin
6 Left := Left + Integer (Right);
7 end Add;
8
9end Operations;

show_param_association.adb

 1with Operations; use Operations;
 2
 3procedure Show_Param_Association is
 4 A : Integer := 5;
 5begin
 6 -- Positional association
 7 Add (A, 2.0);
 8
 9 -- Positional association
10 -- (using default value)
11 Add (A);
12
13 -- Named association
14 Add (Left => A,
15 Right => 2.0);
16
17 -- Named association (inversed order)
18 Add (Right => 2.0,
19 Left => A);
20
21 -- Mixed positional / named association
22 Add (A, Right => 2.0);
23end Show_Param_Association;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Param_Association_1
MD5: 64d3f44ac2bf72317fae22658f6d218e

This code snippet has examples of positional and name parameter association.
Also, it has an example of mixed positional / named parameter association. In
most cases, the actual A parameter is associated with the formal
Left parameter, and the actual 2.0 parameter is associated with the
formal Right parameter.

In addition to that, parameters can have default values, so, when we write
Add (A), the A variable is associated with the Left
parameter and the default value (1.0) is associated with the Right
parameter.

Also, when we use named parameter association, the parameter order is
irrelevant: we can, for example, write the last parameter as the first one.
Therefore, we can write Add (Right => 2.0, Left => A) instead of
Add (Left => A, Right => 2.0).

Ambiguous calls

Ambiguous calls can be detected by the compiler during parameter association.
For example, when we have both default values in parameters and subprogram
overloading, the compiler might be unable to decide which subprogram we're
calling:

operations.ads

1package Operations is
2
3 procedure Add (Left : in out Integer);
4
5 procedure Add (Left : in out Integer;
6 Right : Float := 1.0);
7
8end Operations;

operations.adb

 1package body Operations is
 2
 3 procedure Add (Left : in out Integer) is
 4 begin
 5 Left := Left + 1;
 6 end Add;
 7
 8 procedure Add (Left : in out Integer;
 9 Right : Float := 1.0) is
10 begin
11 Left := Left + Integer (Right);
12 end Add;
13
14end Operations;

show_param_association.adb

1with Operations; use Operations;
2
3procedure Show_Param_Association is
4 A : Integer := 5;
5begin
6 Add (A);
7 -- ERROR: cannot decide which
8 -- procedure to take
9end Show_Param_Association;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Param_Association_1
MD5: 2725517f82d4068b669028eca1815079

Build output

show_param_association.adb:6:04: error: ambiguous expression (cannot resolve "Add")
show_param_association.adb:6:04: error: possible interpretation at operations.ads:5
show_param_association.adb:6:04: error: possible interpretation at operations.ads:3
gprbuild: *** compilation phase failed

As we see in this example, the Add procedure is overloaded. The first
instance has one parameter, and the second instance has two parameters, where
the second parameter has a default value. When we call Add with just one
parameter, the compiler cannot decide whether we intend to call

	the first instance of Add with one parameter

or

	the second instance of Add using the default value for the second
parameter.

In this specific case, there are multiple options to solve the issue, but all of
them involve redesigning the package specification:

	we could just rename one of Add procedures (thereby eliminating the
subprogram overloading);

	we could rename the first parameter of one of the Add procedures and
use named parameter association in the call to the procedure;

	For example, we could rename the parameter to Value and call
Add (Value => A).

	remove the default value from the second parameter of the second instance of
Add.

Overlapping actual parameters

When we have more than one out or in out parameters in a
subprogram, we might run into the situation where the actual parameter overlaps
with another parameter. For example:

machine_x.ads

1package Machine_X is
2
3 procedure Update_Value (V1 : in out Integer;
4 V2 : out Integer);
5
6end Machine_X;

machine_x.adb

 1package body Machine_X is
 2
 3 procedure Update_Value (V1 : in out Integer;
 4 V2 : out Integer) is
 5 begin
 6 V1 := V1 + 1;
 7 V2 := V2 + 1;
 8 end Update_Value;
 9
10end Machine_X;

show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5begin
6 Update_Value (A, A);
7end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Illegal_Calls
MD5: d18a7056463fee9298dd1fdef0a31daf

Build output

show_by_copy_by_ref_params.adb:6:18: error: writable actual for "V1" overlaps with actual for "V2"
gprbuild: *** compilation phase failed

In this case, we're using A for both output parameters in the call to
Update_Value.
Passing one variable to more than one output parameter in a given call is
forbidden in Ada, so this triggers a compilation error. Depending on the
specific context, you could solve this issue by using temporary variables for
the other output parameters.

Operators

Operators are commonly used for variables of scalar types such as
Integer and Float. In these cases, they replace usual function
calls. (To be more precise, operators are function calls, but written in a
different format.) For example, we simply write A := A + B + C; when we
want to add three integer variables. A hypothetical, non-intuitive version of
this operation could be A := Add (Add (A, B), C);. In such cases,
operators allow for expressing function calls in a more intuitive way.

Many primitive operators exist for scalar types. We classify them as follows:

	Category

	Operators

	Logical

	and, or, xor

	Relational

	=, /=, <, <=, >,
>=

	Unary adding

	+, -

	Binary adding

	+, -, &

	Multiplying

	*, /, mod, rem

	Highest precedence

	**, abs, not

In the Ada Reference Manual

	4.5 Operators and Expression Evaluation[#4]

User-defined operators

For non-scalar types, not all operators are defined. For example, it wouldn't
make sense to expect a compiler to include an addition operator for a record
type with multiple components. Exceptions to this rule are the
equality and inequality operators (= and /=), which are defined
for any type (be it scalar, record types, and array types).

For array types, the concatenation operator (&) is a primitive operator:

integer_arrays.ads

1package Integer_Arrays is
2
3 type Integer_Array is
4 array (Positive range <>) of Integer;
5
6end Integer_Arrays;

show_array_concatenation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Concatenation is
 5 A, B : Integer_Array (1 .. 5);
 6 R : Integer_Array (1 .. 10);
 7begin
 8 A := (1 & 2 & 3 & 4 & 5);
 9 B := (6 & 7 & 8 & 9 & 10);
10 R := A & B;
11
12 for E of R loop
13 Put (E'Image & ' ');
14 end loop;
15 New_Line;
16end Show_Array_Concatenation;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Concat
MD5: 1899e66ec1d0b36b10d8b89fc2dfac0e

Runtime output

 1 2 3 4 5 6 7 8 9 10

In this example, we're using the primitive & operator to concatenate the
A and B arrays in the assignment to R. Similarly, we're
concatenating individual components (integer values) to create an aggregate
that we assign to A and B.

In contrast to this, the addition operator is not available for arrays:

integer_arrays.ads

1package Integer_Arrays is
2
3 type Integer_Array is
4 array (Positive range <>) of Integer;
5
6end Integer_Arrays;

show_array_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Addition is
 5 A, B, R : Integer_Array (1 .. 5);
 6begin
 7 A := (1 & 2 & 3 & 4 & 5);
 8 B := (6 & 7 & 8 & 9 & 10);
 9 R := A + B;
10
11 for E of R loop
12 Put (E'Image & ' ');
13 end loop;
14 New_Line;
15
16end Show_Array_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Addition
MD5: d94f9791523359d390a7cafd900d1268

Build output

show_array_addition.adb:9:11: error: there is no applicable operator "+" for type "Integer_Array" defined at integer_arrays.ads:3
gprbuild: *** compilation phase failed

We can, however, define custom operators for any type. For example, if a
specific type doesn't have a predefined addition operator, we can define our
own + operator for it.

Note that we're limited to the operator symbols that are already defined by the
Ada language (see the previous table for the complete list of operators). In
other words, the operator we define must be selected from one of those existing
symbols; we cannot use new symbols for custom operators.

In other languages

Some programming languages — such as Haskell — allow you to
define and use custom operator symbols. For example, in Haskell, you can
create a new "broken bar" (¦) operator for integer values:

(¦) :: Int -> Int -> Int
a ¦ b = a + a + b

main = putStrLn $ show (2 ¦ 3)

This is not possible in Ada.

Let's define a custom addition operator that adds individual components of the
Integer_Array type:

integer_arrays.ads

 1package Integer_Arrays is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 function "+" (Left, Right : Integer_Array)
 7 return Integer_Array
 8 with Post =>
 9 (for all I in "+"'Result'Range =>
10 "+"'Result (I) = Left (I) + Right (I));
11
12end Integer_Arrays;

integer_arrays.adb

 1package body Integer_Arrays is
 2
 3 function "+" (Left, Right : Integer_Array)
 4 return Integer_Array
 5 is
 6 R : Integer_Array (Left'Range);
 7 begin
 8 for I in Left'Range loop
 9 R (I) := Left (I) + Right (I);
10 end loop;
11
12 return R;
13 end "+";
14
15end Integer_Arrays;

show_array_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Addition is
 5 A, B, R : Integer_Array (1 .. 5);
 6begin
 7 A := (1 & 2 & 3 & 4 & 5);
 8 B := (6 & 7 & 8 & 9 & 10);
 9 R := A + B;
10
11 for E of R loop
12 Put (E'Image & ' ');
13 end loop;
14 New_Line;
15
16end Show_Array_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Addition
MD5: 6f50fa47270d97d3fb50379b6275777d

Runtime output

 7 9 11 13 15

Now, the R := A + B line doesn't trigger a compilation error anymore
because the + operator is defined for the Integer_Array type.

In the implementation of the +, we return an array with the range of the
Left array where each component is the sum of the Left and
Right arrays. In the declaration of the + operator, we're
defining the expected behavior in the postcondition. Here, we're saying that,
for each index of the resulting array (for all I in "+"'Result'Range),
the value of each component of the resulting array at that specific index is
the sum of the components from the Left and Right arrays at the
same index ("+"'Result (I) = Left (I) + Right (I)). (for all
denotes a quantified expression.)

Note that, in this implementation, we assume that the range of Right is
a subset of the range of Left. If that is not the case, the
Constraint_Error exception will be raised at runtime in the loop. (You
can test this by declaring B as Integer_Array (5 .. 10), for
example.)

We can also define custom operators for record types. For example, we
could declare two + operators for a record containing the name and
address of a person:

addresses.ads

 1package Addresses is
 2
 3 type Person is private;
 4
 5 function "+" (Name : String;
 6 Address : String)
 7 return Person;
 8 function "+" (Left, Right : Person)
 9 return Person;
10
11 procedure Display (P : Person);
12
13private
14
15 subtype Name_String is String (1 .. 40);
16 subtype Address_String is String (1 .. 100);
17
18 type Person is record
19 Name : Name_String;
20 Address : Address_String;
21 end record;
22
23end Addresses;

addresses.adb

 1with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4package body Addresses is
 5
 6 function "+" (Name : String;
 7 Address : String)
 8 return Person
 9 is
10 begin
11 return (Name =>
12 Head (Name,
13 Name_String'Length),
14 Address =>
15 Head (Address,
16 Address_String'Length));
17 end "+";
18
19 function "+" (Left, Right : Person)
20 return Person
21 is
22 begin
23 return (Name => Left.Name,
24 Address => Right.Address);
25 end "+";
26
27 procedure Display (P : Person) is
28 begin
29 Put_Line ("Name: " & P.Name);
30 Put_Line ("Address: " & P.Address);
31 New_Line;
32 end Display;
33
34end Addresses;

show_address_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Addresses; use Addresses;
 3
 4procedure Show_Address_Addition is
 5 John : Person := "John" + "4 Main Street";
 6 Jane : Person := "Jane" + "7 High Street";
 7begin
 8 Display (John);
 9 Display (Jane);
10 Put_Line ("----------------");
11
12 Jane := Jane + John;
13 Display (Jane);
14end Show_Address_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: c69ff43ed5a80a0c62bad87eada14301

Runtime output

Name: John
Address: 4 Main Street

Name: Jane
Address: 7 High Street

Name: Jane
Address: 4 Main Street

In this example, the first + operator takes two strings — with the
name and address of a person — and returns an object of Person
type. We use this operator to initialize the John and Jane
variables.

The second + operator in this example brings two people together. Here,
the person on the left side of the + operator moves to the home of the
person on the right side. In this specific case, Jane is moving to John's
house.

As a small remark, we usually expect that the + operator is commutative.
In other words, changing the order of the elements in the operation doesn't
change the result. However, in our definition above, this is not the case, as
we can confirm by comparing the operation in both orders:

show_address_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Addresses; use Addresses;
 3
 4procedure Show_Address_Addition is
 5 John : constant Person :=
 6 "John" + "4 Main Street";
 7 Jane : constant Person :=
 8 "Jane" + "7 High Street";
 9begin
10 if Jane + John = John + Jane then
11 Put_Line ("It's commutative!");
12 else
13 Put_Line ("It's not commutative!");
14 end if;
15end Show_Address_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: 2af6e1a31100a1d0fa786d42cc93c09b

Runtime output

It's not commutative!

In this example, we're using the primitive = operator for the
Person to assess whether the result of the addition is commutative.

In the Ada Reference Manual

	6.1 Subprogram Declarations[#5]

Expression functions

Usually, we implement Ada functions with a construct like this:
begin return X; end;. In other words, we create a begin ... end;
block and we have at least one return statement in that block. An
expression function, in contrast, is a function that is implemented with a
simple expression in parentheses, such as (X);. In this case, we don't
use a begin ... end; block or a return statement.

As an example of an expression, let's say we want to implement a function
named Is_Zero that checks if the value of the integer parameter I
is zero. We can implement this function with the expression I = 0. In
the usual approach, we would create the implementation by writing
is begin return I = 0; end Is_Zero;. When using expression functions,
however, we can simplify the implementation by just writing
is (I = 0);. This is the complete code of Is_Zero using an
expression function:

expr_func.ads

1package Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean is
5 (I = 0);
6
7end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_1
MD5: 44779999566f764279e1c2f292226f95

An expression function has the same effect as the usual version using a block.
In fact, the code above is similar to this implementation of the Is_Zero
function using a block:

expr_func.ads

1package Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean;
5
6end Expr_Func;

expr_func.adb

1package body Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean is
5 begin
6 return I = 0;
7 end Is_Zero;
8
9end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_2
MD5: 4d90b1c63928cbaf9c86a6cc6421bb61

The only difference between these two versions of the Expr_Func packages
is that, in the first version, the package specification contains the
implementation of the Is_Zero function, while, in the second version,
the implementation is in the body of the Expr_Func package.

An expression function can be, at same time, the specification and the
implementation of a function. Therefore, in the first version of the
Expr_Func package above, we don't have a separate implementation of the
Is_Zero function because (I = 0) is the actual implementation of
the function. Note that this is only possible for expression functions; you
cannot have a function implemented with a block in a package specification. For
example, the following code is wrong and won't compile:

expr_func.ads

1package Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean is
5 begin
6 return I = 0;
7 end Is_Zero;
8
9end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_3
MD5: 919f9c101b3224006e1302130eba8dd2

We can, of course, separate the function declaration from its implementation as
an expression function. For example, we can rewrite the first version of the
Expr_Func package and move the expression function to the body of the
package:

expr_func.ads

1package Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean;
5
6end Expr_Func;

expr_func.adb

1package body Expr_Func is
2
3 function Is_Zero (I : Integer)
4 return Boolean is
5 (I = 0);
6
7end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_4
MD5: 491a491da92636a35579f870969aaf08

In addition, we can use expression functions in the private part of a
package specification. For example, the following code declares the
Is_Valid function in the specification of the My_Data package,
while its implementation is an expression function in the private part of the
package specification:

my_data.ads

 1package My_Data is
 2
 3 type Data is private;
 4
 5 function Is_Valid (D : Data)
 6 return Boolean;
 7
 8private
 9
10 type Data is record
11 Valid : Boolean;
12 end record;
13
14 function Is_Valid (D : Data)
15 return Boolean is
16 (D.Valid);
17
18end My_Data;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Private_Expression_Function_1
MD5: beb57eca67b3954097e0f7ac00ea70c9

Naturally, we could write the function implementation in the package body
instead:

my_data.ads

 1package My_Data is
 2
 3 type Data is private;
 4
 5 function Is_Valid (D : Data)
 6 return Boolean;
 7
 8private
 9
10 type Data is record
11 Valid : Boolean;
12 end record;
13
14end My_Data;

my_data.adb

1package body My_Data is
2
3 function Is_Valid (D : Data)
4 return Boolean is
5 (D.Valid);
6
7end My_Data;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Private_Expression_Function_2
MD5: 3c6e2a3c53c7c8e1a7b86efccdc3bf8d

In the Ada Reference Manual

	6.8 Expression functions[#6]

Overloading

Note

This section was originally written by Robert A. Duff and published as
Gem #50: Overload Resolution[#7].

Ada allows overloading of subprograms, which means that two or more
subprogram declarations with the same name can be visible at the same
place. Here, "name" can refer to operator symbols, like "+". Ada
also allows overloading of various other notations, such as literals and
aggregates.

In most languages that support overloading, overload resolution is done
"bottom up" — that is, information flows from inner constructs to outer
constructs. As usual, computer folks draw their trees upside-down, with
the root at the top. For example, if we have two procedures Print:

show_overloading.adb

 1procedure Show_Overloading is
 2
 3 package Types is
 4 type Sequence is null record;
 5 type Set is null record;
 6
 7 procedure Print (S : Sequence) is null;
 8 procedure Print (S : Set) is null;
 9 end Types;
10
11 use Types;
12
13 X : Sequence;
14begin
15
16 -- Compiler selects Print (S : Sequence)
17 Print (X);
18end Show_Overloading;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 020c4f04285c80c1050d8edbaf2dbcae

the type of X determines which Print is meant in the call.

Ada is unusual in that it supports top-down overload resolution as well:

show_top_down_overloading.adb

 1procedure Show_Top_Down_Overloading is
 2
 3 package Types is
 4 type Sequence is null record;
 5 type Set is null record;
 6
 7 function Empty return Sequence is
 8 ((others => <>));
 9
10 function Empty return Set is
11 ((others => <>));
12
13 procedure Print_Sequence (S : Sequence) is
14 null;
15
16 procedure Print_Set (S : Set) is
17 null;
18 end Types;
19
20 use Types;
21
22 X : Sequence;
23begin
24 -- Compiler selects function
25 -- Empty return Sequence
26 Print_Sequence (Empty);
27end Show_Top_Down_Overloading;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 3b776a3efdee3d7e583ddbf5159c9a1b

The type of the formal parameter S of Print_Sequence
determines which Empty is meant in the call. In C++, for example,
the equivalent of the Print (X) example would resolve, but the
Print_Sequence (Empty) would be illegal, because C++ does not use
top-down information.

If we overload things too heavily, we can cause ambiguities:

show_overloading_error.adb

 1procedure Show_Overloading_Error is
 2
 3 package Types is
 4 type Sequence is null record;
 5 type Set is null record;
 6
 7 function Empty return Sequence is
 8 ((others => <>));
 9
10 function Empty return Set is
11 ((others => <>));
12
13 procedure Print (S : Sequence) is
14 null;
15
16 procedure Print (S : Set) is
17 null;
18 end Types;
19
20 use Types;
21
22 X : Sequence;
23begin
24 Print (Empty); -- Illegal!
25end Show_Overloading_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 5182c517a1afff4568ab2404ac66fda8

Build output

show_overloading_error.adb:24:04: error: ambiguous expression (cannot resolve "Print")
show_overloading_error.adb:24:04: error: possible interpretation at line 16
show_overloading_error.adb:24:04: error: possible interpretation at line 13
show_overloading_error.adb:24:11: error: ambiguous call to "Empty"
show_overloading_error.adb:24:11: error: interpretation at line 10
show_overloading_error.adb:24:11: error: interpretation at line 7
gprbuild: *** compilation phase failed

The call is ambiguous, and therefore illegal, because there are two
possible meanings. One way to resolve the ambiguity is to use a qualified
expression to say which type we mean:

Print (Sequence'(Empty));

Note that we're now using both bottom-up and top-down overload resolution:
Sequence' determines which Empty is meant (top down) and
which Print is meant (bottom up). You can qualify an expression,
even if it is not ambiguous according to Ada rules — you might want
to clarify the type because it might be ambiguous for human readers.

Of course, you could instead resolve the Print (Empty) example by
modifying the source code so the names are unique, as in the earlier
examples. That might well be the best solution, assuming you can modify
the relevant sources. Too much overloading can be confusing. How much is
"too much" is in part a matter of taste.

Ada really needs to have top-down overload resolution, in order to resolve
literals. In some languages, you can tell the type of a literal by looking
at it, for example appending L (letter el) means "the type of this
literal is long int". That sort of kludge won't work in Ada, because we
have an open-ended set of integer types:

show_literal_resolution.adb

1procedure Show_Literal_Resolution is
2
3 type Apple_Count is range 0 .. 100;
4
5 procedure Peel (Count : Apple_Count) is null;
6begin
7 Peel (20);
8end Show_Literal_Resolution;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_Resolution
MD5: f428b6b4c642c44ede6bc21e7522c532

You can't tell by looking at the literal 20 what its type is. The
type of formal parameter Count tells us that 20 is an
Apple_Count, as opposed to some other type, such as
Standard.Long_Integer.

Technically, the type of 20 is universal_integer, which is
implicitly converted to Apple_Count — it's really the result
type of that implicit conversion that is at issue. But that's an obscure
point — you won't go too far wrong if you think of the integer
literal notation as being overloaded on all integer types.

Developers sometimes wonder why the compiler can't resolve something that
seems obvious. For example:

show_literal_resolution_error.adb

 1procedure Show_Literal_Resolution_Error is
 2
 3 type Apple_Count is range 0 .. 100;
 4 procedure Slice (Count : Apple_Count) is null;
 5
 6 type Orange_Count is range 0 .. 10_000;
 7 procedure Slice (Count : Orange_Count) is null;
 8begin
 9 Slice (Count => (10_000)); -- Illegal!
10end Show_Literal_Resolution_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_Resolution_Error
MD5: 4789d8eea9b82649ba8e453bb861688a

Build output

show_literal_resolution_error.adb:9:04: error: ambiguous expression (cannot resolve "Slice")
show_literal_resolution_error.adb:9:04: error: possible interpretation at line 7
show_literal_resolution_error.adb:9:04: error: possible interpretation at line 4
gprbuild: *** compilation phase failed

This call is ambiguous, and therefore illegal. But why? Clearly the
developer must have meant the Orange_Count one, because
10_000 is out of range for Apple_Count. And all the relevant
expressions happen to be static.

Well, a good rule of thumb in language design (for languages with
overloading) is that the overload resolution rules should not be
"too smart". We want this example to be illegal to avoid confusion on the
part of developers reading the code. As usual, a qualified expression
fixes it:

Slice (Count => Orange_Count'(10_000));

Another example, similar to the literal, is the aggregate. Ada uses a
simple rule: the type of an aggregate is determined top down (i.e., from
the context in which the aggregate appears). Bottom-up information is not
used; that is, the compiler does not look inside the aggregate in order to
determine its type.

show_record_resolution_error.adb

 1procedure Show_Record_Resolution_Error is
 2
 3 type Complex is record
 4 Re, Im : Float;
 5 end record;
 6
 7 procedure Grind (X : Complex) is null;
 8 procedure Grind (X : String) is null;
 9begin
10 Grind (X => (Re => 1.0, Im => 1.0));
11 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12 -- Illegal!
13end Show_Record_Resolution_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Record_Resolution_Error
MD5: e3dd1f1d0c403bcf672f4bab881b8ef9

Build output

show_record_resolution_error.adb:10:04: error: ambiguous expression (cannot resolve "Grind")
show_record_resolution_error.adb:10:04: error: possible interpretation at line 8
show_record_resolution_error.adb:10:04: error: possible interpretation at line 7
gprbuild: *** compilation phase failed

There are two Grind procedures visible, so the type of the
aggregate could be Complex or String, so it is ambiguous and
therefore illegal. The compiler is not required to notice that there is
only one type with components Re and Im, of some real type
— in fact, the compiler is not allowed to notice that, for
overloading purposes.

We can qualify as usual:

Grind (X => Complex'(Re => 1.0, Im => 1.0));

Only after resolving that the type of the aggregate is Complex can
the compiler look inside and make sure Re and Im make sense.

This not-too-smart rule for aggregates helps prevent confusion on the part
of developers reading the code. It also simplifies the compiler, and
makes the overload resolution algorithm reasonably efficient.

Operator Overloading

We've seen previously that we can define custom
operators for any type. We've also seen that subprograms can be
overloaded. Since operators are functions, we're
essentially talking about operator overloading, as we're defining the same
operator (say + or -) for different types.

As another example of operator overloading, in the Ada standard library,
operators are defined for the Complex type of the
Ada.Numerics.Generic_Complex_Types package. This package contains not
only the definition of the + operator for two objects of Complex
type, but also for combination of Complex and other types. For instance,
we can find these declarations:

function "+" (Left, Right : Complex)
 return Complex;
function "+" (Left : Complex; Right : Real'Base)
 return Complex;
function "+" (Left : Real'Base; Right : Complex)
 return Complex;

This example shows that the + operator — as well as other
operators — are being overloaded in the Generic_Complex_Types
package.

In the Ada Reference Manual

	6.6 Overloading of Operators[#8]

	G.1.1 Complex Types[#9]

Operator Overriding

We can also override operators of derived types. This allows for modifying the
behavior of operators for the corresponding derived types.

To override an operator of a derived type, we simply implement a function for
that operator. This is the same as how we implement custom operators (as we've
seen previously).

As an example, when adding two fixed-point values, the result might be out of
range, which causes an exception to be raised. A common strategy to avoid
exceptions in this case is to saturate the resulting value. This strategy is
typically employed in signal processing algorithms, for example.

In this example, we declare and use the 32-bit fixed-point type TQ31:

fixed_point.ads

1package Fixed_Point is
2
3 D : constant := 2.0 ** (-31);
4 type TQ31 is delta D range -1.0 .. 1.0 - D;
5
6end Fixed_Point;

show_sat_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Fixed_Point; use Fixed_Point;
 3
 4procedure Show_Sat_Op is
 5 A, B, C : TQ31;
 6begin
 7 A := TQ31'Last;
 8 B := TQ31'Last;
 9 C := A + B;
10
11 Put_Line (A'Image & " + "
12 & B'Image & " = "
13 & C'Image);
14
15 A := TQ31'First;
16 B := TQ31'First;
17 C := A + B;
18
19 Put_Line (A'Image & " + "
20 & B'Image & " = "
21 & C'Image);
22
23end Show_Sat_Op;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_Point_Exception
MD5: 15d8860773ec7c0e505d0ee94781ae14

Runtime output

raised CONSTRAINT_ERROR : show_sat_op.adb:9 overflow check failed

Here, we're using the standard + operator, which raises a
Constraint_Error exception in the C := A + B; statement due to an
overflow. Let's now override the addition operator and enforce saturation when
the result is out of range:

fixed_point.ads

1package Fixed_Point is
2
3 D : constant := 2.0 ** (-31);
4 type TQ31 is delta D range -1.0 .. 1.0 - D;
5
6 function "+" (Left, Right : TQ31)
7 return TQ31;
8
9end Fixed_Point;

fixed_point.adb

 1package body Fixed_Point is
 2
 3 function "+" (Left, Right : TQ31)
 4 return TQ31
 5 is
 6 type TQ31_2 is
 7 delta TQ31'Delta
 8 range TQ31'First * 2.0 .. TQ31'Last * 2.0;
 9
10 L : constant TQ31_2 := TQ31_2 (Left);
11 R : constant TQ31_2 := TQ31_2 (Right);
12 Res : TQ31_2;
13 begin
14 Res := L + R;
15
16 if Res > TQ31_2 (TQ31'Last) then
17 return TQ31'Last;
18 elsif Res < TQ31_2 (TQ31'First) then
19 return TQ31'First;
20 else
21 return TQ31 (Res);
22 end if;
23 end "+";
24
25end Fixed_Point;

show_sat_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Fixed_Point; use Fixed_Point;
 3
 4procedure Show_Sat_Op is
 5 A, B, C : TQ31;
 6begin
 7 A := TQ31'Last;
 8 B := TQ31'Last;
 9 C := A + B;
10
11 Put_Line (A'Image & " + "
12 & B'Image & " = "
13 & C'Image);
14
15 A := TQ31'First;
16 B := TQ31'First;
17 C := A + B;
18
19 Put_Line (A'Image & " + "
20 & B'Image & " = "
21 & C'Image);
22
23end Show_Sat_Op;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_Point_Operator_Overloading
MD5: 6317bcf9c278c01f86dbdcb761d86240

Runtime output

 0.9999999995 + 0.9999999995 = 0.9999999995
-1.0000000000 + -1.0000000000 = -1.0000000000

In the implementation of the overridden + operator of the TQ31
type, we declare another type (TQ31_2) with a wider range than
TQ31. We use variables of the TQ31_2 type to perform the actual
addition, and then we verify whether the result is still in TQ31's
range. If it is, we simply convert the result back to the TQ31 type.
Otherwise, we saturate it — using either the first or last value of the
TQ31 type.

When overriding operators, the overridden operator replaces the original
one. For example, in the A + B operation of the Show_Sat_Op
procedure above, we're using the overridden version of the + operator,
which performs saturation. Therefore, this operation doesn't raise an
exception (as it was the case with the original + operator).

Nonreturning procedures

Usually, when calling a procedure P, we expect that it returns to the
caller's thread of control after performing some action in the body of
P. However, there are situations where a procedure never returns. We can
indicate this fact by using the No_Return aspect in the subprogram
declaration.

A typical example is that of a server that is designed to run forever until the
process is killed or the machine where the server runs is switched off. This
server can be implemented as an endless loop. For example:

servers.ads

1package Servers is
2
3 procedure Run_Server
4 with No_Return;
5
6end Servers;

servers.adb

 1package body Servers is
 2
 3 procedure Run_Server is
 4 begin
 5 pragma Warnings
 6 (Off,
 7 "implied return after this statement");
 8 while True loop
 9 -- Processing happens here...
10 null;
11 end loop;
12 end Run_Server;
13
14end Servers;

show_endless_loop.adb

1with Servers; use Servers;
2
3procedure Show_Endless_Loop is
4begin
5 Run_Server;
6end Show_Endless_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Server_Proc
MD5: 3f859b6e2aca8e31367658632e84126c

In this example, Run_Server doesn't exit from the while True
loop, so it never returns to the Show_Endless_Loop procedure.

The same situation happens when we call a procedure that raises an exception
unconditionally. In that case, exception handling is triggered, so that the
procedure never returns to the caller. An example is that of a logging
procedure that writes a message before raising an exception internally:

loggers.ads

1package Loggers is
2
3 Logged_Failure : exception;
4
5 procedure Log_And_Raise (Msg : String)
6 with No_Return;
7
8end Loggers;

loggers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Loggers is
 4
 5 procedure Log_And_Raise (Msg : String) is
 6 begin
 7 Put_Line (Msg);
 8 raise Logged_Failure;
 9 end Log_And_Raise;
10
11end Loggers;

show_no_return_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Loggers; use Loggers;
 3
 4procedure Show_No_Return_Exception is
 5 Check_Passed : constant Boolean := False;
 6begin
 7 if not Check_Passed then
 8 Log_And_Raise ("Check failed!");
 9 Put_Line ("This line will not be reached!");
10 end if;
11end Show_No_Return_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Log_Exception
MD5: 10b4933d8c862d14ade54935cbd2b541

In this example, Log_And_Raise writes a message to the user and raises
the Logged_Failure, so it never returns to the
Show_No_Return_Exception procedure.

We could implement exception handling in the Show_No_Return_Exception
procedure, so that the Logged_Failure exception could be handled there
after it's raised in Log_And_Raise. However, this wouldn't be
considered a normal return to the procedure because it wouldn't return to the
point where it should (i.e. to the point where Put_Line is about to be
called, right after the call to the Log_And_Raise procedure).

If a nonreturning procedure returns nevertheless, this is considered a program
error, so that the Program_Error exception is raised. For example:

loggers.ads

1package Loggers is
2
3 Logged_Failure : exception;
4
5 procedure Log_And_Raise (Msg : String)
6 with No_Return;
7
8end Loggers;

loggers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Loggers is
 4
 5 procedure Log_And_Raise (Msg : String) is
 6 begin
 7 Put_Line (Msg);
 8 end Log_And_Raise;
 9
10end Loggers;

show_no_return_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Loggers; use Loggers;
 3
 4procedure Show_No_Return_Exception is
 5 Check_Passed : constant Boolean := False;
 6begin
 7 if not Check_Passed then
 8 Log_And_Raise ("Check failed!");
 9 Put_Line ("This line will not be reached!");
10 end if;
11end Show_No_Return_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Erroneous_Log_Exception
MD5: e44fd8df0529dda5749e85b9e300a999

Build output

loggers.adb:7:07: warning: implied return after this statement will raise Program_Error [enabled by default]
loggers.adb:7:07: warning: procedure "Log_And_Raise" is marked as No_Return [enabled by default]

Runtime output

Check failed!

raised PROGRAM_ERROR : loggers.adb:7 implicit return with No_Return

Here, Program_Error is raised when Log_And_Raise returns to the
Show_No_Return_Exception procedure.

In the Ada Reference Manual

	6.5.1 Nonreturning Subprograms[#10]

Inline subprograms

Inlining[#11] refers to a kind
of optimization where the code of a subprogram is expanded at the point of
the call in place of the call itself.

In modern compilers, inlining depends on the optimization level selected by the
user. For example, if we select the higher optimization level, the compiler
will perform automatic inlining agressively.

In the GNAT toolchain

The highest optimization level (-O3) of GNAT performs aggressive
automatic inlining. This could mean that this level inlines too much rather
than not enough. As a result, the cache may become an issue and the overall
performance may be worse than the one we would achieve by compiling the
same code with optimization level 2 (-O2). Therefore, the general
recommendation is to not just select -O3 for the optimized version of
an application, but instead compare it the optimized version built with
-O2.

It's important to highlight that the inlining we're referring above happens
automatically, so the decision about which subprogram is inlined depends
entirely on the compiler. However, in some cases, it's better to reduce the
optimization level and perform manual inlining instead of automatic inlining.
We do that by using the Inline aspect.

Let's look at this example:

float_arrays.ads

 1package Float_Arrays is
 2
 3 type Float_Array is
 4 array (Positive range <>) of Float;
 5
 6 function Average (Data : Float_Array)
 7 return Float
 8 with Inline;
 9
10end Float_Arrays;

float_arrays.adb

 1package body Float_Arrays is
 2
 3 function Average (Data : Float_Array)
 4 return Float
 5 is
 6 Total : Float := 0.0;
 7 begin
 8 for Value of Data loop
 9 Total := Total + Value;
10 end loop;
11 return Total / Float (Data'Length);
12 end Average;
13
14end Float_Arrays;

compute_average.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Arrays; use Float_Arrays;
 4
 5procedure Compute_Average is
 6 Values : constant Float_Array :=
 7 (10.0, 11.0, 12.0, 13.0);
 8 Average_Value : Float;
 9begin
10 Average_Value := Average (Values);
11 Put_Line ("Average = "
12 & Float'Image (Average_Value));
13end Compute_Average;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Inline_Subprograms.Inlining_Float_Arrays
MD5: 246bc11e8a969d69873f416f583f450e

Runtime output

Average = 1.15000E+01

When compiling this example, the compiler will most probably inline
Average in the Compute_Average procedure. Note, however, that the
Inline aspect is just a recommendation to the compiler. Sometimes, the
compiler might not be able to follow this recommendation, so it won't inline
the subprogram.

These are some examples of situations where the compiler might not be able to
inline a subprogram:

	when the code is too large,

	when it's too complicated — for example, when it involves exception
handling —, or

	when it contains tasks, etc.

In the GNAT toolchain

In order to effectively use the Inline aspect, we need to set the
optimization level to at least -O1 and use the -gnatn switch, which
instructs the compiler to take the Inline aspect into account.

In addition to the Inline aspect, in GNAT, we also have the
(implementation-defined) Inline_Always aspect. In contrast to the
former aspect, however, the Inline_Always aspect isn't primarily
related to performance. Instead, it should be used when the functionality
would be incorrect if inlining was not performed by the compiler. Examples
of this are procedures that insert Assembly instructions that only make
sense when the procedure is inlined, such as memory barriers.

Similar to the Inline aspect, there might be situations where a
subprogram has the Inline_Always aspect, but the compiler is unable
to inline it. In this case, we get a compilation error from GNAT.

Note that we can use the Inline aspect for generic subprograms as well.
When we do this, we indicate to the compiler that we wish it inlines all
instances of that generic subprogram.

In the Ada Reference Manual

	6.3.2 Inline Expansion of Subprograms[#12]

Null Procedures

Null procedures are procedures that don't have any effect, as their body is
empty. We declare a null procedure by simply writing is null in its
declaration. For example:

null_procs.ads

1package Null_Procs is
2
3 procedure Do_Nothing (Msg : String) is null;
4
5end Null_Procs;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: a8a801e6c71d8177db61e4aa131b8832

As expected, calling a null procedure doesn't have any effect. For example:

show_null_proc.adb

1with Null_Procs; use Null_Procs;
2
3procedure Show_Null_Proc is
4begin
5 Do_Nothing ("Hello");
6end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: 274eed0b0952b9aa7e422933ece42d86

Null procedures are equivalent to implementing a procedure with a body that
only contains null. Therefore, the Do_Nothing procedure above is
equivalent to this:

null_procs.ads

1package Null_Procs is
2
3 procedure Do_Nothing (Msg : String);
4
5end Null_Procs;

null_procs.adb

1package body Null_Procs is
2
3 procedure Do_Nothing (Msg : String) is
4 begin
5 null;
6 end Do_Nothing;
7
8end Null_Procs;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: d0c9dc9265ebbaa9603681182dee1d92

Null procedures and overriding

We can use null procedures as a way to simulate interfaces for non-tagged
types — similar to what actual interfaces do for tagged types. For
example, we may start by declaring a type and null procedures that operate on
that type. For example, let's model a very simple API:

simple_storage.ads

1package Simple_Storage is
2
3 type Storage_Model is null record;
4
5 procedure Set (S : in out Storage_Model;
6 V : String) is null;
7 procedure Display (S : Storage_Model) is null;
8
9end Simple_Storage;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 553e78bc15dcec1302be4b5f484ac21f

Here, the API of the Storage_Model type consists of the Set and
Display procedures. Naturally, we can use objects of the
Storage_Model type in an application, but this won't have any effect:

show_null_proc.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Simple_Storage; use Simple_Storage;
 3
 4procedure Show_Null_Proc is
 5 S : Storage_Model;
 6begin
 7 Put_Line ("Setting 24...");
 8 Set (S, "24");
 9 Display (S);
10end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 523b3e7239e683f2d879caa9139106ca

Runtime output

Setting 24...

By itself, the Storage_Model type is not very useful. However, we can
derive other types from it and override the null procedures. Let's say we want
to implement the Integer_Storage type to store an integer value:

simple_storage.ads

 1package Simple_Storage is
 2
 3 type Storage_Model is null record;
 4
 5 procedure Set (S : in out Storage_Model;
 6 V : String) is null;
 7 procedure Display (S : Storage_Model) is null;
 8
 9 type Integer_Storage is private;
10
11 procedure Set (S : in out Integer_Storage;
12 V : String);
13 procedure Display (S : Integer_Storage);
14
15private
16
17 type Integer_Storage is record
18 V : Integer := 0;
19 end record;
20
21end Simple_Storage;

simple_storage.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Storage is
 4
 5 procedure Set (S : in out Integer_Storage;
 6 V : String) is
 7 begin
 8 S.V := Integer'Value (V);
 9 end Set;
10
11 procedure Display (S : Integer_Storage) is
12 begin
13 Put_Line ("Value: " & S.V'Image);
14 end Display;
15
16end Simple_Storage;

show_null_proc.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Simple_Storage; use Simple_Storage;
 3
 4procedure Show_Null_Proc is
 5 S : Integer_Storage;
 6begin
 7 Put_Line ("Setting 24...");
 8 Set (S, "24");
 9 Display (S);
10end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 55d491d1ef72fb7be2bf0d2a212f335b

Runtime output

Setting 24...
Value: 24

In this example, we can view Storage_Model as a sort of interface for
derived non-tagged types, while the derived types — such as
Integer_Storage — provide the actual implementation.

The section on null records contains an extended example
that makes use of null procedures.

In the Ada Reference Manual

	6.7 Null Procedures[#13]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-6-2.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-4-5.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-6-1.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-6-8.html

[#7]
https://www.adacore.com/gems/gem-50

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-6-6.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-G-1-1.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-6-5-1.html

[#11]
https://en.wikipedia.org/wiki/Inline_expansion

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-6-3-2.html

[#13]
http://www.ada-auth.org/standards/22rm/html/RM-6-7.html

Exceptions

Asserts

When we want to indicate a condition in the code that must always be valid, we
can use the pragma Assert. As the name implies, when we use this pragma,
we're asserting some truth about the source-code. (We can also use the
procedural form, as we'll see later.)

Important

Another method to assert the truth about the source-code is to use
pre and post-conditions.

A simple assert has this form:

show_pragma_assert.adb

1procedure Show_Pragma_Assert is
2 I : constant Integer := 10;
3
4 pragma Assert (I = 10);
5begin
6 null;
7end Show_Pragma_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_1
MD5: 8d40817304515169d0d5670904ca1e01

In this example, we're asserting that the value of I is always 10. We
could also display a message if the assertion is false:

show_pragma_assert.adb

1procedure Show_Pragma_Assert is
2 I : constant Integer := 11;
3
4 pragma Assert (I = 10, "I is not 10");
5begin
6 null;
7end Show_Pragma_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_2
MD5: b70fa67c92542ade39c388964ce12302

Build output

show_pragma_assert.adb:4:19: warning: assertion will fail at run time [-gnatw.a]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

Similarly, we can use the procedural form of Assert. For example, the
code above can implemented as follows:

show_procedure_assert.adb

1with Ada.Assertions; use Ada.Assertions;
2
3procedure Show_Procedure_Assert is
4 I : constant Integer := 11;
5
6begin
7 Assert (I = 10, "I is not 10");
8end Show_Procedure_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Procedure_Assert
MD5: cbab23645ff89d4adffcaaddaeb6f0e3

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

Note that a call to Assert is simply translated to a check — and
the Assertion_Error exception from the Ada.Assertions package
being raised in the case that the check fails. For example, the code above
roughly corresponds to this:

show_assertion_error.adb

 1with Ada.Assertions; use Ada.Assertions;
 2
 3procedure Show_Assertion_Error is
 4 I : constant Integer := 11;
 5
 6begin
 7 if I /= 10 then
 8 raise Assertion_Error with "I is not 10";
 9 end if;
10
11end Show_Assertion_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Assertion_Error
MD5: 9c846acf998ca7adabd47c3b5a6ce39f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

In the Ada Reference Manual

	11.4.2 Pragmas Assert and Assertion_Policy[#1]

Assertion policies

We can activate and deactivate assertions based on assertion policies. We can do
that by using the pragma Assertion_Policy. As an argument to this pragma,
we indicate whether a specific policy must be checked or ignored.

For example, we can deactivate assertion checks by specifying
Assert => Ignore. Similarly, we can activate assertion checks by
specifying Assert => Check. Let's see a code example:

show_pragma_assertion_policy.adb

1procedure Show_Pragma_Assertion_Policy is
2 I : constant Integer := 11;
3
4 pragma Assertion_Policy (Assert => Ignore);
5begin
6 pragma Assert (I = 10);
7end Show_Pragma_Assertion_Policy;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Pragma_Assertion_Policy_1
MD5: 39b8aa4a34b6169c03b54074f4136519

Build output

show_pragma_assertion_policy.adb:6:19: warning: assertion would fail at run time [-gnatw.a]

Here, we're specifying that asserts shall be ignored. Therefore, the call to the
pragma Assert doesn't raise an exception. If we replace Ignore
with Check in the call to Assertion_Policy, the assert will raise
the Assertion_Error exception.

The following table presents all policies that we can set:

	Policy

	Descripton

	Assert

	Check assertions

	Static_Predicate

	Check static predicates

	Dynamic_Predicate

	Check dynamic predicates

	Pre

	Check pre-conditions

	Pre'Class

	Check pre-condition of classes of tagged
types

	Post

	Check post-conditions

	Post'Class

	Check post-condition of classes of tagged
types

	Type_Invariant

	Check type invariants

	Type_Invariant'Class

	Check type invariant of classes of tagged
types

In the GNAT toolchain

Compilers are free to include policies that go beyond the ones listed above.
For example, GNAT includes the following policies — called
assertion kinds in this context:

	Assertions

	Assert_And_Cut

	Assume

	Contract_Cases

	Debug

	Ghost

	Initial_Condition

	Invariant

	Invariant'Class

	Loop_Invariant

	Loop_Variant

	Postcondition

	Precondition

	Predicate

	Refined_Post

	Statement_Assertions

	Subprogram_Variant

Also, in addtion to Check and Ignore, GNAT allows you to set
a policy to Disable and Suppressible.

You can read more about them in the
GNAT Reference Manual[#2].

You can specify multiple policies in a single call to Assertion_Policy.
For example, you can activate all policies by writing:

show_multiple_assertion_policies.adb

 1procedure Show_Multiple_Assertion_Policies is
 2 pragma Assertion_Policy
 3 (Assert => Check,
 4 Static_Predicate => Check,
 5 Dynamic_Predicate => Check,
 6 Pre => Check,
 7 Pre'Class => Check,
 8 Post => Check,
 9 Post'Class => Check,
10 Type_Invariant => Check,
11 Type_Invariant'Class => Check);
12begin
13 null;
14end Show_Multiple_Assertion_Policies;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Multiple_Assertion_Policies
MD5: 3abbf97160b755b84cc4f7e652ca5551

In the GNAT toolchain

With GNAT, policies can be specified in multiple ways. In addition to calls
to Assertion_Policy, you can use
configuration pragmas files[#3].
You can use these files to specify all pragmas that are relevant to your
application, including Assertion_Policy. In addition, you can manage
the granularity for those pragmas. For example, you can use a global
configuration pragmas file for your complete application, or even different
files for each source-code file you have.

Also, by default, all policies listed in the table above are deactivated,
i.e. they're all set to Ignore. You can use the command-line switch
-gnata to activate them.

Note that the Assert procedure raises an exception independently of the
assertion policy (Assertion_Policy (Assert => Ignore)). For example:

show_assert_procedure_policy.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Assertions; use Ada.Assertions;
 3
 4procedure Show_Assert_Procedure_Policy is
 5 pragma Assertion_Policy (Assert => Ignore);
 6
 7 I : constant Integer := 1;
 8begin
 9 Put_Line ("------ Pragma Assert -----");
10 pragma Assert (I = 0);
11
12 Put_Line ("---- Procedure Assert ----");
13 Assert (I = 0);
14
15 Put_Line ("Finished.");
16end Show_Assert_Procedure_Policy;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Assert_Procedure_Policy
MD5: 7be3bab24d856081afeddabe40afc84f

Build output

show_assert_procedure_policy.adb:10:19: warning: assertion would fail at run time [-gnatw.a]

Runtime output

------ Pragma Assert -----
---- Procedure Assert ----

raised ADA.ASSERTIONS.ASSERTION_ERROR : a-assert.adb:42

Here, the pragma Assert is ignored due to the assertion policy. However,
the call to Assert is not ignored.

In the Ada Reference Manual

	11.4.2 Pragmas Assert and Assertion_Policy[#4]

Checks and exceptions

This table shows all language-defined checks and the associated exceptions:

	Check

	Exception

	Access_Check

	Constraint_Error

	Discriminant_Check

	Constraint_Error

	Division_Check

	Constraint_Error

	Index_Check

	Constraint_Error

	Length_Check

	Constraint_Error

	Overflow_Check

	Constraint_Error

	Range_Check

	Constraint_Error

	Tag_Check

	Constraint_Error

	Accessibility_Check

	Program_Error

	Allocation_Check

	Program_Error

	Elaboration_Check

	Program_Error

	Storage_Check

	Storage_Error

In addition, we can use All_Checks to refer to all those checks above at
once.

Let's discuss each check and see code examples where those checks are
performed. Note that all examples are erroneous, so please avoid reusing them
elsewhere.

Access Check

As you know, an object of an access type might be null. It would be an error to
dereference this object, as it doesn't indicate a valid position in memory.
Therefore, the access check verifies that an access object is not null when
dereferencing it. For example:

show_access_check.adb

1procedure Show_Access_Check is
2
3 type Integer_Access is access Integer;
4
5 AI : Integer_Access;
6begin
7 AI.all := 10;
8end Show_Access_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_Check
MD5: 4db8b63efb23caa7da926d4ec9f204bf

Build output

show_access_check.adb:5:04: warning: variable "AI" is read but never assigned [-gnatwv]
show_access_check.adb:7:04: warning: null value not allowed here [enabled by default]
show_access_check.adb:7:04: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_access_check.adb:7 access check failed

Here, the value of AI is null by default, so we cannot dereference it.

The access check also performs this verification when assigning to a subtype
that excludes null (not null access). (You can find more information
about this topic in the section about
not null access.) For example:

show_access_check.adb

 1procedure Show_Access_Check is
 2
 3 type Integer_Access is
 4 access all Integer;
 5
 6 type Safe_Integer_Access is
 7 not null access all Integer;
 8
 9 AI : Integer_Access;
10 SAI : Safe_Integer_Access := new Integer;
11
12begin
13 SAI := Safe_Integer_Access (AI);
14end Show_Access_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_Check_2
MD5: 47895a404e2a111476cd67f43c12d4b5

Build output

show_access_check.adb:9:04: warning: variable "AI" is read but never assigned [-gnatwv]
show_access_check.adb:13:32: warning: null value not allowed here [enabled by default]
show_access_check.adb:13:32: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_access_check.adb:13 access check failed

Here, the value of AI is null (by default), so we cannot assign it to
SAI because its type excludes null.

Note that, if we remove the := new Integer assignment from the
declaration of SAI, the null exclusion fails in the declaration
itself (because the default value of the access type is null).

Discriminant Check

As we've seen earlier, a variant record is a record with discriminants that
allows for changing its structure. In operations such as an assignment, it's
important to ensure that the discriminants of the objects match — i.e. to
ensure that the structure of the objects matches. The discriminant check
verifies whether this is the case. For example:

show_discriminant_check.adb

 1procedure Show_Discriminant_Check is
 2
 3 type Rec (Valid : Boolean) is record
 4 case Valid is
 5 when True =>
 6 Counter : Integer;
 7 when False =>
 8 null;
 9 end case;
10 end record;
11
12 R : Rec (Valid => False);
13begin
14 R := (Valid => True,
15 Counter => 10);
16end Show_Discriminant_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Discriminant_Check
MD5: 665ab37962f8f9c129acac543b1eb15d

Build output

show_discriminant_check.adb:14:09: warning: incorrect value for discriminant "Valid" [enabled by default]
show_discriminant_check.adb:14:09: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_discriminant_check.adb:14 discriminant check failed

Here, R's discriminant (Valid) is False, so we cannot
assign an object whose Valid discriminant is True.

Also, when accessing a component, the discriminant check ensures that this
component exists for the current discriminant value:

show_discriminant_check.adb

 1procedure Show_Discriminant_Check is
 2
 3 type Rec (Valid : Boolean) is record
 4 case Valid is
 5 when True =>
 6 Counter : Integer;
 7 when False =>
 8 null;
 9 end case;
10 end record;
11
12 R : Rec (Valid => False);
13 I : Integer;
14begin
15 I := R.Counter;
16end Show_Discriminant_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Discriminant_Check_2
MD5: 440973b0be7c4261ddf3c2211a2c1325

Build output

show_discriminant_check.adb:15:10: warning: component not present in subtype of "Rec" defined at line 12 [enabled by default]
show_discriminant_check.adb:15:10: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_discriminant_check.adb:15 discriminant check failed

Here, R's discriminant (Valid) is False, so we cannot
access the Counter component, for it only exists when the Valid
discriminant is True.

Division Check

The division check verifies that we're not trying to divide a value by zero
when using the /, rem and mod operators. For example:

ops.ads

 1package Ops is
 2 function Div_Op (A, B : Integer)
 3 return Integer is
 4 (A / B);
 5
 6 function Rem_Op (A, B : Integer)
 7 return Integer is
 8 (A rem B);
 9
10 function Mod_Op (A, B : Integer)
11 return Integer is
12 (A mod B);
13end Ops;

show_division_check.adb

1with Ops; use Ops;
2
3procedure Show_Division_Check is
4 I : Integer;
5begin
6 I := Div_Op (10, 0);
7 I := Rem_Op (10, 0);
8 I := Mod_Op (10, 0);
9end Show_Division_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Division_Check
MD5: 6ec0856be947eea6610cffaa0e875d45

Runtime output

raised CONSTRAINT_ERROR : ops.ads:4 divide by zero

All three calls in the Show_Division_Check procedure — to
the Div_Op, Rem_Op and Mod_Op functions — can raise
an exception because we're using 0 as the second argument, which makes the
division check in those functions fail.

Index Check

We use indices to access components of an array. An index check verifies that
the index we're using to access a specific component is within the array's
bounds. For example:

show_index_check.adb

 1procedure Show_Index_Check is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 function Value_Of (A : Integer_Array;
 7 I : Integer)
 8 return Integer
 9 is
10 type Half_Integer_Array is new
11 Integer_Array (A'First ..
12 A'First + A'Length / 2);
13
14 A_2 : Half_Integer_Array := (others => 0);
15 begin
16 return A_2 (I);
17 end Value_Of;
18
19 Arr_1 : Integer_Array (1 .. 10) :=
20 (others => 1);
21
22begin
23 Arr_1 (10) := Value_Of (Arr_1, 10);
24
25end Show_Index_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Index_Check
MD5: fa791718701c4ac805badf368df9064e

Runtime output

raised CONSTRAINT_ERROR : show_index_check.adb:16 index check failed

The range of A_2 — which is passed as an argument to the
Value_Of function — is 1 to 6. However, in that function call,
we're trying to access position 10, which is outside A_2 's bounds.

Length Check

In array assignments, both arrays must have the same length. To ensure that
this is the case, a length check is performed. For example:

show_length_check.adb

 1procedure Show_Length_Check is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 procedure Assign (To : out Integer_Array;
 7 From : Integer_Array) is
 8 begin
 9 To := From;
10 end Assign;
11
12 Arr_1 : Integer_Array (1 .. 10);
13 Arr_2 : Integer_Array (1 .. 9) :=
14 (others => 1);
15
16begin
17 Assign (Arr_1, Arr_2);
18end Show_Length_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Length_Check
MD5: a521afd0a46a67d260e8b0bd5f046ce4

Runtime output

raised CONSTRAINT_ERROR : show_length_check.adb:9 length check failed

Here, the length of Arr_1 is 10, while the length of Arr_2 is 9,
so we cannot assign Arr_2 (From parameter) to Arr_1
(To parameter) in the Assign procedure.

Overflow Check

Operations on scalar objects might lead to overflow, which, if not checked,
lead to wrong information being computed and stored. Therefore, an overflow
check verifies that the value of a scalar object is within the base range of
its type. For example:

show_overflow_check.adb

1procedure Show_Overflow_Check is
2 A, B : Integer;
3begin
4 A := Integer'Last;
5 B := 1;
6
7 A := A + B;
8end Show_Overflow_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Overflow_Check
MD5: baa46d9085cbd14863aaa7e24dc7b9cc

Build output

show_overflow_check.adb:7:11: warning: value not in range of type "Standard.Integer" [enabled by default]
show_overflow_check.adb:7:11: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_overflow_check.adb:7 overflow check failed

In this example, A already has the last possible value of the
Integer'Base range, so increasing it by one causes an overflow error.

Range Check

The range check verifies that a scalar value is within a specific range —
for instance, the range of a subtype. Let's see an example:

show_range_check.adb

1procedure Show_Range_Check is
2
3 subtype Int_1_10 is Integer range 1 .. 10;
4
5 I : Int_1_10;
6
7begin
8 I := 11;
9end Show_Range_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Range_Check
MD5: 54b1d67d98d97a58d4265a854fcfa992

Build output

show_range_check.adb:8:09: warning: value not in range of type "Int_1_10" defined at line 3 [enabled by default]
show_range_check.adb:8:09: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_range_check.adb:8 range check failed

In this example, we're trying to assign 11 to the variable I of the
Int_1_10 subtype, which has a range from 1 to 10. Since 11 is outside
that range, the range check fails.

Tag Check

The tag check ensures that the tag of a tagged object matches the expected tag
in a dispatching operation. For example:

p.ads

1package P is
2
3 type T is tagged null record;
4 type T1 is new T with null record;
5 type T2 is new T with null record;
6
7end P;

show_tag_check.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Tags;
 3
 4with P; use P;
 5
 6procedure Show_Tag_Check is
 7
 8 A1 : T'Class := T1'(null record);
 9 A2 : T'Class := T2'(null record);
10
11begin
12 Put_Line ("A1'Tag: "
13 & Ada.Tags.Expanded_Name (A1'Tag));
14 Put_Line ("A2'Tag: "
15 & Ada.Tags.Expanded_Name (A2'Tag));
16
17 A2 := A1;
18
19end Show_Tag_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Tag_Check
MD5: 5a685be7804200a884649f54c175ee42

Runtime output

A1'Tag: P.T1
A2'Tag: P.T2

raised CONSTRAINT_ERROR : show_tag_check.adb:17 tag check failed

Here, A1 and A2 have different tags:

	A1'Tag = T1'Tag, while

	A2'Tag = T2'Tag.

Since the tags don't match, the tag check fails in the assignment of A1
to A2.

Accessibility Check

The accessibility check verifies that the accessibility level of an entity
matches the expected level. We discuss accessibility levels
in a later chapter.

Let's look at an example that mixes access types and anonymous access types.
Here, we use an anonymous access type in the declaration of A1 and a
named access type in the declaration of A2:

p.ads

1package P is
2
3 type T is tagged null record;
4 type T_Class is access all T'Class;
5
6end P;

show_accessibility_check.adb

 1with P; use P;
 2
 3procedure Show_Accessibility_Check is
 4
 5 A1 : access T'Class := new T;
 6 A2 : T_Class;
 7
 8begin
 9 A2 := T_Class (A1);
10
11end Show_Accessibility_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Accessibility_Check
MD5: 7120d908b55ef576db93e9a15db257f2

Build output

show_accessibility_check.adb:9:19: warning: accessibility check fails [enabled by default]
show_accessibility_check.adb:9:19: warning: Program_Error will be raised at run time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_accessibility_check.adb:9 accessibility check failed

The anonymous type (access T'Class), which is used in the declaration of
A1, doesn't have the same accessibility level as the T_Class
type. Therefore, the accessibility check fails during the T_Class (A1)
conversion.

We can see the accessibility check failing in this example as well:

show_accessibility_check.adb

 1with P; use P;
 2
 3procedure Show_Accessibility_Check is
 4
 5 A : access T'Class := new T;
 6
 7 procedure P (A : T_Class) is null;
 8
 9begin
10 P (T_Class (A));
11
12end Show_Accessibility_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Accessibility_Check
MD5: 97db82410dd3459249d0e7a97118b7ef

Build output

show_accessibility_check.adb:10:16: warning: accessibility check fails [enabled by default]
show_accessibility_check.adb:10:16: warning: Program_Error will be raised at run time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_accessibility_check.adb:10 accessibility check failed

Again, the check fails in the T_Class (A) conversion and raises a
Program_Error exception.

Allocation Check

The allocation check ensures, when a task is about to be created, that its
master has not been completed or the finalization has not been started.

This is an example adapted from
AI-00280[#5]:

p.ads

 1with Ada.Finalization;
 2with Ada.Unchecked_Deallocation;
 3
 4package P is
 5 type T1 is new
 6 Ada.Finalization.Controlled with null record;
 7 procedure Finalize (X : in out T1);
 8
 9 type T2 is new
10 Ada.Finalization.Controlled with null record;
11 procedure Finalize (X : in out T2);
12
13 X1 : T1;
14
15 type T2_Ref is access T2;
16 procedure Free is new
17 Ada.Unchecked_Deallocation (T2, T2_Ref);
18end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Finalize (X : in out T1) is
 6 X2 : T2_Ref := new T2;
 7 begin
 8 Put_Line ("Finalizing T1...");
 9 Free (X2);
10 end Finalize;
11
12 procedure Finalize (X : in out T2) is
13 begin
14 Put_Line ("Finalizing T2...");
15 end Finalize;
16
17end P;

show_allocation_check.adb

1with P; use P;
2
3procedure Show_Allocation_Check is
4 X2 : T2_Ref := new T2;
5begin
6 Free (X2);
7end Show_Allocation_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Allocation_Check
MD5: 915e8ab21e550c981503c014bcceade1

Runtime output

Finalizing T2...

raised PROGRAM_ERROR : finalize/adjust raised exception

Here, in the finalization of the X1 object of T1 type, we're
trying to create an object of T2 type. This is forbidden and, therefore,
the allocation check raises a Program_Error exception.

Elaboration Check

The elaboration check verifies that subprograms — or protected entries,
or task activations — have been elaborated before being called.

This is an example adapted from
AI-00064[#6]:

p.ads

1function P return Integer;

p.adb

1function P return Integer is
2begin
3 return 1;
4end P;

show_elaboration_check.adb

 1with P;
 2
 3procedure Show_Elaboration_Check is
 4
 5 function F return Integer;
 6
 7 type Pointer_To_Func is
 8 access function return Integer;
 9
10 X : constant Pointer_To_Func := P'Access;
11
12 Y : constant Integer := F;
13 Z : constant Pointer_To_Func := X;
14
15 -- Renaming-as-body
16 function F return Integer renames Z.all;
17begin
18 null;
19end Show_Elaboration_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Elaboration_Check
MD5: 80a39df912aae8788296f81ee9d4a79e

Build output

show_elaboration_check.adb:12:28: warning: cannot call "F" before body seen [enabled by default]
show_elaboration_check.adb:12:28: warning: Program_Error will be raised at run time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_elaboration_check.adb:12 access before elaboration

This is a curious example: first, we declare a function F and assign the
value returned by this function to constant Y in its declaration. Then,
we declare F as a renamed function, thereby providing a body to F
— this is called renaming-as-body. Consequently, the compiler doesn't
complain that a body is missing for function F. (If you comment out the
function renaming, you'll see that the compiler can then detect the missing
body.) Therefore, at runtime, the elaboration check fails because the body of
the first declaration of the F function is actually missing.

Storage Check

The storage check ensures that the storage pool has enough space when
allocating memory. Let's revisit an example that we
discussed earlier:

custom_types.ads

1package Custom_Types is
2
3 type UInt_7 is range 0 .. 127;
4
5 type UInt_7_Reserved_Access is access UInt_7
6 with Storage_Size => 8;
7
8end Custom_Types;

show_storage_check.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Storage_Check is
 6
 7 RAV1, RAV2 : UInt_7_Reserved_Access;
 8
 9begin
10 Put_Line ("Allocating RAV1...");
11 RAV1 := new UInt_7;
12
13 Put_Line ("Allocating RAV2...");
14 RAV2 := new UInt_7;
15
16 New_Line;
17end Show_Storage_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Storage_Check
MD5: 4e4bd284adb1c1d97f8f7563068c18de

Runtime output

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

On each allocation (new UInt_7), a storage check is performed. Because
there isn't enough reserved storage space before the second allocation, the
checks fails and raises a Storage_Error exception.

In the Ada Reference Manual

	11.5 Suppressing Checks[#7]

Ada.Exceptions package

Note

Parts of this section were originally published as
Gem #142 : Exception-ally[#8]

The standard Ada run-time library provides the package Ada.Exceptions.
This package provides a number of services to help analyze exceptions.

Each exception is associated with a (short) message that can be set by the code
that raises the exception, as in the following code:

raise Constraint_Error with "some message";

Historically

Since Ada 2005, we can use the
raise Constraint_Error with "some message" syntax.
In Ada 95, you had to call the Raise_Exception procedure:

Ada.Exceptions.Raise_Exception -- Ada 95
 (Constraint_Error'Identity, "some message");

In Ada 83, there was no way to do it at all.

The new syntax is now very convenient, and developers should be encouraged
to provide as much information as possible along with the exception.

In the GNAT toolchain

The length of the message is limited to 200 characters by default in GNAT,
and messages longer than that will be truncated.

In the Ada Reference Manual

	11.4.1 The Package Exceptions[#9]

Retrieving exception information

Exceptions also embed information set by the run-time itself that can be
retrieved by calling the Exception_Information function. The function
Exception_Information also displays the Exception_Message.

For example:

exception
 when E : others =>
 Put_Line
 (Ada.Exceptions.Exception_Information (E));

In the GNAT toolchain

In the case of GNAT, the information provided by an exception might include
the source location where the exception was raised and a nonsymbolic
traceback.

You can also retrieve this information individually. Here, you can use:

	the Exception_Name functions — and its derivatives
Wide_Exception_Name and Wide_Wide_Exception_Name — to
retrieve the name of an exception.

	the Exception_Message function to retrieve the message associated
with an exception.

Let's see a complete example:

show_exception_info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Show_Exception_Info is
 5
 6 Custom_Exception : exception;
 7
 8 procedure Nested is
 9 begin
10 raise Custom_Exception
11 with "We got a problem";
12 end Nested;
13
14begin
15 Nested;
16
17exception
18 when E : others =>
19 Put_Line ("Exception info: "
20 & Exception_Information (E));
21 Put_Line ("Exception name: "
22 & Exception_Name (E));
23 Put_Line ("Exception msg: "
24 & Exception_Message (E));
25end Show_Exception_Info;

Collecting exceptions

Save_Occurrence

You can save an exception occurrence using the Save_Occurrence procedure.
(Note that a Save_Occurrence function exists as well.)

For example, the following application collects exceptions into a list and
displays them after running the Test_Exceptions procedure:

exception_tests.ads

 1with Ada.Exceptions; use Ada.Exceptions;
 2
 3package Exception_Tests is
 4
 5 Custom_Exception : exception;
 6
 7 type All_Exception_Occur is
 8 array (Positive range <>) of
 9 Exception_Occurrence;
10
11 procedure Test_Exceptions
12 (All_Occur : in out All_Exception_Occur;
13 Last_Occur : out Integer);
14
15end Exception_Tests;

exception_tests.adb

 1package body Exception_Tests is
 2
 3 procedure Save_To_List
 4 (E : Exception_Occurrence;
 5 All_Occur : in out All_Exception_Occur;
 6 Last_Occur : in out Integer)
 7 is
 8 L : Integer renames Last_Occur;
 9 O : All_Exception_Occur renames All_Occur;
10 begin
11 L := L + 1;
12 if L > O'Last then
13 raise Constraint_Error
14 with "Cannot save occurrence";
15 end if;
16
17 Save_Occurrence (Target => O (L),
18 Source => E);
19 end Save_To_List;
20
21 procedure Test_Exceptions
22 (All_Occur : in out All_Exception_Occur;
23 Last_Occur : out Integer)
24 is
25
26 procedure Nested_1 is
27 begin
28 raise Custom_Exception
29 with "We got a problem";
30 exception
31 when E : others =>
32 Save_To_List (E,
33 All_Occur,
34 Last_Occur);
35 end Nested_1;
36
37 procedure Nested_2 is
38 begin
39 raise Constraint_Error
40 with "Constraint is not correct";
41 exception
42 when E : others =>
43 Save_To_List (E,
44 All_Occur,
45 Last_Occur);
46 end Nested_2;
47
48 begin
49 Last_Occur := 0;
50
51 Nested_1;
52 Nested_2;
53 end Test_Exceptions;
54
55end Exception_Tests;

show_exception_info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4with Exception_Tests; use Exception_Tests;
 5
 6procedure Show_Exception_Info is
 7 L : Integer;
 8 O : All_Exception_Occur (1 .. 10);
 9begin
10 Test_Exceptions (O, L);
11
12 for I in O 'First .. L loop
13 Put_Line (Exception_Information (O (I)));
14 end loop;
15end Show_Exception_Info;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Save_Occurrence
MD5: da0cc5db7039e1458dbcf8be49db969d

Runtime output

raised EXCEPTION_TESTS.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct

In the Save_To_List procedure of the Exception_Tests package, we
call the Save_Occurrence procedure to store the exception occurrence to
the All_Occur array. In the Show_Exception_Info, we display all
the exception occurrences that we collected.

Read and Write attributes

Similarly, we can use files to read and write exception occurrences. To do that,
we can simply use the Read and Write attributes.

exception_occurrence_stream.adb

 1with Ada.Text_IO;
 2
 3with Ada.Streams.Stream_IO;
 4use Ada.Streams.Stream_IO;
 5
 6with Ada.Exceptions;
 7use Ada.Exceptions;
 8
 9procedure Exception_Occurrence_Stream is
10
11 Custom_Exception : exception;
12
13 S : Stream_Access;
14
15 procedure Nested_1 is
16 begin
17 raise Custom_Exception
18 with "We got a problem";
19 exception
20 when E : others =>
21 Exception_Occurrence'Write (S, E);
22 end Nested_1;
23
24 procedure Nested_2 is
25 begin
26 raise Constraint_Error
27 with "Constraint is not correct";
28 exception
29 when E : others =>
30 Exception_Occurrence'Write (S, E);
31 end Nested_2;
32
33 F : File_Type;
34 File_Name : constant String :=
35 "exceptions_file.bin";
36begin
37 Create (F, Out_File, File_Name);
38 S := Stream (F);
39
40 Nested_1;
41 Nested_2;
42
43 Close (F);
44
45 Read_Exceptions : declare
46 E : Exception_Occurrence;
47 begin
48 Open (F, In_File, File_Name);
49 S := Stream (F);
50
51 while not End_Of_File (F) loop
52 Exception_Occurrence'Read (S, E);
53
54 Ada.Text_IO.Put_Line
55 (Exception_Information (E));
56 end loop;
57 Close (F);
58 end Read_Exceptions;
59
60end Exception_Occurrence_Stream;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Occurrence_Stream
MD5: 3d9f2bd9480aa6dcc250b249b9ef4870

Runtime output

raised EXCEPTION_OCCURRENCE_STREAM.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct

In this example, we store the exceptions raised in the application in the
exceptions_file.bin file. In the exception part of procedures Nested_1
and Nested_2, we call Exception_Occurrence'Write to store an
exception occurence in the file. In the Read_Exceptions block, we read
the exceptions from the the file by calling Exception_Occurrence'Read.

Debugging exceptions in the GNAT toolchain

Here is a typical exception handler that catches all unexpected exceptions in
the application:

main.adb

 1with Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Nested is
 7 begin
 8 raise Constraint_Error
 9 with "some message";
10 end Nested;
11
12begin
13 Nested;
14
15exception
16 when E : others =>
17 Put_Line
18 (Ada.Exceptions.Exception_Information (E));
19end Main;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Information
MD5: f95068ca90d79b92a7c2031322349153

Runtime output

raised CONSTRAINT_ERROR : some message

The output we get when running the application is not very informative. To get
more information, we need to rerun the program in the debugger. To make the
session more interesting though, we should add debug information in the
executable, which means using the -g switch in the
gnatmake command.

The session would look like the following (omitting some of the output from the
debugger):

> rm *.o # Cleanup previous compilation
> gnatmake -g main.adb
> gdb ./main
(gdb) catch exception
(gdb) run
Catchpoint 1, CONSTRAINT_ERROR at 0x0000000000402860 in main.nested () at main.adb:8
8 raise Constraint_Error with "some message";

(gdb) bt
#0 <__gnat_debug_raise_exception> (e=0x62ec40 <constraint_error>) at s-excdeb.adb:43
#1 0x000000000040426f in ada.exceptions.complete_occurrence (x=x@entry=0x637050)
at a-except.adb:934
#2 0x000000000040427b in ada.exceptions.complete_and_propagate_occurrence (
x=x@entry=0x637050) at a-except.adb:943
#3 0x00000000004042d0 in <__gnat_raise_exception> (e=0x62ec40 <constraint_error>,
message=...) at a-except.adb:982
#4 0x0000000000402860 in main.nested ()
#5 0x000000000040287c in main ()

And we now know exactly where the exception was raised. But in fact, we could
have this information directly when running the application. For this, we need
to bind the application with the switch -E, which tells the
binder to store exception tracebacks in exception occurrences. Let's recompile
and rerun the application.

> rm *.o # Cleanup previous compilation
> gnatmake -g main.adb -bargs -E
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x10b7e24d1 0x10b7e24ee 0x10b7e2472

The traceback, as is, is not very useful. We now need to use another tool that
is bundled with GNAT, called addr2line. Here is an example of its
use:

> addr2line -e main --functions --demangle 0x10b7e24d1 0x10b7e24ee 0x10b7e2472
/path/main.adb:8
_ada_main
/path/main.adb:12
main
/path/b~main.adb:240

This time we do have a symbolic backtrace, which shows information similar to
what we got in the debugger.

For users on OSX machines, addr2line does not exist. On these
machines, however, an equivalent solution exists. You need to link your
application with an additional switch, and then use the tool atos,
as in:

> rm *.o
> gnatmake -g main.adb -bargs -E -largs -Wl,-no_pie
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x1000014d1 0x1000014ee 0x100001472
> atos -o main 0x1000014d1 0x1000014ee 0x100001472
main__nested.2550 (in main) (main.adb:8)
_ada_main (in main) (main.adb:12)
main (in main) + 90

We will now discuss a relatively new switch of the compiler, namely
-gnateE. When used, this switch will generate extra
information in exception messages.

Let's amend our test program to:

main.adb

 1with Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Nested (Index : Integer) is
 7 type T_Array is array (1 .. 2) of Integer;
 8 T : constant T_Array := (10, 20);
 9 begin
10 Put_Line (T (Index)'Img);
11 end Nested;
12
13begin
14 Nested (3);
15
16exception
17 when E : others =>
18 Put_Line
19 (Ada.Exceptions.Exception_Information (E));
20end Main;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Information
MD5: 3590f2bf48f6ed1cf7745d576924cad4

Runtime output

raised CONSTRAINT_ERROR : main.adb:10:17 index check failed
index 3 not in 1..2

When running the application, we see that the exception information (traceback)
is the same as before, but this time the exception message is set automatically
by the compiler. So we know we got a Constraint_Error because an
incorrect index was used at the named source location
(main.adb, line 10). But the significant addition is the second
line of the message, which indicates exactly the cause of the error. Here, we
wanted to get the element at index 3, in an array whose range of valid indexes
is from 1 to 2. (No need for a debugger in this case.)

The column information on the first line of the exception message is also very
useful when dealing with null pointers. For instance, a line such as:

A := Rec1.Rec2.Rec3.Rec4.all;

where each of the Rec is itself a pointer, might raise
Constraint_Error with a message "access check failed". This indicates for
sure that one of the pointers is null, and by using the column information it is
generally easy to find out which one it is.

Exception renaming

We can rename exceptions by using the an exception renaming declaration in this
form Renamed_Exception : exception renames Existing_Exception;. For
example:

show_exception_renaming.adb

1procedure Show_Exception_Renaming is
2 CE : exception renames Constraint_Error;
3begin
4 raise CE;
5end Show_Exception_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_Renaming
MD5: ff20825162ee9eef6ac8ed329da2a80f

Runtime output

raised CONSTRAINT_ERROR : show_exception_renaming.adb:4

Exception renaming creates a new view of the original exception. If we rename an
exception from package A in package B, that exception will become
visible in package B. For example:

internal_exceptions.ads

1package Internal_Exceptions is
2
3 Int_E : exception;
4
5end Internal_Exceptions;

test_constraints.ads

1with Internal_Exceptions;
2
3package Test_Constraints is
4
5 Ext_E : exception renames
6 Internal_Exceptions.Int_E;
7
8end Test_Constraints;

show_exception_renaming_view.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4with Test_Constraints; use Test_Constraints;
 5
 6procedure Show_Exception_Renaming_View is
 7begin
 8 raise Ext_E;
 9exception
10 when E : others =>
11 Put_Line
12 (Ada.Exceptions.Exception_Information (E));
13end Show_Exception_Renaming_View;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_Renaming_View
MD5: a44e2698170c6fab79241d0f33ef8c2e

Runtime output

raised INTERNAL_EXCEPTIONS.INT_E : show_exception_renaming_view.adb:8

Here, we're renaming the Int_E exception in the Test_Constraints
package. The Int_E exception isn't directly visible in the
Show_Exception_Renaming procedure because we're not withing the
Internal_Exceptions package. However, it is indirectly visible
in that procedure via the renaming (Ext_E) in the Test_Constraints
package.

In the Ada Reference Manual

	8.5.2 Exception Renaming Declarations[#10]

Out and Uninitialized

Note

This section was originally written by Robert Dewar and published as
Gem #150: Out and Uninitialized[#11]

Perhaps surprisingly, the Ada standard indicates cases where objects passed to
out and in out parameters might not be updated when a procedure
terminates due to an exception. Let's take an example:

show_out_uninitialized.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Show_Out_Uninitialized is
 3
 4 procedure Local (A : in out Integer;
 5 Error : Boolean) is
 6 begin
 7 A := 1;
 8
 9 if Error then
10 raise Program_Error;
11 end if;
12 end Local;
13
14 B : Integer := 0;
15
16begin
17 Local (B, Error => True);
18exception
19 when Program_Error =>
20 Put_Line ("Value for B is"
21 & Integer'Image (B)); -- "0"
22end Show_Out_Uninitialized;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_1
MD5: cebcf14e9fd088e38b98a5132d9fd998

Runtime output

Value for B is 0

This program outputs a value of 0 for B, whereas the code indicates that
A is assigned before raising the exception, and so the reader might
expect B to also be updated.

The catch, though, is that a compiler must by default pass objects of
elementary types (scalars and access types) by copy and might choose to do so
for other types (records, for example), including when passing out and
in out parameters. So what happens is that while the formal parameter
A is properly initialized, the exception is raised before the new value
of A has been copied back into B (the copy will only happen on a
normal return).

In the GNAT toolchain

In general, any code that reads the actual object passed to an out or
in out parameter after an exception is suspect and should be avoided.
GNAT has useful warnings here, so that if we simplify the above code to:

show_out_uninitialized_warnings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Out_Uninitialized_Warnings is
 4
 5 procedure Local (A : in out Integer) is
 6 begin
 7 A := 1;
 8 raise Program_Error;
 9 end Local;
10
11 B : Integer := 0;
12
13begin
14 Local (B);
15exception
16 when others =>
17 Put_Line ("Value for B is"
18 & Integer'Image (B));
19end Show_Out_Uninitialized_Warnings;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_2
MD5: 5b6960974c729ea37a70fb313d6e5084

Build output

show_out_uninitialized_warnings.adb:7:10: warning: assignment to pass-by-copy formal may have no effect [enabled by default]
show_out_uninitialized_warnings.adb:7:10: warning: "raise" statement may result in abnormal return (RM 6.4.1(17)) [enabled by default]

Runtime output

Value for B is 0

We now get a compilation warning that the pass-by-copy formal may have no
effect.

Of course, GNAT is not able to point out all such errors (see first example
above), which in general would require full flow analysis.

The behavior is different when using parameter types that the standard mandates
be passed by reference, such as tagged types for instance. So the following
code will work as expected, updating the actual parameter despite the
exception:

show_out_initialized_rec.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Out_Initialized_Rec is
 4
 5 type Rec is tagged record
 6 Field : Integer;
 7 end record;
 8
 9 procedure Local (A : in out Rec) is
10 begin
11 A.Field := 1;
12 raise Program_Error;
13 end Local;
14
15 V : Rec;
16
17begin
18 V.Field := 0;
19 Local (V);
20exception
21 when others =>
22 Put_Line ("Value of Field is"
23 & V.Field'Img); -- "1"
24end Show_Out_Initialized_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_3
MD5: 370031a404657ea18ffabf3c1d507cd4

Runtime output

Value of Field is 1

In the GNAT toolchain

It's worth mentioning that GNAT provides a pragma called
Export_Procedure that forces reference semantics on out
parameters. Use of this pragma would ensure updates of the actual parameter
prior to abnormal completion of the procedure. However, this pragma only
applies to library-level procedures, so the examples above have to be
rewritten to avoid the use of a nested procedure, and really this pragma is
intended mainly for use in interfacing with foreign code. The code below
shows an example that ensures that B is set to 1 after the call to
Local:

exported_procedures.ads

1package Exported_Procedures is
2
3 procedure Local (A : in out Integer;
4 Error : Boolean);
5 pragma Export_Procedure
6 (Local,
7 Mechanism => (A => Reference));
8
9end Exported_Procedures;

exported_procedures.adb

 1package body Exported_Procedures is
 2
 3 procedure Local (A : in out Integer;
 4 Error : Boolean) is
 5 begin A := 1;
 6 if Error then
 7 raise Program_Error;
 8 end if;
 9 end Local;
10
11end Exported_Procedures;

show_out_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Exported_Procedures;
 4use Exported_Procedures;
 5
 6procedure Show_Out_Reference is
 7 B : Integer := 0;
 8begin
 9 Local (B, Error => True);
10exception
11 when Program_Error =>
12 Put_Line ("Value for B is"
13 & Integer'Image (B)); -- "1"
14end Show_Out_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_4
MD5: aed2788be2b3ceeec19b28421c53fc66

Runtime output

Value for B is 1

In the case of direct assignments to global variables, the behavior in the
presence of exceptions is somewhat different. For predefined exceptions, most
notably Constraint_Error, the optimization permissions allow some
flexibility in whether a global variable is or is not updated when an exception
occurs (see Ada RM 11.6[#12]). For
instance, the following code makes an incorrect assumption:

X := 0; -- about to try addition
Y := Y + 1; -- see if addition raises exception
X := 1 -- addition succeeded

A program is not justified in assuming that X = 0 if the addition raises
an exception (assuming X is a global here). So any such assumptions in a
program are incorrect code which should be fixed.

In the Ada Reference Manual

	11.6 Exceptions and Optimization[#13]

Suppressing checks

pragma Suppress

Note

This section was originally written by Gary Dismukes and published as
Gem #63: The Effect of Pragma Suppress[#14].

One of Ada's key strengths has always been its strong typing. The language
imposes stringent checking of type and subtype properties to help prevent
accidental violations of the type system that are a common source of program
bugs in other less-strict languages such as C. This is done using a combination
of compile-time restrictions (legality rules), that prohibit mixing values of
different types, together with run-time checks to catch violations of various
dynamic properties. Examples are checking values against subtype constraints
and preventing dereferences of null access values.

At the same time, Ada does provide certain "loophole" features, such as
Unchecked_Conversion, that allow selective bypassing of the normal
safety features, which is sometimes necessary when interfacing with hardware or
code written in other languages.

Ada also permits explicit suppression of the run-time checks that are there to
ensure that various properties of objects are not violated. This suppression
can be done using pragma Suppress, as well as by using a compile-time
switch on most implementations — in the case of GNAT, with the -gnatp
switch.

In addition to allowing all checks to be suppressed, pragma Suppress
supports suppression of specific forms of check, such as Index_Check for
array indexing, Range_Check for scalar bounds checking, and
Access_Check for dereferencing of access values. (See section 11.5 of
the Ada Reference Manual for further details.)

Here's a simple example of suppressing index checks within a specific
subprogram:

procedure Main is
 procedure Sort_Array (A : in out Some_Array) is
 pragma Suppress (Index_Check);
 -- ^^^^^^^^^^^^^^^^^^^^^
 -- eliminate check overhead
 begin
 ...
 end Sort_Array;
end Main;

Unlike a feature such as Unchecked_Conversion, however, the purpose of
check suppression is not to enable programs to subvert the type system, though
many programmers seem to have that misconception.

What's important to understand about pragma Suppress is that it only
gives permission to the implementation to remove checks, but doesn't require
such elimination. The intention of Suppress is not to allow bypassing of
Ada semantics, but rather to improve efficiency, and the Ada Reference Manual
has a clear statement to that effect in the note in RM-11.5, paragraph 29:

There is no guarantee that a suppressed check is actually removed; hence a
pragma Suppress should be used only for efficiency reasons.

There is associated Implementation Advice that recommends that implementations
should minimize the code executed for checks that have been suppressed, but
it's still the responsibility of the programmer to ensure that the correct
functioning of the program doesn't depend on checks not being performed.

There are various reasons why a compiler might choose not to remove a check. On
some hardware, certain checks may be essentially free, such as null pointer
checks or arithmetic overflow, and it might be impractical or add extra cost to
suppress the check. Another example where it wouldn't make sense to remove
checks is for an operation implemented by a call to a run-time routine, where
the check might be only a small part of a more expensive operation done out of
line.

Furthermore, in many cases GNAT can determine at compile time that a given
run-time check is guaranteed to be violated. In such situations, it gives a
warning that an exception will be raised, and generates code specifically to
raise the exception. Here's an example:

X : Integer range 1..10 := ...;

..

if A > B then
 X := X + 1;
 ..
end if;

For the assignment incrementing X, the compiler will normally generate
machine code equivalent to:

Temp := X + 1;
if Temp > 10 then
 raise Constraint_Error;
end if;
X := Temp;

If range checks are suppressed, then the compiler can just generate the
increment and assignment. However, if the compiler is able to somehow prove
that X = 10 at this point, it will issue a warning, and replace the
entire assignment with simply:

raise Constraint_Error;

even though checks are suppressed. This is appropriate, because

	we don't care about the efficiency of buggy code, and

	there is no "extra" cost to the check, because if we reach that point,
the code will unconditionally fail.

One other important thing to note about checks and pragma Suppress is
this statement in the Ada RM (RM-11.5, paragraph 26):

If a given check has been suppressed, and the corresponding error situation
occurs, the execution of the program is erroneous.

In Ada, erroneous execution is a bad situation to be in, because it means that
the execution of your program could have arbitrary nasty effects, such as
unintended overwriting of memory. Note also that a program whose "correct"
execution somehow depends on a given check being suppressed might work as the
programmer expects, but could still fail when compiled with a different
compiler, or for a different target, or even with a newer version of the same
compiler. Other changes such as switching on optimization or making a change to
a totally unrelated part of the code could also cause the code to start
failing.

So it's definitely not wise to write code that relies on checks being removed.
In fact, it really only makes sense to suppress checks once there's good reason
to believe that the checks can't fail, as a result of testing or other
analysis. Otherwise, you're removing an important safety feature of Ada that's
intended to help catch bugs.

pragma Unsuppress

We can use pragma Unsuppress to reverse the effect of a
pragma Suppress. While pragma Suppress gives permission to the
compiler to remove a specific check, pragma Unsuppress revokes that
permission.

Let's see an example:

show_index_check.adb

 1procedure Show_Index_Check is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 pragma Suppress (Index_Check);
 7 -- from now on, the compiler may
 8 -- eliminate index checks...
 9
10 function Unchecked_Value_Of
11 (A : Integer_Array;
12 I : Integer)
13 return Integer
14 is
15 type Half_Integer_Array is new
16 Integer_Array (A'First ..
17 A'First + A'Length / 2);
18
19 A_2 : Half_Integer_Array := (others => 0);
20 begin
21 return A_2 (I);
22 end Unchecked_Value_Of;
23
24 pragma Unsuppress (Index_Check);
25 -- from now on, index checks are
26 -- typically performed...
27
28 function Value_Of
29 (A : Integer_Array;
30 I : Integer)
31 return Integer
32 is
33 type Half_Integer_Array is new
34 Integer_Array (A'First ..
35 A'First + A'Length / 2);
36
37 A_2 : Half_Integer_Array := (others => 0);
38 begin
39 return A_2 (I);
40 end Value_Of;
41
42 Arr_1 : Integer_Array (1 .. 10) :=
43 (others => 1);
44
45begin
46 Arr_1 (10) := Unchecked_Value_Of (Arr_1, 10);
47 Arr_1 (10) := Value_Of (Arr_1, 10);
48
49end Show_Index_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Pragma_Unsuppress.Pragma_Unsuppress
MD5: 0585b78fd57913d3172c7ab1ea6f4864

Runtime output

raised CONSTRAINT_ERROR : show_index_check.adb:39 index check failed

In this example, we first use a pragma Suppress (Index_Check), so the
compiler is allowed to remove the index check from the
Unchecked_Value_Of function. (Therefore, depending on the compiler, the
call to the Unchecked_Value_Of function may complete without raising an
exception.) Of course, in this specific example, suppressing the index check
masks a severe issue.

In contrast, an index check is performed in the Value_Of function
because of the pragma Unsuppress. As a result, the index checks fails in
the call to this function, which raises a Constraint_Error exception.

In the Ada Reference Manual

	11.5 Suppressing Checks[#15]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

[#2]
https://gcc.gnu.org/onlinedocs/gnat_rm/Pragma-Assertion_005fPolicy.html

[#3]
https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Configuration-Pragmas-Files.html#The-Configuration-Pragmas-Files

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

[#5]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00280.txt?rev=1.12&raw=N

[#6]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00064.txt?rev=1.12&raw=N

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-11-5.html

[#8]
https://www.adacore.com/gems/gem-142-exceptions

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-11-4-1.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-8-5-2.html

[#11]
https://www.adacore.com/gems/gem-150out-and-uninitialized

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-11-6.html

[#13]
http://www.ada-auth.org/standards/22rm/html/RM-11-6.html

[#14]
https://www.adacore.com/gems/gem-63

[#15]
http://www.ada-auth.org/standards/22rm/html/RM-11-5.html

Modular programming

	Packages
	Package renaming
	Grouping packages

	Child of renamed package

	Backwards-compatibility via renaming

	Private packages
	Declaration and usage

	Private sibling packages

	Outside the package tree

	Private with clauses
	Definition and usage

	Referring to private child package

	Limited Visibility
	Limited visibility and private with clauses

	Limited visibility and other elements

	Visibility
	Automatic visibility

	With clauses and visibility

	Circular dependency

	Private packages

	Use type clause
	Another use clause example

	Visibility and Readability

	use type

	use all type

	Use clauses and naming conflicts
	Code example

	Naming conflict

	Circumventing naming conflicts

	Subprograms and Modularity
	Private subprograms
	Private subprograms of a package

	Private subprograms and private packages

Footnotes

Packages

Package renaming

We've seen in the Introduction to Ada course
that we can rename packages.

In the Ada Reference Manual

	10.1.1 Compilation Units - Library Units[#1]

Grouping packages

A use-case that we haven't mentioned in that course is that we can apply
package renaming to group individual packages into a common hierarchy. For
example:

driver_m1.ads

1package Driver_M1 is
2
3end Driver_M1;

driver_m2.ads

1package Driver_M2 is
2
3end Driver_M2;

drivers.ads

1package Drivers
2 with Pure is
3
4end Drivers;

drivers-m1.ads

1with Driver_M1;
2
3package Drivers.M1 renames Driver_M1;

drivers-m2.ads

1with Driver_M2;
2
3package Drivers.M2 renames Driver_M2;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1
MD5: 8d6a6bec32f7ec4397de1faf9f0b44d9

Here, we're renaming the Driver_M1 and Driver_M2 packages as
child packages of the Drivers package, which is a
pure package.

Important

Note that a package that is renamed as a child package cannot refer to
information from its (non-renamed) parent. In other words,
Driver_M1 (renamed as Drivers.M1) cannot refer to information
from the Drivers package. For example:

driver_m1.ads

1package Driver_M1 is
2
3 Counter_2 : Integer := Drivers.Counter;
4
5end Driver_M1;

drivers.ads

1package Drivers is
2
3 Counter : Integer := 0;
4
5end Drivers;

drivers-m1.ads

1with Driver_M1;
2
3package Drivers.M1 renames Driver_M1;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1_Refer_To_Parent
MD5: d174746d8151d9a2cd048ad44e853850

Build output

driver_m1.ads:3:27: error: "Drivers" is undefined
gprbuild: *** compilation phase failed

As expected, compilation fails here because Drivers.Counter isn't
visible in Driver_M1, even though the renaming (Drivers.M1)
creates a virtual hierarchy.

Child of renamed package

Note that we cannot create a child package using a parent package name that was
introduced by a renaming. For example, let's say we want to create a child
package Ext for the Drivers.M1 package we've seen earlier. We
cannot just declare a Drivers.M1.Ext package like this:

package Drivers.M1.Ext is

end Drivers.M1.Ext;

because the parent unit cannot be a renaming. The solution is to actually
extend the original (non-renamed) package:

driver_m1-ext.ads

1package Driver_M1.Ext is
2
3end Driver_M1.Ext;

dummy.adb

1-- A package called Drivers.M1.Ext is
2-- automatically available!
3
4with Drivers.M1.Ext;
5
6procedure Dummy is
7begin
8 null;
9end Dummy;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1
MD5: e338d668dbd98b1a3917a8d3d948a439

This works fine because any child package of a package P is also a child
package of a renamed version of P. (Therefore, because Ext is a
child package of Driver_M1, it is also a child package of the renamed
Drivers.M1 package.)

Backwards-compatibility via renaming

We can also use renaming to ensure backwards-compatibility when changing the
package hierarchy. For example, we could adapt the previous source-code by:

	converting Driver_M1 and Driver_M2 to child packages of
Drivers, and

	using package renaming to mimic the original names (Driver_M1 and
Driver_M2).

This is the adapted code:

drivers.ads

1package Drivers
2 with Pure is
3
4end Drivers;

drivers-m1.ads

1-- We've converted Driver_M1 to
2-- Drivers.M1:
3
4package Drivers.M1 is
5
6end Drivers.M1;

drivers-m2.ads

1-- We've converted Driver_M2 to
2-- Drivers.M2:
3
4package Drivers.M2 is
5
6end Drivers.M2;

driver_m1.ads

1-- Original Driver_M1 package still
2-- available via package renaming:
3
4with Drivers.M1;
5
6package Driver_M1 renames Drivers.M1;

driver_m2.ads

1-- Original Driver_M2 package still
2-- available via package renaming:
3
4with Drivers.M2;
5
6package Driver_M2 renames Drivers.M2;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_2
MD5: 27f8066b5f5954514fea51b6e9b9de81

Now, M1 and M2 are actual child packages of Drivers, but
their original names are still available. By doing so, we ensure that existing
software that makes use of the original packages doesn't break.

Private packages

In this section, we discuss the concept of private packages. However, before we
proceed with the discussion, let's recapitulate some important ideas that we've
seen earlier.

In the
Introduction to Ada course,
we've seen that encapsulation plays an important role in modular programming.
By using the private part of a package specification, we can disclose some
information, but, at the same time, prevent that this information gets
accessed where it shouldn't be used directly. Similarly, we've seen that we can
use the private part of a package to distinguish between the
partial and full view of a data type.

The main application of private packages is to create private child packages,
whose purpose is to serve as internal implementation packages within a
package hierarchy. By doing so, we can expose the internals to other public
child packages, but prevent that external clients can directly access them.

As we'll see next, there are many rules that ensure that internal visibility is
enforced for those private child packages. At the same time, the same rules
ensure that private packages aren't visible outside of the package hierarchy.

Declaration and usage

We declare private packages by using the private keyword. For example,
let's say we have a package named Data_Processing:

data_processing.ads

1package Data_Processing is
2
3-- ...
4
5end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Decl
MD5: 502811212890785d90c6f891d7f8e557

We simply write private package to declare a private child package named
Calculations:

data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3-- ...
4
5end Data_Processing.Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Decl
MD5: 20df8b2ac4c9aa93f03a12afd9b7ef30

Let's see a complete example:

data_processing.ads

 1package Data_Processing is
 2
 3 type Data is private;
 4
 5 procedure Process (D : in out Data);
 6
 7private
 8
 9 type Data is null record;
10
11end Data_Processing;

data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3 procedure Calculate (D : in out Data);
4
5end Data_Processing.Calculations;

data_processing.adb

 1with Data_Processing.Calculations;
 2use Data_Processing.Calculations;
 3
 4package body Data_Processing is
 5
 6 procedure Process (D : in out Data) is
 7 begin
 8 Calculate (D);
 9 end Process;
10
11end Data_Processing;

data_processing-calculations.adb

1package body Data_Processing.Calculations is
2
3 procedure Calculate (D : in out Data) is
4 begin
5 -- Dummy implementation...
6 null;
7 end Calculate;
8
9end Data_Processing.Calculations;

test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4 D : Data;
5begin
6 Process (D);
7end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: 3edd5f73938e809994347b5876014d0d

In this example, we refer to the private child package Calculations in
the body of the Data_Processing package — by simply writing
with Data_Processing.Calculations. After that, we can call the
Calculate procedure normally in the Process procedure.

Private sibling packages

We can introduce another private package Advanced_Calculations as a
child of Data_Processing and refer to the Calculations package
in its specification:

data_processing.ads

 1package Data_Processing is
 2
 3 type Data is private;
 4
 5 procedure Process (D : in out Data);
 6
 7private
 8
 9 type Data is null record;
10
11end Data_Processing;

data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3 procedure Calculate (D : in out Data);
4
5end Data_Processing.Calculations;

data_processing-advanced_calculations.ads

 1with Data_Processing.Calculations;
 2use Data_Processing.Calculations;
 3
 4private
 5package Data_Processing.Advanced_Calculations is
 6
 7 procedure Advanced_Calculate (D : in out Data)
 8 renames Calculate;
 9
10end Data_Processing.Advanced_Calculations;

data_processing.adb

 1with Data_Processing.Advanced_Calculations;
 2use Data_Processing.Advanced_Calculations;
 3
 4package body Data_Processing is
 5
 6 procedure Process (D : in out Data) is
 7 begin
 8 Advanced_Calculate (D);
 9 end Process;
10
11end Data_Processing;

data_processing-calculations.adb

1package body Data_Processing.Calculations is
2
3 procedure Calculate (D : in out Data) is
4 begin
5 -- Dummy implementation...
6 null;
7 end Calculate;
8
9end Data_Processing.Calculations;

test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4 D : Data;
5begin
6 Process (D);
7end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 32fc76ae13f1eecdd854a029793034d8

Note that, in the body of the Data_Processing package, we're now
referring to the new Advanced_Calculations package instead of the
Calculations package.

Referring to a private child package in the specification of another private
child package is OK, but we cannot do the same in the specification of a
non-private package. For example, let's change the specification of the
Advanced_Calculations and make it non-private:

data_processing-advanced_calculations.ads

1with Data_Processing.Calculations;
2use Data_Processing.Calculations;
3
4package Data_Processing.Advanced_Calculations is
5
6 procedure Advanced_Calculate (D : in out Data)
7 renames Calculate;
8
9end Data_Processing.Advanced_Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 27fd3bdb063a11ed7797cc44fa1e8349

Build output

data_processing-advanced_calculations.ads:1:06: error: current unit must also be private descendant of "Data_Processing"
gprbuild: *** compilation phase failed

Now, the compilation doesn't work anymore. However, we could still refer to
Calculations packages in the body of the Advanced_Calculations
package:

data_processing-advanced_calculations.ads

1package Data_Processing.Advanced_Calculations is
2
3 procedure Advanced_Calculate (D : in out Data);
4
5end Data_Processing.Advanced_Calculations;

data_processing-advanced_calculations.adb

 1with Data_Processing.Calculations;
 2use Data_Processing.Calculations;
 3
 4package body Data_Processing.Advanced_Calculations
 5is
 6
 7 procedure Advanced_Calculate (D : in out Data)
 8 is
 9 begin
10 Calculate (D);
11 end Advanced_Calculate;
12
13end Data_Processing.Advanced_Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 3f37c129a6994c6b71a25ad17dcb440e

This works fine as expected: we can refer to private child packages in the body
of another package — as long as both packages belong to the same package
tree.

Outside the package tree

While we can use a with-clause of a private child package in the body of the
Data_Processing package, we cannot do the same outside the package tree.
For example, we cannot refer to it in the Test_Data_Processing
procedure:

test_data_processing.adb

 1with Data_Processing; use Data_Processing;
 2
 3with Data_Processing.Calculations;
 4use Data_Processing.Calculations;
 5
 6procedure Test_Data_Processing is
 7 D : Data;
 8begin
 9 Calculate (D);
10end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: c844327995b28d60c9a79b138a0f21d2

Build output

test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_Processing"
gprbuild: *** compilation phase failed

As expected, we get a compilation error because Calculations is only
accessible within the Data_Processing, but not in the
Test_Data_Processing procedure.

The same restrictions apply to child packages of private packages. For example,
if we implement a child package of the Calculations package —
let's name it Calculations.Child —, we cannot refer to it in the
Test_Data_Processing procedure:

data_processing-calculations-child.ads

1package Data_Processing.Calculations.Child is
2
3 procedure Process (D : in out Data);
4
5end Data_Processing.Calculations.Child;

data_processing-calculations-child.adb

1package body Data_Processing.Calculations.Child is
2
3 procedure Process (D : in out Data) is
4 begin
5 Calculate (D);
6 end Process;
7
8end Data_Processing.Calculations.Child;

test_data_processing.adb

 1with Data_Processing; use Data_Processing;
 2
 3with Data_Processing.Calculations.Child;
 4use Data_Processing.Calculations.Child;
 5
 6procedure Test_Data_Processing is
 7 D : Data;
 8begin
 9 Calculate (D);
10end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: 2eaf23ddbab72578246ac07424008d9d

Build output

test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_Processing"
test_data_processing.adb:9:04: error: "Calculate" is not visible
test_data_processing.adb:9:04: error: non-visible declaration at data_processing-calculations.ads:3
gprbuild: *** compilation phase failed

Again, as expected, we get an error because Calculations.Child —
being a child of a private package — has the same restricted view as its
parent package. Therefore, it cannot be visible in the
Test_Data_Processing procedure as well. We'll discuss more about
visibility later.

Note that subprograms can also be declared private. We'll see this
in another section.

Important

We've discussed package renaming
in a previous section. We can rename a
package as a private package, too. For example:

driver_m1.ads

1package Driver_M1 is
2
3end Driver_M1;

drivers.ads

1package Drivers
2 with Pure is
3
4end Drivers;

drivers-m1.ads

1with Driver_M1;
2
3private package Drivers.M1 renames Driver_M1;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Renaming
MD5: c03584dc26abb108c9c04074234b9637

Obviously, Drivers.M1 has the same restrictions as any private
package:

test_driver.adb

1with Driver_M1;
2with Drivers.M1;
3
4procedure Test_Driver is
5begin
6 null;
7end Test_Driver;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Renaming
MD5: 55415978604ccea4eeaeb02df13cd2f4

Build output

test_driver.adb:2:06: error: unit in with clause is private child unit
test_driver.adb:2:06: error: current unit must also have parent "Drivers"
gprbuild: *** compilation phase failed

As expected, although we can have the Driver_M1 package in a with
clause of the Test_Driver procedure, we cannot do the same in the
case of the Drivers.M1 package because it is private.

In the Ada Reference Manual

	10.1.1 Compilation Units - Library Units[#2]

Private with clauses

Definition and usage

A private with clause allows us to refer to a package in the private part of
another package. For example, if we want to refer to package P in the
private part of Data, we can write private with P:

p.ads

1package P is
2
3 type T is null record;
4
5end P;

data.ads

 1private with P;
 2
 3package Data is
 4
 5 type T2 is private;
 6
 7private
 8
 9 -- Information from P is
10 -- visible here
11 type T2 is new P.T;
12
13end Data;

main.adb

1with Data; use Data;
2
3procedure Main is
4 A : T2;
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: d0705add0dd7861c83822b0d35dacba4

As you can see in the example, as the information from P is available in
the private part of Data, we can derive a new type T2 based on
T from P. However, we cannot do the same in the visible part of
Data:

data.ads

 1private with P;
 2
 3package Data is
 4
 5 -- ERROR: information from P
 6 -- isn't visible here
 7
 8 type T2 is new P.T;
 9
10end Data;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: b454e875f73432f5632a20ab40ae7da6

Build output

data.ads:8:19: error: "P" is not visible
data.ads:8:19: error: non-visible declaration at p.ads:1
gprbuild: *** compilation phase failed

Also, the information from P is available in the package body. For
example, let's declare a Process procedure in the P package and
use it in the body of the Data package:

p.ads

1package P is
2
3 type T is null record;
4
5 procedure Process (A : T) is null;
6
7end P;

data.ads

 1private with P;
 2
 3package Data is
 4
 5 type T2 is private;
 6
 7 procedure Process (A : T2);
 8
 9private
10
11 -- Information from P is
12 -- visible here
13 type T2 is new P.T;
14
15end Data;

data.adb

1package body Data is
2
3 procedure Process (A : T2) is
4 begin
5 P.Process (P.T (A));
6 end Process;
7
8end Data;

main.adb

1with Data; use Data;
2
3procedure Main is
4 A : T2;
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: cecc09f95bd43dd7fd34a9e289bd2674

In the body of the Data, we can access information from the P
package — as we do in the P.Process (P.T (A)) statement of the
Process procedure.

Referring to private child package

There's one case where using a private with clause is the only way to refer to
a package: when we want to refer to a private child package in another child
package. For example, here we have a package P and its two child
packages: Private_Child and Public_Child:

p.ads

1package P is
2
3end P;

p-private_child.ads

1private package P.Private_Child is
2
3 type T is null record;
4
5end P.Private_Child;

p-public_child.ads

 1private with P.Private_Child;
 2
 3package P.Public_Child is
 4
 5 type T2 is private;
 6
 7private
 8
 9 type T2 is new P.Private_Child.T;
10
11end P.Public_Child;

test_parent_child.adb

1with P.Public_Child; use P.Public_Child;
2
3procedure Test_Parent_Child is
4 A : T2;
5begin
6 null;
7end Test_Parent_Child;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_With_Clause
MD5: a6028416a957184be55a54f96a319e61

In this example, we're referring to the P.Private_Child package in the
P.Public_Child package. As expected, this works fine. However, using a
normal with clause doesn't work in this case:

p-public_child.ads

 1with P.Private_Child;
 2
 3package P.Public_Child is
 4
 5 type T2 is private;
 6
 7private
 8
 9 type T2 is new P.Private_Child.T;
10
11end P.Public_Child;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_With_Clause
MD5: 2f32f29ecb4ae13bb4487c94d3bf18d9

Build output

p-public_child.ads:1:06: error: current unit must also be private descendant of "P"
gprbuild: *** compilation phase failed

This gives an error because the information from the P.Private_Child,
being a private child package, cannot be accessed in the public part of another
child package. In summary, unless both packages are private packages, it's only
possible to access the information from a private package in the private part
of a non-private child package.

In the Ada Reference Manual

	10.1.2 Context Clauses - With Clauses[#3]

Limited Visibility

Sometimes, we might face the situation where two packages depend on
information from each other. Let's consider a package A that depends
on a package B, and vice-versa:

a.ads

1with B; use B;
2
3package A is
4
5 type T1 is record
6 Value : T2;
7 end record;
8
9end A;

b.ads

1with A; use A;
2
3package B is
4
5 type T2 is record
6 Value : T1;
7 end record;
8
9end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Circular_Dependency
MD5: ae64f33706f1c58603aff2c33b02c910

Build output

a.ads:1:06: error: circular unit dependency
a.ads:1:06: error: "A (spec)" depends on "B (spec)"
a.ads:1:06: error: "B (spec)" depends on "A (spec)"
a.ads:1:06: error: "A (spec)" depends on "A (spec)"
gprbuild: *** compilation phase failed

Here, we have two
mutually dependent types T1
and T2, which are declared in two packages A and B that
refer to each other. These with clauses constitute a circular dependency, so
the compiler cannot compile either of those packages.

One way to solve this problem is by transforming this circular dependency into
a partial dependency. We do this by limiting the visibility — using a
limited with clause. To use a limited with clause for a package P, we
simply write limited with P.

If a package A has limited visibility to a package B, then all
types from package B are visible as if they had been declared as
incomplete types. For the specific case of
the previous source-code example, this would be the limited visibility to
package B from package A's perspective:

package B is

 -- Incomplete type
 type T2;

end B;

As we've seen previously,

	we cannot declare objects of incomplete types, but we can declare access
types and anonymous access objects of incomplete types. Also,

	we can use anonymous access types to declare
mutually dependent types.

Keeping this information in mind, we can now correct the previous code by using
limited with clauses for package A and declaring the component of the
T1 record using an anonymous access type:

a.ads

1limited with B;
2
3package A is
4
5 type T1 is record
6 Ref : access B.T2;
7 end record;
8
9end A;

b.ads

1with A; use A;
2
3package B is
4
5 type T2 is record
6 Value : T1;
7 end record;
8
9end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Visibility
MD5: 48591850665085a6fbb184f51b658a1b

As expected, we can now compile the code without issues.

Note that we can also use limited with clauses for both packages. If we do
that, we must declare all components using anonymous access types:

a.ads

1limited with B;
2
3package A is
4
5 type T1 is record
6 Ref : access B.T2;
7 end record;
8
9end A;

b.ads

1limited with A;
2
3package B is
4
5 type T2 is record
6 Ref : access A.T1;
7 end record;
8
9end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Visibility_2
MD5: 3884086e89400245346acfbbf0691906

Now, both packages A and B have limited visibility to each other.

In the Ada Reference Manual

	10.1.2 Context Clauses - With Clauses[#4]

Limited visibility and private with clauses

We can limit the visibility and use
private with clauses at the same time.
For a package P, we do this by simply writing
limited private with P.

Let's reuse the previous source-code example and convert types T1 and
T2 to private types:

a.ads

 1limited private with B;
 2
 3package A is
 4
 5 type T1 is private;
 6
 7private
 8
 9 -- Here, we have limited visibility
10 -- of package B
11
12 type T1 is record
13 Ref : access B.T2;
14 end record;
15
16end A;

b.ads

 1private with A;
 2
 3package B is
 4
 5 type T2 is private;
 6
 7private
 8
 9 use A;
10
11 -- Here, we have full visibility
12 -- of package A
13
14 type T2 is record
15 Value : T1;
16 end record;
17
18end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility
MD5: b3ac546e2f55fb91229e834ca7a9783d

In this updated version of the source-code example, we have not only limited
visibility to package B, but also, each package is just visible
in the private part of the other package.

Limited visibility and other elements

It's important to mention that the limited visibility we've been discussing so
far is restricted to type declarations — which are seen as incomplete
types. In fact, when we use a limited with clause, all other declarations have
no visibility at all! For example, let's say we have a package Info that
declares a constant Zero_Const and a function Zero_Func:

info.ads

1package Info is
2
3 function Zero_Func return Integer is (0);
4
5 Zero_Const : constant := 0;
6
7end Info;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility_Other_Elements
MD5: e9b01b4d59db5982532634f9162518ce

Also, let's say we want to use the information (from package Info) in
package A. If we have limited visibility to package Info,
however, this information won't be visible. For example:

a.ads

 1limited private with Info;
 2
 3package A is
 4
 5 type T1 is private;
 6
 7private
 8
 9 type T1 is record
10 V : Integer := Info.Zero_Const;
11 W : Integer := Info.Zero_Func;
12 end record;
13
14end A;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility_Other_Elements
MD5: 61ecb5dc2617eecac62a05d7d2c6c0df

Build output

a.ads:10:26: error: "Zero_Const" not declared in "Info"
a.ads:11:26: error: "Zero_Func" not declared in "Info"
gprbuild: *** compilation phase failed

As expected, compilation fails because of the limited visibility — as
Zero_Const and Zero_Func from the Info package are not
visible in the private part of A. (Of course, if we revert to full
visibility by simply removing the limited keyword from the example, the
code compiles just fine.)

Visibility

In the previous sections, we already discussed visibility from various angles.
However, it can be interesting to recapitulate this information with the help
of diagrams that illustrate the different parts of a package and its relation
with other units.

Automatic visibility

First, let's consider we have a package A, its children (A.G and
A.H), and the grandchild A.G.T. As we've seen before, information
of a parent package is automatically visible in its children. The following
diagrams illustrates this:

[image: allow_mixing skinparam ArrowColor DarkBlue namespace A { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private } namespace A.G #lightyellow { node Public #white node Private #lightgray node Body #blue Public -up--> A.Public Private -up--> Public Private -up--> A.Public Private -up--> A.Private Body -up--> Public Body -up--> Private Body ---> A.Public Body ---> A.Private } namespace A.H { node Public #white node Private #lightgray node Body #blue Public -up--> A.Public Private -up--> Public Private -up--> A.Public Private -up--> A.Private Body -up--> Public Body -up--> Private Body ---> A.Public Body ---> A.Private } namespace A.G.T #white { node Public #white node Private #lightgray node Body #blue Public -up--> A.Public Public -up--> A.G.Public Private -up--> Public Private -up--> A.Public Private -up--> A.Private Private -up--> A.G.Public Private -up--> A.G.Private Body -up--> Public Body -up--> Private Body ---> A.Public Body ---> A.Private Body ---> A.G.Public Body ---> A.G.Private }]

Because of this automatic visibility, many with clauses would be redundant in
child packages. For example, we don't have to write
with A; package A.G is, since the specification of package A is
already visible in its child packages.

If we focus on package A.G (highlighted in the figure above), we see
that it only has automatic visibility to its parent A, but not its child
A.G.T. Also, it doesn't have visibility to its sibling A.H.

With clauses and visibility

In the rest of this section, we discuss all the situations where using with
clauses is necessary to access the information of a package. Let's consider
this example where we refer to a package B in the specification of a
package A (using with B):

[image: allow_mixing skinparam ArrowColor DarkBlue namespace B { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private } namespace A { node Public #white node Private #lightgray node Body #blue Public -up--> B.Public #line:DarkGreen;line.bold;text:DarkGreen : with B; package A is Private -up--> Public Private -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen Body -up--> Public Body -up--> Private Body -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen }]

As we already know, the information from the public part of package B is
visible in the public part of package A. In addition to that, it's also
visible in the private part and in the body of package A. This is
indicated by the dotted green arrows in the figure above.

Now, let's see the case where we refer to package B in the private
part of package A (using private with B):

[image: allow_mixing skinparam ArrowColor DarkBlue namespace B { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private } namespace A { node Public #white node Private #lightgray node Body #blue Private -up--> Public Private -up-> B.Public #line:DarkGreen;line.bold;text:DarkGreen : private with B; package A is Body -up--> Public Body -up--> Private Body -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen }]

Here, the information is visible in the private part of package A, as
well as in its body. Finally, let's see the case where we refer to
package B in the body of package A:

[image: allow_mixing skinparam ArrowColor DarkBlue namespace B { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private } namespace A { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private Body -up--> B.Public #line:DarkGreen;line.bold;text:DarkGreen : with B; package body A is }]

Here, the information is only visible in the body of package A.

Circular dependency

Let's return to package A and its descendants. As we've seen in previous
sections, we cannot refer to a child package in the specification of its parent
package because that would constitute circular dependency. (For example, we
cannot write with A.G; package A is.) This situation — which
causes a compilation error — is indicated by the red arrows in the figure
below:

[image: allow_mixing skinparam ArrowColor DarkBlue namespace A { node Public #white node Private #lightgray node Body #blue Private -up--> Public Body -up--> Public Body -up--> Private } namespace A.G { node Public #white node Private #lightgray node Body #blue Public -up--> A.Public Private -up--> Public Private -up--> A.Public Private -up--> A.Private Body -up--> Public Body -up--> Private Body ---> A.Public Body ---> A.Private Public x-up- A.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; package A is Public x-- A.Private #line:DarkRed;line.bold;text:DarkRed : private with A.G; package A is Public <--- A.Body #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A is }]

Note that referring to the child package A.G in the body of its parent
is perfectly fine.

Private packages

The previous examples of this section only showed public packages. As we've
seen before, we cannot refer to private packages outside of a package
hierarchy, as we can see in the following example where we try to refer to
package A and its descendants in the Test procedure:

[image: allow_mixing left to right direction scale 0.75 namespace A { node Public #white node Private #lightgray node Body #blue } namespace A.G << private A.G >> #lightgray { node Public #white node Private #lightgray node Body #blue } namespace A.H { node Public #white node Private #lightgray node Body #blue } namespace A.G.T #white { node Public #white node Private #lightgray node Body #blue } node "procedure Test" as Procedure_Test Procedure_Test -up--> A.Public #line:DarkGreen;line.bold;text:DarkGreen : with A; Procedure_Test -up--> A.H.Public #line:DarkGreen;line.bold;text:DarkGreen : with A.H; Procedure_Test -up--x A.G.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; Procedure_Test -up--x A.G.T.Public #line:DarkRed;line.bold;text:DarkRed : with A.G.T;]

As indicated by the red arrows, we cannot refer to the private child packages
of A in the Test procedure, only the public child packages.
Within the package hierarchy itself, we cannot refer to the private package
A.G in public sibling packages. For example:

[image: allow_mixing left to right direction scale 0.75 namespace A { node Public #white node Private #lightgray node Body #blue } namespace A.G << private A.G >> #lightgray { node Public #white node Private #lightgray node Body #blue Public <--- A.Body #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A is } namespace A.H { node Public #white node Private #lightgray node Body #blue Public --x A.G.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; package A.H is Private ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : private with A.G; package A.H is Body ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A.H is } namespace A.I << private A.I >> #lightgray { node Public #white node Private #lightgray node Body #blue Public ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : with A.G; private package A.I is }]

Here, we cannot refer to the private package A.G in the public package
A.H — as indicated by the red arrow. However, we can refer to the
private package A.G in other private packages, such as A.I
— as indicated by the green arrows.

Use type clause

Back in the Introduction to Ada course, we saw
that use clauses provide direct visibility — in the scope where they're
used — to the content of a package's visible part.

For example, consider this simple procedure:

display_message.adb

1with Ada.Text_IO;
2
3procedure Display_Message is
4begin
5 Ada.Text_IO.Put_Line ("Hello World!");
6end Display_Message;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.No_Use_Clause
MD5: 4c6ff19809c13ebd2fdfda482914e5f8

Runtime output

Hello World!

By adding use Ada.Text_IO to this code, we make the visible part of the
Ada.Text_IO package directly visible in the scope of the
Display_Message procedure, so we can now just write Put_Line
instead of Ada.Text_IO.Put_Line:

display_message.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_Message is
4begin
5 Put_Line ("Hello World!");
6end Display_Message;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Clause
MD5: b105a777a1afd79008f8580cda432cfe

Runtime output

Hello World!

In this section, we discuss another example of use clauses. In addition, we
introduce two specific forms of use clauses: use type and
use all type.

In the Ada Reference Manual

	8.4 Use Clauses[#5]

Another use clause example

Let's now consider a simple package called Points, which contains the
declaration of the Point type and two primitive: an Init function
and an addition operator.

points.ads

 1package Points is
 2
 3 type Point is private;
 4
 5 function Init return Point;
 6
 7 function "+" (P : Point;
 8 I : Integer) return Point;
 9
10private
11
12 type Point is record
13 X, Y : Integer;
14 end record;
15
16 function Init return Point is (0, 0);
17
18 function "+" (P : Point;
19 I : Integer) return Point is
20 (P.X + I, P.Y + I);
21
22end Points;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 1a43740d7231a3cc497e778866a12c55

We can implement a simple procedure that makes use of this package:

show_point.adb

1with Points; use Points;
2
3procedure Show_Point is
4 P : Point;
5begin
6 P := Init;
7 P := P + 1;
8end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: f5d44dd1fee8cf4d1a7e730f9a7c64cc

Here, we have a use clause, so we have direct visibility to the content of
Points's visible part.

Visibility and Readability

In certain situations, however, we might want to avoid the use clause. If
that's the case, we can rewrite the previous implementation by removing the use
clause and specifying the Points package in the prefixed form:

show_point.adb

1with Points;
2
3procedure Show_Point is
4 P : Points.Point;
5begin
6 P := Points.Init;
7 P := Points."+" (P, 1);
8end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: ca896b456a90c19b29ec4f262144c131

Although this code is correct, it might be difficult to read, as we have to
specify the package whenever we're referring to a type or a subprogram from
that package. Even worse: we now have to write operators in the prefixed form
— such as Points."+" (P, 1).

use type

As a compromise, we can have direct visibility to the operators of a certain
type. We do this by using a use clause in the form use type. This allows
us to simplify the previous example:

show_point.adb

 1with Points;
 2
 3procedure Show_Point is
 4 use type Points.Point;
 5
 6 P : Points.Point;
 7begin
 8 P := Points.Init;
 9 P := P + 1;
10end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: a9527276c27a67be8b5a59efcf6e5cfd

Note that use type just gives us direct visibility to the operators of a
certain type, but not other primitives. For this reason, we still have to write
Points.Init in the code example.

use all type

If we want to have direct visibility to all primitives of a certain type (and
not just its operators), we need to write a use clause in the form
use all type. This allows us to simplify the previous example even
further:

show_point.adb

 1with Points;
 2
 3procedure Show_Point is
 4 use all type Points.Point;
 5
 6 P : Points.Point;
 7begin
 8 P := Init;
 9 P := P + 1;
10end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 4a8f6edd4e1811c4e8acb24393690282

Now, we've removed the prefix from all operations on the P variable.

Use clauses and naming conflicts

Visibility issues may arise when we have multiple use clauses. For instance,
we might have types with the same name declared in multiple packages. This
constitutes a naming conflict; in this case, the types become hidden — so
they're not directly visible anymore, even if we have a use clause.

In the Ada Reference Manual

	8.4 Use Clauses[#6]

Code example

Let's start with a code example. First, we declare and implement a generic
procedure that shows the value of a Complex object:

show_any_complex.ads

1with Ada.Numerics.Generic_Complex_Types;
2
3generic
4 with package Complex_Types is new
5 Ada.Numerics.Generic_Complex_Types (<>);
6procedure Show_Any_Complex
7 (Msg : String;
8 Val : Complex_Types.Complex);

show_any_complex.adb

 1with Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3
 4procedure Show_Any_Complex
 5 (Msg : String;
 6 Val : Complex_Types.Complex)
 7is
 8 package Complex_Float_Types_IO is new
 9 Ada.Text_IO.Complex_IO (Complex_Types);
10 use Complex_Float_Types_IO;
11
12 use Ada.Text_IO;
13begin
14 Put (Msg & " ");
15 Put (Val);
16 New_Line;
17end Show_Any_Complex;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 2527291906d3a600eecd6d36e4359c1a

Then, we implement a test procedure where we declare the
Complex_Float_Types package as an instance of the
Generic_Complex_Types package:

show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8 package Complex_Float_Types is new
 9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12
13 procedure Show_Complex_Float is new
14 Show_Any_Complex (Complex_Float_Types);
15
16 C, D, X : Complex;
17begin
18 C := Compose_From_Polar (3.0, Pi / 2.0);
19 D := Compose_From_Polar (5.0, Pi / 2.0);
20 X := C + D;
21
22 Show_Complex_Float ("C:", C);
23 Show_Complex_Float ("D:", D);
24 Show_Complex_Float ("X:", X);
25end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: cc2a612c9884539f33154680854a4c82

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

In this example, we declare variables of the Complex type, initialize
them and use them in operations. Note that we have direct visibility to the
package instance because we've added a simple use clause after the package
instantiation — see use Complex_Float_Types in the example.

Naming conflict

Now, let's add the declaration of the Complex_Long_Float_Types package
— a second instantiation of the Generic_Complex_Types package
— to the code example:

show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8 package Complex_Float_Types is new
 9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12
13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use Complex_Long_Float_Types;
17
18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20
21 C, D, X : Complex;
22 -- ^ ERROR: type is hidden!
23begin
24 C := Compose_From_Polar (3.0, Pi / 2.0);
25 D := Compose_From_Polar (5.0, Pi / 2.0);
26 X := C + D;
27
28 Show_Complex_Float ("C:", C);
29 Show_Complex_Float ("D:", D);
30 Show_Complex_Float ("X:", X);
31end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 30b562e2f81ae62912ec4e067150d5cd

Build output

show_use.adb:21:14: error: "Complex" is not visible
show_use.adb:21:14: error: multiple use clauses cause hiding
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line 13
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line 8
gprbuild: *** compilation phase failed

This example doesn't compile because we have direct visibility to both
Complex_Float_Types and Complex_Long_Float_Types packages, and
both of them declare the Complex type. In this case, the type
declaration becomes hidden, as the compiler cannot decide which declaration of
Complex it should take.

Circumventing naming conflicts

As we know, a simple fix for this compilation error is to add the package
prefix in the variable declaration:

show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8 package Complex_Float_Types is new
 9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12
13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use Complex_Long_Float_Types;
17
18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20
21 C, D, X : Complex_Float_Types.Complex;
22 -- ^ SOLVED: package is now specified.
23begin
24 C := Compose_From_Polar (3.0, Pi / 2.0);
25 D := Compose_From_Polar (5.0, Pi / 2.0);
26 X := C + D;
27
28 Show_Complex_Float ("C:", C);
29 Show_Complex_Float ("D:", D);
30 Show_Complex_Float ("X:", X);
31end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 0b3285364ea0188a678db2fc406741b8

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

Another possibility is to write a use clause in the form use all type:

show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8 package Complex_Float_Types is new
 9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use all type Complex_Float_Types.Complex;
12
13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use all type Complex_Long_Float_Types.Complex;
17
18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20
21 C, D, X : Complex_Float_Types.Complex;
22begin
23 C := Compose_From_Polar (3.0, Pi / 2.0);
24 D := Compose_From_Polar (5.0, Pi / 2.0);
25 X := C + D;
26
27 Show_Complex_Float ("C:", C);
28 Show_Complex_Float ("D:", D);
29 Show_Complex_Float ("X:", X);
30end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 90333ff41e25afb1399f7f94f7e2b566

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

For the sake of completeness, let's declare and use variables of both
Complex types:

show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8 package Complex_Float_Types is new
 9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use all type Complex_Float_Types.Complex;
12
13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use all type Complex_Long_Float_Types.Complex;
17
18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20
21 procedure Show_Complex_Long_Float is new
22 Show_Any_Complex (Complex_Long_Float_Types);
23
24 C, D, X : Complex_Float_Types.Complex;
25 E, F, Y : Complex_Long_Float_Types.Complex;
26begin
27 C := Compose_From_Polar (3.0, Pi / 2.0);
28 D := Compose_From_Polar (5.0, Pi / 2.0);
29 X := C + D;
30
31 Show_Complex_Float ("C:", C);
32 Show_Complex_Float ("D:", D);
33 Show_Complex_Float ("X:", X);
34
35 E := Compose_From_Polar (3.0, Pi / 2.0);
36 F := Compose_From_Polar (5.0, Pi / 2.0);
37 Y := E + F;
38
39 Show_Complex_Long_Float ("E:", E);
40 Show_Complex_Long_Float ("F:", F);
41 Show_Complex_Long_Float ("Y:", Y);
42end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 48f31250116f107d3143703debb3107d

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)
E: (1.83697019872103E-16, 3.00000000000000E+00)
F: (3.06161699786838E-16, 5.00000000000000E+00)
Y: (4.89858719658941E-16, 8.00000000000000E+00)

As expected, the code compiles correctly.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

Subprograms and Modularity

Private subprograms

We've seen previously that we can declare
private packages. Because packages and subprograms can both be library units,
we can declare private subprograms as well. We do this by using the
private keyword. For example:

test.ads

1private procedure Test;

test.adb

1procedure Test is
2begin
3 null;
4end Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Test_Procedure
MD5: 2ea1770a5fd5dee40f015b9d33d2f309

Such a subprogram as the one above isn't really useful. For example, we cannot
write a with clause that refers to the Test procedure, as it's not
visible anywhere:

show_test.adb

1with Test;
2
3procedure Show_Test is
4begin
5 Test;
6end Show_Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Test_Procedure
MD5: 0702378a034f65a69a4c5b5258f7b32e

Build output

show_test.adb:1:06: error: current unit must also be private descendant of "Standard"
gprbuild: *** compilation phase failed

As expected, since Test is private, we get a compilation error because
this procedure cannot be referenced in the Show_Test procedure.

In the Ada Reference Manual

	10.1.1 Compilation Units - Library Units[#1]

	10.1.2 Context Clauses - With Clauses[#2]

Private subprograms of a package

A more useful example is to declare private subprograms of a package. For
example:

data_processing.ads

 1package Data_Processing is
 2
 3 type Data is private;
 4
 5 procedure Process (D : in out Data);
 6
 7private
 8
 9 type Data is record
10 F : Float;
11 end record;
12
13end Data_Processing;

data_processing.adb

 1with Data_Processing.Calculate;
 2
 3package body Data_Processing is
 4
 5 procedure Process (D : in out Data) is
 6 begin
 7 Calculate (D);
 8 end Process;
 9
10end Data_Processing;

data_processing-calculate.ads

1private
2procedure Data_Processing.Calculate
3 (D : in out Data);

data_processing-calculate.adb

1procedure Data_Processing.Calculate
2 (D : in out Data)
3is
4begin
5 -- Dummy implementation...
6 D.F := 0.0;
7end Data_Processing.Calculate;

test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4 D : Data;
5begin
6 Process (D);
7end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Package_Procedure
MD5: 0f6af1b02f37e011abac5b2a6dfc482d

In this example, we declare Calculate as a private procedure of the
Data_Processing package. Therefore, it's visible in that package (but
not in the Test_Data_Processing procedure). Also, in the
Calculate procedure, we're able to initialize the private component
F of the D object because the child subprogram has access to the
private part of its parent package.

Private subprograms and private packages

We can also use private subprograms to test private packages. As we know, in
most cases, we cannot access private packages in external clients — such
as external subprograms. However, by declaring a subprogram private, we're
allowed to access private packages. This can be very useful to create
applications that we can use to test private packages. (Note that these
applications must be library-level parameterless subprograms, because only
those can be main programs.)

Let's see an example:

private_data_processing.ads

 1private package Private_Data_Processing is
 2
 3 type Data is private;
 4
 5 procedure Process (D : in out Data);
 6
 7private
 8
 9 type Data is record
10 F : Float;
11 end record;
12
13end Private_Data_Processing;

private_data_processing.adb

1package body Private_Data_Processing is
2
3 procedure Process (D : in out Data) is
4 begin
5 D.F := 0.0;
6 end Process;
7
8end Private_Data_Processing;

test_private_data_processing.ads

1private procedure Test_Private_Data_Processing;

test_private_data_processing.adb

1with Private_Data_Processing;
2use Private_Data_Processing;
3
4procedure Test_Private_Data_Processing is
5 D : Data;
6begin
7 Process (D);
8end Test_Private_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Subprogram_Private_Package
MD5: 3527e54f99eb2cb52317c987b499caaf

In this code example, we have the private Private_Data_Processing
package. In order to test it, we implement the private
procedure Test_Private_Data_Processing. The fact that this procedure is
private allows us to use the Private_Data_Processing package as if it
was a non-private package. We then use the private
Test_Private_Data_Processing procedure as our main application, so we can
run it to test application the private package.

Child subprograms of private packages

We could also implement the Test subprogram that we use to test a
private package P as a child subprogram of that package. In other words,
we could write a procedure P.Test and use it as our main application.
The advantage here is that this allows us to access the private part of the
parent package P in the test procedure.

Let's rewrite the Test_Private_Data_Processing procedure from the
previous example as the child procedure Private_Data_Processing.Test:

private_data_processing.ads

 1private package Private_Data_Processing is
 2
 3 type Data is private;
 4
 5 procedure Process (D : in out Data);
 6
 7private
 8
 9 type Data is record
10 F : Float;
11 end record;
12
13end Private_Data_Processing;

private_data_processing.adb

1package body Private_Data_Processing is
2
3 procedure Process (D : in out Data) is
4 begin
5 null;
6 end Process;
7
8end Private_Data_Processing;

private_data_processing-test.ads

1procedure Private_Data_Processing.Test;

private_data_processing-test.adb

1procedure Private_Data_Processing.Test is
2 D : Data := (F => 0.0);
3begin
4 Process (D);
5end Private_Data_Processing.Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Package_Child_Subprogram
MD5: 0726f5890a5b3847244d1ae08989e158

In this code example, we now implement the Test procedure as a child of
the Private_Data_Processing package. In this procedure, we're able to
initialize the private component F of the D object. As we know,
this initialization of a private component wouldn't be possible if Test
wasn't a child procedure. (For instance, writing such an initialization in the
Test_Private_Data_Processing procedure from the previous code example
would trigger a compilation error.)

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

Resource Management

	Access Types
	Access types: Terminology
	Access type, designated subtype and profile

	Access object and designated object

	Access value and designated value

	Access types: Allocation
	Pool-specific access types

	Multiple allocation

	Discriminants as Access Values
	Unconstrained type as designated subtype

	Whole object assignments

	Parameters as Access Values
	Changing the referenced object

	Replace the access value

	Side-effects on designated objects

	Self-reference

	Mutually dependent types using access types

	Dereferencing
	Implicit Dereferencing

	Ragged arrays
	Uniform multidimensional arrays

	Non-uniform multidimensional array

	Aliasing
	Aliased objects

	Aliased components

	Aliased parameters

	Accessibility Levels and Rules: An Introduction
	Lifetime of objects

	Accessibility Levels

	Accessibility Rules

	Accessibility rules on parameters

	Dangling References

	Unchecked Access

	Unchecked Deallocation
	Unchecked Deallocation and Dangling References

	Dereferencing dangling references

	Restrictions for Ada.Unchecked_Deallocation

	Null & Not Null Access

	Design strategies for access types
	Abstract data type for access types

	Controlled type for access types

	Access to subprograms
	Static vs. dynamic calls

	Access to subprogram declaration

	Objects of access-to-subprogram type

	Components of access-to-subprogram type

	Access-to-subprogram as discriminant types

	Access-to-subprograms as formal parameters

	Selecting subprograms

	Null exclusion

	Access to protected subprograms

	Accessibility Rules and Access-To-Subprograms
	Unchecked Access

	Access and Address
	Address and access conversion

	Anonymous Access Types
	Named and Anonymous Access Types
	Relation to named types

	Benefits of anonymous access types

	Anonymous Access-To-Object Types
	Not Null Anonymous Access-To-Object Types

	Drawbacks of Anonymous Access-To-Object Types

	Access discriminants
	Default Value of Access Discriminants

	Benefits of Access Discriminants

	Preventing dangling pointers

	Self-reference

	Mutually dependent types using anonymous access types

	Access parameters
	Interfacing To Other Languages

	Inherited Primitive Operations For Tagged Types

	User-Defined References
	Dereferencing of tagged types

	Simple container

	Anonymous Access Types and Accessibility Rules
	Conversions between Anonymous and Named Access Types

	Accessibility rules on access parameters

	Anonymous Access-To-Subprograms
	Examples of anonymous access-to-subprogram usage

	Application of anonymous access-to-subprogram types

	Readability

	Accessibility Rules and Anonymous Access-To-Subprograms
	Named vs. anonymous access-to-subprograms

	Named vs. anonymous access-to-subprograms as parameters

	Iterator

Footnotes

Access Types

We discussed access types back in the
Introduction to Ada course. In
this chapter, we discuss further details about access types and techniques when
using them. Before we dig into details, however, we're going to make sure
we understand the terminology.

Access types: Terminology

In this section, we discuss some of the terminology associated with access
types. Usually, the terms used in Ada when discussing references and dynamic
memory allocation are different than the ones you might encounter in other
languages, so it's necessary you understand what each term means.

Access type, designated subtype and profile

The first term we encounter is (obviously) access type, which is a type that
provides us access to an object or a subprogram. We declare access types by
using the access keyword:

show_access_type_declaration.ads

 1package Show_Access_Type_Declaration is
 2
 3 --
 4 -- Declaring access types:
 5 --
 6
 7 -- Access-to-object type
 8 type Integer_Access is access Integer;
 9
10 -- Access-to-subprogram type
11 type Init_Integer_Access is access
12 function return Integer;
13
14end Show_Access_Type_Declaration;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Access_Type_Declaration
MD5: 64e4e0847a73a9ed23e29e09798934de

Here, we're declaring two access types: the access-to-object type
Integer_Access and the access-to-subprogram type
Init_Integer_Access. (We discuss access-to-subprogram types
later on).

In the declaration of an access type, we always specify — after the
access keyword — the kind of thing we want to designate. In the
case of an access-to-object type declaration, we declare a subtype we want to
access, which is known as the designated subtype of an access type. In the
case of an access-to-subprogram type declaration, the subprogram prototype is
known as the designated profile.

In our previous code example, Integer is the designated subtype of the
Integer_Access type, and function return Integer is the
designated profile of the Init_Integer_Access type.

Important

In contrast to other programming languages, an access type is not a
pointer, and it doesn't just indicate an address in memory. We discuss more
about addresses later on.

Access object and designated object

We use an access-to-object type by first declaring a variable (or constant) of
an access type and then allocating an object. (This is actually just one way of
using access types; we discuss other methods later in this chapter.) The actual
variable or constant of an access type is called access object, while the
object we allocate (via new) is the designated object.

For example:

show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3 -- Access-to-object type
 4 type Integer_Access is access Integer;
 5
 6 -- Access object
 7 I1 : Integer_Access;
 8
 9begin
10 I1 := new Integer;
11 -- ^^^^^^^^^^^ allocating an object,
12 -- which becomes the designated
13 -- object for I1
14
15end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Simple_Allocation
MD5: 32ca8cf523e19b25dabb55da6df1f18d

In this example, I1 is an access object and the object allocated via
new Integer is its designated object.

Access value and designated value

An access object and a designated (allocated) object, both store values. The
value of an access object is the access value and the value of a designated
object is the designated value. For example:

show_values.adb

 1procedure Show_Values is
 2
 3 -- Access-to-object type
 4 type Integer_Access is access Integer;
 5
 6 I1, I2, I3 : Integer_Access;
 7
 8begin
 9 I1 := new Integer;
10 I3 := new Integer;
11
12 -- Copying the access value of I1 to I2
13 I2 := I1;
14
15 -- Copying the designated value of I1
16 I3.all := I1.all;
17
18end Show_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Values
MD5: a152ee813b8ed9fad985cf4e2c25d847

In this example, the assignment I2 := I1 copies the access value of
I1 to I2. The assignment I3.all := I1.all copies
I1's designated value to I3's designated object.
(As we already know, .all is used to dereference an access object. We
discuss this topic again later in this chapter.)

In the Ada Reference Manual

	3.10 Access Types[#1]

Access types: Allocation

Ada makes the distinction between pool-specific and general access types, as
we'll discuss in this section. Before doing so, however, let's talk about
memory allocation.

In general terms, memory can be allocated dynamically on the
heap or statically on the stack. (Strictly speaking, both are dynamic
allocations, in that they occur at run-time with amounts not previously
specified.) For example:

show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3 -- Declaring access type:
 4 type Integer_Access is access Integer;
 5
 6 -- Declaring access object:
 7 A1 : Integer_Access;
 8
 9begin
10 -- Allocating an Integer object on the heap
11 A1 := new Integer;
12
13 declare
14 -- Allocating an Integer object on the
15 -- stack
16 I : Integer;
17 begin
18 null;
19 end;
20
21end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Simple_Allocation
MD5: 4144feb99e6e0b1a0749fce0b20370a1

Build output

show_simple_allocation.adb:16:07: warning: variable "I" is never read and never assigned [-gnatwv]

When we allocate an object on the heap via new, the allocation happens
in a memory pool that is associated with the access type. In our code example,
there's a memory pool associated with the Integer_Access type, and each
new Integer allocates a new integer object in that pool. Therefore,
access types of this kind are called pool-specific access types. (We discuss
more about these types later.)

It is also possible to access objects that were allocated on the stack. To do
that, however, we cannot use pool-specific access types because — as the
name suggests — they're only allowed to access objects that were
allocated in the specific pool associated with the type. Instead, we have to
use general access types in this case:

show_general_access_type.adb

 1procedure Show_General_Access_Type is
 2
 3 -- Declaring general access type:
 4 type Integer_Access is access all Integer;
 5
 6 -- Declaring access object:
 7 A1 : Integer_Access;
 8
 9 -- Allocating an Integer object on the
10 -- stack:
11 I : aliased Integer;
12
13begin
14 -- Getting access to an Integer object that
15 -- was allocated on the stack
16 A1 := I'Access;
17
18end Show_General_Access_Type;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.General_Access_Types
MD5: f166291ad1975396131775d0aff6ad9d

In this example, we declare the general access type Integer_Access and
the access object A1. To initialize A1, we write I'Access
to get access to an integer object I that was allocated on the stack.
(For the moment, don't worry much about these details: we'll talk about general
access types again when we introduce the topic of
aliased objects later on.)

For further reading...

Note that it is possible to use general access types to allocate objects on
the heap:

show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3 -- Declaring general access type:
 4 type Integer_Access is access all Integer;
 5
 6 -- Declaring access object:
 7 A1 : Integer_Access;
 8
 9begin
10 --
11 -- Allocating an Integer object on the heap
12 -- and initializing an access object of
13 -- the general access type Integer_Access.
14 --
15 A1 := new Integer;
16
17end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.General_Access_Types_Heap
MD5: 3fa5efeac2f66794f066ab29f26bf7ca

Here, we're using a general access type Integer_Access, but
allocating an integer object on the heap.

Important

In many code examples, we have used the Integer type as the
designated subtype of the access types — by writing
access Integer. Although we have used this specific scalar type,
we aren't really limited to those types. In fact, we can use any type as
the designated subtype, including user-defined types, composite types,
task types and protected types.

In the Ada Reference Manual

	3.10 Access Types[#2]

Pool-specific access types

We've already discussed many aspects about pool-specific access types. In this
section, we recapitulate some of those aspects, and discuss some new details
that haven't seen yet.

As we know, we cannot directly assign an object Distance_Miles of type
Miles to an object Distance_Meters of type Meters, even if
both share a common Float type ancestor. The assignment is only possible
if we perform a type conversion from Miles to Meters, or
vice-versa — e.g.:
Distance_Meters := Meters (Distance_Miles) * Miles_To_Meters_Factor.

Similarly, in the case of pool-specific access types, a direct assignment
between objects of different access types isn't possible. However, even if
both access types have the same designated subtype (let's say, they are both
declared using is access Integer), it's still not possible to perform
a type conversion between those access types. The only situation when an access
type conversion is allowed is when both types have a common ancestor.

Let's see an example:

show_simple_allocation.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Simple_Allocation is
 6
 7 -- Declaring pool-specific access type:
 8 type Integer_Access_1 is access Integer;
 9 type Integer_Access_2 is access Integer;
10 type Integer_Access_2B is new Integer_Access_2;
11
12 -- Declaring access object:
13 A1 : Integer_Access_1;
14 A2 : Integer_Access_2;
15 A2B : Integer_Access_2B;
16
17begin
18 A1 := new Integer;
19 Put_Line ("A1 : " & A1'Image);
20 Put_Line ("Pool: " & A1'Storage_Pool'Image);
21
22 A2 := new Integer;
23 Put_Line ("A2: " & A2'Image);
24 Put_Line ("Pool: " & A2'Storage_Pool'Image);
25
26 -- ERROR: Cannot directly assign access values
27 -- for objects of unrelated access
28 -- types; also, cannot convert between
29 -- these types.
30 --
31 -- A1 := A2;
32 -- A1 := Integer_Access_1 (A2);
33
34 A2B := Integer_Access_2B (A2);
35 Put_Line ("A2B: " & A2B'Image);
36 Put_Line ("Pool: " & A2B'Storage_Pool'Image);
37
38end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Pool_Specific_Access_Types
MD5: 8984cb9cb9083f09b9b4096da812f805

Runtime output

A1 : (access 133f2a0)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}
A2: (access 133f360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}
A2B: (access 133f360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}

In this example, we declare three access types: Integer_Access_1,
Integer_Access_2 and Integer_Access_2B. Also,
the Integer_Access_2B type is derived from the Integer_Access_2
type. Therefore, we can convert an object of Integer_Access_2 type to
the Integer_Access_2B type — we do this in the
A2B := Integer_Access_2B (A2) assignment. However, we cannot directly
assign to or convert between unrelated types such as Integer_Access_1
and Integer_Access_2. (We would get a compilation error if we included
the A1 := A2 or the A1 := Integer_Access_1 (A2) assignment.)

Important

Remember that:

	As mentioned in the
Introduction to Ada course:

	an access type can be unconstrained, but the actual object allocation
must be constrained;

	we can use a
qualified expression to
allocate an object.

	We can use the Storage_Size attribute to limit the size of the
memory pool associated with an access type, as discussed previously in
the section about storage size.

	When running out of memory while allocating via new, we get a
Storage_Error exception because of the
storage check.

For example:

show_array_allocation.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Array_Allocation is
 6
 7 -- Unconstrained array type:
 8 type Integer_Array is
 9 array (Positive range <>) of Integer;
10
11 -- Access type with unconstrained
12 -- designated subtype and limited storage
13 -- size.
14 type Integer_Array_Access is
15 access Integer_Array
16 with Storage_Size => 128;
17
18 -- An access object:
19 A1 : Integer_Array_Access;
20
21 procedure Show_Info
22 (IAA : Integer_Array_Access) is
23 begin
24 Put_Line ("Allocated: " & IAA'Image);
25 Put_Line ("Length: "
26 & IAA.all'Length'Image);
27 Put_Line ("Values: "
28 & IAA.all'Image);
29 end Show_Info;
30
31begin
32 -- Allocating an integer array with
33 -- constrained range on the heap:
34 A1 := new Integer_Array (1 .. 3);
35 A1.all := [others => 42];
36 Show_Info (A1);
37
38 -- Allocating an integer array on the
39 -- heap using a qualified expression:
40 A1 := new Integer_Array'(5, 10);
41 Show_Info (A1);
42
43 -- A third allocation fails at run time
44 -- because of the constrained storage
45 -- size:
46 A1 := new Integer_Array (1 .. 100);
47 Show_Info (A1);
48
49exception
50 when Storage_Error =>
51 Put_Line ("Out of memory!");
52
53end Show_Array_Allocation;

Multiple allocation

Up to now, we have seen examples of allocating a single object on the heap.
It's possible to allocate multiple objects at once as well — i.e.
syntactic sugar is available to simplify the code that performs this
allocation. For example:

show_access_array_allocation.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5procedure Show_Access_Array_Allocation is
 6
 7 type Integer_Access is access Integer;
 8
 9 type Integer_Access_Array is
10 array (Positive range <>) of Integer_Access;
11
12 -- An array of access objects:
13 Arr : Integer_Access_Array (1 .. 10);
14
15begin
16 --
17 -- Allocating 10 access objects and
18 -- initializing the corresponding designated
19 -- object with zero:
20 --
21 Arr := (others => new Integer'(0));
22
23 -- Same as:
24 for I in Arr'Range loop
25 Arr (I) := new Integer'(0);
26 end loop;
27
28 Put_Line ("Arr: " & Arr'Image);
29
30 Put_Line ("Arr (designated values): ");
31 for E of Arr loop
32 Put (E.all'Image);
33 end loop;
34
35end Show_Access_Array_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Integer_Access_Array
MD5: c32af182dc35879d76df989a689ee35c

Runtime output

Arr:
[(access 22ee3e0), (access 22ee400), (access 22ee420), (access 22ee440),
 (access 22ee460), (access 22ee480), (access 22ee4a0), (access 22ee4c0),
 (access 22ee4e0), (access 22ee500)]
Arr (designated values):
 0 0 0 0 0 0 0 0 0 0

In this example, we have the access type Integer_Access and an array
type of this access type (Integer_Access_Array). We also declare an
array Arr of Integer_Access_Array type. This means that each
component of Arr is an access object. We allocate all ten components of
the Arr array by simply writing Arr := (others => new Integer).
This array aggregate is syntactic sugar for a
loop over Arr that allocates each component. (Note that, by writing
Arr := (others => new Integer'(0)), we're also initializing the
designated objects with zero.)

Let's see another code example, this time with task types:

workers.ads

 1package Workers is
 2
 3 task type Worker is
 4 entry Start (Id : Positive);
 5 entry Stop;
 6 end Worker;
 7
 8 type Worker_Access is access Worker;
 9
10 type Worker_Array is
11 array (Positive range <>) of Worker_Access;
12
13end Workers;

workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Workers is
 4
 5 task body Worker is
 6 Id : Positive;
 7 begin
 8 accept Start (Id : Positive) do
 9 Worker.Id := Id;
10 end Start;
11 Put_Line ("Started Worker #"
12 & Id'Image);
13
14 accept Stop;
15
16 Put_Line ("Stopped Worker #"
17 & Id'Image);
18 end Worker;
19
20end Workers;

show_workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Workers; use Workers;
 4
 5procedure Show_Workers is
 6 Worker_Arr : Worker_Array (1 .. 20);
 7begin
 8 --
 9 -- Allocating 20 workers at once:
10 --
11 Worker_Arr := (others => new Worker);
12
13 for I in Worker_Arr'Range loop
14 Worker_Arr (I).Start (I);
15 end loop;
16
17 Put_Line ("Some processing...");
18 delay 1.0;
19
20 for W of Worker_Arr loop
21 W.Stop;
22 end loop;
23
24end Show_Workers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Workers
MD5: d29e3d56585f8d9a63b805c680e5dc54

Runtime output

Started Worker # 1
Started Worker # 4
Started Worker # 5
Started Worker # 2
Started Worker # 6
Started Worker # 3
Started Worker # 7
Started Worker # 8
Started Worker # 9
Started Worker # 10
Started Worker # 11
Started Worker # 12
Started Worker # 13
Started Worker # 14
Started Worker # 15
Started Worker # 16
Started Worker # 17
Started Worker # 18
Started Worker # 19
Started Worker # 20
Some processing...
Stopped Worker # 1
Stopped Worker # 16
Stopped Worker # 18
Stopped Worker # 6
Stopped Worker # 2
Stopped Worker # 19
Stopped Worker # 3
Stopped Worker # 7
Stopped Worker # 5
Stopped Worker # 4
Stopped Worker # 8
Stopped Worker # 9
Stopped Worker # 11
Stopped Worker # 10
Stopped Worker # 12
Stopped Worker # 13
Stopped Worker # 17
Stopped Worker # 14
Stopped Worker # 15
Stopped Worker # 20

In this example, we declare the task type Worker, the access type
Worker_Access and an array of access to tasks Worker_Array.
Using this approach, a task is only created when we allocate an individual
component of an array of Worker_Array type. Thus, when we declare
the Worker_Arr array in this example, we're only preparing a container
of 20 workers, but we don't have any actual tasks yet. We bring the 20 tasks
into existence by writing Worker_Arr := (others => new Worker).

Discriminants as Access Values

We can use access types when declaring discriminants. Let's see an example:

custom_recs.ads

 1package Custom_Recs is
 2
 3 -- Declaring an access type:
 4 type Integer_Access is access Integer;
 5
 6 -- Declaring a discriminant with this
 7 -- access type:
 8 type Rec (IA : Integer_Access) is record
 9
10 I : Integer := IA.all;
11 -- ^^^^^^^^^
12 -- Setting I's default to use the
13 -- designated value of IA:
14 end record;
15
16 procedure Show (R : Rec);
17
18end Custom_Recs;

custom_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Recs is
 4
 5 procedure Show (R : Rec) is
 6 begin
 7 Put_Line ("R.IA = "
 8 & Integer'Image (R.IA.all));
 9 Put_Line ("R.I = "
10 & Integer'Image (R.I));
11 end Show;
12
13end Custom_Recs;

show_discriminants_as_access_values.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Discriminants_As_Access_Values is
 4
 5 IA : constant Integer_Access :=
 6 new Integer'(10);
 7 R : Rec (IA);
 8
 9begin
10 Show (R);
11
12 IA.all := 20;
13 R.I := 30;
14 Show (R);
15
16 -- As expected, we cannot change the
17 -- discriminant. The following line is
18 -- triggers a compilation error:
19 --
20 -- R.IA := new Integer;
21
22end Show_Discriminants_As_Access_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Discriminant_Access_Values
MD5: c7850acefd8e5227f4be654faed13055

Runtime output

R.IA = 10
R.I = 10
R.IA = 20
R.I = 30

In the Custom_Recs package from this example, we declare the access
type Integer_Access. We then use this type to declare the discriminant
(IA) of the Rec type. In the
Show_Discriminants_As_Access_Values procedure, we see that (as expected)
we cannot change the discriminant of an object of Rec type: an
assignment such as R.IA := new Integer would trigger a compilation
error.

Note that we can use a default for the discriminant:

custom_recs.ads

 1package Custom_Recs is
 2
 3 type Integer_Access is access Integer;
 4
 5 type Rec (IA : Integer_Access
 6 := new Integer'(0)) is
 7 -- ^^^^^^^^^^^^^^^
 8 -- default value
 9 record
10 I : Integer := IA.all;
11 end record;
12
13 procedure Show (R : Rec);
14
15end Custom_Recs;

show_discriminants_as_access_values.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Discriminants_As_Access_Values is
 4
 5 R1 : Rec;
 6 -- ^^^
 7 -- no discriminant: use default
 8
 9 R2 : Rec (new Integer'(20));
10 -- ^^^^^^^^^^^^^^^^
11 -- allocating an unnamed integer object
12
13begin
14 Show (R1);
15 Show (R2);
16end Show_Discriminants_As_Access_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Discriminant_Access_Values
MD5: 968cb88ed7e9e6958ab66fb6f5a7ce2d

Runtime output

R.IA = 0
R.I = 0
R.IA = 20
R.I = 20

Here, we've changed the declaration of the Rec type to allocate an
integer object if the type's discriminant isn't provided — we can see
this in the declaration of the R1 object in the
Show_Discriminants_As_Access_Values procedure. Also, in this
procedure, we're allocating an unnamed integer object in the declaration
of R2.

In the Ada Reference Manual

	3.10 Access Types[#3]

	3.7.1 Discriminant Constraints[#4]

Unconstrained type as designated subtype

Notice that we were using a scalar type as the designated subtype of the
Integer_Access type. We could have used an unconstrained type as well.
In fact, this is often used for the sake of having the effect of an
unconstrained discriminant type.

Let's see an example:

persons.ads

 1package Persons is
 2
 3 -- Declaring an access type whose
 4 -- designated subtype is unconstrained:
 5 type String_Access is access String;
 6
 7 -- Declaring a discriminant with this
 8 -- access type:
 9 type Person (Name : String_Access) is record
10 Age : Integer;
11 end record;
12
13 procedure Show (P : Person);
14
15end Persons;

persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5 procedure Show (P : Person) is
 6 begin
 7 Put_Line ("Name = "
 8 & P.Name.all);
 9 Put_Line ("Age = "
10 & Integer'Image (P.Age));
11 end Show;
12
13end Persons;

show_person.adb

1with Persons; use Persons;
2
3procedure Show_Person is
4 P : Person (new String'("John"));
5begin
6 P.Age := 30;
7 Show (P);
8end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons
MD5: 9b1109d076b6f06632c8685a41616210

Runtime output

Name = John
Age = 30

In this example, the discriminant of the Person type has an
unconstrained designated type. In the Show_Person procedure, we declare
the P object and specify the constraints of the allocated string object
— in this case, a four-character string initialized with the name "John".

For further reading...

In the previous code example, we used an array — actually, a string
— to demonstrate the advantage of using discriminants as access
values, for we can use an unconstrained type as the designated subtype. In
fact, as we discussed
earlier in another chapter,
we can only use discrete types (or access types) as discriminants.
Therefore, you wouldn't be able to use a string, for example, directly as a
discriminant without using access types:

persons.ads

1package Persons is
2
3 -- ERROR: Declaring a discriminant with an
4 -- unconstrained type:
5 type Person (Name : String) is record
6 Age : Integer;
7 end record;
8
9end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons_Error
MD5: 4144852aaf95da62bc4781b1e8dc2717

Build output

persons.ads:5:24: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed

As expected, compilation fails for this code because the discriminant of
the Person type is indefinite.

However, the advantage of discriminants as access values isn't restricted
to being able to use unconstrained types such as arrays: we could really
use any type as the designated subtype! In fact, we can generalized this
to:

gen_custom_recs.ads

1generic
2 type T (<>); -- any type
3 type T_Access is access T;
4package Gen_Custom_Recs is
5 -- Declare a type whose discriminant D can
6 -- access any type:
7 type T_Rec (D : T_Access) is null record;
8end Gen_Custom_Recs;

custom_recs.ads

 1with Gen_Custom_Recs;
 2
 3package Custom_Recs is
 4
 5 type Incomp;
 6 -- Incomplete type declaration!
 7
 8 type Incomp_Access is access Incomp;
 9
10 -- Instantiating package using
11 -- incomplete type Incomp:
12 package Inst is new
13 Gen_Custom_Recs
14 (T => Incomp,
15 T_Access => Incomp_Access);
16 subtype Rec is Inst.T_Rec;
17
18 -- At this point, Rec (Inst.T_Rec) uses
19 -- an incomplete type as the designated
20 -- subtype of its discriminant type
21
22 procedure Show (R : Rec) is null;
23
24 -- Now, we complete the Incomp type:
25 type Incomp (B : Boolean := True) is private;
26
27private
28 -- Finally, we have the full view of the
29 -- Incomp type:
30 type Incomp (B : Boolean := True) is
31 null record;
32
33end Custom_Recs;

show_rec.adb

1with Custom_Recs; use Custom_Recs;
2
3procedure Show_Rec is
4 R : Rec (new Incomp);
5begin
6 Show (R);
7end Show_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Generic_Access
MD5: c65510e8c6a7625cbd08aa9e68f05115

In the Gen_Custom_Recs package, we're using type T (<>)
— which can be any type — for the designated subtype of the
access type T_Access, which is the type of T_Rec's
discriminant. In the Custom_Recs package, we use the incomplete type
Incomp to instantiate the generic package. Only after the
instantiation, we declare the complete type.

Later on, we'll discuss discriminants again when we look into
anonymous access discriminants,
which provide some advantages in terms of
accessibility rules.

Whole object assignments

As expected, we cannot change the discriminant value in whole object
assignments. If we do that, the Constraint_Error exception is raised
at runtime:

show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4 S1 : String_Access := new String'("John");
 5 S2 : String_Access := new String'("Mark");
 6 P : Person := (Name => S1,
 7 Age => 30);
 8begin
 9 P := (Name => S1, Age => 31);
10 -- ^^ OK: we didn't change the
11 -- discriminant.
12 Show (P);
13
14 -- We can just repeat the discriminant:
15 P := (Name => P.Name, Age => 32);
16 -- ^^^^^^ OK: we didn't change the
17 -- discriminant.
18 Show (P);
19
20 -- Of course, we can change the string itself:
21 S1.all := "Mark";
22 Show (P);
23
24 P := (Name => S2, Age => 40);
25 -- ^^ ERROR: we changed the
26 -- discriminant!
27 Show (P);
28end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons
MD5: 96f4742365eb6a07c377a5dec28b5767

Runtime output

Name = John
Age = 31
Name = John
Age = 32
Name = Mark
Age = 32

raised CONSTRAINT_ERROR : show_person.adb:24 discriminant check failed

The first and the second assignments to P are OK because we didn't
change the discriminant. However, the last assignment raises the
Constraint_Error exception at runtime because we're changing the
discriminant.

Parameters as Access Values

In addition to
using discriminants as access values,
we can use access types for subprogram formal parameters. For example, the
N parameter of the Show procedure below has an access type:

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Show (N : Name);
6
7end Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names
MD5: 82ce94987dce9026aed54a0deb3cc548

This is the complete code example:

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Show (N : Name);
6
7end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5 procedure Show (N : Name) is
 6 begin
 7 Put_Line ("Name: " & N.all);
 8 end Show;
 9
10end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := new String'("John");
5begin
6 Show (N);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names
MD5: 526baf1996b4a2970c3fa2e3485dcbad

Runtime output

Name: John

Note that in this example, the Show procedure is basically just
displaying the string. Since the procedure isn't doing anything that justifies
the need for an access type, we could have implemented it with a simpler
type:

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Show (N : String);
6
7end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5 procedure Show (N : String) is
 6 begin
 7 Put_Line ("Name: " & N);
 8 end Show;
 9
10end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := new String'("John");
5begin
6 Show (N.all);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_String
MD5: 097ec1ff781fda9deed1de23cae39ae5

Runtime output

Name: John

It's important to highlight the difference between passing an access value to
a subprogram and passing an object by reference. In both versions of this code
example, the compiler will make use of a reference for the actual parameter of
the N parameter of the Show procedure. However, the difference
between these two cases is that:

	N : Name is a reference to an object (because it's an access value)
that is passed by value, and

	N : String is an object passed by reference.

Changing the referenced object

Since the Name type gives us access to an object in the Show
procedure, we could actually change this object inside the procedure. To
illustrate this, let's change the Show procedure to lower each
character of the string before displaying it (and rename the procedure to
Lower_And_Show):

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Lower_And_Show (N : Name);
6
7end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Lower_And_Show (N : Name) is
 9 begin
10 for I in N'Range loop
11 N (I) := To_Lower (N (I));
12 end loop;
13 Put_Line ("Name: " & N.all);
14 end Lower_And_Show;
15
16end Names;

show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4 N : Name := new String'("John");
5begin
6 Lower_And_Show (N);
7end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Changed_Names
MD5: 063a507284f5e7ffa669db2c8fdd3d6f

Runtime output

Name: john

Notice that, again, we could have implemented the Lower_And_Show
procedure without using an access type:

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Lower_And_Show (N : in out String);
6
7end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Lower_And_Show (N : in out String) is
 9 begin
10 for I in N'Range loop
11 N (I) := To_Lower (N (I));
12 end loop;
13 Put_Line ("Name: " & N);
14 end Lower_And_Show;
15
16end Names;

show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4 N : Name := new String'("John");
5begin
6 Lower_And_Show (N.all);
7end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Changed_Names_String
MD5: 783ea8c45ed8ad3e0007524c11b6bcc4

Runtime output

Name: john

Replace the access value

Instead of changing the object in the Lower_And_Show procedure, we
could replace the access value by another one — for example, by
allocating a new string inside the procedure. In this case, we have to pass the
access value by reference using the in out parameter mode:

names.ads

1package Names is
2
3 type Name is access String;
4
5 procedure Lower_And_Show (N : in out Name);
6
7end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Lower_And_Show (N : in out Name) is
 9 begin
10 N := new String'(To_Lower (N.all));
11 Put_Line ("Name: " & N.all);
12 end Lower_And_Show;
13
14end Names;

show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4 N : Name := new String'("John");
5begin
6 Lower_And_Show (N);
7end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Replaced_Names
MD5: a4abfe6fdb1e5029e8eea17641cd960b

Runtime output

Name: john

Now, instead of changing the object referenced by N, we're actually
replacing it with a new object that we allocate inside the
Lower_And_Show procedure.

As expected, contrary to the previous examples, we cannot implement this
code by relying on parameter modes to replace the object. In fact, we have to
use access types for this kind of operations.

Note that this implementation creates a memory leak. In a proper
implementation, we should make sure to
deallocate the object, as explained
later on.

Side-effects on designated objects

In previous code examples from this section, we've seen that passing a
parameter by reference using the in or in out parameter modes
is an alternative to using access values as parameters. Let's focus on the
subprogram declarations of those code examples and their parameter modes:

	Subprogram

	Parameter type

	Parameter mode

	Show

	Name

	in

	Show

	String

	in

	Lower_And_Show

	Name

	in

	Lower_And_Show

	String

	in out

When we analyze the information from this table, we see that in the case of
using strings with different parameter modes, we have a clear indication
whether the subprogram might change the object or not. For example,
we know that a call to Show (N : String) won't change the string object
that we're passing as the actual parameter.

In the case of passing an access value, we cannot know whether the
designated object is going to be altered by a call to the subprogram. In fact,
in both Show and Lower_And_Show procedures, the parameter is the
same: N : Name — in other words, the parameter mode is in
in both cases. Here, there's no clear indication about the effects of a
subprogram call on the designated object.

The simplest way to ensure that the object isn't changed in the subprogram is
by using
access-to-constant types, which we
discuss later on. In this case, we're basically saying that the object we're
accessing in Show is constant, so we cannot possibly change it:

names.ads

1package Names is
2
3 type Name is access String;
4
5 type Constant_Name is access constant String;
6
7 procedure Show (N : Constant_Name);
8
9end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : Constant_Name) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := new String'("John");
5begin
6 Show (Constant_Name (N));
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Constant
MD5: 77526e0a159bf1bcbef08a21be250f3c

Runtime output

Name: John

In this case, the Constant_Name type ensures that the N
parameter won't be changed in the Show procedure. Note that we need
to convert from Name to Constant_Name to be able to call the
Show procedure (in the Show_Names procedure). Although using
in String is still a simpler solution, this approach works fine.

(Feel free to uncomment the call to To_Lower in the Show
procedure and the corresponding with- and use-clauses to see that the
compilation fails when trying to change the constant object.)

We could also mitigate the problem by using contracts. For example:

names.ads

 1package Names is
 2
 3 type Name is access String;
 4
 5 procedure Show (N : Name)
 6 with Post => N.all'Old = N.all;
 7 -- ^^^^^^^^^^^^^^^^^
 8 -- we promise that we won't change
 9 -- the object
10
11end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : Name) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := new String'("John");
5begin
6 Show (N);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Postcondition
MD5: 2a70993232baca9d58d36e537a6fd32b

Runtime output

Name: John

Although a bit more verbose than a simple in String, the information in
the specification of Show at least gives us an indication that the
object won't be affected by the call to this subprogram. Note that this code
actually compiles if we try to modify N.all in the Show
procedure, but the post-condition fails at runtime when we do that.

(By uncommentating and building the code again, you'll see an exception being
raised at runtime when trying to change the object.)

In the postcondition above, we're using 'Old to refer to the original
object before the subprogram call. Unfortunately, we cannot use this attribute
when dealing with
limited private types — or limited
types in general. For example, let's change the declaration of Name and
have it as a limited private type instead:

names.ads

 1package Names is
 2
 3 type Name is limited private;
 4
 5 function Init (S : String) return Name;
 6
 7 function Equal (N1, N2 : Name)
 8 return Boolean;
 9
10 procedure Show (N : Name)
11 with Post => Equal (N'Old = N);
12
13private
14
15 type Name is access String;
16
17 function Init (S : String) return Name is
18 (new String'(S));
19
20 function Equal (N1, N2 : Name)
21 return Boolean is
22 (N1.all = N2.all);
23
24end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : Name) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := Init ("John");
5begin
6 Show (N);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Limited_Private
MD5: 39691394d7a934869dc569eb72d1bf3a

Build output

names.ads:11:26: error: attribute "Old" cannot apply to limited objects
gprbuild: *** compilation phase failed

In this case, we have no means to indicate that a call to Show won't
change the internal state of the actual parameter.

For further reading...

As an alternative, we could declare a new Constant_Name type that
is also limited private. If we use this type in Show procedure,
we're at least indicating (in the type name) that the type is supposed to
be constant — even though we're not directly providing means to
actually ensure that no modifications occur in a call to the procedure.
However, the fact that we declare this type as an access-to-constant (in
the private part of the specification) makes it clear that a call to
Show won't change the designated object.

Let's look at the adapted code:

names.ads

 1package Names is
 2
 3 type Name is limited private;
 4
 5 type Constant_Name is limited private;
 6
 7 function Init (S : String) return Name;
 8
 9 function To_Constant_Name
10 (N : Name)
11 return Constant_Name;
12
13 procedure Show (N : Constant_Name);
14
15private
16
17 type Name is
18 access String;
19
20 type Constant_Name is
21 access constant String;
22
23 function Init (S : String) return Name is
24 (new String'(S));
25
26 function To_Constant_Name
27 (N : Name)
28 return Constant_Name is
29 (Constant_Name (N));
30
31end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : Constant_Name) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : Name := Init ("John");
5begin
6 Show (To_Constant_Name (N));
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Constant_Limited_Private
MD5: 30da588b57e6b4dfbf9934f77d348473

Runtime output

Name: John

In this version of the source code, the Show procedure doesn't have
any side-effects, as we cannot modify N inside the procedure.

Having the information about the effects of a subprogram call to an object is
very important: we can use this information to set expectations — and
avoid unexpected changes to an object. Also, this information can be used to
prove that a program works as expected. Therefore, whenever possible, we should
avoid access values as parameters. Instead, we can rely on appropriate
parameter modes and pass an object by reference.

There are cases, however, where the design of our application doesn't permit
replacing the access type with simple parameter modes. Whenever we have an
abstract data type encapsulated as a limited private type — such as in
the last code example —, we might have no means to avoid access values
as parameters. In this case, using the access type is of course justifiable.
We'll see such a case in the
next section.

Self-reference

As we've discussed in the section about
incomplete types <Adv_Ada_Incomplete_Types>, we can use incomplete types
to create a recursive, self-referencing type. Let's revisit a code example from
that section:

linked_list_example.ads

 1package Linked_List_Example is
 2
 3 type Integer_List;
 4
 5 type Next is access Integer_List;
 6
 7 type Integer_List is record
 8 I : Integer;
 9 N : Next;
10 end record;
11
12end Linked_List_Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.Linked_List_Example
MD5: b2d3a048473d498bbe691bc6e38ca1e9

Here, we're using the incomplete type Integer_List in the declaration of
the Next type, which we then use in the complete declaration of the
Integer_List type.

Self-references are useful, for example, to create unbounded containers —
such as the linked lists mentioned in the example above. Let's extend this code
example and partially implement a generic package for linked lists:

linked_lists.ads

 1generic
 2 type T is private;
 3package Linked_Lists is
 4
 5 type List is limited private;
 6
 7 procedure Append_Front
 8 (L : in out List;
 9 E : T);
10
11 procedure Append_Rear
12 (L : in out List;
13 E : T);
14
15 procedure Show (L : List);
16
17private
18
19 -- Incomplete type declaration:
20 type Component;
21
22 -- Using incomplete type:
23 type List is access Component;
24
25 type Component is record
26 Value : T;
27 Next : List;
28 -- ^^^^
29 -- Self-reference via access type
30 end record;
31
32end Linked_Lists;

linked_lists.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body Linked_Lists is
 6
 7 procedure Append_Front
 8 (L : in out List;
 9 E : T)
10 is
11 New_First : constant List := new
12 Component'(Value => E,
13 Next => L);
14 begin
15 L := New_First;
16 end Append_Front;
17
18 procedure Append_Rear
19 (L : in out List;
20 E : T)
21 is
22 New_Last : constant List := new
23 Component'(Value => E,
24 Next => null);
25 begin
26 if L = null then
27 L := New_Last;
28 else
29 declare
30 Last : List := L;
31 begin
32 while Last.Next /= null loop
33 Last := Last.Next;
34 end loop;
35 Last.Next := New_Last;
36 end;
37 end if;
38 end Append_Rear;
39
40 procedure Show (L : List) is
41 Curr : List := L;
42 begin
43 if L = null then
44 Put_Line ("[]");
45 else
46 Put ("[");
47 loop
48 Put (Curr.Value'Image);
49 Put (" ");
50 exit when Curr.Next = null;
51 Curr := Curr.Next;
52 end loop;
53 Put_Line ("]");
54 end if;
55 end Show;
56
57end Linked_Lists;

test_linked_list.adb

 1with Linked_Lists;
 2
 3procedure Test_Linked_List is
 4 package Integer_Lists is new
 5 Linked_Lists (T => Integer);
 6 use Integer_Lists;
 7
 8 L : List;
 9begin
10 Append_Front (L, 3);
11 Append_Rear (L, 4);
12 Append_Rear (L, 5);
13 Append_Front (L, 2);
14 Append_Front (L, 1);
15 Append_Rear (L, 6);
16 Append_Rear (L, 7);
17
18 Show (L);
19end Test_Linked_List;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.Linked_List_Example
MD5: 8af1ff7bbda44362802ba4f93b9c5741

Runtime output

[1 2 3 4 5 6 7]

In this example, we declare an incomplete type Component in the private
part of the generic Linked_Lists package. We use this incomplete type to
declare the access type List, which is then used as a self-reference in
the Next component of the Component type.

Note that we're using the List type
as a parameter for the
Append_Front, Append_Rear and Show procedures.

In the Ada Reference Manual

	3.10.1 Incomplete Type Declarations[#5]

Mutually dependent types using access types

In the section on
mutually dependent types, we've seen
a code example where each type depends on the other one. We could rewrite that
code example using access types:

mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3 type T2;
 4 type T2_Access is access T2;
 5
 6 type T1 is record
 7 B : T2_Access;
 8 end record;
 9
10 type T1_Access is access T1;
11
12 type T2 is record
13 A : T1_Access;
14 end record;
15
16end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Mutually_Dependent_Access_Types.Example
MD5: b21ffc4cdfe3db939dfc841cf8434344

In this example, T1 and T2 are mutually dependent types via the
access types T1_Access and T2_Access — we're using those
access types in the declaration of the B and A components.

Dereferencing

In the Introduction to Ada course, we
discussed the .all syntax to dereference access values:

show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5 -- Declaring access type:
 6 type Integer_Access is access Integer;
 7
 8 -- Declaring access object:
 9 A1 : Integer_Access;
10
11begin
12 A1 := new Integer;
13
14 -- Dereferencing access value:
15 A1.all := 22;
16
17 Put_Line ("A1: " & Integer'Image (A1.all));
18end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Simple_Dereferencing
MD5: 65655768c17a02991ffeda9a853b6ffb

Runtime output

A1: 22

In this example, we declare A1 as an access object, which allows us to
access objects of Integer type. We dereference A1 by writing
A1.all.

Here's another example, this time with an array:

show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Integer_Array_Access is
 9 access Integer_Array;
10
11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13begin
14 Arr.all := (1, 2, 3, 5, 8, 13);
15
16 for I in Arr'Range loop
17 Put_Line ("Arr (: "
18 & Integer'Image (I) & "): "
19 & Integer'Image (Arr.all (I)));
20 end loop;
21end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Dereferencing
MD5: 0e533dfd8ec1a74af17c99633c292e95

Runtime output

Arr (: 1): 1
Arr (: 2): 2
Arr (: 3): 3
Arr (: 4): 5
Arr (: 5): 8
Arr (: 6): 13

In this example, we dereference the access value by writing Arr.all. We
then assign an array aggregate to it — this becomes
Arr.all := (..., ...);. Similarly, in the loop, we write
Arr.all (I) to access the I component of the array.

In the Ada Reference Manual

	4.1 Names[#6]

Implicit Dereferencing

Implicit dereferencing allows us to omit the .all suffix without getting
a compilation error. In this case, the compiler knows that the dereferenced
object is implied, not the access value.

Ada supports implicit dereferencing in these use cases:

	when accessing components of a record or an array — including array
slices.

	when accessing subprograms that have at least one parameter (we
discuss this topic later in this chapter);

	when accessing some attributes — such as some array and task
attributes.

Arrays

Let's start by looking into an example of implicit dereferencing of arrays. We
can take the previous code example and replace Arr.all (I) by
Arr (I):

show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Integer_Array_Access is
 9 access Integer_Array;
10
11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13begin
14 Arr.all := (1, 2, 3, 5, 8, 13);
15
16 Arr (1 .. 6) := (1, 2, 3, 5, 8, 13);
17
18 for I in Arr'Range loop
19 Put_Line
20 ("Arr (: "
21 & Integer'Image (I) & "): "
22 & Integer'Image (Arr (I)));
23 -- ^ .all is implicit.
24 end loop;
25end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Implicit_Dereferencing
MD5: ade602a9e6976018e0c00f930a2399f1

Runtime output

Arr (: 1): 1
Arr (: 2): 2
Arr (: 3): 3
Arr (: 4): 5
Arr (: 5): 8
Arr (: 6): 13

Both forms — Arr.all (I) and Arr (I) — are
equivalent. Note, however, that there's no implicit dereferencing when we want
to access the whole array. (Therefore, we cannot write
Arr := (1, 2, 3, 5, 8, 13);.) However, as slices are implicitly
dereferenced, we can write Arr (1 .. 6) := (1, 2, 3, 5, 8, 13); instead
of Arr.all (1 .. 6) := (1, 2, 3, 5, 8, 13);. Alternatively, we can
assign to the array components individually and use implicit dereferencing for
each component:

Arr (1) := 1;
Arr (2) := 2;
Arr (3) := 3;
Arr (4) := 5;
Arr (5) := 8;
Arr (6) := 13;

Implicit dereferencing isn't available for the whole array because we have to
distinguish between assigning to access objects and assigning to actual arrays.
For example:

show_array_assignments.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Array_Assignments is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Integer_Array_Access is
 9 access Integer_Array;
10
11 procedure Show_Array
12 (Name : String;
13 Arr : Integer_Array_Access) is
14 begin
15 Put (Name);
16 for E of Arr.all loop
17 Put (Integer'Image (E));
18 end loop;
19 New_Line;
20 end Show_Array;
21
22 Arr_1 : constant Integer_Array_Access :=
23 new Integer_Array (1 .. 6);
24 Arr_2 : Integer_Array_Access :=
25 new Integer_Array (1 .. 6);
26begin
27 Arr_1.all := (1, 2, 3, 5, 8, 13);
28 Arr_2.all := (21, 34, 55, 89, 144, 233);
29
30 -- Array assignment
31 Arr_2.all := Arr_1.all;
32
33 Show_Array ("Arr_2", Arr_2);
34
35 -- Access value assignment
36 Arr_2 := Arr_1;
37
38 Arr_1.all := (377, 610, 987, 1597, 2584, 4181);
39
40 Show_Array ("Arr_2", Arr_2);
41end Show_Array_Assignments;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Assignments
MD5: 9b1f99af081000c28a6bf9b033127ea3

Runtime output

Arr_2 1 2 3 5 8 13
Arr_2 377 610 987 1597 2584 4181

Here, Arr_2.all := Arr_1.all is an array assignment, while
Arr_2 := Arr_1 is an access value assignment. By forcing the usage of
the .all suffix, the distinction is clear. Implicit dereferencing,
however, could be confusing here. (For example, the .all suffix in
Arr_2 := Arr_1.all is an oversight by the programmer when the intention
actually was to use access values on both sides.) Therefore, implicit
dereferencing is only supported in those cases where there's no risk of
ambiguities or oversights.

Records

Let's see an example of implicit dereferencing of a record:

show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5 type Rec is record
 6 I : Integer;
 7 F : Float;
 8 end record;
 9
10 type Rec_Access is access Rec;
11
12 R : constant Rec_Access := new Rec;
13begin
14 R.all := (I => 1, F => 5.0);
15
16 Put_Line ("R.I: "
17 & Integer'Image (R.I));
18 Put_Line ("R.F: "
19 & Float'Image (R.F));
20end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Record_Implicit_Dereferencing
MD5: 9af72502d04f128785f77dcc829d5d48

Runtime output

R.I: 1
R.F: 5.00000E+00

Again, we can replace R.all.I by R.I, as record components are
implicitly dereferenced. Also, we could use implicit dereference when assigning
to record components individually:

R.I := 1;
R.F := 5.0;

However, we have to write R.all when assigning to the whole record
R.

Attributes

Finally, let's see an example of implicit dereference when using attributes:

show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5 type Integer_Array is
 6 array (Positive range <>) of Integer;
 7
 8 type Integer_Array_Access is
 9 access Integer_Array;
10
11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13begin
14 Put_Line
15 ("Arr'First: "
16 & Integer'Image (Arr'First));
17 Put_Line
18 ("Arr'Last: "
19 & Integer'Image (Arr'Last));
20
21 Put_Line
22 ("Arr'Component_Size: "
23 & Integer'Image (Arr'Component_Size));
24 Put_Line
25 ("Arr.all'Component_Size: "
26 & Integer'Image (Arr.all'Component_Size));
27
28 Put_Line
29 ("Arr'Size: "
30 & Integer'Image (Arr'Size));
31 Put_Line
32 ("Arr.all'Size: "
33 & Integer'Image (Arr.all'Size));
34end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Implicit_Dereferencing
MD5: 5730e18c8d2ed5e26a4d7d325a46a7e9

Runtime output

Arr'First: 1
Arr'Last: 6
Arr'Component_Size: 32
Arr.all'Component_Size: 32
Arr'Size: 128
Arr.all'Size: 192

Here, we can write Arr'First and Arr'Last instead of
Arr.all'First and Arr.all'Last, respectively, because Arr
is implicitly dereferenced. The same applies to Arr'Component_Size. Note
that we can write both Arr'Size and Arr.all'Size, but they have
different meanings:

	Arr'Size is the size of the access object; while

	Arr.all'Size indicates the size of the actual array Arr.

In other words, the Size attribute is not implicitly dereferenced.
In fact, any attribute that could potentially be ambiguous is not implicitly
dereferenced. Therefore, in those cases, we must explicitly indicate (by using
.all or not) how we want to use the attribute.

Summary

The following table summarizes all instances where implicit dereferencing is
supported:

	Entities

	Standard Usage

	Implicit Dereference

	Array components

	Arr.all (I)

	Arr (I)

	Array slices

	Arr.all (F .. L)

	Arr (F .. L)

	Record components

	Rec.all.C

	Rec.C

	Array attributes

	Arr.all’First

	Arr’First

	Arr.all’First (N)

	Arr’First (N)

	Arr.all’Last

	Arr’Last

	Arr.all’Last (N)

	Arr’Last (N)

	Arr.all’Range

	Arr’Range

	Arr.all’Range (N)

	Arr’Range (N)

	Arr.all’Length

	Arr’Length

	Arr.all’Length (N)

	Arr’Length (N)

	Arr.all’Component_Size

	Arr’Component_Size

	Task attributes

	T.all'Identity

	T'Identity

	T.all'Storage_Size

	T'Storage_Size

	T.all'Terminated

	T'Terminated

	T.all'Callable

	T'Callable

	Tagged type attributes

	X.all’Tag

	X’Tag

	Other attributes

	X.all'Valid

	X'Valid

	X.all'Old

	X'Old

	A.all’Constrained

	A’Constrained

In the Ada Reference Manual

	4.1 Names[#7]

	4.1.1 Indexed Components[#8]

	4.1.2 Slices[#9]

	4.1.3 Selected Components[#10]

	4.1.4 Attributes[#11]

Ragged arrays

Ragged arrays — also known as jagged arrays — are non-uniform,
multidimensional arrays. They can be useful to implement tables with varying
number of coefficients, as we discuss as an example in this section.

Uniform multidimensional arrays

Consider an algorithm that processes data based on coefficients that depends on
a selected quality level:

	Quality level

	Number of
coefficients

	#1

	#2

	#3

	#4

	#5

	Simplified

	1

	0.15

	
	
	
	

	Better

	3

	0.02

	0.16

	0.27

	
	

	Best

	5

	0.01

	0.08

	0.12

	0.20

	0.34

(Note that this is just a bogus table with no real purpose, as we're not
trying to implement any actual algorithm.)

We can implement this table as a two-dimensional array (Calc_Table),
where each quality level has an associated array:

data_processing.ads

 1package Data_Processing is
 2
 3 type Quality_Level is
 4 (Simplified, Better, Best);
 5
 6private
 7
 8 Calc_Table : constant array
 9 (Quality_Level, 1 .. 5) of Float :=
10 (Simplified =>
11 (0.15, 0.00, 0.00, 0.00, 0.00),
12 Better =>
13 (0.02, 0.16, 0.27, 0.00, 0.00),
14 Best =>
15 (0.01, 0.08, 0.12, 0.20, 0.34));
16
17 Last : constant array
18 (Quality_Level) of Positive :=
19 (Simplified => 1,
20 Better => 3,
21 Best => 5);
22
23end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: befa8d2b684ee20495f2dd6907dc44d4

Note that, in this implementation, we have a separate table Last that
indicates the actual number of coefficients of each quality level.

Alternatively, we could use a record (Table_Coefficient) that stores the
number of coefficients and the actual coefficients:

data_processing.ads

 1package Data_Processing is
 2
 3 type Quality_Level is
 4 (Simplified, Better, Best);
 5
 6 type Data is
 7 array (Positive range <>) of Float;
 8
 9private
10
11 type Table_Coefficient is record
12 Last : Positive;
13 Coef : Data (1 .. 5);
14 end record;
15
16 Calc_Table : constant array
17 (Quality_Level) of Table_Coefficient :=
18 (Simplified =>
19 (1, (0.15, 0.00, 0.00, 0.00, 0.00)),
20 Better =>
21 (3, (0.02, 0.16, 0.27, 0.00, 0.00)),
22 Best =>
23 (5, (0.01, 0.08, 0.12, 0.20, 0.34)));
24
25end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: 4c8602f6ecede0ac1231838c0a0a54b7

In this case, we have a unidimensional array where each component (of
Table_Coefficient type) contains an array (Coef) with the
coefficients.

This is an example of a Process procedure that references the
Calc_Table:

data_processing-operations.ads

1package Data_Processing.Operations is
2
3 procedure Process (D : in out Data;
4 Q : Quality_Level);
5
6end Data_Processing.Operations;

data_processing-operations.adb

 1package body Data_Processing.Operations is
 2
 3 procedure Process (D : in out Data;
 4 Q : Quality_Level) is
 5 begin
 6 for I in D'Range loop
 7 for J in 1 .. Calc_Table (Q).Last loop
 8 -- ... * Calc_Table (Q).Coef (J)
 9 null;
10 end loop;
11 -- D (I) := ...
12 null;
13 end loop;
14 end Process;
15
16end Data_Processing.Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: 2b0d2cee265509e64e507cfa6289bdcc

Note that, to loop over the coefficients, we're using
for J in 1 .. Calc_Table (Q).Last loop instead of
for J in Calc_Table (Q)'Range loop. As we're trying to make a
non-uniform array fit in a uniform array, we cannot simply loop over all
elements using the Range attribute, but must be careful to use the
correct number of elements in the loop instead.

Also, note that Calc_Table has 15 coefficients in total. Out of those
coefficients, 6 coefficients (or 40 percent of the table) aren't being used.
Naturally, this is wasted memory space. We can improve this by using ragged
arrays.

Non-uniform multidimensional array

Ragged arrays are declared by using an access type to an array. By doing that,
each array can be declared with a different size, thereby creating a
non-uniform multidimensional array.

For example, we can declare a constant array Table as a ragged array:

data_processing.ads

 1package Data_Processing is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6private
 7
 8 type Integer_Array_Access is
 9 access constant Integer_Array;
10
11 Table : constant array (1 .. 3) of
12 Integer_Array_Access :=
13 (1 => new Integer_Array'(1 => 15),
14 2 => new Integer_Array'(1 => 12,
15 2 => 15,
16 3 => 20),
17 3 => new Integer_Array'(1 => 12,
18 2 => 15,
19 3 => 20,
20 4 => 20,
21 5 => 25,
22 6 => 30));
23
24end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Simple_Ragged_Array
MD5: 28e044a43bf45585a0268c60d63c629e

Here, each component of Table is an access to another array. As each
array is allocated via new, those arrays may have different sizes.

We can rewrite the example from the previous subsection using a ragged array
for the Calc_Table:

data_processing.ads

 1package Data_Processing is
 2
 3 type Quality_Level is
 4 (Simplified, Better, Best);
 5
 6 type Data is
 7 array (Positive range <>) of Float;
 8
 9private
10
11 type Coefficients is access constant Data;
12
13 Calc_Table : constant array (Quality_Level) of
14 Coefficients :=
15 (Simplified =>
16 new Data'(1 => 0.15),
17 Better =>
18 new Data'(0.02, 0.16, 0.27),
19 Best =>
20 new Data'(0.01, 0.08, 0.12,
21 0.20, 0.34));
22
23end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Ragged_Table
MD5: 0781b27cba27dbd1e74da54e425a1f4b

Now, we aren't wasting memory space because each data component has the right
size that is required for each quality level. Also, we don't need to store the
number of coefficients, as this information is automatically available from the
array initialization — via the allocation of the Data array for
the Coefficients type.

Note that the Coefficients type is defined as access constant.
We discuss access-to-constant types
in more details later on.

This is the adapted Process procedure:

data_processing-operations.ads

1package Data_Processing.Operations is
2
3 procedure Process (D : in out Data;
4 Q : Quality_Level);
5
6end Data_Processing.Operations;

data_processing-operations.adb

 1package body Data_Processing.Operations is
 2
 3 procedure Process (D : in out Data;
 4 Q : Quality_Level) is
 5 begin
 6 for I in D'Range loop
 7 for J in Calc_Table (Q)'Range loop
 8 -- ... * Calc_Table (Q).Coef (J)
 9 null;
10 end loop;
11 -- D (I) := ...
12 null;
13 end loop;
14 end Process;
15
16end Data_Processing.Operations;

Now, we can simply loop over the coefficients by writing
for J in Calc_Table (Q)'Range loop, as each element of Calc_Table
automatically has the correct range.

Aliasing

The term aliasing[#12]
refers to objects in memory that we can access using more than a single
reference. In Ada, if we allocate an object via new, we have a
potentially aliased object. We can then have multiple references to this
object:

show_aliasing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliasing is
 4 type Integer_Access is access Integer;
 5
 6 A1, A2 : Integer_Access;
 7begin
 8 A1 := new Integer;
 9 A2 := A1;
10
11 A1.all := 22;
12 Put_Line ("A1: " & Integer'Image (A1.all));
13 Put_Line ("A2: " & Integer'Image (A2.all));
14
15 A2.all := 24;
16 Put_Line ("A1: " & Integer'Image (A1.all));
17 Put_Line ("A2: " & Integer'Image (A2.all));
18end Show_Aliasing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliasing_Via_Access
MD5: 2fde6073cec9823a1a9d93aec82384e1

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

In this example, we access the object allocated via new by using either
A1 or A2, as both refer to the same aliased object. In other
words, A1 or A2 allow us to access the same object in memory.

Important

Note that aliasing is unrelated to renaming. For example, we could use
renaming to write a program that looks similar to the one above:

show_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Renaming is
 4 A1 : Integer;
 5 A2 : Integer renames A1;
 6begin
 7 A1 := 22;
 8 Put_Line ("A1: " & Integer'Image (A1));
 9 Put_Line ("A2: " & Integer'Image (A2));
10
11 A2 := 24;
12 Put_Line ("A1: " & Integer'Image (A1));
13 Put_Line ("A2: " & Integer'Image (A2));
14end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Renaming
MD5: 99a47d02000b91f7464dffe994fd8ee6

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

Here, A1 or A2 are two different names for the same object.
However, the object itself isn't aliased.

In the Ada Reference Manual

	3.10 Access Types[#13]

Aliased objects

As we discussed previously, we use
new to create aliased objects on the heap. We can also use general
access types to access objects that were created on the stack.

By default, objects created on the stack aren't aliased. Therefore, we have to
indicate that an object is aliased by using the aliased keyword in the
object's declaration: Obj : aliased Integer;.

Let's see an example:

show_aliased_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Obj is
 4 type Integer_Access is access all Integer;
 5
 6 I_Var : aliased Integer;
 7 A1 : Integer_Access;
 8begin
 9 A1 := I_Var'Access;
10
11 A1.all := 22;
12 Put_Line ("A1: " & Integer'Image (A1.all));
13end Show_Aliased_Obj;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Aliased_Obj
MD5: 98c8e47d7c2b5df8075918b239a8d476

Runtime output

A1: 22

Here, we declare I_Var as an aliased integer variable and get a
reference to it, which we assign to A1. Naturally, we could also have
two accesses A1 and A2:

show_aliased_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Obj is
 4 type Integer_Access is access all Integer;
 5
 6 I_Var : aliased Integer;
 7 A1, A2 : Integer_Access;
 8begin
 9 A1 := I_Var'Access;
10 A2 := A1;
11
12 A1.all := 22;
13 Put_Line ("A1: " & Integer'Image (A1.all));
14 Put_Line ("A2: " & Integer'Image (A2.all));
15
16 A2.all := 24;
17 Put_Line ("A1: " & Integer'Image (A1.all));
18 Put_Line ("A2: " & Integer'Image (A2.all));
19
20end Show_Aliased_Obj;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Aliased_Obj
MD5: ac331285456462f05abe7e1fd5e3ca2b

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

In this example, both A1 and A2 refer to the I_Var
variable.

Note that these examples make use of these two features:

	The declaration of a general access type (Integer_Access)
using access all.

	The retrieval of a reference to I_Var using the Access
attribute.

In the next sections, we discuss these features in more details.

In the Ada Reference Manual

	3.3.1 Object Declarations[#14]

	3.10 Access Types[#15]

General access modifiers

Let's now discuss how to declare general access types. In addition to the
standard (pool-specific) access type declarations, Ada provides two access
modifiers:

	Type

	Declaration

	Access-to-variable

	type T_Acc is access all T

	Access-to-constant

	type T_Acc is access constant T

Let's look at an example:

integer_access_types.ads

 1package Integer_Access_Types is
 2
 3 type Integer_Access is
 4 access Integer;
 5
 6 type Integer_Access_All is
 7 access all Integer;
 8
 9 type Integer_Access_Const is
10 access constant Integer;
11
12end Integer_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_Access_Modifiers
MD5: 98ccaa703194ae88222ccc5a4400e967

As we've seen previously, we can use a type such as Integer_Access to
allocate objects dynamically. However, we cannot use this type to refer to
declared objects, for example. In this case, we have to use an
access-to-variable type such as Integer_Access_All. Also, if we want to
access constants — or access objects that we want to treat as constants
—, we use a type such as Integer_Access_Const.

Access attribute

To get access to a variable or a constant, we make use of the Access
attribute. For example, I_Var'Access gives us access to the I_Var
object.

Let's look at an example of how to use the integer access types from the
previous code snippet:

integer_access_types.ads

 1package Integer_Access_Types is
 2
 3 type Integer_Access is
 4 access Integer;
 5
 6 type Integer_Access_All is
 7 access all Integer;
 8
 9 type Integer_Access_Const is
10 access constant Integer;
11
12 procedure Show;
13
14end Integer_Access_Types;

integer_access_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Access_Types is
 4
 5 I_Var : aliased Integer := 0;
 6 Fact : aliased constant Integer := 42;
 7
 8 Dyn_Ptr : constant Integer_Access
 9 := new Integer'(30);
10 I_Var_Ptr : constant Integer_Access_All
11 := I_Var'Access;
12 I_Var_C_Ptr : constant Integer_Access_Const
13 := I_Var'Access;
14 Fact_Ptr : constant Integer_Access_Const
15 := Fact'Access;
16
17 procedure Show is
18 begin
19 Put_Line ("Dyn_Ptr: "
20 & Integer'Image (Dyn_Ptr.all));
21 Put_Line ("I_Var_Ptr: "
22 & Integer'Image (I_Var_Ptr.all));
23 Put_Line ("I_Var_C_Ptr: "
24 & Integer'Image
25 (I_Var_C_Ptr.all));
26 Put_Line ("Fact_Ptr: "
27 & Integer'Image (Fact_Ptr.all));
28 end Show;
29
30end Integer_Access_Types;

show_access_modifiers.adb

1with Integer_Access_Types;
2
3procedure Show_Access_Modifiers is
4begin
5 Integer_Access_Types.Show;
6end Show_Access_Modifiers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_Access_Modifiers
MD5: c9036f060859207ea14354b26dc8b981

Runtime output

Dyn_Ptr: 30
I_Var_Ptr: 0
I_Var_C_Ptr: 0
Fact_Ptr: 42

In this example, Dyn_Ptr refers to a dynamically allocated object,
I_Var_Ptr refers to the I_Var variable, and Fact_Ptr
refers to the Fact constant. We get access to the variable and the
constant objects by using the Access attribute.

Also, we declare I_Var_C_Ptr as an access-to-constant, but we get
access to the I_Var variable. This simply means the object
I_Var_C_Ptr refers to is treated as a constant. Therefore, we can
write I_Var := 22;, but we cannot write I_Var_C_Ptr.all := 22;.

In the Ada Reference Manual

	3.10.2 Operations of Access Types[#16]

Non-aliased objects

As mentioned earlier, by default, declared objects — which are allocated
on the stack — aren't aliased. Therefore, we cannot get a reference to
those objects. For example:

show_access_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_Error is
 4 type Integer_Access is access all Integer;
 5 I_Var : Integer;
 6 A1 : Integer_Access;
 7begin
 8 A1 := I_Var'Access;
 9
10 A1.all := 22;
11 Put_Line ("A1: " & Integer'Image (A1.all));
12end Show_Access_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Non_Aliased_Obj
MD5: 2a9904062eea96ae6dc209493d6f20d4

Build output

show_access_error.adb:8:10: error: prefix of "Access" attribute must be aliased
gprbuild: *** compilation phase failed

In this example, the compiler complains that we cannot get a reference to
I_Var because I_Var is not aliased.

Ragged arrays using aliased objects

We can use aliased objects to declare
ragged arrays. For example, we can rewrite a
previous program using aliased constant objects:

data_processing.ads

 1package Data_Processing is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6private
 7
 8 type Integer_Array_Access is
 9 access constant Integer_Array;
10
11 Tab_1 : aliased constant Integer_Array
12 := (1 => 15);
13 Tab_2 : aliased constant Integer_Array
14 := (12, 15, 20);
15 Tab_3 : aliased constant Integer_Array
16 := (12, 15, 20,
17 20, 25, 30);
18
19 Table : constant array (1 .. 3) of
20 Integer_Array_Access :=
21 (1 => Tab_1'Access,
22 2 => Tab_2'Access,
23 3 => Tab_3'Access);
24
25end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Ragged_Array_Aliased_Objs
MD5: 7e284560c447c02628e34bac982d4ad5

Here, instead of allocating the constant arrays dynamically via new, we
declare three aliased arrays (Tab_1, Tab_2 and Tab_3) and
get a reference to them in the declaration of Table.

Aliased access objects

It's interesting to mention that access objects can be aliased themselves.
Consider this example where we declare the Integer_Access_Access type
to refer to an access object:

show_aliased_access_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Access_Obj is
 4
 5 type Integer_Access is
 6 access all Integer;
 7 type Integer_Access_Access is
 8 access all Integer_Access;
 9
10 I_Var : aliased Integer;
11 A : aliased Integer_Access;
12 B : Integer_Access_Access;
13begin
14 A := I_Var'Access;
15 B := A'Access;
16
17 B.all.all := 22;
18 Put_Line ("A: " & Integer'Image (A.all));
19 Put_Line ("B: " & Integer'Image (B.all.all));
20end Show_Aliased_Access_Obj;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Access
MD5: 77e9be5e29cfb99aef9409728202ba9d

Runtime output

A: 22
B: 22

After the assignments in this example, B refers to A, which in
turn refers to I_Var. Note that this code only compiles because we
declare A as an aliased (access) object.

Aliased components

Components of an array or a record can be aliased. This allows us to get access
to those components:

show_aliased_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Components is
 4
 5 type Integer_Access is access all Integer;
 6
 7 type Rec is record
 8 I_Var_1 : Integer;
 9 I_Var_2 : aliased Integer;
10 end record;
11
12 type Integer_Array is
13 array (Positive range <>) of aliased Integer;
14
15 R : Rec := (22, 24);
16 Arr : Integer_Array (1 .. 3) := (others => 42);
17 A : Integer_Access;
18begin
19 -- A := R.I_Var_1'Access;
20 -- ^ ERROR: cannot access
21 -- non-aliased
22 -- component
23
24 A := R.I_Var_2'Access;
25 Put_Line ("A: " & Integer'Image (A.all));
26
27 A := Arr (2)'Access;
28 Put_Line ("A: " & Integer'Image (A.all));
29end Show_Aliased_Components;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Components
MD5: 5dfaa248caf8e37a4a3a1e1a24973777

Runtime output

A: 24
A: 42

In this example, we get access to the I_Var_2 component of record
R. (Note that trying to access the I_Var_1 component would gives us
a compilation error, as this component is not aliased.) Similarly, we get
access to the second component of array Arr.

Declaring components with the aliased keyword allows us to specify that
those are accessible via other paths besides the component name. Therefore, the
compiler won't store them in registers. This can be essential when doing
low-level programming — for example, when accessing memory-mapped
registers. In this case, we want to ensure that the compiler uses the memory
address we're specifying (instead of assigning registers for those components).

In the Ada Reference Manual

	3.6 Array Types[#17]

Aliased parameters

In addition to aliased objects and components, we can declare
aliased parameters, as we already discussed
in an earlier chapter. As we mentioned there, aliased parameters are always
passed by reference, independently of the type we're using.

The parameter mode indicates which type we must use for the access type:

	Parameter mode

	Type

	aliased in

	Access-to-constant

	aliased out

	Access-to-variable

	aliased in out

	Access-to-variable

Using aliased parameters in a subprogram allows us to get access to those
parameters in the body of that subprogram. Let's see an example:

data_processing.ads

1package Data_Processing is
2
3 procedure Proc (I : aliased in out Integer);
4
5end Data_Processing;

data_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Data_Processing is
 4
 5 procedure Show (I : aliased Integer) is
 6 -- ^ equivalent to
 7 -- "aliased in Integer"
 8
 9 type Integer_Constant_Access is
10 access constant Integer;
11
12 A : constant Integer_Constant_Access
13 := I'Access;
14 begin
15 Put_Line ("Value : I "
16 & Integer'Image (A.all));
17 end Show;
18
19 procedure Set_One (I : aliased out Integer) is
20
21 type Integer_Access is access all Integer;
22
23 procedure Local_Set_One (A : Integer_Access)
24 is
25 begin
26 A.all := 1;
27 end Local_Set_One;
28
29 begin
30 Local_Set_One (I'Access);
31 end Set_One;
32
33 procedure Proc (I : aliased in out Integer) is
34
35 type Integer_Access is access all Integer;
36
37 procedure Add_One (A : Integer_Access) is
38 begin
39 A.all := A.all + 1;
40 end Add_One;
41
42 begin
43 Show (I);
44 Add_One (I'Access);
45 Show (I);
46 end Proc;
47
48end Data_Processing;

show_aliased_param.adb

1with Data_Processing; use Data_Processing;
2
3procedure Show_Aliased_Param is
4 I : aliased Integer := 22;
5begin
6 Proc (I);
7end Show_Aliased_Param;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Rec_Component
MD5: 076238603036aa51cafcc013f38bc8f3

Runtime output

Value : I 22
Value : I 23

Here, Proc has an aliased in out parameter. In Proc's
body, we declare the Integer_Access type as an access all type.
We use the same approach in body of the Set_One procedure, which has an
aliased out parameter. Finally, the Show procedure has
an aliased in parameter. Therefore, we declare the
Integer_Constant_Access as an access constant type.

Note that parameter aliasing has an influence on how arguments are passed to a
subprogram when the parameter is of scalar type. When a scalar parameter is
declared as aliased, the corresponding argument is passed by reference.
For example, if we had declared procedure Show (I : Integer), the
argument for I would be passed by value. However, since we're declaring
it as aliased Integer, it is passed by reference.

In the Ada Reference Manual

	6.1 Subprogram Declarations[#18]

	6.2 Formal Parameter Modes[#19]

	6.4.1 Parameter Associations[#20]

Accessibility Levels and Rules: An Introduction

This section provides an introduction to accessibility levels and accessibility
rules. This topic can be very complicated, and by no means do we intend to
cover all the details here. (In fact, discussing all the details about
accessibility levels and rules could be a long chapter on its own. If you're
interested in them, please refer to the Ada Reference Manual.) In any case, the
goal of this section is to present the intention behind the accessibility rules
and build intuition on how to best use access types in your code.

In the Ada Reference Manual

	3.10.2 Operations of Access Types[#21]

Lifetime of objects

First, let's talk a bit about
lifetime of objects[#22].
We assume you understand the concept, so this section is very short.

In very simple terms, the lifetime of an object indicates when an object still
has relevant information. For example, if a variable V gets out of
scope, we say that its lifetime has ended. From this moment on, V
no longer exists.

For example:

show_lifetime.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Lifetime is
 4 I_Var_1 : Integer := 22;
 5begin
 6
 7 Inner_Block : declare
 8 I_Var_2 : Integer := 42;
 9 begin
10 Put_Line ("I_Var_1: "
11 & Integer'Image (I_Var_1));
12 Put_Line ("I_Var_2: "
13 & Integer'Image (I_Var_2));
14
15 -- I_Var_2 will get out of scope
16 -- when the block finishes.
17 end Inner_Block;
18
19 -- I_Var_2 is now out of scope...
20
21 Put_Line ("I_Var_1: "
22 & Integer'Image (I_Var_1));
23 Put_Line ("I_Var_2: "
24 & Integer'Image (I_Var_2));
25 -- ^^^^^^^
26 -- ERROR: lifetime of I_Var_2 has ended!
27end Show_Lifetime;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Lifetime
MD5: ebe36f12c832ecfe71399b89801808d4

Build output

show_lifetime.adb:24:31: error: "I_Var_2" is undefined
gprbuild: *** compilation phase failed

In this example, we declare I_Var_1 in the Show_Lifetime
procedure, and I_Var_2 in its Inner_Block.

This example doesn't compile because we're trying to use I_Var_2 after
its lifetime has ended. However, if such a code could compile and run, the last
call to Put_Line would potentially display garbage to the user.
(In fact, the actual behavior would be undefined.)

Accessibility Levels

In basic terms, accessibility levels are a mechanism to assess the lifetime
of objects (as we've just discussed). The starting point is the library level:
this is the base level, and no level can be deeper than that. We start "moving"
to deeper levels when we use a library in a subprogram or call other
subprograms for example.

Suppose we have a procedure Proc that makes use of a package Pkg,
and there's a block in the Proc procedure:

package Pkg is

 -- Library level

end Pkg;

with Pkg; use Pkg;

procedure Proc is

 -- One level deeper than
 -- library level

begin

 declare
 -- Two levels deeper than
 -- library level
 begin
 null;
 end;

end Proc;

For this code, we can say that:

	the specification of Pkg is at library level;

	the declarative part of Proc is one level deeper than the library
level; and

	the block is two levels deeper than the library level.

(Note that this is still a very simplified overview of accessibility levels.
Things start getting more complicated when we use information from Pkg
in Proc. Those details will become more clear in the next sections.)

The levels themselves are not visible to the programmer. For example, there's
no Access_Level attribute that returns an integer value indicating the
level. Also, you cannot write a user message that displays the level at a
certain point. In this sense, accessibility levels are assessed relatively to
each other: we can only say that a specific operation is at the same or at a
deeper level than another one.

Accessibility Rules

The accessibility rules determine whether a specific use of access types or
objects is legal (or not). Actually, accessibility rules exist to prevent
dangling references, which we discuss
later. Also, they are based on the
accessibility levels we discussed
earlier.

Code example

As mentioned earlier, the accessibility level at a specific point isn't visible
to the programmer. However, to illustrate which level we have at each point in
the following code example, we use a prefix (L0, L1, and
L2) to indicate whether we're at the library level (L0) or at a
deeper level.

Let's now look at the complete code example:

library_level.ads

 1package Library_Level is
 2
 3 type L0_Integer_Access is
 4 access all Integer;
 5
 6 L0_IA : L0_Integer_Access;
 7
 8 L0_Var : aliased Integer;
 9
10end Library_Level;

show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4 type L1_Integer_Access is
 5 access all Integer;
 6
 7 L0_IA_2 : L0_Integer_Access;
 8 L1_IA : L1_Integer_Access;
 9
10 L1_Var : aliased Integer;
11
12 procedure Test is
13 type L2_Integer_Access is
14 access all Integer;
15
16 L2_IA : L2_Integer_Access;
17
18 L2_Var : aliased Integer;
19 begin
20 L1_IA := L2_Var'Access;
21 -- ^^^^^^
22 -- ILLEGAL: L2 object to
23 -- L1 access object
24
25 L2_IA := L2_Var'Access;
26 -- ^^^^^^
27 -- LEGAL: L2 object to
28 -- L2 access object
29 end Test;
30
31begin
32 L0_IA := new Integer'(22);
33 -- ^^^^^^^^^^^
34 -- LEGAL: L0 object to
35 -- L0 access object
36
37 L0_IA_2 := new Integer'(22);
38 -- ^^^^^^^^^^^
39 -- LEGAL: L0 object to
40 -- L0 access object
41
42 L0_IA := L1_Var'Access;
43 -- ^^^^^^
44 -- ILLEGAL: L1 object to
45 -- L0 access object
46
47 L0_IA_2 := L1_Var'Access;
48 -- ^^^^^^
49 -- ILLEGAL: L1 object to
50 -- L0 access object
51
52 L1_IA := L0_Var'Access;
53 -- ^^^^^^
54 -- LEGAL: L0 object to
55 -- L1 access object
56
57 L1_IA := L1_Var'Access;
58 -- ^^^^^^
59 -- LEGAL: L1 object to
60 -- L1 access object
61
62 L0_IA := L1_IA;
63 -- ^^^^^
64 -- ILLEGAL: type mismatch
65
66 L0_IA := L0_Integer_Access (L1_IA);
67 -- ^^^^^^^^^^^^^^^^^
68 -- ILLEGAL: cannot convert
69 -- L1 access object to
70 -- L0 access object
71
72 Test;
73end Show_Library_Level;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Library_Level
MD5: b3bed7eb2a8dfc78a2e7a7d2ce99f736

Build output

show_library_level.adb:20:16: error: non-local pointer cannot point to local object
show_library_level.adb:42:13: error: non-local pointer cannot point to local object
show_library_level.adb:47:15: error: non-local pointer cannot point to local object
show_library_level.adb:62:13: error: expected type "L0_Integer_Access" defined at library_level.ads:3
show_library_level.adb:62:13: error: found type "L1_Integer_Access" defined at line 4
show_library_level.adb:66:32: error: cannot convert local pointer to non-local access type
gprbuild: *** compilation phase failed

In this example, we declare

	in the Library_Level package: the L0_Integer_Access type, the
L0_IA access object, and the L0_Var aliased variable;

	in the Show_Library_Level procedure: the L1_Integer_Access
type, the L0_IA_2 and L1_IA access objects, and the
L1_Var aliased variable;

	in the nested Test procedure: the L2_Integer_Access type, the
L2_IA, and the L2_Var aliased variable.

As mentioned earlier, the Ln prefix indicates the level of each type or
object. Here, the n value is zero at library level. We then increment
the n value each time we refer to a deeper level.

For instance:

	when we declare the L1_Integer_Access type in the
Show_Library_Level procedure, that declaration is one level deeper
than the level of the Library_Level package — so it has the
L1 prefix.

	when we declare the L2_Integer_Access type in the Test
procedure, that declaration is one level deeper than the level of the
Show_Library_Level procedure — so it has the L2 prefix.

Types and Accessibility Levels

It's very important to highlight the fact that:

	types themselves also have an associated level, and

	objects have the same accessibility level as their types.

When we declare the L0_IA_2 object in the code example, its
accessibility level is at library level because its type
(the L0_Integer_Access type) is at library level. Even though this
declaration is in the Show_Library_Level procedure — whose
declarative part is one level deeper than the library level —, the object
itself has the same accessibility level as its type.

Now that we've discussed the accessibility levels of this code example, let's
see how the accessibility rules use those levels.

Operations on Access Types

In very simple terms, the accessibility rules say that:

	operations on access types at the same accessibility level are legal;

	assigning or converting to a deeper level is legal;

Otherwise, operations targeting objects at a less-deep level are illegal.

For example, L0_IA := new Integer'(22) and L1_IA := L1_Var'Access
are legal because we're operating at the same accessibility level. Also,
L1_IA := L0_Var'Access is legal because L1_IA is at a deeper
level than L0_Var'Access.

However, many operations in the code example are illegal. For instance,
L0_IA := L1_Var'Access and L0_IA_2 := L1_Var'Access are illegal
because the target objects in the assignment are less deep.

Note that the L0_IA := L1_IA assignment is mainly illegal because the
access types don't match. (Of course, in addition to that, assigning
L1_Var'Access to L0_IA is also illegal in terms of accessibility
rules.)

Conversion between Access Types

The same rules apply to the conversion between access types. In the
code example, the L0_Integer_Access (L1_IA) conversion is illegal
because the resulting object is less deep. That being said, conversions on the
same level are fine:

show_same_level_conversion.adb

 1procedure Show_Same_Level_Conversion is
 2 type L1_Integer_Access is
 3 access all Integer;
 4
 5 type L1_B_Integer_Access is
 6 access all Integer;
 7
 8 L1_IA : L1_Integer_Access;
 9 L1_B_IA : L1_B_Integer_Access;
10
11 L1_Var : aliased Integer;
12begin
13 L1_IA := L1_Var'Access;
14
15 L1_B_IA := L1_B_Integer_Access (L1_IA);
16 -- ^^^^^^^^^^^^^^^^^^^
17 -- LEGAL: conversion from
18 -- L1 access object to
19 -- L1 access object
20end Show_Same_Level_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Same_Level_Conversion
MD5: 7276a06e9f5b634d4f5a10a892071d87

Here, we're converting from the L1_Integer_Access type to the
L1_B_Integer_Access, which are both at the same level.

Accessibility rules on parameters

Note that the accessibility rules also apply to access values as subprogram
parameters. For example, compilation fails for this example:

names.ads

 1package Names is
 2
 3 type Name is access all String;
 4
 5 type Constant_Name is
 6 access constant String;
 7
 8 procedure Show (N : Constant_Name);
 9
10end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : Constant_Name) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 S : aliased String := "John";
5begin
6 Show (S'Access);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: 6b8bf2799caa32f55d216ac0b58fcd39

Build output

show_names.adb:6:10: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

In this case, the S'Access cannot be used as the actual parameter for
the N parameter of the Show procedure because it's in a deeper
level. If we allocate the string via new, however, the code compiles
as expected:

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 S : Name := new String'("John");
5begin
6 Show (Constant_Name (S));
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: 30237c83426db758804b802e1953d5d9

Runtime output

Name: John

This version of the code works because both object and access object have the same level.

Dangling References

An access value that points to a non-existent object is called a dangling
reference. Later on, we'll discuss how dangling references may occur using
unchecked deallocation.

Dangling references are created when we have an access value pointing to an
object whose lifetime has ended, so it becomes a non-existent object. This
could occur, for example, when an access value still points to an object
X that has gone out of scope.

As mentioned in the previous section, the accessibility rules of the Ada
language ensure that such situations never happen! In fact, whenever possible,
the compiler applies those rules to detect potential dangling references at
compile time. When this detection isn't possible at compile time, the compiler
introduces an accessibility check. If this
check fails at runtime, it raises a Program_Error exception —
thereby preventing that a dangling reference gets used.

Let's see an example of how dangling references could occur:

show_dangling_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dangling_Reference is
 4
 5 type Integer_Access is
 6 access all Integer;
 7
 8 I_Var_1 : aliased Integer := 22;
 9
10 A1 : Integer_Access;
11begin
12 A1 := I_Var_1'Access;
13 Put_Line ("A1.all: "
14 & Integer'Image (A1.all));
15
16 Put_Line ("Inner_Block will start now!");
17
18 Inner_Block : declare
19 --
20 -- I_Var_2 only exists in Inner_Block
21 --
22 I_Var_2 : aliased Integer := 42;
23
24 --
25 -- A2 only exists in Inner_Block
26 --
27 A2 : Integer_Access;
28 begin
29 A2 := I_Var_1'Access;
30 Put_Line ("A2.all: "
31 & Integer'Image (A2.all));
32
33 A1 := I_Var_2'Access;
34 -- PROBLEM: A1 and Integer_Access type
35 -- have longer lifetime than
36 -- I_Var_2
37
38 Put_Line ("A1.all: "
39 & Integer'Image (A1.all));
40
41 A2 := I_Var_2'Access;
42 -- PROBLEM: A2 has the same lifetime as
43 -- I_Var_2, but Integer_Access
44 -- type has a longer lifetime.
45
46 Put_Line ("A2.all: "
47 & Integer'Image (A2.all));
48 end Inner_Block;
49
50 Put_Line ("Inner_Block has ended!");
51 Put_Line ("A1.all: "
52 & Integer'Image (A1.all));
53
54end Show_Dangling_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Dangling_Reference_Rules
MD5: 98e597f3f6a12075c474612bb42f4cb7

Build output

show_dangling_reference.adb:33:13: error: non-local pointer cannot point to local object
show_dangling_reference.adb:41:13: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

Here, we declare the access objects A1 and A2 of
Integer_Access type, and the I_Var_1 and I_Var_2 objects.
Moreover, A1 and I_Var_1 are declared in the scope of the
Show_Dangling_Reference procedure, while A2 and I_Var_2
are declared in the Inner_Block.

When we try to compile this code, we get two compilation errors due to
violation of accessibility rules. Let's now discuss these accessibility rules
in terms of lifetime, and see which problems they are preventing in each case.

	In the A1 := I_Var_2'Access assignment, the main problem is that
A1 has a longer lifetime than I_Var_2. After the
Inner_Block finishes — when I_Var_2 gets out of scope
and its lifetime has ended —, A1 would still be pointing to an
object that does not longer exist.

	In the A2 := I_Var_2'Access assignment, however, both A2 and
I_Var_2 have the same lifetime. In that sense, the assignment may
actually look pretty much OK.

	However, as mentioned in the previous section, Ada also cares about the
lifetime of access types. In fact, since the Integer_Access type is
declared outside of the Inner_Block, it has a longer lifetime than
A2 and I_Var_2.

	To be more precise, the accessibility rules detect that A2 is an
access object of a type that has a longer lifetime than I_Var_2.

At first glance, this last accessibility rule may seem too strict, as both
A2 and I_Var_2 have the same lifetime — so nothing bad
could occur when dereferencing A2. However, consider the following
change to the code:

A2 := I_Var_2'Access;

A1 := A2;
-- PROBLEM: A1 will still be referring
-- to I_Var_2 after the
-- Inner_Block, i.e. when the
-- lifetime of I_Var_2 has
-- ended!

Here, we're introducing the A1 := A2 assignment. The problem with this
is that I_Var_2's lifetime ends when the Inner_Block finishes,
but A1 would continue to refer to an I_Var_2 object that doesn't
exist anymore — thereby creating a dangling reference.

Even though we're actually not assigning A2 to A1 in the original
code, we could have done it. The accessibility rules ensure that such an error
is never introduced into the program.

For further reading...

In the original code, we can consider the A2 := I_Var_2'Access
assignment to be safe, as we're not using the A1 := A2 assignment
there. Since we're confident that no error could ever occur in the
Inner_Block due to the assignment to A2, we could replace it
with A2 := I_Var_2'Unchecked_Access, so that the compiler accepts
it. We discuss more about the unchecked access attribute
later in this chapter.

Alternatively, we could have solved the compilation issue that we see in
the A2 := I_Var_2'Access assignment by declaring another access type
locally in the Inner_Block:

Inner_Block : declare
 type Integer_Local_Access is
 access all Integer;

 I_Var_2 : aliased Integer := 42;

 A2 : Integer_Local_Access;
begin
 A2 := I_Var_2'Access;
 -- This assignment is fine because
 -- the Integer_Local_Access type has
 -- the same lifetime as I_Var_2.
end Inner_Block;

With this change, A2 becomes an access object of a type that has the
same lifetime as I_Var_2, so that the assignment doesn't violate the
rules anymore.

(Note that in the Inner_Block, we could have simply named the local
access type Integer_Access instead of Integer_Local_Access,
thereby masking the Integer_Access type of the outer block.)

We discuss the effects of dereferencing dangling references
later in this chapter.

Unchecked Access

In this section, we discuss the Unchecked_Access attribute, which we
can use to circumvent accessibility issues for objects in specific cases. (Note
that this attribute only exists for objects, not for subprograms.)

We've seen previously that the
accessibility levels verify the lifetime of access types. Let's see a
simplified version of a code example from that section:

integers.ads

1package Integers is
2
3 type Integer_Access is access all Integer;
4
5end Integers;

show_access_issue.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Integers; use Integers;
 4
 5procedure Show_Access_Issue is
 6 I_Var : aliased Integer := 42;
 7
 8 A : Integer_Access;
 9begin
10 A := I_Var'Access;
11 -- PROBLEM: A has the same lifetime as I_Var,
12 -- but Integer_Access type has a
13 -- longer lifetime.
14
15 Put_Line ("A.all: " & Integer'Image (A.all));
16end Show_Access_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.Dangling_Reference_Rules
MD5: 646acabf3f388b52809349463d20d314

Build output

show_access_issue.adb:10:09: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

Here, the compiler complains about the A := I_Var'Access assignment
because the Integer_Access type has a longer lifetime than A.
However, we know that this assignment to A — and further uses of
A in the code — won't cause dangling references to be created.
Therefore, we can assume that assigning the access to I_Var to A
is safe.

When we're sure that an access assignment cannot possibly generate dangling
references, we can the use Unchecked_Access attribute. For instance, we
can use this attribute to circumvent the compilation error in the previous code
example, since we know that the assignment is actually safe:

integers.ads

1package Integers is
2
3 type Integer_Access is access all Integer;
4
5end Integers;

show_access_issue.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Integers; use Integers;
 4
 5procedure Show_Access_Issue is
 6 I_Var : aliased Integer := 42;
 7
 8 A : Integer_Access;
 9begin
10 A := I_Var'Unchecked_Access;
11 -- OK: assignment is now accepted.
12
13 Put_Line ("A.all: " & Integer'Image (A.all));
14end Show_Access_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.Dangling_Reference_Rules
MD5: a71b9076d9e2983ffb9811183afdf6c1

Runtime output

A.all: 42

When we use the Unchecked_Access attribute, most rules still apply.
The only difference to the standard Access attribute is that unchecked
access applies the rules as if the object we're getting access to was being
declared at library level. (For the code example we've just seen, the check
would be performed as if I_Var was declared in the Integers
package instead of being declared in the procedure.)

It is strongly recommended to avoid unchecked access in general. You should
only use it when you can safely assume that the access object will be discarded
before the object we had access to gets out of scope. Therefore, if this
situation isn't clear enough, it's best to avoid unchecked access. (Later in
this chapter, we'll see some of the nasty issues that arrive from creating
dangling references.) Instead, you should work on improving the software design
of your application by considering alternatives such as using containers or
encapsulating access types in well-designed abstract data types.

In the Ada Reference Manual

	Unchecked Access Value Creation[#23]

Unchecked Deallocation

So far, we've seen multiple examples of using new to allocate objects.
In this section, we discuss how to manually deallocate objects.

Our starting point to manually deallocate an object is the generic
Ada.Unchecked_Deallocation procedure. We first instantiate this
procedure for an access type whose objects we want to be able to deallocate.
For example, let's instantiate it for the Integer_Access type:

integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5 type Integer_Access is access Integer;
 6
 7 --
 8 -- Instantiation of Ada.Unchecked_Deallocation
 9 -- for the Integer_Access type:
10 --
11 procedure Free is
12 new Ada.Unchecked_Deallocation
13 (Object => Integer,
14 Name => Integer_Access);
15end Integer_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Simple_Unchecked_Deallocation
MD5: 328b244cf406853e87494c381c9c4c9e

Here, we declare the Free procedure, which we can then use to deallocate
objects that were allocated for the Integer_Access type.

Ada.Unchecked_Deallocation is a generic procedure that we can
instantiate for access types. When declaring an instance of
Ada.Unchecked_Deallocation, we have to specify arguments for:

	the formal Object parameter, which indicates the type of actual
objects that we want to deallocate; and

	the formal Name parameter, which indicates the access type.

In a type declaration such as type Integer_Access is access Integer,
Integer denotes the Object, while Integer_Access denotes
the Name.

Because each instance of Ada.Unchecked_Deallocation is bound to a
specific access type, we cannot use it for another access type, even if the
type we use for the Object parameter is the same:

integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5 type Integer_Access is access Integer;
 6
 7 procedure Free is
 8 new Ada.Unchecked_Deallocation
 9 (Object => Integer,
10 Name => Integer_Access);
11
12 type Another_Integer_Access is access Integer;
13
14 procedure Free is
15 new Ada.Unchecked_Deallocation
16 (Object => Integer,
17 Name => Another_Integer_Access);
18end Integer_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Simple_Unchecked_Deallocation
MD5: b9bc58ff60632287237e2e322fcbc63e

Here, we're declaring two Free procedures: one for the
Integer_Access type, another for the Another_Integer_Access. We
cannot use the Free procedure for the Integer_Access type when
deallocating objects associated with the Another_Integer_Access type,
even though both types are declared as access Integer.

Note that we can use any name when instantiating the
Ada.Unchecked_Deallocation procedure. However, naming it Free is
very common.

Now, let's see a complete example that includes object allocation and
deallocation:

integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5 type Integer_Access is access Integer;
 6
 7 procedure Free is
 8 new Ada.Unchecked_Deallocation
 9 (Object => Integer,
10 Name => Integer_Access);
11
12 procedure Show_Is_Null (I : Integer_Access);
13
14end Integer_Types;

integer_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Types is
 4
 5 procedure Show_Is_Null (I : Integer_Access) is
 6 begin
 7 if I = null then
 8 Put_Line ("access value is null.");
 9 else
10 Put_Line ("access value is NOT null.");
11 end if;
12 end Show_Is_Null;
13
14end Integer_Types;

show_unchecked_deallocation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Integer_Types; use Integer_Types;
 3
 4procedure Show_Unchecked_Deallocation is
 5
 6 I : Integer_Access;
 7
 8begin
 9 Put ("We haven't called new yet... ");
10 Show_Is_Null (I);
11
12 Put ("Calling new... ");
13 I := new Integer;
14 Show_Is_Null (I);
15
16 Put ("Calling Free... ");
17 Free (I);
18 Show_Is_Null (I);
19end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: a9f2df04e2fe0d5ee8c17249b4ae315a

Runtime output

We haven't called new yet... access value is null.
Calling new... access value is NOT null.
Calling Free... access value is null.

In the Show_Unchecked_Deallocation procedure, we first allocate an
object for I and then call Free (I) to deallocate it. Also, we
call the Show_Is_Null procedure at three different points: before any
allocation takes place, after allocating an object for I, and after
deallocating that object.

When we deallocate an object via a call to Free, the corresponding
access value — which was previously pointing to an existing object
— is set to null. Therefore, I = null after the call to
Free, which is exactly what we see when running this example code.

Note that it is OK to call Free multiple times for the same access
object:

show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5 I : Integer_Access;
 6
 7begin
 8 I := new Integer;
 9
10 Free (I);
11 Free (I);
12 Free (I);
13end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: ce7f4f912f12d723ca673ca36a478765

The multiple calls to Free for the same access object don't cause any
issues. Because the access value is null after the first call to
Free (I), we're actually just passing null as an argument in the
second and third calls to Free. However, any attempt to deallocate an
access value of null is ignored in the Free procedure, so the second and
third calls to Free don't have any effect.

In the Ada Reference Manual

	4.8 Allocators[#24]

	13.11.2 Unchecked Storage Deallocation[#25]

Unchecked Deallocation and Dangling References

We've discussed dangling references
before. In this section, we discuss how unchecked deallocation can create
dangling references and the issues of having them in an application.

Let's reuse the last example and introduce I_2, which will point to the
same object as I:

show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5 I, I_2 : Integer_Access;
 6
 7begin
 8 I := new Integer;
 9
10 I_2 := I;
11
12 -- NOTE: I_2 points to the same
13 -- object as I.
14
15 --
16 -- Use I and I_2...
17 --
18 -- ... then deallocate memory...
19 --
20
21 Free (I);
22
23 -- NOTE: at this point, I_2 is a
24 -- dangling reference!
25
26 -- Further calls to Free (I)
27 -- are OK!
28
29 Free (I);
30 Free (I);
31
32 -- A call to Free (I_2) is
33 -- NOT OK:
34
35 Free (I_2);
36end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: ee5c20209a113a6c1bc7895b8ebdb174

Runtime output

free(): double free detected in tcache 2

raised PROGRAM_ERROR : unhandled signal

As we've seen before, we can have multiple calls to Free (I).
However, the call to Free (I_2) is bad because I_2 is not null.
In fact, it is a dangling reference — i.e. I_2 points to an object
that doesn't exist anymore. Also, the first call to Free (I) will
reclaim the storage that was allocated for the object that I
originally referred to. The call to Free (I_2) will then try to reclaim
the previously-reclaimed object, but it'll fail in an undefined manner.

Because of these potential errors, you should be very careful when using
unchecked deallocation: it is the programmer's responsibility to avoid creating
dangling references!

For the example we've just seen, we could avoid creating a dangling reference
by explicitly assigning null to I_2 to indicate that it doesn't
point to any specific object:

show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5 I, I_2 : Integer_Access;
 6
 7begin
 8 I := new Integer;
 9
10 I_2 := I;
11
12 -- NOTE: I_2 points to the same
13 -- object as I.
14
15 --
16 -- Use I and I_2...
17 --
18 -- ... then deallocate memory...
19 --
20
21 I_2 := null;
22
23 -- NOTE: now, I_2 doesn't point to
24 -- any object, so calling
25 -- Free (I_2) is OK.
26
27 Free (I);
28 Free (I_2);
29end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: 3381ba594cbbc0f1547e3f819bae0f97

Now, calling Free (I_2) doesn't cause any issues because it doesn't
point to any object.

Note, however, that this code example is just meant to illustrate the issues of
dangling pointers and how we could circumvent them. We're not suggesting to use
this approach when designing an implementation. In fact, it's not practical for
the programmer to make every possible dangling reference become null if the
calls to Free are strewn throughout the code.

The suggested design is to not use Free in the client code, but
instead hide its use within bigger abstractions. In that way, all the
occurrences of the calls to Free are in one package, and the programmer
of that package can then prevent dangling references. We'll discuss these
design strategies later on.

Dereferencing dangling references

Of course, you shouldn't try to dereference a dangling reference because your
program becomes erroneous, as we discuss in this section. Let's see an example:

show_unchecked_deallocation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Integer_Types; use Integer_Types;
 3
 4procedure Show_Unchecked_Deallocation is
 5
 6 I_1, I_2 : Integer_Access;
 7
 8begin
 9 I_1 := new Integer'(42);
10 I_2 := I_1;
11
12 Put_Line ("I_1.all = "
13 & Integer'Image (I_1.all));
14 Put_Line ("I_2.all = "
15 & Integer'Image (I_2.all));
16
17 Put_Line ("Freeing I_1");
18 Free (I_1);
19
20 if I_1 /= null then
21 Put_Line ("I_1.all = "
22 & Integer'Image (I_1.all));
23 end if;
24
25 if I_2 /= null then
26 Put_Line ("I_2.all = "
27 & Integer'Image (I_2.all));
28 end if;
29end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: 8536190aa5bbafa715ad8153aaeb4889

Runtime output

I_1.all = 42
I_2.all = 42
Freeing I_1
I_2.all = 3668

In this example, we allocate an object for I_1 and make I_2 point
to the same object. Then, we call Free (I), which has the following
consequences:

	The call to Free (I_1) will try to reclaim the storage for the
original object (I_1.all), so it may be reused for other allocations.

	I_1 = null after the call to Free (I_1).

	I_2 becomes a dangling reference by the call to Free (I_1).

	In other words, I_2 is still non-null, and what it points to is now
undefined.

In principle, we could check for null before trying to dereference the
access value. (Remember that when deallocating an object via a call to
Free, the corresponding access value is set to null.) In fact,
this strategy works fine for I_1, but it doesn't work for I_2
because the access value is not null. As a consequence, the application
tries to dereference I_2.

Dereferencing a dangling reference is erroneous: the behavior is undefined in
this case. For the example we've just seen,

	I_2.all might make the application crash;

	I_2.all might give us a different value than before;

	I_2.all might even give us the same value as before (42) if the
original object is still available.

Because the effect is unpredictable, it might be really difficult to debug the
application and identify the cause.

Having dangling pointers in an application should be avoided at all costs!
Again, it is the programmer's responsibility to be very careful when using
unchecked deallocation: avoid creating dangling references!

In the Ada Reference Manual

	13.9.1 Data Validity[#26]

	13.11.2 Unchecked Storage Deallocation[#27]

Restrictions for Ada.Unchecked_Deallocation

There are two unsurprising restrictions for Ada.Unchecked_Deallocation:

	It cannot be instantiated for access-to-constant types; and

	It cannot be used when the Storage_Size aspect of a type is zero
(i.e. when its storage pool is empty).

(Note that this last restriction also applies to the allocation via
new.)

Let's see an example of these restrictions:

show_unchecked_deallocation_errors.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Unchecked_Deallocation_Errors is
 4
 5 type Integer_Access_Zero is access Integer
 6 with Storage_Size => 0;
 7
 8 procedure Free is
 9 new Ada.Unchecked_Deallocation
10 (Object => Integer,
11 Name => Integer_Access_Zero);
12
13 type Constant_Integer_Access is
14 access constant Integer;
15
16 -- ERROR: Cannot use access-to-constant type
17 -- for Name
18 procedure Free is
19 new Ada.Unchecked_Deallocation
20 (Object => Integer,
21 Name => Constant_Integer_Access);
22
23 I : Integer_Access_Zero;
24
25begin
26 -- ERROR: Cannot allocate objects from
27 -- empty storage pool
28 I := new Integer;
29
30 -- ERROR: Cannot deallocate objects from
31 -- empty storage pool
32 Free (I);
33end Show_Unchecked_Deallocation_Errors;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation_Error
MD5: 5032d13b2eb6b7ca1979282ddd6df98a

Build output

show_unchecked_deallocation_errors.adb:21:19: error: actual type must be access-to-variable type
show_unchecked_deallocation_errors.adb:21:19: error: instantiation abandoned
show_unchecked_deallocation_errors.adb:28:09: error: allocation from empty storage pool
show_unchecked_deallocation_errors.adb:32:04: error: deallocation from empty storage pool
gprbuild: *** compilation phase failed

Here, we see that trying to instantiate Ada.Unchecked_Deallocation for
the Constant_Integer_Access type is rejected by the compiler. Similarly,
we cannot allocate or deallocate an object for the Integer_Access_Zero
type because its storage pool is empty.

Null & Not Null Access

Note

This section was originally written by Robert A. Duff and published as
Gem #23: Null Considered Harmful[#28]
and Gem #24[#29].

Ada, like many languages, defines a special null value for access
types. All values of an access type designate some object of the
designated type, except for null, which does not designate any
object. The null value can be used as a special flag. For example, a
singly-linked list can be null-terminated. A Lookup function can
return null to mean "not found", presuming the result is of an
access type:

show_null_return.ads

1package Show_Null_Return is
2
3 type Ref_Element is access all Element;
4
5 Not_Found : constant Ref_Element := null;
6
7 function Lookup (T : Table) return Ref_Element;
8 -- Returns Not_Found if not found.
9end Show_Null_Return;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Null_Return
MD5: 6c4eed750d42685198ec9495805e3e23

An alternative design for Lookup would be to raise an exception:

show_not_found_exception.ads

1package Show_Not_Found_Exception is
2 Not_Found : exception;
3
4 function Lookup (T : Table) return Ref_Element;
5 -- Raises Not_Found if not found.
6 -- Never returns null.
7end Show_Not_Found_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Not_Found_Exception
MD5: 6ef47b32d4923838ffc28f43e5db323c

Neither design is better in all situations; it depends in part on whether
we consider the "not found" situation to be exceptional.

Clearly, the client calling Lookup needs to know whether it can
return null, and if so, what that means. In general, it's a good
idea to document whether things can be null or not, especially for formal
parameters and function results. Prior to Ada 2005, we would do that with
comments. Since Ada 2005, we can use the not null syntax:

show_not_null_return.ads

1package Show_Not_Null_Return is
2 type Ref_Element is access all Element;
3
4 Not_Found : constant Ref_Element := null;
5
6 function Lookup (T : Table)
7 return not null Ref_Element;
8 -- Possible since Ada 2005.
9end Show_Not_Null_Return;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Not_Null_Return
MD5: 4c0bb95da3b5a7c555a763c4951f7e21

This is a complete package for the code snippets above:

example.ads

 1package Example is
 2
 3 type Element is limited private;
 4 type Ref_Element is access all Element;
 5
 6 type Table is limited private;
 7
 8 Not_Found : constant Ref_Element := null;
 9 function Lookup (T : Table)
10 return Ref_Element;
11 -- Returns Not_Found if not found.
12
13 Not_Found_2 : exception;
14 function Lookup_2 (T : Table)
15 return not null Ref_Element;
16 -- Raises Not_Found_2 if not found.
17
18 procedure P (X : not null Ref_Element);
19
20 procedure Q (X : not null Ref_Element);
21
22private
23 type Element is limited
24 record
25 Component : Integer;
26 end record;
27 type Table is limited null record;
28end Example;

example.adb

 1package body Example is
 2
 3 An_Element : aliased Element;
 4
 5 function Lookup (T : Table)
 6 return Ref_Element is
 7 pragma Unreferenced (T);
 8 begin
 9 -- ...
10 return Not_Found;
11 end Lookup;
12
13 function Lookup_2 (T : Table)
14 return not null Ref_Element
15 is
16 begin
17 -- ...
18 raise Not_Found_2;
19
20 return An_Element'Access;
21 -- suppress error: 'missing "return"
22 -- statement in function body'
23 end Lookup_2;
24
25 procedure P (X : not null Ref_Element) is
26 begin
27 X.all.Component := X.all.Component + 1;
28 end P;
29
30 procedure Q (X : not null Ref_Element) is
31 begin
32 for I in 1 .. 1000 loop
33 P (X);
34 end loop;
35 end Q;
36
37 procedure R is
38 begin
39 Q (An_Element'Access);
40 end R;
41
42 pragma Unreferenced (R);
43
44end Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Complete_Null_Return
MD5: 01895c7d5f843fd215dcc21d807d4187

In general, it's better to use the language proper for documentation, when
possible, rather than comments, because compile-time and/or run-time
checks can help ensure that the "documentation" is actually true. With
comments, there's a greater danger that the comment will become false
during maintenance, and false documentation is obviously a menace.

In many, perhaps most cases, null is just a tripping hazard. It's
a good idea to put in not null when possible. In fact, a good
argument can be made that not null should be the default, with
extra syntax required when null is wanted. This is the way
Standard ML[#30] works, for
example — you don't get any special null-like value unless you ask
for it. Of course, because Ada 2005 needs to be compatible with previous
versions of the language, not null cannot be the default for Ada.

One word of caution: access objects are default-initialized to
null, so if you have a not null object (or component) you
had better initialize it explicitly, or you will get
Constraint_Error. not null is more often useful on
parameters and function results, for this reason.

Another advantage of not null over comments is for efficiency.
Consider procedures P and Q in this example:

example-processing.ads

1package Example.Processing is
2
3 procedure P (X : not null Ref_Element);
4
5 procedure Q (X : not null Ref_Element);
6
7end Example.Processing;

example-processing.adb

 1package body Example.Processing is
 2
 3 procedure P (X : not null Ref_Element) is
 4 begin
 5 X.all.Component := X.all.Component + 1;
 6 end P;
 7
 8 procedure Q (X : not null Ref_Element) is
 9 begin
10 for I in 1 .. 1000 loop
11 P (X);
12 end loop;
13 end Q;
14
15end Example.Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Complete_Null_Return
MD5: dc34b1a27737d57c041be6260dd577fd

Without not null, the generated code for P will do a check
that X /= null, which may be costly on some systems. P is
called in a loop, so this check will likely occur many times. With
not null, the check is pushed to the call site. Pushing checks to
the call site is usually beneficial because

	the check might be hoisted out of a loop by the optimizer, or

	the check might be eliminated altogether, as in the example
above, where the compiler knows that An_Element'Access cannot
be null.

This is analogous to the situation with other run-time checks, such as
array bounds checks:

show_process_array.ads

 1package Show_Process_Array is
 2
 3 type My_Index is range 1 .. 10;
 4 type My_Array is array (My_Index) of Integer;
 5
 6 procedure Process_Array
 7 (X : in out My_Array;
 8 Index : My_Index);
 9
10end Show_Process_Array;

show_process_array.adb

 1package body Show_Process_Array is
 2
 3 procedure Process_Array
 4 (X : in out My_Array;
 5 Index : My_Index) is
 6 begin
 7 X (Index) := X (Index) + 1;
 8 end Process_Array;
 9
10end Show_Process_Array;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Process_Array
MD5: 32424432f5b2e3013292680f92a04320

If X (Index) occurs inside Process_Array, there is no need
to check that Index is in range, because the check is pushed to the
caller.

Design strategies for access types

Previously, we learned about
dangling references and discussed the
effects of
dereferencing them.
Also, we've seen the relationship between
unchecked deallocation and dangling references.
Ensuring that all calls to Free for a specific access type will never
cause dangling references can become an arduous task — if not impossible
— if those calls are located in different parts of the source code.

Although we used access types directly in the main application in many of the
previous code examples from this chapter, this approach was in fact selected
just for illustration purposes — i.e. to make the code look simpler. In
general, however, we should avoid this approach. Instead, our recommendation is
to encapsulate the access types in some form of abstraction. In this section,
we discuss design strategies for access types that take this recommendation
into account.

Abstract data type for access types

The simplest form of abstraction is of course an abstract data type. For
example, we could declare a limited private type, which allows us to hide
the access type and to avoid copies of references that could potentially
become dangling references. (We discuss limited private types later
in another chapter.)

Let's see an example:

access_type_abstraction.ads

 1package Access_Type_Abstraction is
 2
 3 type Info is limited private;
 4
 5 function To_Info (S : String) return Info;
 6
 7 function To_String (Obj : Info)
 8 return String;
 9
10 function Copy (Obj : Info) return Info;
11
12 procedure Copy (To : in out Info;
13 From : Info);
14
15 procedure Append (Obj : in out Info;
16 S : String);
17
18 procedure Reset (Obj : in out Info);
19
20 procedure Destroy (Obj : in out Info);
21
22private
23
24 type Info is access String;
25
26end Access_Type_Abstraction;

access_type_abstraction.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Access_Type_Abstraction is
 4
 5 function To_Info (S : String) return Info is
 6 (new String'(S));
 7
 8 function To_String (Obj : Info)
 9 return String is
10 (if Obj /= null then Obj.all else "");
11
12 function Copy (Obj : Info) return Info is
13 (To_Info (Obj.all));
14
15 procedure Copy (To : in out Info;
16 From : Info) is
17 begin
18 Destroy (To);
19 To := To_Info (From.all);
20 end Copy;
21
22 procedure Append (Obj : in out Info;
23 S : String) is
24 New_Info : constant Info :=
25 To_Info (To_String (Obj) & S);
26 begin
27 Destroy (Obj);
28 Obj := New_Info;
29 end Append;
30
31 procedure Reset (Obj : in out Info) is
32 begin
33 Destroy (Obj);
34 end Reset;
35
36 procedure Destroy (Obj : in out Info) is
37 procedure Free is
38 new Ada.Unchecked_Deallocation
39 (Object => String,
40 Name => Info);
41 begin
42 Free (Obj);
43 end Destroy;
44
45end Access_Type_Abstraction;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_Type_Abstraction;
 4use Access_Type_Abstraction;
 5
 6procedure Main is
 7 Obj_1 : Info := To_Info ("hello");
 8 Obj_2 : Info := Copy (Obj_1);
 9begin
10 Put_Line ("TO_INFO / COPY");
11 Put_Line ("Obj_1 : "
12 & To_String (Obj_1));
13 Put_Line ("Obj_2 : "
14 & To_String (Obj_2));
15 Put_Line ("----------");
16
17 Reset (Obj_1);
18 Append (Obj_2, " world");
19
20 Put_Line ("RESET / APPEND");
21 Put_Line ("Obj_1 : "
22 & To_String (Obj_1));
23 Put_Line ("Obj_2 : "
24 & To_String (Obj_2));
25 Put_Line ("----------");
26
27 Copy (From => Obj_2,
28 To => Obj_1);
29
30 Put_Line ("COPY");
31 Put_Line ("Obj_1 : "
32 & To_String (Obj_1));
33 Put_Line ("Obj_2 : "
34 & To_String (Obj_2));
35 Put_Line ("----------");
36
37 Destroy (Obj_1);
38 Destroy (Obj_2);
39
40 Put_Line ("DESTROY");
41 Put_Line ("Obj_1 : "
42 & To_String (Obj_1));
43 Put_Line ("Obj_2 : "
44 & To_String (Obj_2));
45 Put_Line ("----------");
46
47 Append (Obj_1, "hey");
48
49 Put_Line ("APPEND");
50 Put_Line ("Obj_1 : "
51 & To_String (Obj_1));
52 Put_Line ("----------");
53
54 Put_Line ("APPEND");
55 Append (Obj_1, " there");
56 Put_Line ("Obj_1 : "
57 & To_String (Obj_1));
58
59 Destroy (Obj_1);
60 Destroy (Obj_2);
61end Main;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.Access_Type_Abstraction
MD5: d652d26314b616d3e1b955c0ce5bbbd7

Runtime output

TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello

RESET / APPEND
Obj_1 :
Obj_2 : hello world

COPY
Obj_1 : hello world
Obj_2 : hello world

DESTROY
Obj_1 :
Obj_2 :

APPEND
Obj_1 : hey

APPEND
Obj_1 : hey there

In this example, we hide an access type in the Info type — a
limited private type. We allocate an object of this type in the To_Info
function and deallocate it in the Destroy procedure. Also, we make
sure that the reference isn't copied in the Copy function —
we only copy the designated value in this function. This strategy eliminates
the possibility of dangling references, as each reference is encapsulated in
an object of Info type.

Controlled type for access types

In the previous code example, the Destroy procedure had to be called
to deallocate the hidden access object. We could make sure that this
deallocation happens automatically by using a controlled (or limited
controlled) type. (We discuss
controlled types in another chapter.)

Let's adapt the previous example and declare Info as a limited
controlled type:

access_type_abstraction.ads

 1with Ada.Finalization;
 2
 3package Access_Type_Abstraction is
 4
 5 type Info is limited private;
 6
 7 function To_Info (S : String) return Info;
 8
 9 function To_String (Obj : Info)
10 return String;
11
12 function Copy (Obj : Info) return Info;
13
14 procedure Copy (To : in out Info;
15 From : Info);
16
17 procedure Append (Obj : in out Info;
18 S : String);
19
20 procedure Reset (Obj : in out Info);
21
22private
23
24 type String_Access is access String;
25
26 type Info is new
27 Ada.Finalization.Limited_Controlled with
28 record
29 Str_A : String_Access;
30 end record;
31
32 procedure Initialize (Obj : in out Info);
33 procedure Finalize (Obj : in out Info);
34
35end Access_Type_Abstraction;

access_type_abstraction.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Access_Type_Abstraction is
 4
 5 --
 6 -- STRING_ACCESS SUBPROGRAMS
 7 --
 8
 9 function To_String_Access (S : String)
10 return String_Access
11 is
12 (new String'(S));
13
14 function To_String (S : String_Access)
15 return String is
16 (if S /= null then S.all else "");
17
18 procedure Free is
19 new Ada.Unchecked_Deallocation
20 (Object => String,
21 Name => String_Access);
22
23 --
24 -- PRIVATE SUBPROGRAMS
25 --
26
27 procedure Initialize (Obj : in out Info) is
28 begin
29 -- Put_Line ("Initializing Info");
30 Obj.Str_A := null;
31 -- ^^^^^^^^^^^^^
32 -- NOTE: This line has just been added to
33 -- illustrate the "automatic" call to
34 -- Initialize. Actually, this
35 -- assignment isn't needed, as
36 -- the Str_A component is
37 -- automatically initialized to null
38 -- upon object construction.
39 end Initialize;
40
41 procedure Finalize (Obj : in out Info) is
42 begin
43 -- Put_Line ("Finalizing Info");
44 Free (Obj.Str_A);
45 end Finalize;
46
47 --
48 -- PUBLIC SUBPROGRAMS
49 --
50
51 function To_Info (S : String) return Info is
52 (Ada.Finalization.Limited_Controlled
53 with Str_A => To_String_Access (S));
54
55 function To_String (Obj : Info)
56 return String is
57 (To_String (Obj.Str_A));
58
59 function Copy (Obj : Info) return Info is
60 (To_Info (To_String (Obj.Str_A)));
61
62 procedure Copy (To : in out Info;
63 From : Info) is
64 begin
65 Free (To.Str_A);
66 To.Str_A := To_String_Access
67 (To_String (From.Str_A));
68 end Copy;
69
70 procedure Append (Obj : in out Info;
71 S : String) is
72 New_Str_A : constant String_Access :=
73 To_String_Access
74 (To_String (Obj.Str_A) & S);
75 begin
76 Free (Obj.Str_A);
77 Obj.Str_A := New_Str_A;
78 end Append;
79
80 procedure Reset (Obj : in out Info) is
81 begin
82 Free (Obj.Str_A);
83 end Reset;
84
85end Access_Type_Abstraction;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_Type_Abstraction;
 4use Access_Type_Abstraction;
 5
 6procedure Main is
 7 Obj_1 : Info := To_Info ("hello");
 8 Obj_2 : Info := Copy (Obj_1);
 9begin
10 --
11 -- TO_INFO / COPY
12 --
13 Put_Line ("TO_INFO / COPY");
14
15 Put_Line ("Obj_1 : "
16 & To_String (Obj_1));
17 Put_Line ("Obj_2 : "
18 & To_String (Obj_2));
19 Put_Line ("----------");
20
21 --
22 -- RESET: Obj_1
23 -- APPEND: Obj_2
24 --
25 Put_Line ("RESET / APPEND");
26
27 Reset (Obj_1);
28 Append (Obj_2, " world");
29
30 Put_Line ("Obj_1 : "
31 & To_String (Obj_1));
32 Put_Line ("Obj_2 : "
33 & To_String (Obj_2));
34 Put_Line ("----------");
35
36 --
37 -- COPY: Obj_2 => Obj_1
38 --
39 Put_Line ("COPY");
40
41 Copy (From => Obj_2,
42 To => Obj_1);
43
44 Put_Line ("Obj_1 : "
45 & To_String (Obj_1));
46 Put_Line ("Obj_2 : "
47 & To_String (Obj_2));
48 Put_Line ("----------");
49
50 --
51 -- RESET: Obj_1, Obj_2
52 --
53 Put_Line ("RESET");
54
55 Reset (Obj_1);
56 Reset (Obj_2);
57
58 Put_Line ("Obj_1 : "
59 & To_String (Obj_1));
60 Put_Line ("Obj_2 : "
61 & To_String (Obj_2));
62 Put_Line ("----------");
63
64 --
65 -- COPY: Obj_2 => Obj_1
66 --
67 Put_Line ("COPY");
68
69 Copy (From => Obj_2,
70 To => Obj_1);
71
72 Put_Line ("Obj_1 : "
73 & To_String (Obj_1));
74 Put_Line ("Obj_2 : "
75 & To_String (Obj_2));
76 Put_Line ("----------");
77
78 --
79 -- APPEND: Obj_1 with "hey"
80 --
81 Put_Line ("APPEND");
82
83 Append (Obj_1, "hey");
84
85 Put_Line ("Obj_1 : "
86 & To_String (Obj_1));
87 Put_Line ("----------");
88
89 --
90 -- APPEND: Obj_1 with "there"
91 --
92 Put_Line ("APPEND");
93
94 Append (Obj_1, " there");
95
96 Put_Line ("Obj_1 : "
97 & To_String (Obj_1));
98end Main;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.Access_Type_Limited_Controlled_Abstraction
MD5: e98659ad1b87be56fb173fa407ab7e82

Runtime output

TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello

RESET / APPEND
Obj_1 :
Obj_2 : hello world

COPY
Obj_1 : hello world
Obj_2 : hello world

RESET
Obj_1 :
Obj_2 :

COPY
Obj_1 :
Obj_2 :

APPEND
Obj_1 : hey

APPEND
Obj_1 : hey there

Of course, because we're using the
Limited_Controlled type from the Ada.Finalization package,
we had to adapt the prototype of the subprograms from the
Access_Type_Abstraction. In this version of the code, we only have
the allocation taking place in the To_Info procedure, but we don't have
a Destroy procedure for deallocation: this call was moved to the
Finalize procedure.

Since objects of the Info type — such as Obj_1 in the
Show_Access_Type_Abstraction procedure — are now controlled, the
Finalize procedure is automatically called when they go out of scope.
In this procedure, which we override for the Info type, we perform the
deallocation of the internal access object Str_A. (You may uncomment the
calls to Put_Line in the body of the Initialize and
Finalize subprograms to confirm that these subprograms are called in the
background.)

Access to subprograms

So far in this chapter, we focused mainly on access-to-objects. However, we can
use access types to subprograms. This is the topic of this section.

Static vs. dynamic calls

In a typical subprogram call, we indicate the subprogram we want to call
statically. For example, let's say we've implemented a procedure Proc
that calls a procedure P:

p.ads

1procedure P (I : in out Integer);

p.adb

1procedure P (I : in out Integer) is
2begin
3 null;
4end P;

proc.adb

1with P;
2
3procedure Proc is
4 I : Integer := 0;
5begin
6 P (I);
7end Proc;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Subprogram_Call
MD5: 0e9547e53d0d02d39920f4d1d6787af6

The call to P is statically dispatched: every time Proc runs and
calls P, that call is always to the same procedure. In other words, we
can determine at compilation time which procedure is called.

In contrast, an access to a subprogram allows us to dynamically indicate which
subprogram we want to call. For example, if we change Proc in the code
above to receive the access to a subprogram P as a parameter, the actual
procedure that would be called when running Proc would be determined at
run time, and it might be different for every call to Proc. In this
case, we wouldn't be able to determine at compilation time which
procedure would be called in every case. (In some cases, however, it could
still be possible to determine which procedure is called by analyzing the
argument that is passed to Proc.)

Access to subprogram declaration

We declare an access to a subprogram as a type by writing
access procedure or access function and the corresponding
prototype:

access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5
6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 5f834c1b2044ba5ea7d4835c3ebdedb1

In the designated profile of the access type declarations, we list all the
parameters that we expect in the subprogram.

We can use those types to declare access to subprograms — as subprogram
parameters, for example:

access_to_subprogram_params.ads

1with Access_To_Subprogram_Types;
2use Access_To_Subprogram_Types;
3
4package Access_To_Subprogram_Params is
5
6 procedure Proc (P : Access_To_Procedure);
7
8end Access_To_Subprogram_Params;

access_to_subprogram_params.adb

 1package body Access_To_Subprogram_Params is
 2
 3 procedure Proc (P : Access_To_Procedure) is
 4 I : Integer := 0;
 5 begin
 6 P (I);
 7 -- P.all (I);
 8 end Proc;
 9
10end Access_To_Subprogram_Params;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 17c1a07f48d9fb0efef37aa4c5ec8a51

In the implementation of the Proc procedure of the code example, we call
the P procedure by simply passing I as a parameter. In this case,
P is automatically dereferenced. We may, however, explicitly dereference
P by writing P.all (I).

Before we use this package, let's implement a simple procedure that we'll use
later on:

add_ten.ads

1procedure Add_Ten (I : in out Integer);

add_ten.adb

1procedure Add_Ten (I : in out Integer) is
2begin
3 I := I + 10;
4end Add_Ten;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 8553ad7329bf1ed727147b47b7355a70

Now, we can get access to a subprogram by using the Access attribute and
pass it as an actual parameter:

show_access_to_subprograms.adb

 1with Access_To_Subprogram_Params;
 2use Access_To_Subprogram_Params;
 3
 4with Add_Ten;
 5
 6procedure Show_Access_To_Subprograms is
 7begin
 8 Proc (Add_Ten'Access);
 9 -- ^ Getting access to Add_Ten
10 -- procedure and passing it
11 -- to Proc
12end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 599e9d1306da48e3c532692b34c02a1d

Here, we get access to the Add_Ten procedure and pass it to the
Proc procedure.

In the Ada Reference Manual

	3.10 Access Types[#31]

Objects of access-to-subprogram type

In the previous example, the Proc procedure had a parameter of
access-to-subprogram type. In addition to parameters, we can of course declare
objects of access-to-subprogram types as well. For example, we can extend
our previous test application and declare an object P of
access-to-subprogram type. Before we do so, however, let's implement another
small procedure that we'll use later on:

add_twenty.ads

1procedure Add_Twenty (I : in out Integer);

add_twenty.adb

1procedure Add_Twenty (I : in out Integer) is
2begin
3 I := I + 20;
4end Add_Twenty;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 697959b806f6f2bfba248ec15c47883b

In addition to Add_Ten, we've implemented the Add_Twenty
procedure, which we use in our extended test application:

show_access_to_subprograms.adb

 1with Access_To_Subprogram_Types;
 2use Access_To_Subprogram_Types;
 3
 4with Access_To_Subprogram_Params;
 5use Access_To_Subprogram_Params;
 6
 7with Add_Ten;
 8with Add_Twenty;
 9
10procedure Show_Access_To_Subprograms is
11 P : Access_To_Procedure;
12 Some_Int : Integer := 0;
13begin
14 P := Add_Ten'Access;
15 -- ^ Getting access to Add_Ten
16 -- procedure and assigning it
17 -- to P
18
19 Proc (P);
20 -- ^ Passing access-to-subprogram as an
21 -- actual parameter
22
23 P (Some_Int);
24 -- ^ Using access-to-subprogram object in a
25 -- subprogram call
26
27 P := Add_Twenty'Access;
28 -- ^ Getting access to Add_Twenty
29 -- procedure and assigning it
30 -- to P
31
32 Proc (P);
33 P (Some_Int);
34end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 7b4ea19187806e88ba65847876cafb4f

In the Show_Access_To_Subprograms procedure,
we see the declaration of our access-to-subprogram object P (of
Access_To_Procedure type). We get access to the Add_Ten procedure
and assign it to P, and we then do the same for the Add_Twenty
procedure.

We can use an access-to-subprogram object either as the actual parameter of a
subprogram call, or in a subprogram call. In the code example, we're passing
P as the actual parameter of the Proc procedure in the
Proc (P) calls. Also, we're calling the subprogram assigned to
(designated by the current value of) P in the P (Some_Int) calls.

Components of access-to-subprogram type

In addition to declaring subprogram parameters and objects of
access-to-subprogram types, we can declare components of these types. For
example:

access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3 type Access_To_Procedure is
 4 access procedure (I : in out Integer);
 5
 6 type Access_To_Function is
 7 access function (I : Integer) return Integer;
 8
 9 type Access_To_Procedure_Array is
10 array (Positive range <>) of
11 Access_To_Procedure;
12
13 type Access_To_Function_Array is
14 array (Positive range <>) of
15 Access_To_Function;
16
17 type Rec_Access_To_Procedure is record
18 AP : Access_To_Procedure;
19 end record;
20
21 type Rec_Access_To_Function is record
22 AF : Access_To_Function;
23 end record;
24
25end Access_To_Subprogram_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 32203838b97af66ef6ca3f6b1ce646a5

Here, the access-to-procedure type Access_To_Procedure is used as a
component of the array type Access_To_Procedure_Array and the record
type Rec_Access_To_Procedure. Similarly, the access-to-function type
Access_To_Function type is used as a component of the array type
Access_To_Function_Array and the record type
Rec_Access_To_Function.

Let's see two test applications using these types. First, let's use the
Access_To_Procedure_Array array type in a test application:

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6with Add_Ten;
 7with Add_Twenty;
 8
 9procedure Show_Access_To_Subprograms is
10 PA : constant
11 Access_To_Procedure_Array (1 .. 2) :=
12 (Add_Ten'Access,
13 Add_Twenty'Access);
14
15 Some_Int : Integer := 0;
16begin
17 Put_Line ("Some_Int: " & Some_Int'Image);
18
19 for I in PA'Range loop
20 PA (I) (Some_Int);
21 Put_Line ("Some_Int: " & Some_Int'Image);
22 end loop;
23end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: f1d10056b4b3424bd30d954f34caa255

Runtime output

Some_Int: 0
Some_Int: 10
Some_Int: 30

Here, we declare the PA array and use the access to the Add_Ten
and Add_Twenty procedures as its components. We can call any of these
procedures by simply specifying the index of the component, e.g.
PA (2). Once we specify the procedure we want to use, we simply pass
the parameters, e.g.: PA (2) (Some_Int).

Now, let's use the Rec_Access_To_Procedure record type in a test
application:

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6with Add_Ten;
 7with Add_Twenty;
 8
 9procedure Show_Access_To_Subprograms is
10 RA : Rec_Access_To_Procedure;
11 Some_Int : Integer := 0;
12begin
13 Put_Line ("Some_Int: " & Some_Int'Image);
14
15 RA := (AP => Add_Ten'Access);
16 RA.AP (Some_Int);
17 Put_Line ("Some_Int: " & Some_Int'Image);
18
19 RA := (AP => Add_Twenty'Access);
20 RA.AP (Some_Int);
21 Put_Line ("Some_Int: " & Some_Int'Image);
22end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 4b23b5f6a8c252a1a014a2b54fa32c1a

Runtime output

Some_Int: 0
Some_Int: 10
Some_Int: 30

Here, we declare two record aggregates where we specify the AP
component, e.g.: (AP => Add_Ten'Access), which indicates the
access-to-subprogram we want to use. We can call the subprogram by simply
accessing the AP component, i.e.: RA.AP.

Access-to-subprogram as discriminant types

As you might expect, we can use access-to-subprogram types when declaring
discriminants. In fact, when we were talking about
discriminants as access values
earlier on, we used access-to-object types in our code examples, but we could
have used access-to-subprogram types as well. For example:

custom_processing.ads

 1package Custom_Processing is
 2
 3 -- Declaring an access type:
 4 type Integer_Processing is
 5 access procedure (I : in out Integer);
 6
 7 -- Declaring a discriminant with this
 8 -- access type:
 9 type Rec (IP : Integer_Processing) is
10 private;
11
12 procedure Init (R : in out Rec;
13 Value : Integer);
14
15 procedure Process (R : in out Rec);
16
17 procedure Show (R : Rec);
18
19private
20
21 type Rec (IP : Integer_Processing) is
22 record
23 I : Integer := 0;
24 end record;
25
26end Custom_Processing;

custom_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Processing is
 4
 5 procedure Init (R : in out Rec;
 6 Value : Integer) is
 7 begin
 8 R.I := Value;
 9 end Init;
10
11 procedure Process (R : in out Rec) is
12 begin
13 R.IP (R.I);
14 -- ^^^^^^
15 -- Calling procedure that we specified as
16 -- the record's discriminant
17 end Process;
18
19 procedure Show (R : Rec) is
20 begin
21 Put_Line ("R.I = "
22 & Integer'Image (R.I));
23 end Show;
24
25end Custom_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 02fc0c51722c321c4ec6115de68d1c06

In this example, we declare the access-to-subprogram type
Integer_Processing, which we use as the IP discriminant of the
Rec type. In the Process procedure, we call the IP
procedure that we specified as the record's discriminant (R.IP (R.I)).

Before we look at a test application for this package, let's implement
another small procedure:

mult_two.ads

1procedure Mult_Two (I : in out Integer);

mult_two.adb

1procedure Mult_Two (I : in out Integer) is
2begin
3 I := I * 2;
4end Mult_Two;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: cd43fa39dac9a1c9182f69d32eab1d26

Now, let's look at the test application:

show_access_to_subprogram_discriminants.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Processing; use Custom_Processing;
 4
 5with Add_Ten;
 6with Mult_Two;
 7
 8procedure Show_Access_To_Subprogram_Discriminants
 9is
10
11 R_Add_Ten : Rec (IP => Add_Ten'Access);
12 -- ^^^^^^^^^^^^^^^^^^^^
13 -- Using access-to-subprogram as a
14 -- discriminant
15
16 R_Mult_Two : Rec (IP => Mult_Two'Access);
17 -- ^^^^^^^^^^^^^^^^^^^^^
18 -- Using access-to-subprogram as a
19 -- discriminant
20
21begin
22 Init (R_Add_Ten, 1);
23 Init (R_Mult_Two, 2);
24
25 Put_Line ("---- R_Add_Ten ----");
26 Show (R_Add_Ten);
27
28 Put_Line ("Calling Process procedure...");
29 Process (R_Add_Ten);
30 Show (R_Add_Ten);
31
32 Put_Line ("---- R_Mult_Two ----");
33 Show (R_Mult_Two);
34
35 Put_Line ("Calling Process procedure...");
36 Process (R_Mult_Two);
37 Show (R_Mult_Two);
38end Show_Access_To_Subprogram_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 544c224f8bc8e6ba2db4914c2a3dcff4

Runtime output

---- R_Add_Ten ----
R.I = 1
Calling Process procedure...
R.I = 11
---- R_Mult_Two ----
R.I = 2
Calling Process procedure...
R.I = 4

In this procedure, we declare the R_Add_Ten and R_Mult_Two of
Rec type and specify the access to Add_Ten and Mult_Two,
respectively, as the IP discriminant. The procedure we specified here
is then called inside a call to the Process procedure.

Access-to-subprograms as formal parameters

We can use access-to-subprograms types when declaring formal parameters. For
example, let's revisit the Custom_Processing package from the previous
section and convert it into a generic package.

gen_custom_processing.ads

 1generic
 2 type T is private;
 3
 4 --
 5 -- Declaring formal access-to-subprogram
 6 -- type:
 7 --
 8 type T_Processing is
 9 access procedure (Element : in out T);
10
11 --
12 -- Declaring formal access-to-subprogram
13 -- parameter:
14 --
15 Proc : T_Processing;
16
17 with function Image_T (Element : T)
18 return String;
19package Gen_Custom_Processing is
20
21 type Rec is private;
22
23 procedure Init (R : in out Rec;
24 Value : T);
25
26 procedure Process (R : in out Rec);
27
28 procedure Show (R : Rec);
29
30private
31
32 type Rec is record
33 Comp : T;
34 end record;
35
36end Gen_Custom_Processing;

gen_custom_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_Custom_Processing is
 4
 5 procedure Init (R : in out Rec;
 6 Value : T) is
 7 begin
 8 R.Comp := Value;
 9 end Init;
10
11 procedure Process (R : in out Rec) is
12 begin
13 Proc (R.Comp);
14 end Process;
15
16 procedure Show (R : Rec) is
17 begin
18 Put_Line ("R.Comp = "
19 & Image_T (R.Comp));
20 end Show;
21
22end Gen_Custom_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 6f06e066bafa5f02abb3ee1b33ea0831

In this version of the procedure, instead of declaring Proc as a
discriminant of the Rec record, we're declaring it as a formal parameter
of the Gen_Custom_Processing package. Also, we're declaring an
access-to-subprogram type (T_Processing) as a formal parameter. (Note
that, in contrast to these two parameters that we've just mentioned,
Image_T is not a formal access-to-subprogram parameter: it's actually
just a formal subprogram.)

We then instantiate the Gen_Custom_Processing package in our test
application:

show_access_to_subprogram_as_formal_parameter.adb

 1with Gen_Custom_Processing;
 2
 3with Add_Ten;
 4
 5with Ada.Text_IO; use Ada.Text_IO;
 6
 7procedure
 8 Show_Access_To_Subprogram_As_Formal_Parameter
 9is
10 type Integer_Processing is
11 access procedure (I : in out Integer);
12
13 package Custom_Processing is new
14 Gen_Custom_Processing
15 (T => Integer,
16 T_Processing => Integer_Processing,
17 -- ^^^^^^^^^^^^^^^^^^
18 -- access-to-subprogram type
19 Proc => Add_Ten'Access,
20 -- ^^^^^^^^^^^^^^^^^^
21 -- access-to-subprogram
22 Image_T => Integer'Image);
23 use Custom_Processing;
24
25 R_Add_Ten : Rec;
26
27begin
28 Init (R_Add_Ten, 1);
29
30 Put_Line ("---- R_Add_Ten ----");
31 Show (R_Add_Ten);
32
33 Put_Line ("Calling Process procedure...");
34 Process (R_Add_Ten);
35 Show (R_Add_Ten);
36end Show_Access_To_Subprogram_As_Formal_Parameter;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 6ae27ebd59e5307551e9a38f3b94c70c

Runtime output

---- R_Add_Ten ----
R.Comp = 1
Calling Process procedure...
R.Comp = 11

Here, we instantiate the Gen_Custom_Processing package as
Custom_Processing and specify the access-to-subprogram type and the
access-to-subprogram.

Selecting subprograms

A practical application of access to subprograms is that it enables us to
dynamically select a subprogram and pass it to another subprogram, where it can
then be called.

For example, we may have a Process procedure that receives a logging
procedure as a parameter (Log_Proc). Also, this parameter may be
null by default — so that no procedure is called if the parameter
isn't specified:

data_processing.ads

 1package Data_Processing is
 2
 3 type Data_Container is
 4 array (Positive range <>) of Float;
 5
 6 type Log_Procedure is
 7 access procedure (D : Data_Container);
 8
 9 procedure Process
10 (D : in out Data_Container;
11 Log_Proc : Log_Procedure := null);
12
13end Data_Processing;

data_processing.adb

 1package body Data_Processing is
 2
 3 procedure Process
 4 (D : in out Data_Container;
 5 Log_Proc : Log_Procedure := null) is
 6 begin
 7 -- missing processing part...
 8
 9 if Log_Proc /= null then
10 Log_Proc (D);
11 end if;
12 end Process;
13
14end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 59399e0809deb476f608faab7e4398bd

In the implementation of Process, we check whether Log_Proc is
null or not. (If it's not null, we call the procedure. Otherwise, we just skip
the call.)

Now, let's implement two logging procedures that match the expected form of
the Log_Procedure type:

log_element_per_line.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Element_Per_Line
 5 (D : Data_Container) is
 6begin
 7 Put_Line ("Elements: ");
 8 for V of D loop
 9 Put_Line (V'Image);
10 end loop;
11 Put_Line ("------");
12end Log_Element_Per_Line;

log_csv.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Csv (D : Data_Container) is
 5begin
 6 for I in D'First .. D'Last - 1 loop
 7 Put (D (I)'Image & ", ");
 8 end loop;
 9 Put (D (D'Last)'Image);
10 New_Line;
11end Log_Csv;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 468789f7331ffcd16f754f7116b076d7

Finally, we implement a test application that selects each of the logging
procedures that we've just implemented:

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4with Log_Element_Per_Line;
 5with Log_Csv;
 6
 7procedure Show_Access_To_Subprograms is
 8 D : Data_Container (1 .. 5) := (others => 1.0);
 9begin
10 Put_Line ("==== Log_Element_Per_Line ====");
11 Process (D, Log_Element_Per_Line'Access);
12
13 Put_Line ("==== Log_Csv ====");
14 Process (D, Log_Csv'Access);
15
16 Put_Line ("==== None ====");
17 Process (D);
18end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 134aa682cea1999efa0ea97052f315c8

Runtime output

==== Log_Element_Per_Line ====
Elements:
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00

==== Log_Csv ====
 1.00000E+00, 1.00000E+00, 1.00000E+00, 1.00000E+00, 1.00000E+00
==== None ====

Here, we use the Access attribute to get access to the
Log_Element_Per_Line and Log_Csv procedures. Also, in the third
call, we don't pass any access as an argument, which is then null by
default.

Null exclusion

We can use null exclusion when declaring an access to subprograms. By doing so,
we ensure that a subprogram must be specified — either as a parameter or
when initializing an access object. Otherwise, an exception is raised. Let's
adapt the previous example and introduce the Init_Function type:

data_processing.ads

 1package Data_Processing is
 2
 3 type Data_Container is
 4 array (Positive range <>) of Float;
 5
 6 type Init_Function is
 7 not null access function return Float;
 8
 9 procedure Process
10 (D : in out Data_Container;
11 Init_Func : Init_Function);
12
13end Data_Processing;

data_processing.adb

 1package body Data_Processing is
 2
 3 procedure Process
 4 (D : in out Data_Container;
 5 Init_Func : Init_Function) is
 6 begin
 7 for I in D'Range loop
 8 D (I) := Init_Func.all;
 9 end loop;
10 end Process;
11
12end Data_Processing;

In this case, we specify that Init_Function is not null access
because we want to always be able to call this function in the Process
procedure (i.e. without raising an exception).

When an access to a subprogram doesn't have parameters — which is the
case for the subprograms of Init_Function type — we need to
explicitly dereference it by writing .all. (In this case, .all
isn't optional.) Therefore, we have to write Init_Func.all in the
implementation of the Process procedure of the code example.

Now, let's declare two simple functions — Init_Zero and
Init_One — that return 0.0 and 1.0, respectively:

init_zero.ads

1function Init_Zero return Float;

init_one.ads

1function Init_One return Float;

init_zero.adb

1function Init_Zero return Float is
2begin
3 return 0.0;
4end Init_Zero;

init_one.adb

1function Init_One return Float is
2begin
3 return 1.0;
4end Init_One;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_Init_Function
MD5: 444110d50ddb430fd5be31cf1b417fc8

Finally, let's see a test application where we select each of the init
functions we've just implemented:

log_element_per_line.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Element_Per_Line
 5 (D : Data_Container) is
 6begin
 7 Put_Line ("Elements: ");
 8 for V of D loop
 9 Put_Line (V'Image);
10 end loop;
11 Put_Line ("------");
12end Log_Element_Per_Line;

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4with Init_Zero;
 5with Init_One;
 6
 7with Log_Element_Per_Line;
 8
 9procedure Show_Access_To_Subprograms is
10 D : Data_Container (1 .. 5) := (others => 1.0);
11begin
12 Put_Line ("==== Init_Zero ====");
13 Process (D, Init_Zero'Access);
14 Log_Element_Per_Line (D);
15
16 Put_Line ("==== Init_One ====");
17 Process (D, Init_One'Access);
18 Log_Element_Per_Line (D);
19
20 -- Put_Line ("==== None ====");
21 -- Process (D, null);
22 -- Log_Element_Per_Line (D);
23end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_Init_Function
MD5: ae0e3fd58e9bb83061248967c709190a

Runtime output

==== Init_Zero ====
Elements:
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

==== Init_One ====
Elements:
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00

Here, we use the Access attribute to get access to the
Init_Zero and Init_One functions. Also, if we uncomment the call
to Process with null as an argument for the init function, we see
that the Constraint_Error exception is raised at run time — as the
argument cannot be null due to the null exclusion.

For further reading...

Note

This example was originally written by Robert A. Duff and was part of
the Gem #24[#32].

Here's another example, first with null:

show_null_procedure.ads

 1package Show_Null_Procedure is
 2 type Element is limited null record;
 3 -- Not implemented yet
 4
 5 type Ref_Element is access all Element;
 6
 7 type Table is limited null record;
 8 -- Not implemented yet
 9
10 type Iterate_Action is
11 access procedure
12 (X : not null Ref_Element);
13
14 procedure Iterate
15 (T : Table;
16 Action : Iterate_Action := null);
17 -- If Action is null, do nothing.
18
19end Show_Null_Procedure;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Null_Procedure
MD5: ac21dd76ed9fb7f26839c24210cf4425

and without null:

show_null_procedure.ads

 1package Show_Null_Procedure is
 2 type Element is limited null record;
 3 -- Not implemented yet
 4
 5 type Ref_Element is access all Element;
 6
 7 type Table is limited null record;
 8 -- Not implemented yet
 9
10 procedure Do_Nothing
11 (X : not null Ref_Element) is null;
12
13 type Iterate_Action is
14 access procedure
15 (X : not null Ref_Element);
16
17 procedure Iterate
18 (T : Table;
19 Action : not null Iterate_Action
20 := Do_Nothing'Access);
21
22end Show_Null_Procedure;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Null_Procedure
MD5: 7341d8f23cd4efe45698481be452a9e8

The style of the second Iterate is clearly better because it makes
use of the syntax to indicate that a procedure is expected. This is a
complete package that includes both versions of the Iterate
procedure:

example.ads

 1package Example is
 2
 3 type Element is limited private;
 4 type Ref_Element is access all Element;
 5
 6 type Table is limited private;
 7
 8 type Iterate_Action is
 9 access procedure
10 (X : not null Ref_Element);
11
12 procedure Iterate
13 (T : Table;
14 Action : Iterate_Action := null);
15 -- If Action is null, do nothing.
16
17 procedure Do_Nothing
18 (X : not null Ref_Element) is null;
19 procedure Iterate_2
20 (T : Table;
21 Action : not null Iterate_Action
22 := Do_Nothing'Access);
23
24private
25 type Element is limited
26 record
27 Component : Integer;
28 end record;
29 type Table is limited null record;
30end Example;

example.adb

 1package body Example is
 2
 3 An_Element : aliased Element;
 4
 5 procedure Iterate
 6 (T : Table;
 7 Action : Iterate_Action := null)
 8 is
 9 begin
10 if Action /= null then
11 Action (An_Element'Access);
12 -- In a real program, this would do
13 -- something more sensible.
14 end if;
15 end Iterate;
16
17 procedure Iterate_2
18 (T : Table;
19 Action : not null Iterate_Action
20 := Do_Nothing'Access)
21 is
22 begin
23 Action (An_Element'Access);
24 -- In a real program, this would do
25 -- something more sensible.
26 end Iterate_2;
27
28end Example;

show_example.adb

1with Example; use Example;
2
3procedure Show_Example is
4 T : Table;
5begin
6 Iterate_2 (T);
7end Show_Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Complete_Not_Null_Procedure
MD5: ab0a41e0d39a8a16b0b69f8c6b2a43fd

Writing not null Iterate_Action might look a bit more
complicated, but it's worthwhile, and anyway, as mentioned earlier, the
compatibility requirement requires that the not null be explicit,
rather than the other way around.

Access to protected subprograms

Up to this point, we've discussed access to normal Ada subprograms. In some
situations, however, we might want to have access to protected subprograms.
To do this, we can simply declare a type using access protected:

simple_protected_access.ads

 1package Simple_Protected_Access is
 2
 3 type Access_Proc is
 4 access protected procedure;
 5
 6 protected Obj is
 7
 8 procedure Do_Something;
 9
10 end Obj;
11
12 Acc : Access_Proc := Obj.Do_Something'Access;
13
14end Simple_Protected_Access;

simple_protected_access.adb

 1package body Simple_Protected_Access is
 2
 3 protected body Obj is
 4
 5 procedure Do_Something is
 6 begin
 7 -- Not doing anything
 8 -- for the moment...
 9 null;
10 end Do_Something;
11
12 end Obj;
13
14end Simple_Protected_Access;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Simple_Protected_Access
MD5: d82f7c90355e9810bd1e35f65e278626

Here, we declare the Access_Proc type as an access type to protected
procedures. Then, we declare the variable Acc and assign to it the
access to the Do_Something procedure (of the protected object
Obj).

Now, let's discuss a more useful example: a simple system that allows us to
register protected procedures and execute them. This is implemented in
Work_Registry package:

work_registry.ads

 1package Work_Registry is
 2
 3 type Work_Id is tagged limited private;
 4
 5 type Work_Handler is
 6 access protected procedure (T : Work_Id);
 7
 8 subtype Valid_Work_Handler is
 9 not null Work_Handler;
10
11 type Work_Handlers is
12 array (Positive range <>) of Work_Handler;
13
14 protected type Work_Handler_Registry
15 (Last : Positive)
16 is
17
18 procedure Register (T : Valid_Work_Handler);
19
20 procedure Reset;
21
22 procedure Process_All;
23
24 private
25
26 D : Work_Handlers (1 .. Last);
27 Curr : Natural := 0;
28
29 end Work_Handler_Registry;
30
31private
32
33 type Work_Id is tagged limited null record;
34
35end Work_Registry;

work_registry.adb

 1package body Work_Registry is
 2
 3 protected body Work_Handler_Registry is
 4
 5 procedure Register (T : Valid_Work_Handler)
 6 is
 7 begin
 8 if Curr < Last then
 9 Curr := Curr + 1;
10 D (Curr) := T;
11 end if;
12 end Register;
13
14 procedure Reset is
15 begin
16 Curr := 0;
17 end Reset;
18
19 procedure Process_All is
20 Dummy_ID : Work_Id;
21 begin
22 for I in D'First .. Curr loop
23 D (I).all (Dummy_ID);
24 end loop;
25 end Process_All;
26
27 end Work_Handler_Registry;
28
29end Work_Registry;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 5dfa8ab098900ab4f6b7575e1cde5e53

Here, we declare the protected Work_Handler_Registry type with the
following subprograms:

	Register, which we can use to register a protected procedure;

	Reset, which we can use to reset the system; and

	Process_All, which we can use to call all procedures that were
registered in the system.

Work_Handler is our access to protected subprogram type. Also, we
declare the Valid_Work_Handler subtype, which excludes null. By
doing so, we can ensure that only valid procedures are passed to the
Register procedure. In the protected Work_Handler_Registry type,
we store the procedures in an array (of Work_Handlers type).

Important

Note that, in the type declaration Work_Handler, we say that the
protected procedure must have a parameter of Work_Id type. In this
example, this parameter is just used to bind the procedure to the
Work_Handler_Registry type. The Work_Id type itself is
actually declared as a null record (in the private part of the package),
and it isn't really useful on its own.

If we had declared type Work_Handler is access protected procedure;
instead, we would be able to register any protected procedure into the
system, even the ones that might not be suitable for the system. By using
a parameter of Work_Id type, however, we make use of strong
typing to ensure that only procedures that were designed for the system
can be registered.

In the next part of the code, we declare the Integer_Storage type,
which is a simple protected type that we use to store an integer value:

integer_storage_system.ads

 1with Work_Registry;
 2
 3package Integer_Storage_System is
 4
 5 protected type Integer_Storage is
 6
 7 procedure Set (V : Integer);
 8
 9 procedure Show (T : Work_Registry.Work_Id);
10
11 private
12
13 I : Integer := 0;
14
15 end Integer_Storage;
16
17 type Integer_Storage_Access is
18 access Integer_Storage;
19
20 type Integer_Storage_Array is
21 array (Positive range <>) of
22 Integer_Storage_Access;
23
24end Integer_Storage_System;

integer_storage_system.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Storage_System is
 4
 5 protected body Integer_Storage is
 6
 7 procedure Set (V : Integer) is
 8 begin
 9 I := V;
10 end Set;
11
12 procedure Show (T : Work_Registry.Work_Id)
13 is
14 pragma Unreferenced (T);
15 begin
16 Put_Line ("Value: " & Integer'Image (I));
17 end Show;
18
19 end Integer_Storage;
20
21end Integer_Storage_System;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: a388d792bc85709785d324c914d9d236

For the Integer_Storage type, we declare two procedures:

	Set, which we use to assign a value to the (protected) integer value;
and

	Show, which we use to show the integer value that is stored in the
protected object.

The Show procedure has a parameter of Work_Id type, which
indicates that this procedure was designed to be registered in the system of
Work_Handler_Registry type.

Finally, we have a test application in which we declare a registry (WHR)
and an array of "protected integer objects" (Int_Stor):

show_access_to_protected_subprograms.adb

 1with Work_Registry;
 2use Work_Registry;
 3
 4with Integer_Storage_System;
 5use Integer_Storage_System;
 6
 7procedure Show_Access_To_Protected_Subprograms is
 8
 9 WHR : Work_Handler_Registry (5);
10 Int_Stor : Integer_Storage_Array (1 .. 3);
11
12begin
13 -- Allocate and initialize integer storage
14 --
15 -- (For the initialization, we're just
16 -- assigning the index here, but we could
17 -- really have used any integer value.)
18
19 for I in Int_Stor'Range loop
20 Int_Stor (I) := new Integer_Storage;
21 Int_Stor (I).Set (I);
22 end loop;
23
24 -- Register handlers
25
26 for I in Int_Stor'Range loop
27 WHR.Register (Int_Stor (I).all.Show'Access);
28 end loop;
29
30 -- Now, use Process_All to call the handlers
31 -- (in this case, the Show procedure for
32 -- each protected object from Int_Stor).
33
34 WHR.Process_All;
35
36end Show_Access_To_Protected_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 44c24ef07333e1d31844cc2ea6d91ab6

Runtime output

Value: 1
Value: 2
Value: 3

The work handler registry (WHR) has a maximum capacity of five
procedures, whereas the Int_Stor array has a capacity of three elements.
By calling WHR.Register and passing Int_Stor (I).all.Show'Access,
we register the Show procedure of each protected object from
Int_Stor.

Important

Note that the components of the Int_Stor array are of
Integer_Storage_Access type, which is declared as an access to
Integer_Storage objects. Therefore, we have to dereference the
object (by writing Int_Stor (I).all) before getting access to the
Show procedure (by writing .Show'Access).

We have to use an access type here because we cannot pass the access (to
the Show procedure) of a local object in the call to the
Register procedure. Therefore, the protected objects (of
Integer_Storage type) cannot be local.

This issue becomes evident if we replace the declaration of
Int_Stor with a local array (and then adapt the remaining code). If
we do this, we get a compilation error in the call to Register:

show_access_to_protected_subprograms.adb

 1with Work_Registry;
 2use Work_Registry;
 3
 4with Integer_Storage_System;
 5use Integer_Storage_System;
 6
 7procedure Show_Access_To_Protected_Subprograms
 8is
 9 WHR : Work_Handler_Registry (5);
10
11 Int_Stor : array (1 .. 3) of Integer_Storage;
12
13begin
14 -- Allocate and initialize integer storage
15 --
16 -- (For the initialization, we're just
17 -- assigning the index here, but we could
18 -- really have used any integer value.)
19
20 for I in Int_Stor'Range loop
21 -- Int_Stor (I) := new Integer_Storage;
22 Int_Stor (I).Set (I);
23 end loop;
24
25 -- Register handlers
26
27 for I in Int_Stor'Range loop
28 WHR.Register (Int_Stor (I).Show'Access);
29 -- ^ ERROR!
30 end loop;
31
32 -- Now, call the handlers
33 -- (i.e. the Show procedure of each
34 -- protected object).
35
36 WHR.Process_All;
37
38end Show_Access_To_Protected_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 359241c84cd30313fe2d7701b55f303e

Build output

show_access_to_protected_subprograms.adb:28:21: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

As we've just discussed, this error is due to the fact that
Int_Stor is now a "local" protected object, and the accessibility
rules don't allow mixing it with non-local accesses in order to prevent the
possibility of dangling references.

When we call WHR.Process_All, the registry system calls each procedure
that has been registered with the system. When looking at the values displayed
by the test application, we may notice that each call to Show is
referring to a different protected object. In fact, even though we're passing
just the access to a protected procedure in the call to Register, that
access is also associated to a specific protected object. (This is different
from access to non-protected subprograms we've discussed previously: in that
case, there's no object associated.) If we replace the argument to
Register by Int_Stor (2).all.Show'Access, for example, the three
Show procedures registered in the system will now refer to the same
protected object (stored at Int_Stor (2)).

Also, even though we have registered the same procedure (Show) of the
same type (Integer_Storage) in all calls to Register, we could
have used a different protected procedure — and of a different protected
type. As an exercise, we could, for example, create a new type called
Float_Storage (based on the code that we used for the
Integer_Storage type) and register some objects of Float_Storage
type into the system (with a couple of additional calls to Register). If
we then call WHR.Process_All, we'd see that the system is able to cope
with objects of both Integer_Storage and Float_Storage types. In
fact, the system implemented with the Work_Handler_Registry can be seen
as "type agnostic," as it doesn't care about which type the protected objects
have — as long as the subprograms we want to register are conformant to
the Valid_Work_Handler type.

Accessibility Rules and Access-To-Subprograms

In general, the accessibility rules that we discussed
previously for access-to-objects
also apply to access-to-subprograms. In this section, we discuss minor
differences when applying those rules to access-to-subprograms.

In our discussion about accessibility rules, we've looked into
accessibility levels and
the accessibility rules that are based on
those levels. The same accessibility rules apply to access-to-subprograms.
As we said previously,
operations targeting objects at a less-deep level are illegal, as it's the
case for subprograms as well:

access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5
6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7 Func : Access_To_Function;
 8
 9 Value : Integer := 0;
10begin
11 declare
12 function Add_One (I : Integer)
13 return Integer is
14 (I + 1);
15 begin
16 Func := Add_One'Access;
17 -- This assignment is illegal because the
18 -- Access_To_Function type is less deep
19 -- than Add_One.
20 end;
21
22 Put_Line ("Value: " & Value'Image);
23 Value := Func (Value);
24 Put_Line ("Value: " & Value'Image);
25end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep
MD5: 2a068732606a1fee156e82515febe9c4

Build output

show_access_to_subprogram_error.adb:16:15: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed

Obviously, we can correct this error by putting the Add_One function
at the same level as the Access_To_Function type, i.e. at library
level:

access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5
6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;

add_one.ads

1function Add_One (I : Integer) return Integer;

add_one.adb

1function Add_One (I : Integer) return Integer is
2begin
3 return I + 1;
4end Add_One;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6with Add_One;
 7
 8procedure Show_Access_To_Subprogram_Error is
 9 Func : Access_To_Function;
10
11 Value : Integer := 0;
12begin
13 Func := Add_One'Access;
14
15 Put_Line ("Value: " & Value'Image);
16 Value := Func (Value);
17 Put_Line ("Value: " & Value'Image);
18end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep_Fix
MD5: 7f7488c541fb457ced653a2e6cc2fad1

Runtime output

Value: 0
Value: 1

As a recommendation, resolving accessibility issues in the case of
access-to-subprograms is best done by refactoring the subprograms of your
source code — for example, moving subprograms to a different level.

Unchecked Access

Previously, we discussed about the
Unchecked_Access attribute, which we can use
to circumvent accessibility issues in specific cases for access-to-objects. We
also said in that section that this attribute only exists for objects, not for
subprograms. We can use the previous example to illustrate this limitation:

access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5
6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7 Func : Access_To_Function;
 8
 9 function Add_One (I : Integer)
10 return Integer is
11 (I + 1);
12
13 Value : Integer := 0;
14begin
15 Func := Add_One'Access;
16
17 Put_Line ("Value: " & Value'Image);
18 Value := Func (Value);
19 Put_Line ("Value: " & Value'Image);
20end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Same_Lifetime
MD5: c1ee1946f0c979eb30fbf2c72c426f50

Build output

show_access_to_subprogram_error.adb:15:12: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed

When we analyze the Show_Access_To_Subprogram_Error procedure, we see
that the Func object and the Add_One function have the same
lifetime. Therefore, in this very specific case, we could safely assign
Add_One'Access to Func and call Func for Value.
Due to the accessibility rules, however, this assignment is illegal.
(Obviously, the accessibility issue here is that the
Access_To_Function type has a potentially longer lifetime.)

In the case of access-to-objects, we could use Unchecked_Access to
enforce assignments that we consider safe after careful analysis. However,
because this attribute isn't available for access-to-subprograms, the best
solution is to move the subprogram to a level that allows the assignment to
be legal, as we said before.

In the GNAT toolchain

GNAT offers an equivalent for Unchecked_Access that can be used for
subprograms: the Unrestricted_Access attribute. Note, however, that
this attribute is not portable.

access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5
6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7 Func : Access_To_Function;
 8
 9 function Add_One (I : Integer)
10 return Integer is
11 (I + 1);
12
13 Value : Integer := 0;
14begin
15 Func := Add_One'Unrestricted_Access;
16 -- ^^^^^^^^^^^^^^^^^^^
17 -- Allowing access to local function
18
19 Put_Line ("Value: " & Value'Image);
20 Value := Func (Value);
21 Put_Line ("Value: " & Value'Image);
22end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Unrestricted_Access
MD5: 90e2c57c01463cbe6efee6e093d01e5b

Runtime output

Value: 0
Value: 1

As we can see, the Unrestricted_Access attribute can be safely used
in this specific case to circumvent the accessibility rule limitation.

Access and Address

As we know, an access type is not a pointer, and it doesn't just indicate an
address in memory. In fact, to represent an address in Ada, we use
the Address type. Also, as we discussed earlier,
we can use operators such as <, >, + and - for
addresses. In contrast to that, those operators aren't available for access
types — except, of course, for = and /=.

In certain situations, however, we might need to convert between access types
and addresses. In this section, we discuss how to do so.

In the Ada Reference Manual

	13.3 Operational and Representation Attributes[#33]

	13.7 The Package System[#34]

Address and access conversion

The generic System.Address_To_Access_Conversions package allows us to
convert between access types and addresses. This might be useful for specific
low-level operations. Let's see an example:

show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with System.Address_To_Access_Conversions;
 4with System.Address_Image;
 5
 6procedure Show_Address_Conversion is
 7
 8 package Integer_AAC is
 9 new System.Address_To_Access_Conversions
10 (Object => Integer);
11 use Integer_AAC;
12
13 subtype Integer_Access is
14 Integer_AAC.Object_Pointer;
15 -- This is similar to:
16 --
17 -- type Integer_Access is access all Integer;
18
19 I : aliased Integer := 5;
20 AI : Integer_Access := I'Access;
21begin
22 Put_Line ("I'Address : "
23 & System.Address_Image (I'Address));
24
25 Put_Line ("AI.all'Address : "
26 & System.Address_Image
27 (AI.all'Address));
28
29 Put_Line ("To_Address (AI) : "
30 & System.Address_Image
31 (To_Address (AI)));
32end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: 717532026247044a667b60f6c1e1c7da

Runtime output

I'Address : 00007FFC289D7B84
AI.all'Address : 00007FFC289D7B84
To_Address (AI) : 00007FFC289D7B84

In this example, we instantiate the generic
System.Address_To_Access_Conversions package using Integer
as our target object type. This new package (Integer_AAC) has an
Object_Pointer type, which is equivalent to a declaration such as
type Integer_Access is access all Integer. (In this example, we
declare Integer_Access as a subtype of
Integer_AAC.Object_Pointer to illustrate that.)

The Integer_AAC package also includes the To_Address function,
which converts an access object to an address. If the actual parameter is
not null, To_Address returns the same information as if we were using
the Address attribute for the designated object. In other words,
To_Address (AI) = AI.all'Address when AI /= null.

If the access value is null, To_Address returns Null_Address,
while .all'Address makes the access check
fail because we have to dereference the access object (via .all) before
retrieving its address (via the Address attribute).

In addition to the To_Address function, the To_Pointer function
is available to convert from an address to an object of access type. For
example:

show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System; use System;
 3
 4with System.Address_To_Access_Conversions;
 5with System.Address_Image;
 6
 7procedure Show_Address_Conversion is
 8
 9 package Integer_AAC is
10 new System.Address_To_Access_Conversions
11 (Object => Integer);
12 use Integer_AAC;
13
14 subtype Integer_Access is
15 Integer_AAC.Object_Pointer;
16
17 I : aliased Integer := 5;
18 AI_1, AI_2 : Integer_Access;
19 A : Address;
20begin
21 AI_1 := I'Access;
22 A := To_Address (AI_1);
23 AI_2 := To_Pointer (A);
24
25 Put_Line ("AI_1.all'Address : "
26 & System.Address_Image
27 (AI_1.all'Address));
28 Put_Line ("AI_2.all'Address : "
29 & System.Address_Image
30 (AI_2.all'Address));
31
32 if AI_1 = AI_2 then
33 Put_Line ("AI_1 = AI_2");
34 else
35 Put_Line ("AI_1 /= AI_2");
36 end if;
37end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: 5c6fc19ca1aa227feba97ea610dd9218

Runtime output

AI_1.all'Address : 00007FFF221C910C
AI_2.all'Address : 00007FFF221C910C
AI_1 = AI_2

Here, we convert the A address back to an access value by calling
To_Pointer (A). (When running this object, we see that AI_1
and AI_2 have the same access value.)

Conversion of unbounded designated types

Note that the conversions might not work in all cases. For instance,
when the designated type — indicated by the formal Object
parameter of the generic Address_To_Access_Conversions package
— is unbounded, the result of a call to To_Pointer may not
have bounds.

Let's adapt the previous code example and replace the Integer
type by the (unbounded) String type:

show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System; use System;
 3
 4with System.Address_To_Access_Conversions;
 5with System.Address_Image;
 6
 7procedure Show_Address_Conversion is
 8
 9 package String_AAC is
10 new System.Address_To_Access_Conversions
11 (Object => String);
12 use String_AAC;
13
14 subtype Integer_Access is
15 String_AAC.Object_Pointer;
16
17 S : aliased String := "Hello";
18 AI_1, AI_2 : Integer_Access;
19 A : Address;
20begin
21 AI_1 := S'Access;
22 A := To_Address (AI_1);
23
24 AI_2 := To_Pointer (A);
25 -- ^^^^^^^^^^^^^^
26 -- WARNING: Result might not have bounds
27
28 Put_Line ("AI_1.all'Address : "
29 & System.Address_Image
30 (AI_1.all'Address));
31 Put_Line ("AI_2.all'Address : "
32 & System.Address_Image
33 (AI_2.all'Address));
34
35 if AI_1 = AI_2 then
36 Put_Line ("AI_1 = AI_2");
37 else
38 Put_Line ("AI_1 /= AI_2");
39 end if;
40
41 Put_Line ("AI_1: " & AI_1.all);
42 Put_Line ("AI_2: " & AI_2.all);
43 -- ^^^^^^^^^^
44 -- WARNING: As AI_2 might not have bounds
45 -- due to the call to To_Pointer
46 -- the behavior of this call to
47 -- the "&" operator is
48 -- unpredictable.
49end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: b1adcaa1f2cb4dfbd157aebf7893bd72

Build output

show_address_conversion.adb:9:04: warning: in instantiation at s-atacco.ads:43 [enabled by default]
show_address_conversion.adb:9:04: warning: Object is unconstrained array type [enabled by default]
show_address_conversion.adb:9:04: warning: To_Pointer results may not have bounds [enabled by default]

Runtime output

AI_1.all'Address : 00007FFCBEC23B08
AI_2.all'Address : 00007FFCBEC23B08
AI_1 = AI_2
AI_1: Hello
AI_2: Hello

In this case, the call to To_Pointer (A) might not have bounds, so
any operation on AI_2 might lead to unpredictable results.

In the Ada Reference Manual

	13.7.2 The Package System.Address_To_Access_Conversions[#35]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-7-1.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-4-1.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-4-1.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-4-1-1.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-4-1-2.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-4-1-3.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-4-1-4.html

[#12]
https://en.wikipedia.org/wiki/Aliasing_(computing)

[#13]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#14]
http://www.ada-auth.org/standards/22rm/html/RM-3-3-1.html

[#15]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#16]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

[#17]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

[#18]
http://www.ada-auth.org/standards/22rm/html/RM-6-1.html

[#19]
http://www.ada-auth.org/standards/22rm/html/RM-6-2.html

[#20]
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

[#21]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

[#22]
https://en.wikipedia.org/wiki/Variable_(computer_science)#Scope_and_extent

[#23]
http://www.ada-auth.org/standards/22rm/html/RM-13-10.html

[#24]
http://www.ada-auth.org/standards/22rm/html/RM-4-8.html

[#25]
http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

[#26]
http://www.ada-auth.org/standards/22rm/html/RM-13-9-1.html

[#27]
http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

[#28]
https://www.adacore.com/gems/ada-gem-23

[#29]
https://www.adacore.com/gems/ada-gem-24

[#30]
https://en.wikipedia.org/wiki/Standard_ML

[#31]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#32]
https://www.adacore.com/gems/ada-gem-24

[#33]
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

[#34]
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

[#35]
http://www.ada-auth.org/standards/22rm/html/RM-13-7-2.html

Anonymous Access Types

Named and Anonymous Access Types

The previous chapter dealt with access type declarations such as this one:

type Integer_Access is access all Integer;

procedure Add_One (A : Integer_Access);

In addition to named access type declarations such as the one in this example,
Ada also supports anonymous access types, which, as the name implies, don't
have an actual type declaration.

To declare an access object of anonymous type, we just specify the subtype of
the object or subprogram we want to have access to. For example:

procedure Add_One (A : access Integer);

When we compare this example with the previous one, we see that the declaration
A : Integer_Access becomes A : access Integer. Here,
access Integer is the anonymous access type declaration, and A is
an access object of this anonymous type.

To be more precise, A : access Integer is an
access parameter and it's
specifying an
anonymous access-to-object type.
Another flavor of anonymous access types are
anonymous access-to-subprograms.
We discuss all these topics in more details later.

Let's see a complete example:

show_anonymous_access_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Anonymous_Access_Types is
 4 I_Var : aliased Integer;
 5
 6 A : access Integer;
 7 -- ^ Anonymous access type
 8begin
 9 A := I_Var'Access;
10 -- ^ Assignment to object of
11 -- anonymous access type.
12
13 A.all := 22;
14
15 Put_Line ("A.all: " & Integer'Image (A.all));
16end Show_Anonymous_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Simple_Anonymous_Access_Types
MD5: f0c92c76d970089c1d503c599d6869dd

Runtime output

A.all: 22

Here, A is an access object whose value is initialized with the access
to I_Var. Because the declaration of A includes the declaration
of an anonymous access type, we don't declare an extra Integer_Access
type, as we did in previous code examples.

In the Ada Reference Manual

	3.10 Access Types[#1]

Relation to named types

Anonymous access types were not part of the first version of the Ada standard,
which only had support for named access types. They were introduced later to
cover some use-cases that were difficult — or even impossible —
with access types.

In this sense, anonymous access types aren't just access types without names.
Certain accessibility rules for anonymous access types are a bit less strict.
In those cases, it might be interesting to consider using them instead of named
access types.

In general, however, we should only use anonymous access types in those
specific cases where using named access types becomes too cumbersome. As a
general recommendation, we should give preference to named access types
whenever possible. (Anonymous access-to-object types have
drawbacks that we discuss later.)

Benefits of anonymous access types

One of the main benefits of anonymous access types is their flexibility:
since there isn't an explicit access type declaration associated with them,
we only have to worry about the subtype S we intend to access.

Also, as long as the subtype S in a declaration access S is
always the same, no conversion is needed between two access objects of that
anonymous type, and the S'Access attribute always works.

Let's see an example:

show.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show (Name : String;
4 V : access Integer) is
5begin
6 Put_Line (Name & ".all: "
7 & Integer'Image (V.all));
8end Show;

show_anonymous_access_types.adb

 1with Show;
 2
 3procedure Show_Anonymous_Access_Types is
 4 I_Var : aliased Integer;
 5 A : access Integer;
 6 B : access Integer;
 7begin
 8 A := I_Var'Access;
 9 B := A;
10
11 A.all := 22;
12
13 Show ("A", A);
14 Show ("B", B);
15end Show_Anonymous_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Object_Assignment
MD5: 2822ca0bd6ac251dccc1ced60747fbe1

Runtime output

A.all: 22
B.all: 22

In this example, we have two access objects A and B. Since
they're objects of anonymous access types that refer to the same subtype
Integer, we can assign A to B without a type conversion,
and pass those access objects as an argument to the Show procedure.

(Note that the use of an access parameter in the Show procedure is for
demonstration purpose only: a simply Integer as the type of this input
parameter would have been more than sufficient to implement the procedure.
Actually, in this case, avoiding the access parameter would be the recommended
approach in terms of clean Ada software design.)

In contrast, if we had used named type declarations, the code would be more
complicated and more limited:

aux.ads

1package Aux is
2
3 type Integer_Access is access all Integer;
4
5 procedure Show (Name : String;
6 V : Integer_Access);
7
8end Aux;

aux.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Aux is
 4
 5 procedure Show (Name : String;
 6 V : Integer_Access) is
 7 begin
 8 Put_Line (Name & ".all: "
 9 & Integer'Image (V.all));
10 end Show;
11
12end Aux;

show_anonymous_access_types.adb

 1with Aux; use Aux;
 2
 3procedure Show_Anonymous_Access_Types is
 4 -- I_Var : aliased Integer;
 5
 6 A : Integer_Access;
 7 B : Integer_Access;
 8begin
 9 -- A := I_Var'Access;
10 -- ^ ERROR: non-local pointer cannot
11 -- point to local object.
12
13 A := new Integer;
14 B := A;
15
16 A.all := 22;
17
18 Show ("A", A);
19 Show ("B", B);
20end Show_Anonymous_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Object_Assignment
MD5: 681c2cf7f5e8d520490cc5594484ce69

Runtime output

A.all: 22
B.all: 22

Here, apart from the access type declaration (Integer_Access), we had to
make two adaptations to convert the previous code example:

	We had to move the Show procedure to a package (which we simply
called Aux) because of the access type declaration.

	Also, we had to allocate an object for A instead of retrieving the
access attribute of I_Var because we cannot use a pointer to a local
object in the assignment to a non-local pointer, as indicate in the
comments.

This restriction regarding non-local pointer assignments is an example of the
stricter accessibility rules that apply to named access types. As
mentioned earlier, the S'Access attribute always works when we use
anonymous access types — this is not always the case for named access
types.

Important

As mentioned earlier, if we want to use two access objects in an operation,
the rule says that the subtype S of the anonymous type used in their
corresponding declaration must match. In the following example, we can see
how this rule works:

show_anonymous_access_subtype_error.adb

 1procedure Show_Anonymous_Access_Subtype_Error is
 2 subtype Integer_1_10 is Integer range 1 .. 10;
 3
 4 I_Var : aliased Integer;
 5 A : access Integer := I_Var'Access;
 6 B : access Integer_1_10;
 7begin
 8 A := I_Var'Access;
 9
10 B := A;
11 -- ^ ERROR: subtype doesn't match!
12
13 B := I_Var'Access;
14 -- ^ ERROR: subtype doesn't match!
15end Show_Anonymous_Access_Subtype_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Subtype_Error
MD5: cecfe703ea8b42bad61c45f33cbcb67b

Build output

show_anonymous_access_subtype_error.adb:10:09: error: target designated subtype not compatible with type "Standard.Integer"
show_anonymous_access_subtype_error.adb:13:09: error: object subtype must statically match designated subtype
gprbuild: *** compilation phase failed

Even though Integer_1_10 is a subtype of Integer, we cannot
assign A to B because the subtype that their access type
declarations refer to — Integer and Integer_1_10,
respectively — doesn't match. The same issue occurs when
retrieving the access attribute of I_Var in the assignment to
B.

The later sections on
anonymous access-to-object type
and
anonymous access-to-subprograms
cover more specific details on anonymous access types.

Anonymous Access-To-Object Types

In the
previous chapter, we introduced
named access-to-object types and used those types throughout the chapter. Also,
in the previous section, we've seen
some simple examples of anonymous access-to-object types:

procedure Add_One (A : access Integer);
-- ^ Anonymous access type

A : access Integer;
-- ^ Anonymous access type

In addition to parameters and objects, we can use anonymous access types in
discriminants, components of array and record types, renamings and function
return types. (We discuss
anonymous access discriminants
and anonymous access parameters
later on.) Let's see a code example that includes all these cases:

all_anonymous_access_to_object_types.ads

 1package All_Anonymous_Access_To_Object_Types is
 2
 3 procedure Add_One (A : access Integer) is null;
 4 -- ^ Anonymous access type
 5
 6 AI : access Integer;
 7 -- ^ Anonymous access type
 8
 9 type Rec (AI : access Integer) is private;
10 -- ^ Anonymous access type
11
12 type Access_Array is
13 array (Positive range <>) of
14 access Integer;
15 -- ^ Anonymous access type
16
17 Arr : array (1 .. 5) of access Integer;
18 -- ^ Anonymous access type
19
20 AI_Renaming : access Integer renames AI;
21 -- ^ Anonymous access type
22
23 function Init_Access_Integer
24 return access Integer is (null);
25 -- ^ Anonymous access type
26
27private
28
29 type Rec (AI : access Integer) is record
30 -- ^ Anonymous access type
31 Internal_AI : access Integer;
32 -- ^ Anonymous access type
33
34 end record;
35
36end All_Anonymous_Access_To_Object_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.All_Anonymous_Access_To_Object_Types
MD5: 6533b22a4e4526702320cb327bf6f69a

In this example, we see multiple examples of anonymous access-to-object types:

	as the A parameter of the Add_One procedure;

	in the declaration of the AI access object;

	as the AI discriminant of the Rec type;

	as the component type of the Access_Array type;

	as the component type of the Arr array;

	in the AI_Renaming renaming;

	as the return type of the Init_Access_Integer;

	as the Internal_AI of component of the Rec type.

In the Ada Reference Manual

	3.10 Access Types[#2]

Not Null Anonymous Access-To-Object Types

As expected, null is a valid value for an anonymous access type.
However, we can forbid null as a valid value by using
not null in the anonymous access type declaration. For example:

all_anonymous_access_to_object_types.ads

 1package All_Anonymous_Access_To_Object_Types is
 2
 3 procedure Add_One (A : not null access Integer)
 4 is null;
 5 -- ^ Anonymous access type
 6
 7 I : aliased Integer;
 8
 9 AI : not null access Integer := I'Access;
10 -- ^ Anonymous access type
11 -- ^^^^^^^^
12 -- Initialization required!
13
14 type Rec (AI : not null access Integer) is
15 private;
16 -- ^ Anonymous access type
17
18 type Access_Array is
19 array (Positive range <>) of
20 not null access Integer;
21 -- ^ Anonymous access type
22
23 Arr : array (1 .. 5) of
24 not null access Integer :=
25 -- ^ Anonymous access type
26 (others => I'Access);
27 -- ^^^^^^^^^^^^^^^^^^
28 -- Initialization required!
29
30 AI_Renaming : not null access Integer
31 renames AI;
32 -- ^ Anonymous access type
33
34 function Init_Access_Integer
35 return not null access Integer is (I'Access);
36 -- ^ Anonymous access type
37 -- ^^^^^^^^
38 -- Initialization required!
39
40private
41
42 type Rec (AI : not null access Integer) is
43 record
44 -- ^ Anonymous access type
45 Internal_AI : not null access Integer;
46 -- ^ Anonymous access type
47
48 end record;
49
50end All_Anonymous_Access_To_Object_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.All_Not_Null_Anonymous_Access_To_Object_Types
MD5: 027430aa9d5e19979206110f5e260d13

As you might have noticed, we took the previous code example and used
not null for each usage instance of the anonymous access type.
In this sense, this version of the code example is very similar to the previous
one. Note, however, that we now have to explicitly initialize some elements
to avoid the Constraint_Error exception being raised at runtime. This
is the case for example for the AI access object:

AI : not null access Integer := I'Access;

If we hadn't initialized AI explicitly with I'Access, it would
have been set to null, which would fail the not null constraint
of the anonymous access type. Similarly, we also have to initialize the
Arr array and return a valid access object for the
Init_Access_Integer function.

Drawbacks of Anonymous Access-To-Object Types

Anonymous access-to-object types have important drawbacks. For example, some
features that are available for named access types aren't available for the
anonymous access types. Also, most of the drawbacks are related to how
anonymous access-to-object types can potentially make the allocation and
deallocation quite complicated or even error-prone.

For starters, some pool-related features aren't available for anonymous
access-to-object types. For example, we cannot specify which pool is going to
be used in the allocation of an anonymous access-to-object. In fact, the memory
pool selection is compiler-dependent, so we cannot rely on an object being
allocated from a specific pool when using new with an anonymous
access-to-object type. (In contrast, as we know, each named access type has an
associated pool, so objects allocated via new will be allocated from
that pool.) Also, we cannot identify which pool was selected for the allocation
of a specific object, so we don't have any information to use for the
deallocation of that object.

Because the pool selection is hidden from us, this makes the memory
deallocation more complicated. For example, we cannot instantiate the
Ada.Unchecked_Deallocation procedure for anonymous access types. Also,
some of the methods we could use to circumvent this limitation are error-prone,
as we discuss in this section.

Also, storage-related features aren't available: specifying the storage size
— especially, specifying that the access type has a storage size of zero
— isn't possible.

Missing features

Let's see a code example that shows some of the features that aren't available
for anonymous access-to-object types:

missing_features.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Missing_Features is
 4
 5 -- We cannot specify which pool will be used
 6 -- in the anonymous access-to-object
 7 -- allocation; the pool is selected by the
 8 -- compiler:
 9 IA : access Integer := new Integer;
10
11 --
12 -- All the features below aren't available
13 -- for an anonymous access-to-object:
14 --
15
16 -- Having a specific storage pool associated
17 -- with the access type:
18 type String_Access is
19 access String;
20 -- Automatically creates
21 -- String_Access'Storage_Pool
22
23 type Integer_Access is
24 access Integer
25 with Storage_Pool =>
26 String_Access'Storage_Pool;
27 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
28 -- Using the pool from another
29 -- access type.
30
31 -- Specifying a deallocation function for the
32 -- access type:
33 procedure Free is
34 new Ada.Unchecked_Deallocation
35 (Object => Integer,
36 Name => Integer_Access);
37
38 -- Specifying a limited storage size for
39 -- the access type:
40 type Integer_Access_Store_128 is
41 access Integer
42 with Storage_Size => 128;
43
44 -- Limiting the storage size for the
45 -- access type to zero:
46 type Integer_Access_Store_0 is
47 access Integer
48 with Storage_Size => 0;
49
50end Missing_Features;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Missing_Anonymous_Access_To_Object_Features
MD5: 87a5c1413a720da84fab414cf63236ec

In the Missing_Features package, we see some of the features that we
cannot use for the anonymous access Integer type, but that are available
for equivalent named access types:

	There's no specific memory pool associated with the access object IA.
In contrast, named types — such as String_Access and
Integer_Access — have an associated pool, and we can use the
Storage_Pool aspect and the Storage_Pool attribute to
customize them.

	We cannot instantiate the Ada.Unchecked_Deallocation procedure for
the access Integer type. However, we can instantiate it for named
access types such as the Integer_Access type.

	We cannot use the Storage_Size attribute for the access Integer
type, but we're allowed to use it with named access types, which we do in the
declaration of the Integer_Access_Store_128 and
Integer_Access_Store_0 types.

Dangerous memory deallocation

We might think that we could make up for the absence of the
Ada.Unchecked_Deallocation procedure for anonymous access-to-object
types by converting those access objects (of anonymous access types) to a named
type that has the same designated subtype. For example, if we have an access
object IA of an anonymous access Integer type, we can convert it
to the named Integer_Access type, provided this named access type is
compatible with the anonymous access type, e.g.:

type Integer_Access is access all Integer

Let's see a complete code example:

show_dangerous_deallocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Dangerous_Deallocation is
 4 type Integer_Access is
 5 access all Integer;
 6
 7 procedure Free is
 8 new Ada.Unchecked_Deallocation
 9 (Object => Integer,
10 Name => Integer_Access);
11
12 IA : access Integer;
13begin
14 IA := new Integer;
15 IA.all := 30;
16
17 -- Potentially erroneous deallocation via type
18 -- conversion:
19 Free (Integer_Access (IA));
20
21end Show_Dangerous_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_Erronoeus
MD5: 91e024a4338e2e4f8d5b308d95499c1c

This example declares the IA access object of the anonymous
access Integer type. After allocating an object for IA via
new, we try to deallocate it by first converting it to the
Integer_Access type, so that we can call the Free procedure to
actually deallocate the object. Although this code compiles, it'll only work
if both access Integer and Integer_Access types are using the
same memory pool. Since we cannot really determine this, the result is
potentially erroneous: it'll work if the compiler selected the same pool, but
it'll fail otherwise.

Important

Because allocating memory for anonymous access types is potentially
dangerous, we can use the No_Anonymous_Allocators restriction
— which is available since Ada 2012 — to prevent this kind
of memory allocation being used in the code. For example:

show_dangerous_allocation.adb

1pragma Restrictions (No_Anonymous_Allocators);
2
3procedure Show_Dangerous_Allocation is
4 IA : access Integer;
5begin
6 IA := new Integer;
7 IA.all := 30;
8end Show_Dangerous_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.No_Anonymous_Allocators
MD5: 0976821ce632f9635e33fd4f79c81ecd

Build output

show_dangerous_allocation.adb:6:10: error: violation of restriction "No_Anonymous_Allocators" at line 1
gprbuild: *** compilation phase failed

Possible solution using named access types

A better solution to avoid issues when allocating and deallocating memory
for anonymous access-to-object types is to allocate the object using a known
pool. As mentioned before, the memory pool associated with a named access
type is well-defined, so we can use this kind of types for memory allocation.
In fact, we can use a named memory type to allocate an object via new,
and then associate this allocated object with the access object of anonymous
access type.

Let's see a code example:

show_successful_deallocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Successful_Deallocation is
 4
 5 type Integer_Access is
 6 access Integer;
 7
 8 procedure Free is
 9 new Ada.Unchecked_Deallocation
10 (Object => Integer,
11 Name => Integer_Access);
12
13 IA : access Integer;
14 Typed_IA : Integer_Access;
15
16begin
17 Typed_IA := new Integer;
18 IA := Typed_IA;
19 IA.all := 30;
20
21 -- Deallocation of the access object that has
22 -- an associated type:
23 Free (Typed_IA);
24
25end Show_Successful_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_1
MD5: eff8b54adfcc8cce10920dc3620ff1b9

In this example, all operations related to memory allocation are exclusively
making use of the Integer_Access type, which is a named access type.
In fact, new Integer allocates the object from the pool associated with
the Integer_Access type, and the call to Free deallocates this
object back into that pool. Therefore, associating this object with the
IA access object — in the IA := Typed_IA assignment —
doesn't creates problems afterwards in the object's deallocation. (When calling
Free, we only refer to the object of named access type, so the object
is deallocated from a known pool.)

Of course, a potential issue here is that IA becomes a
dangling reference after the call to
Free. Therefore, we can improve this solution by completely hiding
the memory allocation and deallocation for the anonymous access types in
subprograms — e.g. as part of a package. By doing so, we don't expose
the named access type, thereby reducing the possibility of dangling references.

In fact, we can generalize this approach with the following (generic) package:

hidden_anonymous_allocation.ads

 1generic
 2 type T is private;
 3package Hidden_Anonymous_Allocation is
 4
 5 function New_T
 6 return not null access T;
 7
 8 procedure Free (Obj : access T);
 9
10end Hidden_Anonymous_Allocation;

hidden_anonymous_allocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Hidden_Anonymous_Allocation is
 4
 5 type T_Access is access all T;
 6
 7 procedure T_Access_Free is
 8 new Ada.Unchecked_Deallocation
 9 (Object => T,
10 Name => T_Access);
11
12 function New_T
13 return not null access T is
14 begin
15 return T_Access'(new T);
16 -- Using allocation of the T_Access type:
17 -- object is allocated from T_Access's pool
18 end New_T;
19
20 procedure Free (Obj : access T) is
21 Tmp : T_Access := T_Access (Obj);
22 begin
23 T_Access_Free (Tmp);
24 -- Using deallocation procedure of the
25 -- T_Access type
26 end Free;
27
28end Hidden_Anonymous_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object
MD5: bd3831829f34f06a1d3c25a975c850a3

In the generic Hidden_Anonymous_Allocation package, New_T
allocates a new object internally and returns an anonymous access to this
object. The Free procedure deallocates this object.

In the body of the Hidden_Anonymous_Allocation package, we use the named
access type T_Access to handle the actual memory allocation and
deallocation. As expected, because those operations happen on the pool
associated with the T_Access type, we don't have to worry about
potential deallocation issues.

Finally, we can instantiate this package for the type we want to have
anonymous access types for, say a type named Rec. Then, when using
the Rec type in the main subprogram, we can simply call the
corresponding subprograms for memory allocation and deallocation. For
example:

info.ads

 1with Hidden_Anonymous_Allocation;
 2
 3package Info is
 4
 5 type Rec is private;
 6
 7 function New_Rec return not null access Rec;
 8
 9 procedure Free (Obj : access Rec);
10
11private
12
13 type Rec is record
14 I : Integer;
15 end record;
16
17 package Rec_Allocation is new
18 Hidden_Anonymous_Allocation (T => Rec);
19
20 function New_Rec return not null access Rec
21 renames Rec_Allocation.New_T;
22
23 procedure Free (Obj : access Rec)
24 renames Rec_Allocation.Free;
25
26end Info;

show_info_allocation_deallocation.adb

1with Info; use Info;
2
3procedure Show_Info_Allocation_Deallocation is
4 RA : constant not null access Rec := New_Rec;
5begin
6 Free (RA);
7end Show_Info_Allocation_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object
MD5: d71e8ed70e280c6d5d9fc2d49c1eb6c3

In this example, we instantiate the Hidden_Anonymous_Allocation package
in the Info package, which also defines the Rec type. We
associate the New_T and Free subprograms with the Rec
type by using subprogram renaming. Finally, in the
Show_Info_Allocation_Deallocation procedure, we use these subprograms
to allocate and deallocate the type.

Possible solution using the stack

Another approach that we could consider to avoid memory deallocation issues
for anonymous access-to-object types is by simply using the stack for the
object creation. For example:

show_automatic_deallocation.adb

 1procedure Show_Automatic_Deallocation is
 2 I : aliased Integer;
 3 -- ^ Allocating object on the stack
 4
 5 IA : access Integer;
 6begin
 7 IA := I'Access;
 8 -- Indirect allocation:
 9 -- object creation on the stack.
10
11 IA.all := 30;
12
13 -- Automatic deallocation at the end of the
14 -- procedure because the integer variable is
15 -- on the stack.
16end Show_Automatic_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_2
MD5: 4381db8ba87717978a9629b1e6a5f1fc

In this case, we create the I object on the stack by simply declaring
it. Then, we get access to it and assign it to the IA access object.

With this approach, we're indirectly allocating an object for an anonymous
access type by creating it on the stack. Also, because we know that the
I is automatically deallocated when it gets out of scope, we don't
have to worry about explicitly deallocating the object referred by
IA.

When to use anonymous access-to-objects types

In summary, anonymous access-to-object types have many drawbacks that often
outweigh their benefits. In fact,
allocation for those types can quickly become very complicated. Therefore, in
general, they're not a good alternative to named access types. Indeed, the
difficulties that we've just seen might make them a much worse option than
just using named access types instead.

We might consider using anonymous access-to-objects types only in cases when we
reach a point in our implementation work where using named access types becomes
impossible — or when using them becomes even more complicated than
equivalent solutions using anonymous access types. This scenario, however, is
usually the exception rather than the rule. Thus, as a general guideline, we
should always aim to use named access types.

That being said, an important exception to this advice is when we're
interfacing to other languages.
In this case, as we'll discuss later, using anonymous access-to-objects types
can be significantly simpler (compared to named access types) without the
drawbacks that we've just discussed.

Access discriminants

Previously, we've discussed
discriminants as access values.
In that section, we only used named access types. Now, in this section, we see
how to use anonymous access types as discriminants. This feature is also known
as access discriminants and it provides some flexibility that can be
interesting in terms of software design, as we'll discuss later.

Let's start with an example:

custom_recs.ads

 1package Custom_Recs is
 2
 3 -- Declaring a discriminant with an anonymous
 4 -- access type:
 5 type Rec (IA : access Integer) is record
 6 I : Integer := IA.all;
 7 end record;
 8
 9 procedure Show (R : Rec);
10
11end Custom_Recs;

custom_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Recs is
 4
 5 procedure Show (R : Rec) is
 6 begin
 7 Put_Line ("R.IA = "
 8 & Integer'Image (R.IA.all));
 9 Put_Line ("R.I = "
10 & Integer'Image (R.I));
11 end Show;
12
13end Custom_Recs;

show_access_discriminants.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Access_Discriminants is
 4 I : aliased Integer := 10;
 5 R : Rec (I'Access);
 6begin
 7 Show (R);
 8
 9 I := 20;
10 R.I := 30;
11 Show (R);
12end Show_Access_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Custom_Recs
MD5: f8e127fda4f7ea0f1593165d6a966df6

Runtime output

R.IA = 10
R.I = 10
R.IA = 20
R.I = 30

In this example, we use an anonymous access type for the discriminant in the
declaration of the Rec type of the Custom_Recs package. In the
Show_Access_Discriminants procedure, we declare R and provide
access to the local I integer.

Similarly, we can use unconstrained designated subtypes:

persons.ads

 1package Persons is
 2
 3 -- Declaring a discriminant with an anonymous
 4 -- access type whose designated subtype is
 5 -- unconstrained:
 6 type Person (Name : access String) is record
 7 Age : Integer;
 8 end record;
 9
10 procedure Show (P : Person);
11
12end Persons;

persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5 procedure Show (P : Person) is
 6 begin
 7 Put_Line ("Name = "
 8 & P.Name.all);
 9 Put_Line ("Age = "
10 & Integer'Image (P.Age));
11 end Show;
12
13end Persons;

show_person.adb

1with Persons; use Persons;
2
3procedure Show_Person is
4 S : aliased String := "John";
5 P : Person (S'Access);
6begin
7 P.Age := 30;
8 Show (P);
9end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: f0149d572e0ec192476836bfdf00dd9e

Runtime output

Name = John
Age = 30

In this example, for the discriminant of the Person type, we use an
anonymous access type whose designated subtype is unconstrained. In the
Show_Person procedure, we declare the P object and provide
access to the S string.

In the Ada Reference Manual

	3.7 Discriminants[#3]

	3.10.2 Operations of Access Types[#4]

Default Value of Access Discriminants

In contrast to named access types, we cannot use a default value for the
access discriminant of a non-limited type:

custom_recs.ads

 1package Custom_Recs is
 2
 3 -- Declaring a discriminant with an anonymous
 4 -- access type and a default value:
 5 type Rec (IA : access Integer :=
 6 new Integer'(0)) is
 7 record
 8 I : Integer := IA.all;
 9 end record;
10
11 procedure Show (R : Rec);
12
13end Custom_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Custom_Recs
MD5: 9269cea113f29443a6d7bb719d0616f1

Build output

custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]
custom_recs.ads:6:21: error: (Ada 2005) access discriminants of nonlimited types cannot have defaults
gprbuild: *** compilation phase failed

However, if we change the type declaration to be a limited type, having a
default value for the access discriminant is OK:

custom_recs.ads

 1package Custom_Recs is
 2
 3 -- Declaring a discriminant with an anonymous
 4 -- access type and a default value:
 5 type Rec (IA : access Integer :=
 6 new Integer'(0)) is limited
 7 record
 8 I : Integer := IA.all;
 9 end record;
10
11 procedure Show (R : Rec);
12
13end Custom_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Custom_Recs
MD5: 9e8683c7a27e9097fd2003ad91bac269

Build output

custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]

Note that, if we don't provide a value for the access discriminant when
declaring an object R, the default value is allocated (via new)
during R's creation.

show_access_discriminants.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Access_Discriminants is
 4 R : Rec;
 5 -- ^^^
 6 -- This triggers "new Integer'(0)", so an
 7 -- integer object is allocated and stored in
 8 -- the R.IA discriminant.
 9begin
10 Show (R);
11
12 -- R gets out of scope here, and the object
13 -- allocated via new hasn't been deallocated.
14end Show_Access_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Custom_Recs
MD5: f5d9dee26044ccab2193ab419638de79

Build output

show_access_discriminants.adb:4:04: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]
custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]

Runtime output

R.IA = 0
R.I = 0

In this case, the allocated object won't be deallocated when R gets out
of scope!

Benefits of Access Discriminants

Access discriminants have the same benefits that we've already seen
earlier while discussing
discriminants as access values.
An additional benefit is its extended flexibility: access discriminants are
compatible with any access T'Access, as long as T is of the
designated subtype.

Consider the following example using the named access type
Access_String:

persons.ads

 1package Persons is
 2
 3 type Access_String is access all String;
 4
 5 -- Declaring a discriminant with a named
 6 -- access type:
 7 type Person (Name : Access_String) is record
 8 Age : Integer;
 9 end record;
10
11 procedure Show (P : Person);
12
13end Persons;

persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5 procedure Show (P : Person) is
 6 begin
 7 Put_Line ("Name = "
 8 & P.Name.all);
 9 Put_Line ("Age = "
10 & Integer'Image (P.Age));
11 end Show;
12
13end Persons;

show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4 S : aliased String := "John";
 5 P : Person (S'Access);
 6 -- ^^^^^^^^ ERROR: cannot use local
 7 -- object
 8 --
 9 -- We can, however, allocate the string via
10 -- new:
11 --
12 -- S : Access_String := new String'("John");
13 -- P : Person (S);
14begin
15 P.Age := 30;
16 Show (P);
17end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: e918db3790c7ffeeb7c0f54ced9f48b9

Build output

show_person.adb:5:16: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

This code doesn't compile because we cannot have a non-local pointer
(Access_String) pointing to the local object S. The only way
to make this work is by allocating the string via new
(i.e.: S : Access_String := new String).

However, if we use an access discriminant in the declaration of Person,
the code compiles fine:

persons.ads

 1package Persons is
 2
 3 -- Declaring a discriminant with an anonymous
 4 -- access type:
 5 type Person (Name : access String) is record
 6 Age : Integer;
 7 end record;
 8
 9 procedure Show (P : Person);
10
11end Persons;

show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4 S : aliased String := "John";
 5 P : Person (S'Access);
 6 -- ^^^^^^^^ OK
 7
 8 -- Allocating the string via new and using it
 9 -- in P's declaration is OK as well, but we
10 -- should manually deallocate it before S
11 -- gets out of scope:
12 --
13 -- S : access String := new String'("John");
14 -- P : Person (S);
15begin
16 P.Age := 30;
17 Show (P);
18end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: 6516fb4e0cbbac9cfe07a56e48ea9ff3

Runtime output

Name = John
Age = 30

In this case, getting access to the local object S and using it for
P's discriminant is perfectly fine.

Preventing dangling pointers

Note that the usual rules that prevent dangling pointers still apply here.
This ensures that we can safely use access discriminants. For example:

show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4
 5 function Local_Init return Person is
 6 S : aliased String := "John";
 7 begin
 8 return (Name => S'Access, Age => 30);
 9 -- ^^^^^^^^^^^^^^^^
10 -- ERROR: dangling reference!
11 end Local_Init;
12
13 P : Person := Local_Init;
14begin
15 Show (P);
16end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: 9c8d2aebf60b8bb19e455cb6bc5730eb

Build output

show_person.adb:8:07: error: access discriminant in return object would be a dangling reference
gprbuild: *** compilation phase failed

In this example, compilation fails in the Local_Init function when
trying to return an object of Person type because S'Access
would be a dangling reference.

Self-reference

Previously, we've seen that we can declare
self-references using named access
types. We can do the same with anonymous access types. Let's revisit the code
example that implements linked lists:

linked_lists.ads

 1generic
 2 type T is private;
 3package Linked_Lists is
 4
 5 type List is limited private;
 6
 7 procedure Append_Front
 8 (L : in out List;
 9 E : T);
10
11 procedure Append_Rear
12 (L : in out List;
13 E : T);
14
15 procedure Show (L : List);
16
17private
18
19 type Component is record
20 Next : access Component;
21 -- ^^^^^^^^^^^^^^^^
22 -- Self-reference
23 --
24 -- (Note that we haven't finished the
25 -- declaration of the "Component" type
26 -- yet, but we're already referring to
27 -- it.)
28
29 Value : T;
30 end record;
31
32 type List is access all Component;
33
34end Linked_Lists;

linked_lists.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4
 5package body Linked_Lists is
 6
 7 procedure Append_Front
 8 (L : in out List;
 9 E : T)
10 is
11 New_First : constant List := new
12 Component'(Value => E,
13 Next => L);
14 begin
15 L := New_First;
16 end Append_Front;
17
18 procedure Append_Rear
19 (L : in out List;
20 E : T)
21 is
22 New_Last : constant List := new
23 Component'(Value => E,
24 Next => null);
25 begin
26 if L = null then
27 L := New_Last;
28 else
29 declare
30 Last : List := L;
31 begin
32 while Last.Next /= null loop
33 Last := List (Last.Next);
34 -- ^^^^
35 -- type conversion:
36 -- "access Component" to
37 -- "List"
38 end loop;
39 Last.Next := New_Last;
40 end;
41 end if;
42 end Append_Rear;
43
44 procedure Show (L : List) is
45 Curr : List := L;
46 begin
47 if L = null then
48 Put_Line ("[]");
49 else
50 Put ("[");
51 loop
52 Put (Curr.Value'Image);
53 Put (" ");
54 exit when Curr.Next = null;
55 Curr := Curr.Next;
56 end loop;
57 Put_Line ("]");
58 end if;
59 end Show;
60
61end Linked_Lists;

test_linked_list.adb

 1with Linked_Lists;
 2
 3procedure Test_Linked_List is
 4 package Integer_Lists is new
 5 Linked_Lists (T => Integer);
 6 use Integer_Lists;
 7
 8 L : List;
 9begin
10 Append_Front (L, 3);
11 Append_Rear (L, 4);
12 Append_Rear (L, 5);
13 Append_Front (L, 2);
14 Append_Front (L, 1);
15 Append_Rear (L, 6);
16 Append_Rear (L, 7);
17
18 Show (L);
19end Test_Linked_List;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Self_Reference.Linked_List_Example
MD5: 9e42bf9fa630a0af8dcf7c85a1565edb

Runtime output

[1 2 3 4 5 6 7]

Here, in the declaration of the Component type (in the private part of
the generic Linked_Lists package), we declare Next as an
anonymous access type that refers to the Component type. (Note that
at this point, we haven't finished the declaration of the Component
type yet, but we're already using it as the designated subtype of an anonymous
access type.) Then, we declare List as a general access type (with
Component as the designated subtype).

It's worth mentioning that the List type and the anonymous
access Component type aren't the same type, although they share the same
designated subtype. Therefore, in the implementation of the Append_Rear
procedure, we have to use type conversion to convert from the anonymous
access Component type to the (named) List type.

Mutually dependent types using anonymous access types

In the section on
mutually dependent types using access types,
we've seen a code example that was using named access types. We could now
rewrite it using anonymous access types:

mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3 type T2;
 4
 5 type T1 is record
 6 B : access T2;
 7 end record;
 8
 9 type T2 is record
10 A : access T1;
11 end record;
12
13end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Mutually_Dependent_Anonymous_Access_Types.Example
MD5: 09f869d99b9c16882554588bb806a113

In this example, T1 and T2 are mutually dependent types. We're
using anonymous access types in the declaration of the B and A
components.

Access parameters

In the previous chapter, we talked about
parameters as access values. As
you might have expected, we can also use anonymous access types as parameters
of a subprogram. However, they're limited to be in parameters of a
subprogram or return type of a function (also called the access result type):

names.ads

 1package Names is
 2
 3 function Init (S1, S2 : String)
 4 return access String;
 5 -- ^^^^^^^^^^^^^^^^^^^^
 6 -- Anonymous access type as the access
 7 -- result type.
 8
 9 procedure Show (N : access constant String);
10 -- ^^^^^^^^^^^^^^^^^^^^^^
11 -- Anonymous access type as a parameter type.
12
13end Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names
MD5: 622a76c4b133ed2715f18c175694cbe2

In this example, we have a string as the access result type of the
Init function, and another string as the access parameter of the
Show procedure.

This is the complete code example:

names.ads

 1package Names is
 2
 3 function Init (S1, S2 : String)
 4 return access String;
 5
 6 procedure Show (N : access constant String);
 7
 8private
 9
10 function Init (S1, S2 : String)
11 return access String is
12 (new String'(S1 & "-" & S2));
13
14end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5 procedure Show (N : access constant String) is
 6 begin
 7 Put_Line ("Name: " & N.all);
 8 end Show;
 9
10end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : access String := Init ("Lily", "Ann");
5begin
6 Show (N);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names
MD5: 9fe629f29de2898f2b82d9146b22fd1a

Runtime output

Name: Lily-Ann

Note that we're not using the in parameter mode in the
Show procedure above. Usually, this parameter mode can be omitted,
as it is the default parameter mode — procedure P (I : Integer)
is the same as procedure P (I : in Integer). However, in the case of
the Show procedure, the in parameter mode isn't just optionally
absent. In fact, for access parameters, the parameter mode is always implied
as in, so writing it explicitly is actually forbidden. In other words,
we can only write N : access String or
N : access constant String, but we cannot write
N : in access String or N : in access constant String.

For further reading...

When we discussed
parameters as access values
in the previous chapter, we saw how we can simply use different
parameter modes to write a program instead of using access types.
Basically, to implement the same functionality, we just replaced the access
types by selecting the correct parameter modes instead and used simpler
data types.

Let's do the same exercise again, this time by adapting the previous code
example with anonymous access types:

names.ads

 1package Names is
 2
 3 function Init (S1, S2 : String)
 4 return String;
 5
 6 procedure Show (N : String);
 7
 8private
 9
10 function Init (S1, S2 : String)
11 return String is
12 (S1 & "-" & S2);
13
14end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5 procedure Show (N : String) is
 6 begin
 7 Put_Line ("Name: " & N);
 8 end Show;
 9
10end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 N : String := Init ("Lily", "Ann");
5begin
6 Show (N);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names_String
MD5: 643f193999ef8de9bcefb11d9bdd21d7

Runtime output

Name: Lily-Ann

Although we're using simple strings instead of access types in this version
of the code example, we're still getting a similar behavior. However, there
is a small, yet important difference in the way the string returned by
Init is being allocated: while the previous implementation (which
was using an access result type) was allocating the string on the heap,
we're now allocating the string on the stack.

Later on, we talk about the
accessibility rules in the case of access parameters.

In general, we should avoid access parameters whenever possible and simply use
objects and parameter modes directly, as it makes the design simpler and less
error-prone. One exception is when we're interfacing to other languages,
especially C: this is our
next topic.
Another time when access parameters are vital is for inherited primitive
operations for tagged types. We discuss this
later on.

In the Ada Reference Manual

	3.10 Access Types[#5]

Interfacing To Other Languages

We can use access parameters to interface to other languages. This can be
particularly useful when interfacing to C code that makes use of pointers.
For example, let's assume we want to call the add_one function below in
our Ada implementation:

operations_c.h

1void add_one(int *p_i);

operations_c.c

1void add_one(int *p_i)
2{
3 *p_i = *p_i + 1;
4}

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 3270f3b2415266a203a6f4c605c3831b

We could map the int * parameter of add_one to
access Integer in the Ada specification:

procedure Add_One (IA : access Integer)
 with Import, Convention => C;

This is a complete code example:

operations.ads

1package Operations is
2
3 procedure Add_One (IA : access Integer)
4 with Import, Convention => C;
5
6end Operations;

show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations; use Operations;
 4
 5procedure Show_Operations is
 6 I : aliased Integer := 42;
 7begin
 8 Put_Line (I'Image);
 9 Add_One (I'Access);
10 Put_Line (I'Image);
11end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 0219acdbd2dad69962875199ffdd930e

Once again, we can replace access parameters with simpler types by using the
appropriate parameter mode. In this case, we could replace
access Integer by aliased in out Integer. This is the modified
version of the code:

operations.ads

1package Operations is
2
3 procedure Add_One
4 (IA : aliased in out Integer)
5 with Import, Convention => C;
6
7end Operations;

show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations; use Operations;
 4
 5procedure Show_Operations is
 6 I : aliased Integer := 42;
 7begin
 8 Put_Line (I'Image);
 9 Add_One (I);
10 Put_Line (I'Image);
11end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 2c5a81b8d77f0fff8a73f7912be6b6fe

However, there are situations where aliased objects cannot be used. For
example, suppose we want to allocate memory inside a C function. In this case,
the pointer to that memory block must be mapped to an access type in Ada.

Let's extend the previous C code example and introduce the alloc_integer
and dealloc_integer functions, which allocate and deallocate an integer
value:

operations_c.h

1int * alloc_integer();
2
3void dealloc_integer(int *p_i);
4
5void add_one(int *p_i);

operations_c.c

 1#include <stdlib.h>
 2
 3int * alloc_integer()
 4{
 5 return malloc(sizeof(int));
 6}
 7
 8void dealloc_integer(int *p_i)
 9{
10 free (p_i);
11}
12
13void add_one(int *p_i)
14{
15 *p_i = *p_i + 1;
16}

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: ec6dea12d0a948489cce21b0cc0a1ad2

In this case, we really have to use access types to interface to these C
functions. In fact, we need an access result type to interface to the
alloc_integer() function, and an access parameter in the case of the
dealloc_integer() function. This is the corresponding specification in
Ada:

operations.ads

 1package Operations is
 2
 3 function Alloc_Integer return access Integer
 4 with Import, Convention => C;
 5
 6 procedure Dealloc_Integer (IA : access Integer)
 7 with Import, Convention => C;
 8
 9 procedure Add_One
10 (IA : aliased in out Integer)
11 with Import, Convention => C;
12
13end Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: bcbc8a87037b64fc6469e67b928e6172

Note that we're still using an aliased integer type for the Add_One
procedure, while we're using access types for the other two subprograms.

Finally, as expected, we can use this specification in a test application:

show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations; use Operations;
 4
 5procedure Show_Operations is
 6 I : access Integer := Alloc_Integer;
 7begin
 8 I.all := 42;
 9 Put_Line (I.all'Image);
10
11 Add_One (I.all);
12 Put_Line (I.all'Image);
13
14 Dealloc_Integer (I);
15end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: b2b96a166926528bc44059b56e31fb55

In this application, we get a C pointer from the alloc_integer function
and encapsulate it in an Ada access type, which we then assign to I. In
the last line of the procedure, we call Dealloc_Integer and pass
I to it, which deallocates the memory block indicated by the C pointer.

In the Ada Reference Manual

	3.10 Access Types[#6]

Inherited Primitive Operations For Tagged Types

In order to declare inherited primitive operations for tagged types that use
access types, we need to use access parameters. The reason is that, to be a
primitive operation for some tagged type — and hence inheritable —
the subprogram must reference the tagged type name directly in the parameter
profile. This means that a named access type won't suffice, because only the
access type name would appear in the profile. For example:

inherited_primitives.ads

 1package Inherited_Primitives is
 2
 3 type T is tagged private;
 4
 5 type T_Access is access all T;
 6
 7 procedure Proc (N : T_Access);
 8 -- Proc is not a primitive of type T.
 9
10 type T_Child is new T with private;
11
12 type T_Child_Access is access all T_Child;
13
14private
15
16 type T is tagged null record;
17
18 type T_Child is new T with null record;
19
20end Inherited_Primitives;

inherited_primitives.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3package body Inherited_Primitives is
4
5 procedure Proc (N : T_Access) is null;
6
7end Inherited_Primitives;

show_inherited_primitives.adb

 1with Inherited_Primitives;
 2use Inherited_Primitives;
 3
 4procedure Show_Inherited_Primitives is
 5 Obj : T_Access := new T;
 6 Obj_Child : T_Child_Access := new T_Child;
 7begin
 8 Proc (Obj);
 9 Proc (Obj_Child);
10 -- ^^^^^^^^^
11 -- ERROR: Proc is not inherited!
12end Show_Inherited_Primitives;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Inherited_Primitives
MD5: 8235b21caa9f1f105f533d74d891adfe

Build output

show_inherited_primitives.adb:9:10: error: expected type "T_Access" defined at inherited_primitives.ads:5
show_inherited_primitives.adb:9:10: error: found type "T_Child_Access" defined at inherited_primitives.ads:12
gprbuild: *** compilation phase failed

In this example, Proc is not a primitive of type T because it's
referring to type T_Access, not type T. This means that
Proc isn't inherited when we derive the T_Child type. Therefore,
when we call Proc (Obj_Child), a compilation error occurs because the
compiler expects type T_Access — there's no
Proc (N : T_Child_Access) that could be used here.

If we replace T_Access in the Proc procedure with an an access
parameter (access T), the subprogram becomes a primitive of T:

inherited_primitives.ads

 1package Inherited_Primitives is
 2
 3 type T is tagged private;
 4
 5 procedure Proc (N : access T);
 6 -- Proc is a primitive of type T.
 7
 8 type T_Child is new T with private;
 9
10private
11
12 type T is tagged null record;
13
14 type T_Child is new T with null record;
15
16end Inherited_Primitives;

inherited_primitives.adb

1package body Inherited_Primitives is
2
3 procedure Proc (N : access T) is null;
4
5end Inherited_Primitives;

show_inherited_primitives.adb

 1with Inherited_Primitives;
 2use Inherited_Primitives;
 3
 4procedure Show_Inherited_Primitives is
 5 Obj : access T := new T;
 6 Obj_Child : access T_Child := new T_Child;
 7begin
 8 Proc (Obj);
 9 Proc (Obj_Child);
10 -- ^^^^^^^^^
11 -- OK: Proc is inherited!
12end Show_Inherited_Primitives;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Inherited_Primitives
MD5: a7e9b8bc92e346758cc4ade43bb4b02d

Now, the child type T_Child (derived from the T) inherits the
primitive operation Proc. This inherited operation has an access
parameter designating the child type:

type T_Child is new T with private;

procedure Proc (N : access T_Child);
-- Implicitly inherited primitive operation

In the Ada Reference Manual

	3.9.2 Dispatching Operations of Tagged Types[#7]

User-Defined References

Implicit dereferencing
isn't limited to the contexts that Ada supports by
default: we can also add implicit dereferencing to our own types by using the
Implicit_Dereference aspect.

To do this, we have to declare:

	a reference type, where we use the Implicit_Dereference aspect to
specify the reference discriminant, which is the record discriminant that
will be dereferenced; and

	a reference object, which contains an access value that will be dereferenced.

Also, for the reference type, we have to:

	specify the reference discriminant as an
access discriminant; and

	indicate the name of the reference discriminant when specifying the
Implicit_Dereference aspect.

Let's see a simple example:

show_user_defined_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_User_Defined_Reference is
 4
 5 type Id_Number is record
 6 Id : Positive;
 7 end record;
 8
 9 --
10 -- Reference type:
11 --
12 type Id_Ref (Ref : access Id_Number) is
13 -- ^ reference discriminant
14 null record
15 with Implicit_Dereference => Ref;
16 -- ^^^
17 -- name of the reference
18 -- discriminant
19
20 --
21 -- Access value:
22 --
23 I : constant access Id_Number :=
24 new Id_Number'(Id => 42);
25
26 --
27 -- Reference object:
28 --
29 R : Id_Ref (I);
30begin
31 Put_Line ("ID: "
32 & Positive'Image (R.Id));
33 -- ^ Equivalent to:
34 -- R.Ref.Id
35 -- or:
36 -- R.Ref.all.Id
37end Show_User_Defined_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Simple_User_Defined_References
MD5: 33eaa7e8e75b4eb56d64dcc17e2932aa

Runtime output

ID: 42

Here, we declare a simple record type (Id_Number) and a corresponding
reference type (Id_Ref). Note that:

	the reference discriminant Ref has an access to the Id_Number
type; and

	we indicate this reference discriminant in the Implicit_Dereference
aspect.

Then, we declare an access value (the I constant) and use it for the
Ref discriminant in the declaration of the reference object R.

Finally, we implicitly dereference R and access the Id component
by simply writing R.Id — instead of the extended forms
R.Ref.Id or R.Ref.all.Id.

Important

The extended form mentioned in the example that we just saw
(R.Ref.all.Id) makes it clear that two steps happen when evaluating
R.Id:

	First, R.Ref is implied from R because of the
Implicit_Dereference aspect.

	Then, R.Ref is implicitly dereferenced to R.Ref.all.

After these two steps, we can access the actual object. (In our case, we
can access the Id component.)

Note that we cannot use access types directly for the reference discriminant.
For example, if we made the following change in the previous code example, it
wouldn't compile:

type Id_Number_Access is access Id_Number;

-- Reference type:
type Id_Ref (Ref : Id_Number_Access) is
-- ^ ERROR: it must be
-- an access
-- discriminant!
 null record
 with Implicit_Dereference => Ref;

However, we could use other forms — such as not null access
— in the reference discriminant:

-- Reference type:
type Id_Ref (Ref : not null access Id_Number) is
 null record
 with Implicit_Dereference => Ref;

In the Ada Reference Manual

	4.1.5 User-Defined References[#8]

Dereferencing of tagged types

Naturally, implicit dereferencing is also possible when calling primitives of a
tagged type. For example, let's change the declaration of the
Id_Number type from the previous code example and add a Show
primitive.

info.ads

1package Info is
2 type Id_Number (Id : Positive) is
3 tagged private;
4
5 procedure Show (R : Id_Number);
6private
7 type Id_Number (Id : Positive) is
8 tagged null record;
9end Info;

info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Info is
 4
 5 procedure Show (R : Id_Number) is
 6 begin
 7 Put_Line ("ID: " & Positive'Image (R.Id));
 8 end Show;
 9
10end Info;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Dereferencing_Tagged_Types
MD5: 4de65094963450dc3a7505dbf93c2551

Then, let's declare a reference type and a reference object in the test
application:

show_user_defined_reference.adb

 1with Info; use Info;
 2
 3procedure Show_User_Defined_Reference is
 4
 5 -- Reference type:
 6 type Id_Ref (Ref : access Id_Number) is
 7 null record
 8 with Implicit_Dereference => Ref;
 9
10 -- Access value:
11 I : constant access Id_Number :=
12 new Id_Number (42);
13
14 -- Reference object:
15 R : Id_Ref (I);
16begin
17
18 R.Show;
19 -- Equivalent to:
20 -- R.Ref.all.Show;
21
22end Show_User_Defined_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Dereferencing_Tagged_Types
MD5: 9c5dfc4f2b8e085efde9e61689243f70

Runtime output

ID: 42

Here, we can call the Show procedure by simply writing R.Show
instead of R.Ref.all.Show.

Simple container

A typical application of user-defined references is to create cursors when
iterating over a container. As an example, let's implement the
National_Date_Info package to store the national day of a country:

national_date_info.ads

 1package National_Date_Info is
 2
 3 subtype Country_Code is String (1 .. 3);
 4
 5 type Time is record
 6 Year : Integer;
 7 Month : Positive range 1 .. 12;
 8 Day : Positive range 1 .. 31;
 9 end record;
10
11 type National_Date is tagged record
12 Country : Country_Code;
13 Date : Time;
14 end record;
15
16 type National_Date_Access is
17 access National_Date;
18
19 procedure Show (Nat_Date : National_Date);
20
21end National_Date_Info;

national_date_info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body National_Date_Info is
 4
 5 procedure Show (Nat_Date : National_Date) is
 6 begin
 7 Put_Line ("Country: "
 8 & Nat_Date.Country);
 9 Put_Line ("Year: "
10 & Integer'Image
11 (Nat_Date.Date.Year));
12 end Show;
13
14end National_Date_Info;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 90fd6740d701025e1d5f30c9751a528d

Here, National_Date is a record type that we use to store the national
day information. We can call the Show procedure to display this
information.

Now, let's implement the National_Date_Containers with a container for
national days:

national_date_containers.ads

 1with National_Date_Info; use National_Date_Info;
 2
 3package National_Date_Containers is
 4
 5 -- Reference type:
 6 type National_Date_Reference
 7 (Ref : access National_Date) is
 8 tagged limited null record
 9 with Implicit_Dereference => Ref;
10
11 -- Container (as an array):
12 type National_Dates is
13 array (Positive range <>) of
14 National_Date_Access;
15
16 -- The Find function scans the container to
17 -- find a specific country, which is returned
18 -- as a reference object.
19 function Find (Nat_Dates : National_Dates;
20 Country : Country_Code)
21 return National_Date_Reference;
22
23end National_Date_Containers;

national_date_containers.adb

 1package body National_Date_Containers is
 2
 3 function Find (Nat_Dates : National_Dates;
 4 Country : Country_Code)
 5 return National_Date_Reference
 6 is
 7 begin
 8 for I in Nat_Dates'Range loop
 9 if Nat_Dates (I).Country = Country then
10 return National_Date_Reference'(
11 Ref => Nat_Dates (I));
12 -- ^^^^^^^^^^^^^^^^^^^^^^^^^
13 -- Returning reference object with a
14 -- reference to the national day we
15 -- found.
16 end if;
17 end loop;
18
19 return
20 National_Date_Reference'(Ref => null);
21 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22 -- Returning reference object with a null
23 -- reference in case the country wasn't
24 -- found. This will trigger an exception
25 -- if we try to dereference it.
26 end Find;
27
28end National_Date_Containers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: ec37ae93a7052c4bc731b2a7be0763ab

Package National_Date_Containers contains the National_Dates
type, which is an array type for declaring containers that we use to store
the national day information. We can also see the declaration of the
National_Date_Reference type, which is the reference type returned by
the Find function when looking for a specific country in the container.

Important

We're declaring the container type (National_Dates) as an array type
just to simplify the code. In many cases, however, this approach isn't
recommended! Instead, we should use a private type in order to encapsulate
— and better protect — the information stored in the actual
container.

Finally, let's see a test application that stores information for some
countries into the Nat_Dates container and displays the information for
a specific country:

show_national_dates.adb

 1with National_Date_Info;
 2use National_Date_Info;
 3
 4with National_Date_Containers;
 5use National_Date_Containers;
 6
 7procedure Show_National_Dates is
 8
 9 Nat_Dates : constant National_Dates (1 .. 5) :=
10 (new National_Date'("USA",
11 Time'(1776, 7, 4)),
12 new National_Date'("FRA",
13 Time'(1789, 7, 14)),
14 new National_Date'("DEU",
15 Time'(1990, 10, 3)),
16 new National_Date'("SPA",
17 Time'(1492, 10, 12)),
18 new National_Date'("BRA",
19 Time'(1822, 9, 7)));
20
21begin
22 Find (Nat_Dates, "FRA").Show;
23 -- ^ implicit dereference
24end Show_National_Dates;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 771ecb91e8f890d4bb9b08115ae833f4

Runtime output

Country: FRA
Year: 1789

Here, we call the Find function to retrieve a reference object, whose
reference (access value) has the national day information of France. We then
implicitly dereference it to get the tagged object (of National_Date
type) and display its information by calling the Show procedure.

Relevant topics

The National_Date_Containers package was implemented specifically
as an accompanying package for the National_Date_Info package.
It is possible, however, to generalize it, so that we can reuse the
container for other record types. In fact, this is actually very
straightforward:

generic_containers.ads

 1generic
 2 type T is private;
 3 type T_Access is access T;
 4 type T_Cmp is private;
 5 with function Matches (E : T_Access;
 6 Elem : T_Cmp)
 7 return Boolean;
 8package Generic_Containers is
 9
10 type Ref_Type (Ref : access T) is
11 tagged limited null record
12 with Implicit_Dereference => Ref;
13
14 type Container is
15 array (Positive range <>) of
16 T_Access;
17
18 function Find (Cont : Container;
19 Elem : T_Cmp)
20 return Ref_Type;
21
22end Generic_Containers;

generic_containers.adb

 1package body Generic_Containers is
 2
 3 function Find (Cont : Container;
 4 Elem : T_Cmp)
 5 return Ref_Type is
 6 begin
 7 for I in Cont'Range loop
 8 if Matches (Cont (I), Elem) then
 9 return Ref_Type'(Ref => Cont (I));
10 end if;
11 end loop;
12
13 return Ref_Type'(Ref => null);
14 end Find;
15
16end Generic_Containers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 94c23a48131a47439b5b41e985c3d6c1

When comparing the Generic_Containers package to the
National_Date_Containers package, we see that the main difference is
the addition of the Matches function, which indicates whether the
current element we're evaluating in the for-loop of the Find
function is the one we're looking for.

In the main application, we can implement the Matches function and
declare the National_Date_Containers package as an instance of the
Generic_Containers package:

show_national_dates.adb

 1with Generic_Containers;
 2with National_Date_Info; use National_Date_Info;
 3
 4procedure Show_National_Dates is
 5
 6 function Matches_Country
 7 (E : National_Date_Access;
 8 Elem : Country_Code)
 9 return Boolean is
10 (E.Country = Elem);
11
12 package National_Date_Containers is new
13 Generic_Containers
14 (T => National_Date,
15 T_Access => National_Date_Access,
16 T_Cmp => Country_Code,
17 Matches => Matches_Country);
18
19 use National_Date_Containers;
20
21 subtype National_Dates is Container;
22
23 Nat_Dates : constant
24 National_Dates (1 .. 5) :=
25 (new National_Date'("USA",
26 Time'(1776, 7, 4)),
27 new National_Date'("FRA",
28 Time'(1789, 7, 14)),
29 new National_Date'("DEU",
30 Time'(1990, 10, 3)),
31 new National_Date'("SPA",
32 Time'(1492, 10, 12)),
33 new National_Date'("BRA",
34 Time'(1822, 9, 7)));
35
36begin
37 Find (Nat_Dates, "FRA").Show;
38end Show_National_Dates;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: f4dac1fed69b9bccce5dccbf17844adc

Runtime output

Country: FRA
Year: 1789

Here, we instantiate the Generic_Containers package with the
Matches_Country function, which is an expression function that
compares the country component of the current National_Date
reference with the name of the country we desire to learn about.

This generalized approach is actually used for the standard containers
from the Ada.Containers packages. For example,
the Ada.Containers.Vectors is specified as follows:

with Ada.Iterator_Interfaces;

generic
 type Index_Type is range <>;
 type Element_Type is private;
 with function "=" (Left, Right : Element_Type)
 return Boolean is <>;
package Ada.Containers.Vectors
 with Preelaborate, Remote_Types,
 Nonblocking,
 Global => in out synchronized is

 -- OMITTED

 type Reference_Type
 (Element : not null access Element_Type) is
 private
 with Implicit_Dereference => Element,
 Nonblocking,
 Global => in out synchronized,
 Default_Initial_Condition =>
 (raise Program_Error);

 -- OMITTED

 function Reference
 (Container : aliased in out Vector;
 Index : in Index_Type)
 return Reference_Type
 with Pre => Index in
 First_Index (Container) ..
 Last_Index (Container)
 or else raise
 Constraint_Error,
 Post =>
 Tampering_With_Cursors_Prohibited
 (Container),
 Nonblocking,
 Global => null,
 Use_Formal => null;

 -- OMITTED

 function Reference
 (Container : aliased in out Vector;
 Position : in Cursor)
 return Reference_Type
 with Pre => (Position /= No_Element
 or else raise
 Constraint_Error)
 and then
 (Has_Element
 (Container, Position)
 or else raise
 Program_Error),
 Post =>
 Tampering_With_Cursors_Prohibited
 (Container),
 Nonblocking,
 Global => null,
 Use_Formal => null;

 -- OMITTED

end Ada.Containers.Vectors;

(Note that most parts of the Vectors package were omitted for
clarity. Please refer to the Ada Reference Manual for the complete package
specification.)

Here, we see that the Implicit_Dereference aspect is used in the
declaration of Reference_Type, which is the reference type returned
by the Reference functions for an index or a cursor.

Also, note that the Vectors package has a formal equality function
(=) instead of the Matches function we were using in our
Generic_Containers package. The purpose of the formal function,
however, is basically the same.

In the Ada Reference Manual

	A.18.2 The Generic Package Containers.Vectors[#9]

Anonymous Access Types and Accessibility Rules

In general, the accessibility rules we've
seen earlier also apply to anonymous access types. However, there are some
subtle differences, which we discuss in this section.

Let's adapt the
code example from that section
to make use of anonymous access types:

library_level.ads

1package Library_Level is
2
3 L0_AO : access Integer;
4
5 L0_Var : aliased Integer;
6
7end Library_Level;

show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4 L1_Var : aliased Integer;
 5
 6 L1_AO : access Integer;
 7
 8 procedure Test is
 9 L2_AO : access Integer;
10
11 L2_Var : aliased Integer;
12 begin
13 L1_AO := L2_Var'Access;
14 -- ^^^^^^
15 -- ILLEGAL: L2 object to
16 -- L1 access object
17
18 L2_AO := L2_Var'Access;
19 -- ^^^^^^
20 -- LEGAL: L2 object to
21 -- L2 access object
22 end Test;
23
24begin
25 L0_AO := new Integer'(22);
26 -- ^^^^^^^^^^^
27 -- LEGAL: L0 object to
28 -- L0 access object
29
30 L0_AO := L1_Var'Access;
31 -- ^^^^^^
32 -- ILLEGAL: L1 object to
33 -- L0 access object
34
35 L1_AO := L0_Var'Access;
36 -- ^^^^^^
37 -- LEGAL: L0 object to
38 -- L1 access object
39
40 L1_AO := L1_Var'Access;
41 -- ^^^^^^
42 -- LEGAL: L1 object to
43 -- L1 access object
44
45 L0_AO := L1_AO; -- legal!!
46 -- ^^^^^
47 -- LEGAL: L1 access object to
48 -- L0 access object
49 --
50 -- ILLEGAL: L1 object
51 -- (L1_AO = L1_Var'Access)
52 -- to
53 -- L0 access object
54 --
55 -- This is actually OK at compile time,
56 -- but the accessibility check fails at
57 -- runtime.
58
59 Test;
60end Show_Library_Level;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Library_Level
MD5: 255bdecebdaa735408db082edd583a0c

Build output

show_library_level.adb:13:16: error: non-local pointer cannot point to local object
show_library_level.adb:30:13: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

As we see in the code, in general, most accessibility rules are the same as the
ones we've discussed when using named access types. For example, an assignment
such as L0_AO := L1_Var'Access is illegal because we're trying to assign
to an access object of less deep level.

However, assignment such as L0_AO := L1_AO are possible now: we don't
get a type mismatch — as we did with named access types — because
both objects are of anonymous access types. Note that the accessibility level
cannot be determined at compile time: L1_AO can hold an access value at
library level (which would make the assignment legal) or at a deeper level.
Therefore, the compiler introduces an accessibility check here.

However, the accessibility check used in L0_AO := L1_AO fails at runtime
because the corresponding access value (L1_Var'Access) is of a deeper
level than L0_AO, which is illegal. (If you comment out the
L1_AO := L1_Var'Access assignment prior to the L0_AO := L1_AO
assignment, this accessibility check doesn't fail anymore.)

Conversions between Anonymous and Named Access Types

In the previous sections, we've discussed accessibility rules for named and
anonymous access types separately. In this section, we see that the same
accessibility rules apply when mixing both flavors together and converting
objects of anonymous to named access types.

Let's adapt parts of the previous
code example and add
anonymous access types to it:

library_level.ads

 1package Library_Level is
 2
 3 type L0_Integer_Access is
 4 access all Integer;
 5
 6 L0_Var : aliased Integer;
 7
 8 L0_IA : L0_Integer_Access;
 9 L0_AO : access Integer;
10
11end Library_Level;

show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4 type L1_Integer_Access is
 5 access all Integer;
 6
 7 L1_IA : L1_Integer_Access;
 8 L1_AO : access Integer;
 9
10 L1_Var : aliased Integer;
11
12begin
13 ---------------------------------------
14 -- From named type to anonymous type
15 ---------------------------------------
16
17 L0_IA := new Integer'(22);
18 L1_IA := new Integer'(42);
19
20 L0_AO := L0_IA;
21 -- ^^^^^
22 -- LEGAL: assignment from
23 -- L0 access object (named type)
24 -- to
25 -- L0 access object
26 -- (anonymous type)
27
28 L0_AO := L1_IA;
29 -- ^^^^^
30 -- ILLEGAL: assignment from
31 -- L1 access object (named type)
32 -- to
33 -- L0 access object
34 -- (anonymous type)
35
36 L1_AO := L0_IA;
37 -- ^^^^^
38 -- LEGAL: assignment from
39 -- L0 access object (named type)
40 -- to
41 -- L1 access object
42 -- (anonymous type)
43
44 L1_AO := L1_IA;
45 -- ^^^^^
46 -- LEGAL: assignment from
47 -- L1 access object (named type)
48 -- to
49 -- L1 access object
50 -- (anonymous type)
51
52 ---------------------------------------
53 -- From anonymous type to named type
54 ---------------------------------------
55
56 L0_AO := L0_Var'Access;
57 L1_AO := L1_Var'Access;
58
59 L0_IA := L0_Integer_Access (L0_AO);
60 -- ^^^^^^^^^^^^^^^^^
61 -- LEGAL: conversion / assignment from
62 -- L0 access object
63 -- (anonymous type)
64 -- to
65 -- L0 access object (named type)
66
67 L0_IA := L0_Integer_Access (L1_AO);
68 -- ^^^^^^^^^^^^^^^^^
69 -- ILLEGAL: conversion / assignment from
70 -- L1 access object
71 -- (anonymous type)
72 -- to
73 -- L0 access object (named type)
74 -- (accessibility check fails)
75
76 L1_IA := L1_Integer_Access (L0_AO);
77 -- ^^^^^^^^^^^^^^^^^
78 -- LEGAL: conversion / assignment from
79 -- L0 access object
80 -- (anonymous type)
81 -- to
82 -- L1 access object (named type)
83
84 L1_IA := L1_Integer_Access (L1_AO);
85 -- ^^^^^^^^^^^^^^^^^
86 -- LEGAL: conversion / assignment from
87 -- L1 access object
88 -- (anonymous type)
89 -- to
90 -- L1 access object (named type)
91end Show_Library_Level;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Named_Anonymous_Access_Type_Conversions
MD5: a2e73bb0ed543bc4973850c80f951039

Build output

show_library_level.adb:28:13: error: cannot convert local pointer to non-local access type
gprbuild: *** compilation phase failed

As we can see in this code example, mixing access objects of named and
anonymous access types doesn't change the accessibility rules. Again, the rules
are only violated when the target object in the assignment is less deep. This
is the case in the L0_AO := L1_IA and the
L0_IA := L0_Integer_Access (L1_AO) assignments. Otherwise, mixing those
access objects doesn't impose additional hurdles.

Accessibility rules on access parameters

In the previous chapter, we saw that the accessibility rules also apply to
access values as subprogram parameters.
In the case of access parameters, the rules are a bit less strict (as you may
generally expect for anonymous access types), and the accessibility rules are
checked at runtime. This allows use to use access values that would be illegal
in the case of named access types because of their accessibility levels.

Let's adapt a previous code example to make use of access parameters:

names.ads

1package Names is
2
3 procedure Show (N : access constant String);
4
5end Names;

names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3-- with Ada.Characters.Handling;
 4-- use Ada.Characters.Handling;
 5
 6package body Names is
 7
 8 procedure Show (N : access constant String) is
 9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15
16end Names;

show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4 S : aliased String := "John";
5begin
6 Show (S'Access);
7end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: aa930ba9be3264d01eb9115d27b884eb

Runtime output

Name: John

As we've seen in the previous chapter, compilation fails when we use named
access types in this code example. In the case of access parameters, using
S'Access doesn't make the compilation fail, nor does the accessibility
check fail at runtime because S is still in scope when we call the
Show procedure.

Anonymous Access-To-Subprograms

In the previous chapter, we talked about
named access-to-subprogram types. Now,
we'll see that the anonymous version of those types isn't much different from
the named version.

Let's start our discussion by declaring a subprogram parameter using an
anonymous access-to-procedure type:

anonymous_access_to_subprogram.ads

1package Anonymous_Access_To_Subprogram is
2
3 procedure Proc
4 (P : access procedure (I : in out Integer));
5
6end Anonymous_Access_To_Subprogram;

anonymous_access_to_subprogram.adb

 1package body Anonymous_Access_To_Subprogram is
 2
 3 procedure Proc
 4 (P : access procedure (I : in out Integer))
 5 is
 6 I : Integer := 0;
 7 begin
 8 P (I);
 9 end Proc;
10
11end Anonymous_Access_To_Subprogram;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 2cbe76d7e23905d575bd27e29d5e3175

In this example, we use the anonymous
access procedure (I : in out Integer) type as a parameter of the
Proc procedure. Note that we need an identifier in the declaration:
we cannot leave I out and write
access procedure (in out Integer).

Before we look at a test application that makes use of the
Anonymous_Access_To_Subprogram package, let's implement two simple
procedures that we'll use later on:

add_ten.ads

1procedure Add_Ten (I : in out Integer);

add_ten.adb

1procedure Add_Ten (I : in out Integer) is
2begin
3 I := I + 10;
4end Add_Ten;

add_twenty.ads

1procedure Add_Twenty (I : in out Integer);

add_twenty.adb

1procedure Add_Twenty (I : in out Integer) is
2begin
3 I := I + 20;
4end Add_Twenty;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 50eaeaf27caaa9618b35ecdf8acc11fe

Finally, this is our test application:

show_anonymous_access_to_subprograms.adb

 1with Anonymous_Access_To_Subprogram;
 2use Anonymous_Access_To_Subprogram;
 3
 4with Add_Ten;
 5
 6procedure Show_Anonymous_Access_To_Subprograms is
 7begin
 8 Proc (Add_Ten'Access);
 9 -- ^ Getting access to Add_Ten
10 -- procedure and passing it
11 -- to Proc
12end Show_Anonymous_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 13143ccf9620d26031484ba160a58fe1

Here, we get access to the Add_Ten procedure and pass it to the
Proc procedure. Note that this implementation is not different from the
example for named access-to-subprogram types.
In fact, in terms of usage, anonymous access-to-subprogram types are very
similar to named access-to-subprogram types. The major differences can be found
in the corresponding
accessibility rules.

In the Ada Reference Manual

	3.10 Access Types[#10]

Examples of anonymous access-to-subprogram usage

In the section about
named access-to-subprogram types, we've
seen a couple of different usages for those types. In all those examples
we discussed, we could instead have used anonymous access-to-subprogram types.
Let's see a code example that illustrates that:

all_anonymous_access_to_subprogram.ads

 1package All_Anonymous_Access_To_Subprogram is
 2
 3 --
 4 -- Anonymous access-to-subprogram as
 5 -- subprogram parameter:
 6 --
 7 procedure Proc
 8 (P : access procedure (I : in out Integer));
 9
10 --
11 -- Anonymous access-to-subprogram in
12 -- array type declaration:
13 --
14 type Access_To_Procedure_Array is
15 array (Positive range <>) of
16 access procedure (I : in out Integer);
17
18 protected type Protected_Integer is
19
20 procedure Mult_Ten;
21
22 procedure Mult_Twenty;
23
24 private
25 I : Integer := 1;
26 end Protected_Integer;
27
28 --
29 -- Anonymous access-to-subprogram as
30 -- component of a record type.
31 --
32 type Rec_Access_To_Procedure is record
33 AP : access procedure (I : in out Integer);
34 end record;
35
36 --
37 -- Anonymous access-to-subprogram as
38 -- discriminant:
39 --
40 type Rec_Access_To_Procedure_Discriminant
41 (AP : access procedure
42 (I : in out Integer)) is
43 record
44 I : Integer := 0;
45 end record;
46
47 procedure Process
48 (R : in out
49 Rec_Access_To_Procedure_Discriminant);
50
51 generic
52 type T is private;
53
54 --
55 -- Anonymous access-to-subprogram as
56 -- formal parameter:
57 --
58 Proc_T : access procedure
59 (Element : in out T);
60 procedure Gen_Process (Element : in out T);
61
62end All_Anonymous_Access_To_Subprogram;

all_anonymous_access_to_subprogram.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body All_Anonymous_Access_To_Subprogram is
 4
 5 procedure Proc
 6 (P : access procedure (I : in out Integer))
 7 is
 8 I : Integer := 0;
 9 begin
10 Put_Line
11 ("Calling procedure for Proc...");
12 P (I);
13 Put_Line ("Finished.");
14 end Proc;
15
16 procedure Process
17 (R : in out
18 Rec_Access_To_Procedure_Discriminant)
19 is
20 begin
21 Put_Line
22 ("Calling procedure for"
23 & " Rec_Access_To_Procedure_Discriminant"
24 & " type...");
25 R.AP (R.I);
26 Put_Line ("Finished.");
27 end Process;
28
29 procedure Gen_Process (Element : in out T) is
30 begin
31 Put_Line
32 ("Calling procedure for Gen_Process...");
33 Proc_T (Element);
34 Put_Line ("Finished.");
35 end Gen_Process;
36
37 protected body Protected_Integer is
38
39 procedure Mult_Ten is
40 begin
41 I := I * 10;
42 end Mult_Ten;
43
44 procedure Mult_Twenty is
45 begin
46 I := I * 20;
47 end Mult_Twenty;
48
49 end Protected_Integer;
50
51end All_Anonymous_Access_To_Subprogram;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 628dcfdc5fe9b712f33fa044057093c2

In the All_Anonymous_Access_To_Subprogram package, we see examples of
anonymous access-to-subprogram types:

	as a subprogram parameter;

	in an array type declaration;

	as a component of a record type;

	as a record type discriminant;

	as a formal parameter of a generic procedure.

Let's implement a test application that makes use of this package:

show_anonymous_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Add_Ten;
 4with Add_Twenty;
 5
 6with All_Anonymous_Access_To_Subprogram;
 7use All_Anonymous_Access_To_Subprogram;
 8
 9procedure Show_Anonymous_Access_To_Subprograms is
 10 --
 11 -- Anonymous access-to-subprogram as
 12 -- an object:
 13 --
 14 P : access procedure (I : in out Integer);
 15
 16 --
 17 -- Array of anonymous access-to-subprogram
 18 -- components
 19 --
 20 PA : constant
 21 Access_To_Procedure_Array (1 .. 2) :=
 22 (Add_Ten'Access,
 23 Add_Twenty'Access);
 24
 25 --
 26 -- Anonymous array of anonymous
 27 -- access-to-subprogram components:
 28 --
 29 PAA : constant
 30 array (1 .. 2) of access
 31 procedure (I : in out Integer) :=
 32 (Add_Ten'Access,
 33 Add_Twenty'Access);
 34
 35 --
 36 -- Record with anonymous
 37 -- access-to-subprogram components:
 38 --
 39 RA : constant Rec_Access_To_Procedure :=
 40 (AP => Add_Ten'Access);
 41
 42 --
 43 -- Record with anonymous
 44 -- access-to-subprogram discriminant:
 45 --
 46 RD : Rec_Access_To_Procedure_Discriminant
 47 (AP => Add_Twenty'Access) :=
 48 (AP => Add_Twenty'Access, I => 0);
 49
 50 --
 51 -- Generic procedure with formal anonymous
 52 -- access-to-subprogram:
 53 --
 54 procedure Process_Integer is new
 55 Gen_Process (T => Integer,
 56 Proc_T => Add_Twenty'Access);
 57
 58 --
 59 -- Object (APP) of anonymous
 60 -- access-to-protected-subprogram:
 61 --
 62 PI : Protected_Integer;
 63 APP : constant access protected procedure :=
 64 PI.Mult_Ten'Access;
 65
 66 Some_Int : Integer := 0;
 67begin
 68 Put_Line ("Some_Int: " & Some_Int'Image);
 69
 70 --
 71 -- Using object of
 72 -- anonymous access-to-subprogram type:
 73 --
 74 P := Add_Ten'Access;
 75 Proc (P);
 76 P (Some_Int);
 77
 78 P := Add_Twenty'Access;
 79 Proc (P);
 80 P (Some_Int);
 81
 82 Put_Line ("Some_Int: " & Some_Int'Image);
 83
 84 --
 85 -- Using array with component of
 86 -- anonymous access-to-subprogram type:
 87 --
 88 Put_Line
 89 ("Calling procedure from PA array...");
 90
 91 for I in PA'Range loop
 92 PA (I) (Some_Int);
 93 Put_Line ("Some_Int: " & Some_Int'Image);
 94 end loop;
 95
 96 Put_Line ("Finished.");
 97
 98 Put_Line
 99 ("Calling procedure from PAA array...");
100
101 for I in PA'Range loop
102 PAA (I) (Some_Int);
103 Put_Line ("Some_Int: " & Some_Int'Image);
104 end loop;
105
106 Put_Line ("Finished.");
107
108 Put_Line ("Some_Int: " & Some_Int'Image);
109
110 --
111 -- Using record with component of
112 -- anonymous access-to-subprogram type:
113 --
114 RA.AP (Some_Int);
115 Put_Line ("Some_Int: " & Some_Int'Image);
116
117 --
118 -- Using record with discriminant of
119 -- anonymous access-to-subprogram type:
120 --
121 Process (RD);
122 Put_Line ("RD.I: " & RD.I'Image);
123
124 --
125 -- Using procedure instantiated with
126 -- formal anonymous access-to-subprogram:
127 --
128 Process_Integer (Some_Int);
129 Put_Line ("Some_Int: " & Some_Int'Image);
130
131 --
132 -- Using object of anonymous
133 -- access-to-protected-subprogram type:
134 --
135 APP.all;
136end Show_Anonymous_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: ec770c17e880a98fd2e9ab0110d4a858

Runtime output

Some_Int: 0
Calling procedure for Proc...
Finished.
Calling procedure for Proc...
Finished.
Some_Int: 30
Calling procedure from PA array...
Some_Int: 40
Some_Int: 60
Finished.
Calling procedure from PAA array...
Some_Int: 70
Some_Int: 90
Finished.
Some_Int: 90
Some_Int: 100
Calling procedure for Rec_Access_To_Procedure_Discriminant type...
Finished.
RD.I: 20
Calling procedure for Gen_Process...
Finished.
Some_Int: 120

In the Show_Anonymous_Access_To_Subprograms procedure, we see examples
of anonymous access-to-subprogram types in:

	in objects (P) and (APP);

	in arrays (PA and PAA);

	in records (RA and RD);

	in the binding to a formal parameter (Proc_T) of an instantiated
procedure (Process_Integer);

	as a parameter of a procedure (Proc).

Because we already discussed all these usages in the section about
named access-to-subprogram types, we
won't repeat this discussion here. If anything in this code example is still
unclear to you, make sure to revisit that section from the previous chapter.

Application of anonymous access-to-subprogram types

In general, there isn't much that speaks against using anonymous
access-to-subprogram types. We can say, for example, that they're much more
useful than
anonymous access-to-objects types,
which have
many drawbacks —
as we discussed earlier.

There isn't much to be concerned when using anonymous access-to-subprogram
types. For example, we cannot allocate or deallocate a subprogram. As a
consequence, we won't have storage management issues affecting these types
because the access to those subprograms will always be available and no
memory leak can occur.

Also, anonymous access-to-subprogram types can be easier to use than named
access-to-subprogram types because of their less strict
accessibility rules.
Some of the accessibility issues we might encounter when using named
access-to-subprogram types can be solved by declaring them as anonymous types.
(We discuss the accessibility rules of anonymous access-to-subprogram types in
the next section.)

Readability

Note that readability suffers if you use a cascade of anonymous
access-to-subprograms. For example:

readability_issue.ads

 1package Readability_Issue is
 2
 3 function F
 4 return access
 5 function (A : Integer)
 6 return access
 7 function (B : Float)
 8 return Integer;
 9
10end Readability_Issue;

readability_issue-functions.ads

 1package Readability_Issue.Functions is
 2
 3 function To_Integer (V : Float)
 4 return Integer is
 5 (Integer (V));
 6
 7 function Select_Conversion
 8 (A : Integer)
 9 return access
10 function (B : Float)
11 return Integer is
12 (To_Integer'Access);
13
14end Readability_Issue.Functions;

readability_issue.adb

 1with Readability_Issue.Functions;
 2use Readability_Issue.Functions;
 3
 4package body Readability_Issue is
 5
 6 function F
 7 return access
 8 function (A : Integer)
 9 return access
10 function (B : Float)
11 return Integer is
12 (Select_Conversion'Access);
13
14end Readability_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Readability_Issue
MD5: 9e2ac58942c97b44c0d847c28e39bd11

In this example, the definition of F might compile fine, but it's simply
too long to be readable. Not only that: we need to carry this chain to other
functions as well — such as the Select_Conversion function above.
Also, using these functions in an application is not straightforward:

show_readability_issue.adb

 1with Readability_Issue;
 2use Readability_Issue;
 3
 4procedure Show_Readability_Issue is
 5 F1 : access
 6 function (A : Integer)
 7 return access
 8 function (B : Float)
 9 return Integer
10 := F;
11 F2 : access function (B : Float)
12 return Integer
13 := F1 (2);
14 I : Integer := F2 (0.1);
15begin
16 I := F1 (2) (0.1);
17end Show_Readability_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Readability_Issue
MD5: 80267b1d673663e3cacba0c4978e6abf

Therefore, our recommendation is to avoid this kind of access cascading by
carefully designing your application. In general, you won't need that.

Accessibility Rules and Anonymous Access-To-Subprograms

In principle, the
accessibility rules for anonymous access types
that we've seen before apply to anonymous access-to-subprograms as well. Also,
we had a discussion about
accessibility rules and access-to-subprograms
in the previous chapter. In this section, we review some of the rules that we
already know and discuss how they relate to anonymous access-to-subprograms.

In the Ada Reference Manual

	3.10 Access Types[#11]

Named vs. anonymous access-to-subprograms

Let's see an example of a named access-to-subprogram type:

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_To_Subprogram_Error is
 4
 5 type PI is access
 6 procedure (I : in out Integer);
 7
 8 P : PI;
 9
10 I : Integer := 0;
11begin
12 declare
13 procedure Add_One (I : in out Integer) is
14 begin
15 I := I + 1;
16 end Add_One;
17 begin
18 P := Add_One'Access;
19 end;
20end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Simple_Example_Named
MD5: 41c36426112e799210b7704dd43b6217

Build output

show_access_to_subprogram_error.adb:18:12: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed

In this example, we get a compilation error because the lifetime of the
Add_One procedure is shorter than the access type PI.

In contrast, using an anonymous access-to-subprogram type eliminates the
compilation error, i.e. the assignment P := Add_One'Access becomes
legal:

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_To_Subprogram_Error is
 4 P : access procedure (I : in out Integer);
 5
 6 I : Integer := 0;
 7begin
 8 declare
 9 procedure Add_One (I : in out Integer) is
10 begin
11 I := I + 1;
12 end Add_One;
13 begin
14 P := Add_One'Access;
15 -- RUNTIME ERROR: Add_One is out-of-scope
16 -- after this line.
17 end;
18end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Simple_Example_Anonymous
MD5: a5eeb4a716b4f6a932dd74c580a07b66

Runtime output

raised PROGRAM_ERROR : show_access_to_subprogram_error.adb:14 accessibility check failed

In this case, the compiler introduces an accessibility check, which fails at
runtime because the lifetime of Add_One is shorter than the lifetime of
the access object P.

Named vs. anonymous access-to-subprograms as parameters

Using anonymous access-to-subprograms as parameters allows us to pass
subprograms at any level. For certain applications, the restrictions that are
applied to named access types might be too strict, so using anonymous
access-to-subprograms might be a good way to circumvent those restrictions.
They also allow the component developer to be independent of the clients'
specific access types.

Note that the increased flexibility for anonymous access-to-subprograms means
that some of the checks that are performed at compile time for named
access-to-subprograms are done at runtime for anonymous access-to-subprograms.

Named access-to-subprograms as a parameter

Let's see an example using a named access-to-procedure type:

access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 type Process_Procedure is
 7 access
 8 procedure (Arr : in out Integer_Array);
 9
10 procedure Process
11 (Arr : in out Integer_Array;
12 P : Process_Procedure);
13
14end Access_To_Subprogram_Types;

access_to_subprogram_types.adb

 1package body Access_To_Subprogram_Types is
 2
 3 procedure Process
 4 (Arr : in out Integer_Array;
 5 P : Process_Procedure) is
 6 begin
 7 P (Arr);
 8 end Process;
 9
10end Access_To_Subprogram_Types;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7
 8 procedure Add_One
 9 (Arr : in out Integer_Array) is
10 begin
11 for E of Arr loop
12 E := E + 1;
13 end loop;
14 end Add_One;
15
16 procedure Display
17 (Arr : in out Integer_Array) is
18 begin
19 for I in Arr'Range loop
20 Put_Line ("Arr (" &
21 Integer'Image (I)
22 & "): "
23 & Integer'Image (Arr (I)));
24 end loop;
25 end Display;
26
27 Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28begin
29 Process (Arr, Display'Access);
30
31 Put_Line ("Add_One...");
32 Process (Arr, Add_One'Access);
33
34 Process (Arr, Display'Access);
35end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Access_To_Subprogram_Parameter_Named
MD5: 76b70b52a0374fe0fd398024fe869876

Build output

show_access_to_subprogram_error.adb:29:18: error: subprogram must not be deeper than access type
show_access_to_subprogram_error.adb:32:18: error: subprogram must not be deeper than access type
show_access_to_subprogram_error.adb:34:18: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed

In this example, we declare the Process_Procedure type in the
Access_To_Subprogram_Types package and use it in the Process
procedure, which we call in the Show_Access_To_Subprogram_Error
procedure. The accessibility rules trigger a compilation error because the
accesses (Add_One'Access and Display'Access) are at a
deeper level than the access-to-procedure type (Process_Procedure).

As we know already, there's no Unchecked_Access attribute that
we could use here. An easy way to make this code compile could be to move
Add_One and Display to the library level.

Anonymous access-to-subprograms as a parameter

To circumvent the compilation error, we could also use anonymous
access-to-subprograms instead:

access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3 type Integer_Array is
 4 array (Positive range <>) of Integer;
 5
 6 procedure Process
 7 (Arr : in out Integer_Array;
 8 P : access procedure
 9 (Arr : in out Integer_Array));
10
11end Access_To_Subprogram_Types;

access_to_subprogram_types.adb

 1package body Access_To_Subprogram_Types is
 2
 3 procedure Process
 4 (Arr : in out Integer_Array;
 5 P : access procedure
 6 (Arr : in out Integer_Array)) is
 7 begin
 8 P (Arr);
 9 end Process;
10
11end Access_To_Subprogram_Types;

show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7
 8 procedure Add_One
 9 (Arr : in out Integer_Array) is
10 begin
11 for E of Arr loop
12 E := E + 1;
13 end loop;
14 end Add_One;
15
16 procedure Display
17 (Arr : in out Integer_Array) is
18 begin
19 for I in Arr'Range loop
20 Put_Line ("Arr (" &
21 Integer'Image (I)
22 & "): "
23 & Integer'Image (Arr (I)));
24 end loop;
25 end Display;
26
27 Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28begin
29 Process (Arr, Display'Access);
30
31 Put_Line ("Add_One...");
32 Process (Arr, Add_One'Access);
33
34 Process (Arr, Display'Access);
35end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Access_To_Subprogram_Parameter_Anonymous
MD5: a500e0a864f0adadc1d6823c1f50bd64

Runtime output

Arr (1): 1
Arr (2): 2
Arr (3): 3
Add_One...
Arr (1): 2
Arr (2): 3
Arr (3): 4

Now, the code is accepted by the compiler because anonymous
access-to-subprograms used as parameters allow passing of subprograms at any
level. Also, we don't see a run-time exception because the subprograms are
still accessible when we call Process.

Iterator

A typical example that illustrates well the necessity of using anonymous
access-to-subprograms is that of a container iterator. In fact, many of the
standard Ada containers — the child packages of Ada.Containers
— make use of anonymous access-to-subprograms for their Iterate
subprograms.

In the Ada Reference Manual

	A.18.2 The Package Containers.Vectors[#12]

	A.18.4 Maps[#13]

	A.18.7 Sets[#14]

Using named access-to-subprograms

Let's start with a simplified container type (Data_Container) using a
named access-to-subprogram type (Process_Element) for iteration:

data_processing.ads

 1generic
 2 type Element is private;
 3package Data_Processing is
 4
 5 type Data_Container (Last : Positive) is
 6 private;
 7
 8 Data_Container_Full : exception;
 9
10 procedure Append (D : in out Data_Container;
11 E : Element);
12
13 type Process_Element is
14 not null access procedure (E : Element);
15
16 procedure Iterate
17 (D : Data_Container;
18 Proc : Process_Element);
19
20private
21
22 type Data_Container_Storage is
23 array (Positive range <>) of Element;
24
25 type Data_Container (Last : Positive) is
26 record
27 S : Data_Container_Storage (1 .. Last);
28 Curr : Natural := 0;
29 end record;
30
31end Data_Processing;

data_processing.adb

 1package body Data_Processing is
 2
 3 procedure Append (D : in out Data_Container;
 4 E : Element) is
 5 begin
 6 if D.Curr < D.S'Last then
 7 D.Curr := D.Curr + 1;
 8 D.S (D.Curr) := E;
 9 else
10 raise Data_Container_Full;
11 -- NOTE: This is just a dummy
12 -- implementation. A better
13 -- strategy is to add actual error
14 -- handling when the container is
15 -- full.
16 end if;
17 end Append;
18
19 procedure Iterate
20 (D : Data_Container;
21 Proc : Process_Element) is
22 begin
23 for I in D.S'First .. D.Curr loop
24 Proc (D.S (I));
25 end loop;
26 end Iterate;
27
28end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Named
MD5: e48e8200e571b62d027753ee96c47fcb

In this example, we declare the Process_Element type in the
generic Data_Processing package, and we use it in the Iterate
procedure. We then instantiate this package as Float_Data_Processing,
and we use it in the Show_Access_To_Subprograms procedure:

float_data_processing.ads

1with Data_Processing;
2
3package Float_Data_Processing is
4 new Data_Processing (Element => Float);

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Data_Processing;
 4use Float_Data_Processing;
 5
 6procedure Show_Access_To_Subprograms is
 7
 8 procedure Display (F : Float) is
 9 begin
10 Put_Line ("F :" & Float'Image (F));
11 end Display;
12
13 D : Data_Container (5);
14begin
15 Append (D, 1.0);
16 Append (D, 2.0);
17 Append (D, 3.0);
18
19 Iterate (D, Display'Access);
20end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Named
MD5: 64ee435aac5f2817b7d9cecf538a1e4c

Build output

show_access_to_subprograms.adb:19:17: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed

Using Display'Access in the call to Iterate triggers a
compilation error because its lifetime is shorter than the lifetime of the
Process_Element type.

Using anonymous access-to-subprograms

Now, let's use an anonymous access-to-subprogram type in the Iterate
procedure:

data_processing.ads

 1generic
 2 type Element is private;
 3package Data_Processing is
 4
 5 type Data_Container (Last : Positive) is
 6 private;
 7
 8 Data_Container_Full : exception;
 9
10 procedure Append (D : in out Data_Container;
11 E : Element);
12
13 procedure Iterate
14 (D : Data_Container;
15 Proc : not null access
16 procedure (E : Element));
17
18private
19
20 type Data_Container_Storage is
21 array (Positive range <>) of Element;
22
23 type Data_Container (Last : Positive) is
24 record
25 S : Data_Container_Storage (1 .. Last);
26 Curr : Natural := 0;
27 end record;
28
29end Data_Processing;

data_processing.adb

 1package body Data_Processing is
 2
 3 procedure Append (D : in out Data_Container;
 4 E : Element) is
 5 begin
 6 if D.Curr < D.S'Last then
 7 D.Curr := D.Curr + 1;
 8 D.S (D.Curr) := E;
 9 else
10 raise Data_Container_Full;
11 -- NOTE: This is just a dummy
12 -- implementation. A better
13 -- strategy is to add actual error
14 -- handling when the container is
15 -- full.
16 end if;
17 end Append;
18
19 procedure Iterate
20 (D : Data_Container;
21 Proc : not null access
22 procedure (E : Element)) is
23 begin
24 for I in D.S'First .. D.Curr loop
25 Proc (D.S (I));
26 end loop;
27 end Iterate;
28
29end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous
MD5: fa56595ef1734f2f07ad719c36dfd8b5

Note that the only changes we did to the package were to remove the
Process_Element type and replace the type of the Proc parameter
of the Iterate procedure from a named type (Process_Element) to
an anonymous type (not null access procedure (E : Element)).

Now, the same test application we used before
(Show_Access_To_Subprograms) compiles as expected:

float_data_processing.ads

1with Data_Processing;
2
3package Float_Data_Processing is
4 new Data_Processing (Element => Float);

show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Data_Processing;
 4use Float_Data_Processing;
 5
 6procedure Show_Access_To_Subprograms is
 7
 8 procedure Display (F : Float) is
 9 begin
10 Put_Line ("F :" & Float'Image (F));
11 end Display;
12
13 D : Data_Container (5);
14begin
15 Append (D, 1.0);
16 Append (D, 2.0);
17 Append (D, 3.0);
18
19 Iterate (D, Display'Access);
20end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous
MD5: 64ee435aac5f2817b7d9cecf538a1e4c

Runtime output

F : 1.00000E+00
F : 2.00000E+00
F : 3.00000E+00

Remember that the compiler introduces an accessibility check in the call to
Iterate, which is successful because the lifetime of
Display'Access is the same as the lifetime of the Proc parameter
of Iterate.

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#2]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#3]
http://www.ada-auth.org/standards/22rm/html/RM-3-7.html

[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

[#5]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#6]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#7]
http://www.ada-auth.org/standards/22rm/html/RM-3-9-2.html

[#8]
http://www.ada-auth.org/standards/22rm/html/RM-4-1-5.html

[#9]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

[#10]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#11]
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

[#12]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

[#13]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-4.html

[#14]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-7.html

Introduction To SPARK

Release 2024-03

Mar 30, 2024

Copyright © 2018 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This tutorial is an interactive introduction to the SPARK programming
language and its formal verification tools. You will learn the difference
between Ada and SPARK and how to use the various analysis tools that come
with SPARK.

This document was prepared by Claire Dross and Yannick Moy.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

Contents:

	Overview
	What is it?

	What do the tools do?

	Key Tools

	A trivial example

	The Programming Language

	Limitations
	No side-effects in expressions

	No aliasing of names

	Designating SPARK Code

	Code Examples / Pitfalls
	Example #1

	Example #2

	Example #3

	Example #4

	Example #5

	Example #6

	Example #7

	Example #8

	Example #9

	Example #10

	Flow Analysis
	What does flow analysis do?

	Errors Detected
	Uninitialized Variables

	Ineffective Statements

	Incorrect Parameter Mode

	Additional Verifications
	Global Contracts

	Depends Contracts

	Shortcomings
	Modularity

	Composite Types

	Value Dependency

	Contract Computation

	Code Examples / Pitfalls
	Example #1

	Example #2

	Example #3

	Example #4

	Example #5

	Example #6

	Example #7

	Example #8

	Example #9

	Example #10

	Proof of Program Integrity
	Runtime Errors

	Modularity
	Exceptions

	Contracts
	Executable Semantics

	Additional Assertions and Contracts

	Debugging Failed Proof Attempts
	Debugging Errors in Code or Specification

	Debugging Cases where more Information is Required

	Debugging Prover Limitations

	Code Examples / Pitfalls
	Example #1

	Example #2

	Example #3

	Example #4

	Example #5

	Example #6

	Example #7

	Example #8

	Example #9

	Example #10

	State Abstraction
	What's an Abstraction?

	Why is Abstraction Useful?

	Abstraction of a Package's State

	Declaring a State Abstraction

	Refining an Abstract State

	Representing Private Variables

	Additional State
	Nested Packages

	Constants that Depend on Variables

	Subprogram Contracts
	Global and Depends

	Preconditions and Postconditions

	Initialization of Local Variables

	Code Examples / Pitfalls
	Example #1

	Example #2

	Example #3

	Example #4

	Example #5

	Example #6

	Example #7

	Example #8

	Example #9

	Example #10

	Proof of Functional Correctness
	Beyond Program Integrity

	Advanced Contracts
	Ghost Code

	Ghost Functions

	Global Ghost Variables

	Guide Proof
	Local Ghost Variables

	Ghost Procedures

	Handling of Loops

	Loop Invariants

	Code Examples / Pitfalls
	Example #1

	Example #2

	Example #3

	Example #4

	Example #5

	Example #6

	Example #7

	Example #8

	Example #9

	Example #10

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

SPARK Overview

This tutorial is an introduction to the SPARK programming
language and its formal verification tools. You need not know any specific
programming language (although going over the
Introduction to Ada course first may help)
or have experience in formal verification.

What is it?

SPARK refers to two different things:

	a programming language targeted at functional specification and static
verification, and

	a set of development and verification tools for that language.

The SPARK language is based on a subset of the Ada language. Ada is
particularly well suited to formal verification since it was designed
for critical software development. SPARK builds on that foundation.

[image: ../../../_images/01_spark_ada.png]
Version 2012 of Ada introduced the use of aspects, which can be used
for subprogram contracts, and version 2014 of SPARK added its own
aspects to further aid static analysis.

What do the tools do?

We start by reviewing static verification of programs, which is
verification of the source code performed without compiling or executing
it. Verification uses tools that perform static analysis. These can take
various forms. They include tools that check types and enforce visibility
rules, such as the compiler, in addition to those that perform more complex
reasoning, such as abstract interpretation, as done by a tool like
CodePeer[#1] from AdaCore. The tools that
come with SPARK perform two different forms of static analysis:

	flow analysis is the fastest form of analysis. It checks
initializations of variables and looks at data dependencies between
inputs and outputs of subprograms. It can also find unused assignments
and unmodified variables.

	proof checks for the absence of runtime errors as well as the
conformance of the program with its specifications.

Key Tools

The tool for formal verification of the SPARK language is called
GNATprove. It checks for conformance with the SPARK subset and performs
flow analysis and proof of the source code. Several other tools support the
SPARK language, including both the GNAT compiler[#2] and the GNAT Studio integrated development
environment[#3].

A trivial example

We start with a simple example of a subprogram in Ada that uses SPARK
aspects to specify verifiable subprogram contracts. The subprogram, called
Increment, adds 1 to the value of its parameter X:

increment.ads

1procedure Increment
2 (X : in out Integer)
3with
4 Global => null,
5 Depends => (X => X),
6 Pre => X < Integer'Last,
7 Post => X = X'Old + 1;

increment.adb

1procedure Increment
2 (X : in out Integer)
3is
4begin
5 X := X + 1;
6end Increment;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Trivial_Example
MD5: ce28b1facb44917b6cc208639c187064

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
increment.adb:5:10: info: overflow check proved
increment.ads:4:03: info: data dependencies proved
increment.ads:5:03: info: flow dependencies proved
increment.ads:7:14: info: postcondition proved
increment.ads:7:24: info: overflow check proved

The contracts are written using the Ada aspect feature and those shown
specify several properties of this subprogram:

	The SPARK Global aspect says that Increment does not read or write
any global variables.

	The SPARK Depend aspect is especially interesting for security: it says
that the value of the parameter X after the call depends only on the
(previous) value of X.

	The Pre and Post aspects of Ada specify functional
properties of Increment:

	Increment is only allowed to be called if the value of X prior
to the call is less than Integer'Last. This ensures that the
addition operation performed in the subprogram body doesn't overflow.

	Increment does indeed perform an increment of X: the value of
X after a call is one greater than its value before the call.

GNATprove can verify all of these contracts. In addition, it verifies
that no error can be raised at runtime when executing Increment's
body.

The Programming Language

It's important to understand why there are differences between the SPARK
and Ada languages. The aim when designing the SPARK subset of Ada was to
create the largest possible subset of Ada that was still amenable to simple
specification and sound verification.

The most notable restrictions from Ada are related to exceptions and access
types, both of which are known to considerably increase the amount of
user-written annotations required for full support. Backwards goto statements and
controlled types are also not supported since they introduce non-trivial
control flow. The two remaining restrictions relate to side-effects in
expressions and aliasing of names, which we now cover in more detail.

Limitations

No side-effects in expressions

The SPARK language doesn't allow side-effects in expressions. In other
words, evaluating a SPARK expression must not update any object. This
limitation is necessary to avoid unpredictable behavior that depends on
order of evaluation, parameter passing mechanisms, or compiler
optimizations. The expression for Dummy below is non-deterministic due to
the order in which the two calls to F are evaluated. It's therefore not
legal SPARK.

show_illegal_ada_code.adb

 1procedure Show_Illegal_Ada_Code is
 2
 3 function F (X : in out Integer) return Integer is
 4 Tmp : constant Integer := X;
 5 begin
 6 X := X + 1;
 7 return Tmp;
 8 end F;
 9
10 Dummy : Integer := 0;
11
12begin
13 Dummy := F (Dummy) - F (Dummy); -- ??
14end Show_Illegal_Ada_Code;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Illegal_Ada_Code
MD5: a5cbf1824526857da94791ac1790200c

Build output

show_illegal_ada_code.adb:13:28: error: value may be affected by call to "F" because order of evaluation is arbitrary
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
show_illegal_ada_code.adb:13:28: error: value may be affected by call to "F" because order of evaluation is arbitrary
gnatprove: error during generation of Global contracts

In fact, the code above is not even legal Ada, so the same error is
generated by the GNAT compiler. But SPARK goes further and GNATprove also
produces an error for the following equivalent code that is accepted by the
Ada compiler:

show_illegal_spark_code.adb

 1procedure Show_Illegal_SPARK_Code is
 2
 3 Dummy : Integer := 0;
 4
 5 function F return Integer is
 6 Tmp : constant Integer := Dummy;
 7 begin
 8 Dummy := Dummy + 1;
 9 return Tmp;
10 end F;
11
12begin
13 Dummy := F - F; -- ??
14end Show_Illegal_SPARK_Code;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Illegal_SPARK_Code
MD5: e747edb6ee147adb7fba97c9e7c8d5ef

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_illegal_spark_code.adb:5:13: error: function with output global "Dummy" is not allowed in SPARK
gnatprove: error during analysis of data and information flow

The SPARK languages enforces the lack of side-effects in expressions by
forbidding side-effects in functions, which include modifications to either
parameters or global variables. As a consequence, SPARK forbids functions
with out or in out parameters in addition to functions
modifying a global variable. Function F below is illegal in
SPARK, while Function Incr might be legal if it doesn't modify any
global variables and function Incr_And_Log might be illegal if it
modifies global variables to perform logging.

function F (X : in out Integer) return Integer; -- Illegal

function Incr (X : Integer) return Integer; -- OK?

function Incr_And_Log (X : Integer) return Integer; -- OK?

In most cases, you can easily replace these functions by procedures with an
out parameter that returns the computed value.

When it has access to function bodies, GNATprove verifies that those
functions are indeed free from side-effects. Here for example, the two
functions Incr and Incr_And_Log have the same signature, but only
Incr is legal in SPARK. Incr_And_Log isn't: it attempts to update
the global variable Call_Count.

side_effects.ads

1package Side_Effects is
2
3 function Incr (X : Integer) return Integer; -- OK?
4
5 function Incr_And_Log (X : Integer) return Integer; -- OK?
6
7end Side_Effects;

side_effects.adb

 1package body Side_Effects is
 2
 3 function Incr (X : Integer) return Integer
 4 is (X + 1); -- OK
 5
 6 Call_Count : Natural := 0;
 7
 8 function Incr_And_Log (X : Integer) return Integer is
 9 begin
10 Call_Count := Call_Count + 1; -- Illegal
11 return X + 1;
12 end Incr_And_Log;
13
14end Side_Effects;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Side_Effects
MD5: 1b555e4b7bb519eea4df718a9356a2ed

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
side_effects.ads:5:13: error: function with output global "Call_Count" is not allowed in SPARK
gnatprove: error during analysis of data and information flow

No aliasing of names

Another restriction imposed by the SPARK subset concerns
aliasing[#4]. We say that two
names are aliased if they refer to the same object. There are two reasons
why aliasing is forbidden in SPARK:

	It makes verification more difficult because it requires taking into
account the fact that modifications to variables with different names may
actually update the same object.

	Results may seem unexpected from a user point of view. The results of a
subprogram call may depend on compiler-specific attributes, such as
parameter passing mechanisms, when its parameters are aliased.

Aliasing can occur as part of the parameter
passing that occurs in a subprogram call. Functions have no side-effects in
SPARK, so aliasing of parameters in function calls isn't problematic; we
need only consider procedure calls. When a procedure is called, SPARK
verifies that no out or in out parameter is aliased with
either another parameter of the procedure or a global variable modified in
the procedure's body.

Procedure Move_To_Total is an example where the possibility of aliasing
wasn't taken into account by the programmer:

no_aliasing.adb

 1procedure No_Aliasing is
 2
 3 Total : Natural := 0;
 4
 5 procedure Move_To_Total (Source : in out Natural)
 6 with Post => Total = Total'Old + Source'Old and Source = 0
 7 is
 8 begin
 9 Total := Total + Source;
10 Source := 0;
11 end Move_To_Total;
12
13 X : Natural := 3;
14
15begin
16 Move_To_Total (X); -- OK
17 pragma Assert (Total = 3); -- OK
18 Move_To_Total (Total); -- flow analysis error
19 pragma Assert (Total = 6); -- runtime error
20end No_Aliasing;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Aliasing
MD5: 91038ef030fe27e3b000ab3db9c134ad

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
no_aliasing.adb:18:19: high: formal parameter "Source" and global "Total" are aliased (SPARK RM 6.4.2)
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : no_aliasing.adb:19

Move_To_Total adds the value of its input parameter Source to
the global variable Total and then resets Source to 0. The
programmer has clearly not taken into account the possibility of an
aliasing between Total and Source. (This sort of error is
quite common.)

This procedure itself is valid SPARK. When doing verification,
GNATprove assumes, like the programmer did, that there's no aliasing
between Total and Source. To ensure this assumption is valid,
GNATprove checks for possible aliasing on every call to
Move_To_Total. Its final call in procedure No_Aliasing
violates this assumption, which produces both a message from GNATprove
and a runtime error (an assertion violation corresponding to the
expected change in Total from calling Move_To_Total). Note
that the postcondition of Move_To_Total is not violated on this
second call since integer parameters are passed by copy and the
postcondition is checked before the copy-back from the formal
parameters to the actual arguments.

Aliasing can also occur as a result of using access types (
pointers[#5] in Ada).
These are restricted in SPARK so that only benign aliasing is allowed, when
both names are only used to read the data. In particular, assignment between
access objects operates a transfer of ownership, where the source object loses
its permission to read or write the underlying allocated memory.

Procedure Ownership_Transfer is an example of code that is legal in Ada but
rejected in SPARK due to aliasing:

ownership_transfer.adb

 1procedure Ownership_Transfer is
 2 type Int_Ptr is access Integer;
 3 X : Int_Ptr;
 4 Y : Int_Ptr;
 5 Dummy : Integer;
 6begin
 7 X := new Integer'(1);
 8 X.all := X.all + 1;
 9 Y := X;
10 Y.all := Y.all + 1;
11 X.all := X.all + 1; -- illegal
12 X.all := 1; -- illegal
13 Dummy := X.all; -- illegal
14end Ownership_Transfer;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Ownership_Transfer
MD5: 951fe1c930d43a5009e607994ae0dd03

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
ownership_transfer.adb:11:06: error: dereference from "X" is not writable
ownership_transfer.adb:11:06: error: object was moved at line 9
ownership_transfer.adb:11:15: error: dereference from "X" is not readable
ownership_transfer.adb:11:15: error: object was moved at line 9
ownership_transfer.adb:12:06: error: dereference from "X" is not writable
ownership_transfer.adb:12:06: error: object was moved at line 9
ownership_transfer.adb:13:15: error: dereference from "X" is not readable
ownership_transfer.adb:13:15: error: object was moved at line 9
gnatprove: error during analysis of data and information flow

After the assignment of X to Y, variable X cannot be used anymore
to read or write the underlying allocated memory.

Note

For more details on these limitations, see the
SPARK User's Guide[#6].

Designating SPARK Code

Since the SPARK language is restricted to only allow easily specifiable and
verifiable constructs, there are times when you can't or don't want to
abide by these limitations over your entire code base. Therefore, the SPARK
tools only check conformance to the SPARK subset on code which you identify
as being in SPARK.

You do this by using an aspect named SPARK_Mode. If you don't
explicitly specify otherwise, SPARK_Mode is Off, meaning you can
use the complete set of Ada features in that code and that it should not be
analyzed by GNATprove. You can change this default either selectively (on
some units or subprograms or packages inside units) or globally (using a
configuration pragma, which is what we're doing in this tutorial). To allow
simple reuse of existing Ada libraries, entities declared in imported units
with no explicit SPARK_Mode can still be used from SPARK code. The
tool only checks for SPARK conformance on the declaration of those entities
which are actually used within the SPARK code.

Here's a common case of using the SPARK_Mode aspect:

package P
 with SPARK_Mode => On
is
 -- package spec is IN SPARK, so can be used by SPARK clients
end P;

package body P
 with SPARK_Mode => Off
is
 -- body is NOT IN SPARK, so is ignored by GNATprove
end P;

The package P only defines entities whose specifications are in the
SPARK subset. However, it wants to use all Ada features in its body.
Therefore the body should not be analyzed and has its SPARK_Mode
aspect set to Off.

You can specify SPARK_Mode in a fine-grained manner on a per-unit
basis. An Ada package has four different components: the visible and
private parts of its specification and the declarative and statement parts
of its body. You can specify SPARK_Mode as being either On or
Off on any of those parts. Likewise, a subprogram has two parts: its
specification and its body.

A general rule in SPARK is that once SPARK_Mode has been set to
Off, it can never be switched On again in the same part of a package or
subprogram. This prevents setting SPARK_Mode to On for subunits of
a unit with SPARK_Mode Off and switching back to SPARK_Mode
On for a part of a given unit where it was set fo Off in a previous
part.

Note

For more details on the use of SPARK_Mode, see the
SPARK User's Guide[#7].

Code Examples / Pitfalls

Example #1

Here's a package defining an abstract stack type (defined as a private type
in SPARK) of Element objects along with some subprograms providing the
usual functionalities of stacks. It's marked as being in the SPARK subset.

stack_package.ads

 1package Stack_Package
 2 with SPARK_Mode => On
 3is
 4 type Element is new Natural;
 5 type Stack is private;
 6
 7 function Empty return Stack;
 8 procedure Push (S : in out Stack; E : Element);
 9 function Pop (S : in out Stack) return Element;
10
11private
12 type Stack is record
13 Top : Integer;
14 -- ...
15 end record;
16
17end Stack_Package;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_01
MD5: 2b15e13e850435fb93406054d70b51c6

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
stack_package.ads:9:13: error: function with "in out" parameter is not allowed in SPARK
stack_package.ads:9:13: error: violation of aspect SPARK_Mode at line 2
gnatprove: error during analysis of data and information flow

Side-effects in expressions are not allowed in SPARK. Therefore, Pop
is not allowed to modify its parameter S.

Example #2

Let's turn to an abstract state machine version of a stack, where the unit
provides a single instance of a stack. The content of the stack (global
variables Content and Top) is not directly visible to clients. In
this stripped-down version, only the function Pop is available to
clients. The package spec and body are marked as being in the SPARK subset.

global_stack.ads

1package Global_Stack
2 with SPARK_Mode => On
3is
4 type Element is new Integer;
5
6 function Pop return Element;
7
8end Global_Stack;

global_stack.adb

 1package body Global_Stack
 2 with SPARK_Mode => On
 3is
 4 Max : constant Natural := 100;
 5 type Element_Array is array (1 .. Max) of Element;
 6
 7 Content : Element_Array;
 8 Top : Natural;
 9
10 function Pop return Element is
11 E : constant Element := Content (Top);
12 begin
13 Top := Top - 1;
14 return E;
15 end Pop;
16
17end Global_Stack;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_02
MD5: 8c4eb564643eef48264b5e43a6f580b9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
global_stack.adb:7:04: warning: variable "Content" is read but never assigned [-gnatwv]
global_stack.ads:6:13: error: function with output global "Top" is not allowed in SPARK
gnatprove: error during analysis of data and information flow

As above, functions should be free from side-effects. Here, Pop updates
the global variable Top, which is not allowed in SPARK.

Example #3

We now consider two procedures: Permute and Swap. Permute
applies a circular permutation to the value of its three parameters.
Swap then uses Permute to swap the value of X and Y.

p.ads

1package P
2 with SPARK_Mode => On
3is
4 procedure Permute (X, Y, Z : in out Positive);
5 procedure Swap (X, Y : in out Positive);
6end P;

p.adb

 1package body P
 2 with SPARK_Mode => On
 3is
 4 procedure Permute (X, Y, Z : in out Positive) is
 5 Tmp : constant Positive := X;
 6 begin
 7 X := Y;
 8 Y := Z;
 9 Z := Tmp;
10 end Permute;
11
12 procedure Swap (X, Y : in out Positive) is
13 begin
14 Permute (X, Y, Y);
15 end Swap;
16end P;

test_swap.adb

 1with P; use P;
 2
 3procedure Test_Swap
 4 with SPARK_Mode => On
 5is
 6 A : Integer := 1;
 7 B : Integer := 2;
 8begin
 9 Swap (A, B);
10end Test_Swap;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_03
MD5: 0868a806061d86af4d2a03b1e7dc83c2

Build output

p.adb:14:19: error: writable actual for "Y" overlaps with actual for "Z"
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
p.adb:14:19: error: writable actual for "Y" overlaps with actual for "Z"
gnatprove: error during generation of Global contracts

Here, the values for parameters Y and Z are aliased in the call to
Permute, which is not allowed in SPARK. In fact, in this particular
case, this is even a violation of Ada rules so the same error is issued by
the Ada compiler.

In this example, we see the reason why aliasing is not allowed in SPARK:
since Y and Z are Positive, they are passed by copy and the
result of the call to Permute depends on the order in which they're
copied back after the call.

Example #4

Here, the Swap procedure is used to swap the value of the two record
components of R.

p.ads

 1package P
 2 with SPARK_Mode => On
 3is
 4 type Rec is record
 5 F1 : Positive;
 6 F2 : Positive;
 7 end record;
 8
 9 procedure Swap_Fields (R : in out Rec);
10 procedure Swap (X, Y : in out Positive);
11end P;

p.adb

 1package body P
 2 with SPARK_Mode => On
 3is
 4 procedure Swap (X, Y : in out Positive) is
 5 Tmp : constant Positive := X;
 6 begin
 7 X := Y;
 8 Y := Tmp;
 9 end Swap;
10
11 procedure Swap_Fields (R : in out Rec) is
12 begin
13 Swap (R.F1, R.F2);
14 end Swap_Fields;
15
16end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_04
MD5: ae4d3ebe8dd1a8f67f35cedffdea2ac9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

This code is correct. The call to Swap is safe: two different
components of the same record can't refer to the same object.

Example #5

Here's a slight modification of the previous example using an array instead
of a record: Swap_Indexes calls Swap on values stored in the array
A.

p.ads

1package P
2 with SPARK_Mode => On
3is
4 type P_Array is array (Natural range <>) of Positive;
5
6 procedure Swap_Indexes (A : in out P_Array; I, J : Natural);
7 procedure Swap (X, Y : in out Positive);
8end P;

p.adb

 1package body P
 2 with SPARK_Mode => On
 3is
 4 procedure Swap (X, Y : in out Positive) is
 5 Tmp : constant Positive := X;
 6 begin
 7 X := Y;
 8 Y := Tmp;
 9 end Swap;
10
11 procedure Swap_Indexes (A : in out P_Array; I, J : Natural) is
12 begin
13 Swap (A (I), A (J));
14 end Swap_Indexes;
15
16end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_05
MD5: 62a95179572e36443995ff54a2d5ef08

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
p.adb:13:13: medium: formal parameters "X" and "Y" might be aliased (SPARK RM 6.4.2)
gnatprove: unproved check messages considered as errors

GNATprove detects a possible case of aliasing. Unlike the previous example,
it has no way of knowing that the two elements A (I) and A (J) are
actually distinct when we call Swap. GNATprove issues a check message
here instead of an error, giving you the possibility of justifying the
message after review (meaning that you've verified manually that this
can't, in fact, occur).

Example #6

We now consider a package declaring a type Dictionary, an array
containing a word per letter. The procedure Store allows us to insert a
word at the correct index in a dictionary.

p.ads

 1with Ada.Finalization;
 2
 3package P
 4 with SPARK_Mode => On
 5is
 6 subtype Letter is Character range 'a' .. 'z';
 7 type String_Access is new Ada.Finalization.Controlled with record
 8 Ptr : access String;
 9 end record;
10 type Dictionary is array (Letter) of String_Access;
11
12 procedure Store (D : in out Dictionary; W : String);
13end P;

p.adb

1package body P
2 with SPARK_Mode => On
3is
4 procedure Store (D : in out Dictionary; W : String) is
5 First_Letter : constant Letter := W (W'First);
6 begin
7 D (First_Letter).Ptr := new String'(W);
8 end Store;
9end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_06
MD5: 9175bcd1474e2143462b860c01d8602e

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
p.adb:7:07: error: "String_Access" is not allowed in SPARK (due to controlled types)
p.adb:7:07: error: violation of aspect SPARK_Mode at line 2
p.adb:7:31: error: borrow or observe of an expression which is not part of stand-alone object or parameter is not allowed in SPARK (SPARK RM 3.10(3)))
p.adb:7:31: error: violation of aspect SPARK_Mode at line 2
p.ads:7:09: error: "Controlled" is not allowed in SPARK (due to controlled types)
p.ads:7:09: error: violation of aspect SPARK_Mode at line 4
p.ads:10:04: error: "String_Access" is not allowed in SPARK (due to controlled types)
p.ads:10:04: error: violation of aspect SPARK_Mode at line 4
gnatprove: error during analysis of data and information flow

This code is not correct: controlled types are not part of the SPARK
subset. The solution here is to use SPARK_Mode to separate the
definition of String_Access from the rest of the code in a fine
grained manner.

Example #7

Here's a new version of the previous example, which we've modified to hide the
controlled type inside the private part of package P, using pragma
SPARK_Mode (Off) at the start of the private part.

p.ads

 1with Ada.Finalization;
 2
 3package P
 4 with SPARK_Mode => On
 5is
 6 subtype Letter is Character range 'a' .. 'z';
 7 type String_Access is private;
 8 type Dictionary is array (Letter) of String_Access;
 9
10 function New_String_Access (W : String) return String_Access;
11
12 procedure Store (D : in out Dictionary; W : String);
13
14private
15 pragma SPARK_Mode (Off);
16
17 type String_Access is new Ada.Finalization.Controlled with record
18 Ptr : access String;
19 end record;
20
21 function New_String_Access (W : String) return String_Access is
22 (Ada.Finalization.Controlled with Ptr => new String'(W));
23end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_07
MD5: cb04206c9734eb95f6444757d005dae2

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Since the controlled type is defined and used inside of a part of the code
ignored by GNATprove, this code is correct.

Example #8

Let's put together the new spec for package P with the body of P seen
previously.

p.ads

 1with Ada.Finalization;
 2
 3package P
 4 with SPARK_Mode => On
 5is
 6 subtype Letter is Character range 'a' .. 'z';
 7 type String_Access is private;
 8 type Dictionary is array (Letter) of String_Access;
 9
10 function New_String_Access (W : String) return String_Access;
11
12 procedure Store (D : in out Dictionary; W : String);
13
14private
15 pragma SPARK_Mode (Off);
16
17 type String_Access is new Ada.Finalization.Controlled with record
18 Ptr : access String;
19 end record;
20
21 function New_String_Access (W : String) return String_Access is
22 (Ada.Finalization.Controlled with Ptr => new String'(W));
23end P;

p.adb

1package body P
2 with SPARK_Mode => On
3is
4 procedure Store (D : in out Dictionary; W : String) is
5 First_Letter : constant Letter := W (W'First);
6 begin
7 D (First_Letter) := New_String_Access (W);
8 end Store;
9end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_08
MD5: dacb2d50d0ddc6c620ee9945cb819369

Prover output

Phase 1 of 2: generation of Global contracts ...
p.adb:1:01: error: incorrect application of SPARK_Mode at /vagrant/frontend/dist/test_output/projects/Courses/Intro_To_Spark/Overview/Example_08/dacb2d50d0ddc6c620ee9945cb819369/main_spark.adc:12
p.adb:1:01: error: value Off was set for SPARK_Mode on "P" at p.ads:15
p.adb:2:08: error: incorrect use of SPARK_Mode
p.adb:2:08: error: value Off was set for SPARK_Mode on "P" at p.ads:15
gnatprove: error during generation of Global contracts

The body of Store doesn't actually use any construct that's not in the
SPARK subset, but we nevertheless can't set SPARK_Mode to On for
P's body because it has visibility to P's private part, which is
not in SPARK, even if we don't use it.

Example #9

Next, we moved the declaration and the body of the procedure Store to
another package named Q.

p.ads

 1with Ada.Finalization;
 2
 3package P
 4 with SPARK_Mode => On
 5is
 6 subtype Letter is Character range 'a' .. 'z';
 7 type String_Access is private;
 8 type Dictionary is array (Letter) of String_Access;
 9
10 function New_String_Access (W : String) return String_Access;
11
12private
13 pragma SPARK_Mode (Off);
14
15 type String_Access is new Ada.Finalization.Controlled with record
16 Ptr : access String;
17 end record;
18
19 function New_String_Access (W : String) return String_Access is
20 (Ada.Finalization.Controlled with Ptr => new String'(W));
21end P;

q.ads

1with P; use P;
2package Q
3 with SPARK_Mode => On
4is
5 procedure Store (D : in out Dictionary; W : String);
6end Q;

q.adb

1package body Q
2 with SPARK_Mode => On
3is
4 procedure Store (D : in out Dictionary; W : String) is
5 First_Letter : constant Letter := W (W'First);
6 begin
7 D (First_Letter) := New_String_Access (W);
8 end Store;
9end Q;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_09
MD5: b397e82987c100de5a53ede16fbef37f

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

And now everything is fine: we've managed to retain the use of the controlled
type while having most of our code in the SPARK subset so GNATprove is able
to analyze it.

Example #10

Our final example is a package with two functions to search for the value 0
inside an array A. The first raises an exception if 0 isn't found in
A while the other simply returns 0 in that case.

p.ads

 1package P
 2 with SPARK_Mode => On
 3is
 4 type N_Array is array (Positive range <>) of Natural;
 5 Not_Found : exception;
 6
 7 function Search_Zero_P (A : N_Array) return Positive;
 8
 9 function Search_Zero_N (A : N_Array) return Natural;
10end P;

p.adb

 1package body P
 2 with SPARK_Mode => On
 3is
 4 function Search_Zero_P (A : N_Array) return Positive is
 5 begin
 6 for I in A'Range loop
 7 if A (I) = 0 then
 8 return I;
 9 end if;
10 end loop;
11 raise Not_Found;
12 end Search_Zero_P;
13
14 function Search_Zero_N (A : N_Array) return Natural
15 with SPARK_Mode => Off is
16 begin
17 return Search_Zero_P (A);
18 exception
19 when Not_Found => return 0;
20 end Search_Zero_N;
21end P;

Code block metadata

Project: Courses.Intro_To_Spark.Overview.Example_10
MD5: 4b9656698ab1d42cebc72817f8a00637

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
p.adb:11:07: medium: exception might be raised
gnatprove: unproved check messages considered as errors

This code is perfectly correct, despite the use of exception handling,
because we've carefully isolated this non-SPARK feature in a function body
marked with a SPARK_Mode of Off so it's ignored by GNATprove.
However, GNATprove tries to show that Not_Found is never raised in
Search_Zero_P, producing a message about a possible exception being
raised. Looking at Search_Zero_N, it's indeed likely that an exception
is meant to be raised in some cases, which means you need to verify that
Not_Found is only raised when appropriate using other methods such as
peer review or testing.

Footnotes

[#1]
https://www.adacore.com/codepeer

[#2]
https://www.adacore.com/gnatpro

[#3]
https://www.adacore.com/gnatpro/toolsuite/gps

[#4]
https://en.wikipedia.org/wiki/Aliasing_(computing)

[#5]
https://en.wikipedia.org/wiki/Pointer_(computer_programming)

[#6]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#language-restrictions

[#7]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/spark_mode.html

Flow Analysis

In this section we present the flow analysis capability provided by the
GNATprove tool, a critical tool for using SPARK.

What does flow analysis do?

Flow analysis concentrates primarily on variables. It models how
information flows through them during a subprogram's execution, connecting
the final values of variables to their initial values. It analyzes global
variables declared at library level, local variables, and formal parameters
of subprograms.

Nesting of subprograms creates what we call scope variables: variables
declared locally to an enclosing unit. From the perspective of a nested
subprogram, scope variables look very much like global variables

Flow analysis is usually fast, roughly as fast as compilation. It detects
various types of errors and finds violations of some SPARK legality rules,
such as the absence of aliasing and freedom of expressions from
side-effects. We discussed these rules in the SPARK Overview.

Flow analysis is sound: if it doesn't detect any errors of a type it's
supposed to detect, we know for sure there are no such errors.

Errors Detected

Uninitialized Variables

We now present each class of errors detected by flow analysis. The first
is the reading of an uninitialized variable. This is nearly always an
error: it introduces non-determinism and breaks the type system because the
value of an uninitialized variable may be outside the range of its subtype.
For these reasons, SPARK requires every variable to be initialized before
being read.

Flow analysis is responsible for ensuring that SPARK code always fulfills
this requirement. For example, in the function Max_Array shown below,
we've neglected to initialize the value of Max prior to entering the
loop. As a consequence, the value read by the condition of the if statement
may be uninitialized. Flow analysis detects and reports this error.

show_uninitialized.ads

1package Show_Uninitialized is
2
3 type Array_Of_Naturals is array (Integer range <>) of Natural;
4
5 function Max_Array (A : Array_Of_Naturals) return Natural;
6
7end Show_Uninitialized;

show_uninitialized.adb

 1package body Show_Uninitialized is
 2
 3 function Max_Array (A : Array_Of_Naturals) return Natural is
 4 Max : Natural;
 5 begin
 6 for I in A'Range loop
 7 if A (I) > Max then -- Here Max may not be initialized
 8 Max := A (I);
 9 end if;
10 end loop;
11 return Max;
12 end Max_Array;
13
14end Show_Uninitialized;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Uninitialized
MD5: 82fe32cbe33e25bac5466f86ee2e03c4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_uninitialized.adb:7:21: warning: "Max" may be referenced before it has a value [enabled by default]
show_uninitialized.adb:7:21: medium: "Max" might not be initialized
show_uninitialized.adb:11:14: medium: "Max" might not be initialized
gnatprove: unproved check messages considered as errors

Note

For more details on how flow analysis verifies data initialization, see the
SPARK User's Guide[#1].

Ineffective Statements

Ineffective statements are different than dead code: they're executed, and
often even modify the value of variables, but have no effect on any of the
subprogram's visible outputs: parameters, global variables or the function
result. Ineffective statements should be avoided because they make the code
less readable and more difficult to maintain.

More importantly, they're often caused by errors in the program: the
statement may have been written for some purpose, but isn't accomplishing
that purpose. These kinds of errors can be difficult to detect in other
ways.

For example, the subprograms Swap1 and Swap2 shown below don't
properly swap their two parameters X and Y. This error caused a
statement to be ineffective. That ineffective statement is not an error in
itself, but flow analysis produces a warning since it can be indicative of
an error, as it is here.

show_ineffective_statements.ads

1package Show_Ineffective_Statements is
2
3 type T is new Integer;
4
5 procedure Swap1 (X, Y : in out T);
6 procedure Swap2 (X, Y : in out T);
7
8end Show_Ineffective_Statements;

show_ineffective_statements.adb

 1package body Show_Ineffective_Statements is
 2
 3 procedure Swap1 (X, Y : in out T) is
 4 Tmp : T;
 5 begin
 6 Tmp := X; -- This statement is ineffective
 7 X := Y;
 8 Y := X;
 9 end Swap1;
10
11 Tmp : T := 0;
12
13 procedure Swap2 (X, Y : in out T) is
14 Temp : T := X; -- This variable is unused
15 begin
16 X := Y;
17 Y := Tmp;
18 end Swap2;
19
20end Show_Ineffective_Statements;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Ineffective_Statements
MD5: 473a9215e9e98bd25147998d43847a12

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_ineffective_statements.adb:6:11: warning: unused assignment
show_ineffective_statements.adb:14:07: warning: initialization of "Temp" has no effect
show_ineffective_statements.ads:5:21: warning: unused initial value of "X"
show_ineffective_statements.ads:6:21: warning: unused initial value of "X"

So far, we've seen examples where flow analysis warns about ineffective
statements and unused variables.

Incorrect Parameter Mode

Parameter modes are an important part of documenting the usage of a
subprogram and affect the code generated for that subprogram. Flow analysis
checks that each specified parameter mode corresponds to the usage of that
parameter in the subprogram's body. It checks that an in parameter
is never modified, either directly or through a subprogram call, checks
that the initial value of an out parameter is never read in the
subprogram (since it may not be defined on subprogram entry), and warns
when an in out parameter isn't modified or when its initial value
isn't used. All of these may be signs of an error.

We see an example below. The subprogram Swap is incorrect and GNATprove
warns about an input which isn't read:

show_incorrect_param_mode.ads

1package Show_Incorrect_Param_Mode is
2
3 type T is new Integer;
4
5 procedure Swap (X, Y : in out T);
6
7end Show_Incorrect_Param_Mode;

show_incorrect_param_mode.adb

 1package body Show_Incorrect_Param_Mode is
 2
 3 procedure Swap (X, Y : in out T) is
 4 Tmp : T := X;
 5 begin
 6 Y := X; -- The initial value of Y is not used
 7 X := Tmp; -- Y is computed to be an out parameter
 8 end Swap;
 9
10end Show_Incorrect_Param_Mode;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Incorrect_Param_Mode
MD5: 1e33dbf461daab0daed01c83025232fc

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_incorrect_param_mode.ads:5:23: warning: unused initial value of "Y"

In SPARK, unlike Ada, you should declare an out parameter to be
in out if it's not modified on every path, in which case its value
may depend on its initial value. SPARK is stricter than Ada to allow more
static detection of errors. This table summarizes SPARK's valid parameter
modes as a function of whether reads and writes are done to the parameter.

	Initial value
read

	Written on
some path

	Written on
every path

	Parameter mode

	X

	
	
	in

	X

	X

	
	in out

	X

	
	X

	in out

	
	X

	
	in out

	
	
	X

	out

Additional Verifications

Global Contracts

So far, none of the verifications we've seen require you to write any
additional annotations. However, flow analysis also checks flow annotations
that you write. In SPARK, you can specify the set of global and scoped
variables accessed or modified by a subprogram. You do this using a
contract named Global.

When you specify a Global contract for a subprogram, flow analysis
checks that it's both correct and complete, meaning that no variables other
than those stated in the contract are accessed or modified, either directly
or through a subprogram call, and that all those listed are accessed or
modified. For example, we may want to specify that the function
Get_Value_Of_X reads the value of the global variable X and doesn't
access any other global variable. If we do this through a comment, as is
usually done in other languages, GNATprove can't verify that the code
complies with this specification:

package Show_Global_Contracts is

 X : Natural := 0;

 function Get_Value_Of_X return Natural;
 -- Get_Value_Of_X reads the value of the global variable X

end Show_Global_Contracts;

You write global contracts as part of the subprogram specification. In
addition to their value in flow analysis, they also provide useful
information to users of a subprogram. The value you specify for the
Global aspect is an aggregate-like list of global variable names,
grouped together according to their mode.

In the example below, the procedure Set_X_To_Y_Plus_Z reads both Y
and Z. We indicate this by specifying them as the value for
Input. It also writes X, which we specify using
Output. Since Set_X_To_X_Plus_Y both writes X and reads its
initial value, X's mode is In_Out. Like parameters, if no mode
is specified in a Global aspect, the default is Input. We
see this in the case of the declaration of Get_Value_Of_X. Finally, if
a subprogram, such as Incr_Parameter_X, doesn't reference any global
variables, you set the value of the global contract to null.

show_global_contracts.ads

 1package Show_Global_Contracts is
 2
 3 X, Y, Z : Natural := 0;
 4
 5 procedure Set_X_To_Y_Plus_Z with
 6 Global => (Input => (Y, Z), -- reads values of Y and Z
 7 Output => X); -- modifies value of X
 8
 9 procedure Set_X_To_X_Plus_Y with
10 Global => (Input => Y, -- reads value of Y
11 In_Out => X); -- modifies value of X and
12 -- also reads its initial value
13
14 function Get_Value_Of_X return Natural with
15 Global => X; -- reads the value of the global variable X
16
17 procedure Incr_Parameter_X (X : in out Natural) with
18 Global => null; -- do not reference any global variable
19
20end Show_Global_Contracts;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Global_Contracts
MD5: 2cbf90f2d27b6b0043a2e29449e79df9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Note

For more details on global contracts, see the
SPARK User's Guide[#2].

Depends Contracts

You may also supply a Depends contract for a subprogram to specify
dependencies between its inputs and outputs. These dependencies include not
only global variables but also parameters and the function's result. When
you supply a Depends contract for a subprogram, flow analysis checks
that it's correct and complete, that is, for each dependency you list, the
variable depends on those listed and on no others.

For example, you may want to say that the new value of each parameter of
Swap, shown below, depends only on the initial value of the other
parameter and that the value of X after the return of Set_X_To_Zero
doesn't depend on any global variables. If you indicate this through a
comment, as you often do in other languages, GNATprove can't verify that
this is actually the case.

package Show_Depends_Contracts is

 type T is new Integer;

 procedure Swap (X, Y : in out T);
 -- The value of X (resp. Y) after the call depends only
 -- on the value of Y (resp. X) before the call

 X : Natural;
 procedure Set_X_To_Zero;
 -- The value of X after the call depends on no input

end Show_Depends_Contracts;

Like Global contracts, you specify a Depends contract in
subprogram declarations using an aspect. Its value is a list of one or more
dependency relations between the outputs and inputs of the subprogram. Each
relation is represented as two lists of variable names separated by an
arrow. On the left of each arrow are variables whose final value
depends on the initial value of the variables you list on the right.

For example, here we indicate that the final value of each parameter of
Swap depends only on the initial value of the other parameter. If the
subprogram is a function, we list its result as an output, using the
Result attribute, as we do for Get_Value_Of_X below.

show_depends_contracts.ads

 1package Show_Depends_Contracts is
 2
 3 type T is new Integer;
 4
 5 X, Y, Z : T := 0;
 6
 7 procedure Swap (X, Y : in out T) with
 8 Depends => (X => Y,
 9 -- X depends on the initial value of Y
10 Y => X);
11 -- Y depends on the initial value of X
12
13 function Get_Value_Of_X return T with
14 Depends => (Get_Value_Of_X'Result => X);
15 -- result depends on the initial value of X
16
17 procedure Set_X_To_Y_Plus_Z with
18 Depends => (X => (Y, Z));
19 -- X depends on the initial values of Y and Z
20
21 procedure Set_X_To_X_Plus_Y with
22 Depends => (X =>+ Y);
23 -- X depends on Y and X's initial value
24
25 procedure Do_Nothing (X : T) with
26 Depends => (null => X);
27 -- no output is affected by X
28
29 procedure Set_X_To_Zero with
30 Depends => (X => null);
31 -- X depends on no input
32
33end Show_Depends_Contracts;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Depends_Contracts
MD5: 290866c4208b6deff717a402bc2aef34

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Often, the final value of a variable depends on its own initial value. You
can specify this in a concise way using the + character, as we did
in the specification of Set_X_To_X_Plus_Y above. If there's more than
one variable on the left of the arrow, a + means each variables
depends on itself, not that they all depend on each other. You can write
the corresponding dependency with (=> +) or without (=>+)
whitespace.

If you have a program where an input isn't used to compute the final value
of any output, you express that by writting null on the left of the
dependency relation, as we did for the Do_Nothing subprogram above.
You can only write one such dependency relation, which lists all unused
inputs of the subprogram, and it must be written last. Such an annotation
also silences flow analysis' warning about unused parameters. You can also
write null on the right of a dependency relation to indicate that an
output doesn't depend on any input. We do that above for the procedure
Set_X_To_Zero.

Note

For more details on depends contracts, see the
SPARK User's Guide[#3].

Shortcomings

Modularity

Flow analysis is sound, meaning that if it doesn't output a message on some
analyzed SPARK code, you can be assured that none of the errors it tests
for can occur in that code. On the other hand, flow analysis often issues
messages when there are, in fact, no errors. The first, and probably most
common reason for this relates to modularity.

To scale flow analysis to large projects, verifications are usually done on
a per-subprogram basis, including detection of uninitialized variables. To
analyze this modularly, flow analysis needs to assume the initialization of
inputs on subprogram entry and modification of outputs during subprogram
execution. Therefore, each time a subprogram is called, flow analysis
checks that global and parameter inputs are initialized and each time a
subprogram returns, it checks that global and parameter outputs were
modified.

This can produce error messages on perfectly correct subprograms. An
example is Set_X_To_Y_Plus_Z below, which only sets its out
parameter X when Overflow is False.

set_x_to_y_plus_z.adb

 1procedure Set_X_To_Y_Plus_Z
 2 (Y, Z : Natural;
 3 X : out Natural;
 4 Overflow : out Boolean)
 5is
 6begin
 7 if Natural'Last - Z < Y then
 8 Overflow := True; -- X should be initialized on every path
 9 else
10 Overflow := False;
11 X := Y + Z;
12 end if;
13end Set_X_To_Y_Plus_Z;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Set_X_To_Y_Plus_Z
MD5: be47cd769d2a7267c0bd1bb2ef0d6328

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
set_x_to_y_plus_z.adb:3:04: medium: "X" might not be initialized in "Set_X_To_Y_Plus_Z" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "X" on all paths or make "X" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

The message means that flow analysis wasn't able to verify that the program
didn't read an uninitialized variable. To solve this problem, you can
either set X to a dummy value when there's an overflow or manually
verify that X is never used after a call to Set_X_To_Y_Plus_Z that
returned True as the value of Overflow.

Composite Types

Another common cause of false alarms is caused by the way flow analysis
handles composite types. Let's start with arrays.

Flow analysis treats an entire array as single object instead of one object
per element, so it considers modifying a single element to be a
modification of the array as a whole. Obviously, this makes reasoning
about which global variables are accessed less precise and hence the
dependencies of those variables are also less precise. This also affects
the ability to accurately detect reads of uninitialized data.

It's sometimes impossible for flow analysis to determine if an entire array
object has been initialized. For example, after we write code to initialize
every element of an unconstrained array A in chunks, we may still receive a
message from flow analysis claiming that the array isn't initialized. To
resolve this issue, you can either use a simpler loop over the full range of
the array, or (even better) an aggregate assignment, or, if that's not possible,
verify initialization of the object manually.

show_composite_types_shortcoming.ads

1package Show_Composite_Types_Shortcoming is
2
3 type T is array (Natural range <>) of Integer;
4
5 procedure Init_Chunks (A : out T);
6 procedure Init_Loop (A : out T);
7 procedure Init_Aggregate (A : out T);
8
9end Show_Composite_Types_Shortcoming;

show_composite_types_shortcoming.adb

 1package body Show_Composite_Types_Shortcoming is
 2
 3 procedure Init_Chunks (A : out T) is
 4 begin
 5 A (A'First) := 0;
 6 for I in A'First + 1 .. A'Last loop
 7 A (I) := 0;
 8 end loop;
 9 -- flow analysis doesn't know that A is initialized
10 end Init_Chunks;
11
12 procedure Init_Loop (A : out T) is
13 begin
14 for I in A'Range loop
15 A (I) := 0;
16 end loop;
17 -- flow analysis knows that A is initialized
18 end Init_Loop;
19
20 procedure Init_Aggregate (A : out T) is
21 begin
22 A := (others => 0);
23 -- flow analysis knows that A is initialized
24 end Init_Aggregate;
25
26end Show_Composite_Types_Shortcoming;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Composite_Types_Shortcoming
MD5: a366dcdd141191466027b2b928560c5e

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_composite_types_shortcoming.ads:5:27: medium: "A" might not be initialized in "Init_Chunks" [reason for check: OUT parameter should be fully initialized on return] [possible fix: initialize "A" on all paths, make "A" an IN OUT parameter or annotate it with aspect Relaxed_Initialization]
gnatprove: unproved check messages considered as errors

Flow analysis is more precise on record objects because it tracks the value
of each component of a record separately within a single subprogram. So
when a record object is initialized by successive assignments of its
components, flow analysis knows that the entire object is initialized.
However, record objects are still treated as single objects when analyzed
as an input or output of a subprogram.

show_record_flow_analysis.ads

 1package Show_Record_Flow_Analysis is
 2
 3 type Rec is record
 4 F1 : Natural;
 5 F2 : Natural;
 6 end record;
 7
 8 procedure Init (R : out Rec);
 9
10end Show_Record_Flow_Analysis;

show_record_flow_analysis.adb

 1package body Show_Record_Flow_Analysis is
 2
 3 procedure Init (R : out Rec) is
 4 begin
 5 R.F1 := 0;
 6 R.F2 := 0;
 7 -- R is initialized
 8 end Init;
 9
10end Show_Record_Flow_Analysis;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Record_Flow_Analysis_1
MD5: 24cd553b87b737536912b1bb780f6402

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_record_flow_analysis.ads:8:20: info: initialization of "R" proved

Flow analysis complains when a procedure call initializes only some
components of a record object. It'll notify you of uninitialized
components, as we see in subprogram Init_F2 below.

show_record_flow_analysis.ads

 1package Show_Record_Flow_Analysis is
 2
 3 type Rec is record
 4 F1 : Natural;
 5 F2 : Natural;
 6 end record;
 7
 8 procedure Init (R : out Rec);
 9 procedure Init_F2 (R : in out Rec);
10
11end Show_Record_Flow_Analysis;

show_record_flow_analysis.adb

 1package body Show_Record_Flow_Analysis is
 2
 3 procedure Init_F2
 4 (R : in out Rec) is
 5 begin
 6 R.F2 := 0;
 7 end Init_F2;
 8
 9 procedure Init (R : out Rec) is
10 begin
11 R.F1 := 0;
12 Init_F2 (R); -- R should be initialized before this call
13 end Init;
14
15end Show_Record_Flow_Analysis;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Record_Flow_Analysis_2
MD5: efeecb787bf9d68977ed9701689cd6c4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_record_flow_analysis.adb:12:16: high: "R.F2" is not initialized
gnatprove: unproved check messages considered as errors

Value Dependency

Flow analysis is not value-dependent: it never reasons about the values of
expressions, only whether they have been set to some value or not. As a
consequence, if some execution path in a subprogram is impossible, but the
impossibility can only be determined by looking at the values of
expressions, flow analysis still considers that path feasible and may emit
messages based on it believing that execution along such a path is
possible.

For example, in the version of Absolute_Value below, flow analysis
computes that R is uninitialized on a path that enters neither of the
two conditional statements. Because it doesn't consider values of
expressions, it can't know that such a path is impossible.

absolute_value.adb

 1procedure Absolute_Value
 2 (X : Integer;
 3 R : out Natural)
 4is
 5begin
 6 if X < 0 then
 7 R := -X;
 8 end if;
 9 if X >= 0 then
10 R := X;
11 end if;
12 -- flow analysis doesn't know that R is initialized
13end Absolute_Value;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Absolute_Value_1
MD5: 69c233d22afdfdac679bf379b353a8d4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
absolute_value.adb:3:04: medium: "R" might not be initialized in "Absolute_Value" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "R" on all paths or make "R" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

To avoid this problem, you should make the control flow explicit, as in
this second version of Absolute_Value:

absolute_value.adb

 1procedure Absolute_Value
 2 (X : Integer;
 3 R : out Natural)
 4is
 5begin
 6 if X < 0 then
 7 R := -X;
 8 else
 9 R := X;
10 end if;
11 -- flow analysis knows that R is initialized
12end Absolute_Value;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Absolute_Value_2
MD5: 9c773547f81e82a7aa1b45132b105937

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Contract Computation

The final cause of unexpected flow messages that we'll discuss also comes
from inaccuracy in computations of contracts. As we explained earlier, both
Global and Depends contracts are optional, but GNATprove uses
their data for some of its analysis.

For example, flow analysis can't detect reads from uninitialized variables
without knowing the set of variables accessed. It needs to analyze and
check both the Depends contracts you wrote for a subprogram and
those you wrote for callers of that subprogram. Since each flow contract on
a subprogram depends on the flow contracts of all the subprograms called
inside its body, this computation can often be quite
time-consuming. Therefore, flow analysis sometimes trades-off the precision
of this computation against the time a more precise computation would take.

This is the case for Depends contracts, where flow analysis simply
assumes the worst, that each subprogram's output depends on all of that
subprogram's inputs. To avoid this assumption, all you have to do is supply
contracts when default ones are not precise enough. You may also want to
supply Global contracts to further speed up flow analysis on larger
programs.

Code Examples / Pitfalls

Example #1

The procedure Search_Array searches for an occurrence of element E
in an array A. If it finds one, it stores the index of the element in
Result. Otherwise, it sets Found to False.

show_search_array.ads

 1package Show_Search_Array is
 2
 3 type Array_Of_Positives is array (Natural range <>) of Positive;
 4
 5 procedure Search_Array
 6 (A : Array_Of_Positives;
 7 E : Positive;
 8 Result : out Integer;
 9 Found : out Boolean);
10
11end Show_Search_Array;

show_search_array.adb

 1package body Show_Search_Array is
 2
 3 procedure Search_Array
 4 (A : Array_Of_Positives;
 5 E : Positive;
 6 Result : out Integer;
 7 Found : out Boolean) is
 8 begin
 9 for I in A'Range loop
10 if A (I) = E then
11 Result := I;
12 Found := True;
13 return;
14 end if;
15 end loop;
16 Found := False;
17 end Search_Array;
18
19end Show_Search_Array;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_01
MD5: d2a27a5bde247767e2f6cd2d42a2d629

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_search_array.ads:8:07: medium: "Result" might not be initialized in "Search_Array" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "Result" on all paths or make "Result" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

GNATprove produces a message saying that Result is possibly
uninitialized on return. There are perfectly legal uses of the function
Search_Array, but flow analysis detects that Result is not
initialized on the path that falls through from the loop. Even though this
program is correct, you shouldn't ignore the message: it means flow
analysis cannot guarantee that Result is always initialized at the call
site and so assumes any read of Result at the call site will read
initialized data. Therefore, you should either initialize Result when
Found is false, which silences flow analysis, or verify this assumption
at each call site by other means.

Example #2

To avoid the message previously issued by GNATprove, we modify
Search_Array to raise an exception when E isn't found in A:

show_search_array.ads

 1package Show_Search_Array is
 2
 3 type Array_Of_Positives is array (Natural range <>) of Positive;
 4
 5 Not_Found : exception;
 6
 7 procedure Search_Array
 8 (A : Array_Of_Positives;
 9 E : Positive;
10 Result : out Integer);
11end Show_Search_Array;

show_search_array.adb

 1package body Show_Search_Array is
 2
 3 procedure Search_Array
 4 (A : Array_Of_Positives;
 5 E : Positive;
 6 Result : out Integer) is
 7 begin
 8 for I in A'Range loop
 9 if A (I) = E then
10 Result := I;
11 return;
12 end if;
13 end loop;
14 raise Not_Found;
15 end Search_Array;
16
17end Show_Search_Array;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_02
MD5: fa159faeb68974b1af3de2112e086b16

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_search_array.adb:14:07: medium: exception might be raised
gnatprove: unproved check messages considered as errors

Flow analysis doesn't emit any messages in this case, meaning it can verify
that Result can't be read in SPARK code while uninitialized. But why is
that, since Result is still not initialized when E is not in A?
This is because the exception, Not_Found, can never be caught within
SPARK code (SPAK doesn't allow exception handlers). However, the GNATprove
tool also tries to ensure the absence of runtime errors in SPARK code, so
tries to prove that Not_Found is never raised. When it can't do that
here, it produces a different message.

Example #3

In this example, we're using a discriminated record for the result of
Search_Array instead of conditionally raising an exception. By using
such a structure, the place to store the index at which E was found
exists only when E was indeed found. So if it wasn't found, there's
nothing to be initialized.

show_search_array.ads

 1package Show_Search_Array is
 2
 3 type Array_Of_Positives is array (Natural range <>) of Positive;
 4
 5 type Search_Result (Found : Boolean := False) is record
 6 case Found is
 7 when True =>
 8 Content : Integer;
 9 when False => null;
10 end case;
11 end record;
12
13 procedure Search_Array
14 (A : Array_Of_Positives;
15 E : Positive;
16 Result : out Search_Result)
17 with Pre => not Result'Constrained;
18
19end Show_Search_Array;

show_search_array.adb

 1package body Show_Search_Array is
 2
 3 procedure Search_Array
 4 (A : Array_Of_Positives;
 5 E : Positive;
 6 Result : out Search_Result) is
 7 begin
 8 for I in A'Range loop
 9 if A (I) = E then
10 Result := (Found => True,
11 Content => I);
12 return;
13 end if;
14 end loop;
15 Result := (Found => False);
16 end Search_Array;
17
18end Show_Search_Array;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_03
MD5: 1d5ec5d78185fd75499b90b3d21f8ae2

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_search_array.adb:10:20: info: discriminant check proved
show_search_array.adb:15:14: info: discriminant check proved
show_search_array.ads:16:07: info: initialization of "Result" proved

This example is correct and flow analysis doesn't issue any message: it can
verify both that no uninitialized variables are read in Search_Array's
body, and that all its outputs are set on return. We've used the attribute
Constrained in the precondition of Search_Array to indicate that
the value of the Result in argument can be set to any variant of the
record type Search_Result, specifically to either the variant where
E was found and where it wasn't.

Example #4

The function Size_Of_Biggest_Increasing_Sequence is supposed to find
all sequences within its parameter A that contain elements with
increasing values and returns the length of the longest one. To do this, it
calls a nested procedure Test_Index iteratively on all the elements of
A. Test_Index checks if the sequence is still increasing. If so,
it updates the largest value seen so far in this sequence. If not, it
means it's found the end of a sequence, so it computes the size of that
sequence and stores it in Size_Of_Seq.

show_biggest_increasing_sequence.ads

1package Show_Biggest_Increasing_Sequence is
2
3 type Array_Of_Positives is array (Integer range <>) of Positive;
4
5 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
6 return Natural;
7
8end Show_Biggest_Increasing_Sequence;

show_biggest_increasing_sequence.adb

 1package body Show_Biggest_Increasing_Sequence is
 2
 3 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
 4 return Natural
 5 is
 6 Max : Natural;
 7 End_Of_Seq : Boolean;
 8 Size_Of_Seq : Natural;
 9 Beginning : Integer;
10
11 procedure Test_Index (Current_Index : Integer) is
12 begin
13 if A (Current_Index) >= Max then
14 Max := A (Current_Index);
15 End_Of_Seq := False;
16 else
17 Max := 0;
18 End_Of_Seq := True;
19 Size_Of_Seq := Current_Index - Beginning;
20 Beginning := Current_Index;
21 end if;
22 end Test_Index;
23
24 Biggest_Seq : Natural := 0;
25
26 begin
27 for I in A'Range loop
28 Test_Index (I);
29 if End_Of_Seq then
30 Biggest_Seq := Natural'Max (Size_Of_Seq, Biggest_Seq);
31 end if;
32 end loop;
33 return Biggest_Seq;
34 end Size_Of_Biggest_Increasing_Sequence;
35
36end Show_Biggest_Increasing_Sequence;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_04
MD5: e6083665827d9dee4e00bdce4c1e962f

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_biggest_increasing_sequence.adb:13:34: medium: "Max" might not be initialized, in call inlined at show_biggest_increasing_sequence.adb:28
show_biggest_increasing_sequence.adb:19:44: medium: "Beginning" might not be initialized, in call inlined at show_biggest_increasing_sequence.adb:28
show_biggest_increasing_sequence.adb:30:41: medium: "Size_Of_Seq" might not be initialized
gnatprove: unproved check messages considered as errors

However, this example is not correct. Flow analysis emits messages for
Test_Index stating that Max, Beginning, and Size_Of_Seq
should be initialized before being read. Indeed, when you look carefully,
you see that both Max and Beginning are missing initializations
because they are read in Test_Index before being written. As for
Size_Of_Seq, we only read its value when End_Of_Seq is true, so it
actually can't be read before being written, but flow analysis isn't able
to verify its initialization by using just flow information.

The call to Test_Index is automatically inlined by GNATprove, which
leads to another messages above. If GNATprove couldn't inline the call to
Test_Index, for example if it was defined in another unit, the same
messages would be issued on the call to Test_Index.

Example #5

In the following example, we model permutations as arrays where the element
at index I is the position of the I'th element in the
permutation. The procedure Init initializes a permutation to the
identity, where the I'th elements is at the I'th
position. Cyclic_Permutation calls Init and then swaps elements to
construct a cyclic permutation.

show_permutation.ads

 1package Show_Permutation is
 2
 3 type Permutation is array (Positive range <>) of Positive;
 4
 5 procedure Swap (A : in out Permutation;
 6 I, J : Positive);
 7
 8 procedure Init (A : out Permutation);
 9
10 function Cyclic_Permutation (N : Natural) return Permutation;
11
12end Show_Permutation;

show_permutation.adb

 1package body Show_Permutation is
 2
 3 procedure Swap (A : in out Permutation;
 4 I, J : Positive)
 5 is
 6 Tmp : Positive := A (I);
 7 begin
 8 A (I) := A (J);
 9 A (J) := Tmp;
10 end Swap;
11
12 procedure Init (A : out Permutation) is
13 begin
14 A (A'First) := A'First;
15 for I in A'First + 1 .. A'Last loop
16 A (I) := I;
17 end loop;
18 end Init;
19
20 function Cyclic_Permutation (N : Natural) return Permutation is
21 A : Permutation (1 .. N);
22 begin
23 Init (A);
24 for I in A'First .. A'Last - 1 loop
25 Swap (A, I, I + 1);
26 end loop;
27 return A;
28 end Cyclic_Permutation;
29
30end Show_Permutation;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_05
MD5: 219b06617c636c18543128d77f90fcee

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_permutation.ads:8:20: medium: "A" might not be initialized in "Init" [reason for check: OUT parameter should be fully initialized on return] [possible fix: initialize "A" on all paths, make "A" an IN OUT parameter or annotate it with aspect Relaxed_Initialization]
gnatprove: unproved check messages considered as errors

This program is correct. However, flow analysis will nevertheless still
emit messages because it can't verify that every element of A is
initialized by the loop in Init. This message is a false alarm. You
can either ignore it or justify it safely.

Example #6

This program is the same as the previous one except that we've changed the
mode of A in the specification of Init to in out to avoid
the message from flow analysis on array assignment.

show_permutation.ads

 1package Show_Permutation is
 2
 3 type Permutation is array (Positive range <>) of Positive;
 4
 5 procedure Swap (A : in out Permutation;
 6 I, J : Positive);
 7
 8 procedure Init (A : in out Permutation);
 9
10 function Cyclic_Permutation (N : Natural) return Permutation;
11
12end Show_Permutation;

show_permutation.adb

 1package body Show_Permutation is
 2
 3 procedure Swap (A : in out Permutation;
 4 I, J : Positive)
 5 is
 6 Tmp : Positive := A (I);
 7 begin
 8 A (I) := A (J);
 9 A (J) := Tmp;
10 end Swap;
11
12 procedure Init (A : in out Permutation) is
13 begin
14 A (A'First) := A'First;
15 for I in A'First + 1 .. A'Last loop
16 A (I) := I;
17 end loop;
18 end Init;
19
20 function Cyclic_Permutation (N : Natural) return Permutation is
21 A : Permutation (1 .. N);
22 begin
23 Init (A);
24 for I in A'First .. A'Last - 1 loop
25 Swap (A, I, I + 1);
26 end loop;
27 return A;
28 end Cyclic_Permutation;
29
30end Show_Permutation;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_06
MD5: 61406d9a66dda71630c74c12f3d67936

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_permutation.adb:23:13: high: "A" is not initialized
gnatprove: unproved check messages considered as errors

This program is not correct. Changing the mode of a parameter that should
really be out to in out to silence a false alarm is not a
good idea. Not only does this obfuscate the specification of Init, but
flow analysis emits a message on the procedure where A is not
initialized, as shown by the message in Cyclic_Permutation.

Example #7

Incr_Step_Function takes an array A as an argument and iterates
through A to increment every element by the value of Increment,
saturating at a specified threshold value. We specified a Global
contract for Incr_Until_Threshold.

show_increments.ads

1package Show_Increments is
2
3 type Array_Of_Positives is array (Natural range <>) of Positive;
4
5 Increment : constant Natural := 10;
6
7 procedure Incr_Step_Function (A : in out Array_Of_Positives);
8
9end Show_Increments;

show_increments.adb

 1package body Show_Increments is
 2
 3 procedure Incr_Step_Function (A : in out Array_Of_Positives) is
 4
 5 Threshold : Positive := Positive'Last;
 6
 7 procedure Incr_Until_Threshold (I : Integer) with
 8 Global => (Input => Threshold,
 9 In_Out => A);
10
11 procedure Incr_Until_Threshold (I : Integer) is
12 begin
13 if Threshold - Increment <= A (I) then
14 A (I) := Threshold;
15 else
16 A (I) := A (I) + Increment;
17 end if;
18 end Incr_Until_Threshold;
19
20 begin
21 for I in A'Range loop
22 if I > A'First then
23 Threshold := A (I - 1);
24 end if;
25 Incr_Until_Threshold (I);
26 end loop;
27 end Incr_Step_Function;
28
29end Show_Increments;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_07
MD5: 8e28a005cd9d78947e4bfc60db708bf5

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_increments.adb:8:09: info: data dependencies proved

Everything is fine here. Specifically, the Global contract is
correct. It mentions both Threshold, which is read but not written in
the procedure, and A, which is both read and written. The fact that
A is a parameter of an enclosing unit doesn't prevent us from using it
inside the Global contract; it really is global to
Incr_Until_Threshold. We didn't mention Increment since it's a
static constant.

Example #8

We now go back to the procedure Test_Index from
Example #4 and
correct the missing initializations. We want to know if the Global
contract of Test_Index is correct.

show_biggest_increasing_sequence.ads

1package Show_Biggest_Increasing_Sequence is
2
3 type Array_Of_Positives is array (Integer range <>) of Positive;
4
5 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
6 return Natural;
7
8end Show_Biggest_Increasing_Sequence;

show_biggest_increasing_sequence.adb

 1package body Show_Biggest_Increasing_Sequence is
 2
 3 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
 4 return Natural
 5 is
 6 Max : Natural := 0;
 7 End_Of_Seq : Boolean;
 8 Size_Of_Seq : Natural := 0;
 9 Beginning : Integer := A'First - 1;
10
11 procedure Test_Index (Current_Index : Integer) with
12 Global => (In_Out => (Beginning, Max, Size_Of_Seq),
13 Output => End_Of_Seq,
14 Input => Current_Index)
15 is
16 begin
17 if A (Current_Index) >= Max then
18 Max := A (Current_Index);
19 End_Of_Seq := False;
20 else
21 Max := 0;
22 End_Of_Seq := True;
23 Size_Of_Seq := Current_Index - Beginning;
24 Beginning := Current_Index;
25 end if;
26 end Test_Index;
27
28 Biggest_Seq : Natural := 0;
29
30 begin
31 for I in A'Range loop
32 Test_Index (I);
33 if End_Of_Seq then
34 Biggest_Seq := Natural'Max (Size_Of_Seq, Biggest_Seq);
35 end if;
36 end loop;
37 return Biggest_Seq;
38 end Size_Of_Biggest_Increasing_Sequence;
39
40end Show_Biggest_Increasing_Sequence;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_08
MD5: 86fb934c32a38f6841ef736780b2e3b2

Prover output

Phase 1 of 2: generation of Global contracts ...
show_biggest_increasing_sequence.adb:14:30: error: global item cannot reference parameter of subprogram "Test_Index"
gnatprove: error during generation of Global contracts

The contract in this example is not correct: Current_Index is a
parameter of Test_Index, so we shouldn't reference it as a global
variable. Also, we should have listed variable A from the outer scope
as an Input in the Global contract.

Example #9

Next, we change the Global contract of Test_Index into a
Depends contract. In general, we don't need both contracts because
the set of global variables accessed can be deduced from the Depends
contract.

show_biggest_increasing_sequence.ads

1package Show_Biggest_Increasing_Sequence is
2
3 type Array_Of_Positives is array (Integer range <>) of Positive;
4
5 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
6 return Natural;
7
8end Show_Biggest_Increasing_Sequence;

show_biggest_increasing_sequence.adb

 1package body Show_Biggest_Increasing_Sequence is
 2
 3 function Size_Of_Biggest_Increasing_Sequence (A : Array_Of_Positives)
 4 return Natural
 5 is
 6 Max : Natural := 0;
 7 End_Of_Seq : Boolean;
 8 Size_Of_Seq : Natural := 0;
 9 Beginning : Integer := A'First - 1;
10
11 procedure Test_Index (Current_Index : Integer) with
12 Depends => ((Max, End_Of_Seq) => (A, Current_Index, Max),
13 (Size_Of_Seq, Beginning) =>
14 + (A, Current_Index, Max, Beginning))
15 is
16 begin
17 if A (Current_Index) >= Max then
18 Max := A (Current_Index);
19 End_Of_Seq := False;
20 else
21 Max := 0;
22 End_Of_Seq := True;
23 Size_Of_Seq := Current_Index - Beginning;
24 Beginning := Current_Index;
25 end if;
26 end Test_Index;
27
28 Biggest_Seq : Natural := 0;
29
30 begin
31 for I in A'Range loop
32 Test_Index (I);
33 if End_Of_Seq then
34 Biggest_Seq := Natural'Max (Size_Of_Seq, Biggest_Seq);
35 end if;
36 end loop;
37 return Biggest_Seq;
38 end Size_Of_Biggest_Increasing_Sequence;
39
40end Show_Biggest_Increasing_Sequence;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_09
MD5: d54ac5d4266738b1bf64869131644b33

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_biggest_increasing_sequence.adb:7:07: info: initialization of "End_Of_Seq" proved
show_biggest_increasing_sequence.adb:11:17: info: initialization of "End_Of_Seq" proved
show_biggest_increasing_sequence.adb:12:09: info: flow dependencies proved

This example is correct. Some of the dependencies, such as Size_Of_Seq
depending on Beginning, come directly from the assignments in the
subprogram. Since the control flow influences the final value of all of the
outputs, the variables that are being read, A, Current_Index, and
Max, are present in every dependency relation. Finally, the
dependencies of Size_Of_Eq and Beginning on themselves are because
they may not be modified by the subprogram execution.

Example #10

The subprogram Identity swaps the value of its parameter two times. Its
Depends contract says that the final value of X only depends on
its initial value and likewise for Y.

show_swap.ads

1package Show_Swap is
2
3 procedure Swap (X, Y : in out Positive);
4
5 procedure Identity (X, Y : in out Positive) with
6 Depends => (X => X,
7 Y => Y);
8
9end Show_Swap;

show_swap.adb

 1package body Show_Swap is
 2
 3 procedure Swap (X, Y : in out Positive) is
 4 Tmp : constant Positive := X;
 5 begin
 6 X := Y;
 7 Y := Tmp;
 8 end Swap;
 9
10 procedure Identity (X, Y : in out Positive) is
11 begin
12 Swap (X, Y);
13 Swap (Y, X);
14 end Identity;
15
16end Show_Swap;

Code block metadata

Project: Courses.Intro_To_Spark.Flow_Analysis.Example_10
MD5: 8567ece1e5bbc190f62dd483785d078a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
show_swap.ads:6:18: medium: missing dependency "X => Y"
show_swap.ads:7:18: medium: missing dependency "Y => X"
gnatprove: unproved check messages considered as errors

This code is correct, but flow analysis can't verify the Depends
contract of Identity because we didn't supply a Depends contract
for Swap. Therefore, flow analysis assumes that all outputs of
Swap, X and Y, depend on all its inputs, both X and
Y's initial values. To prevent this, we should manually specify a
Depends contract for Swap.

Footnotes

[#1]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#data-initialization-policy

[#2]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/subprogram_contracts.html#data-dependencies

[#3]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/subprogram_contracts.html#flow-dependencies

Proof of Program Integrity

This section presents the proof capability of GNATprove, a major tool for
the SPARK language. We focus here on the simpler proofs that you'll need to
write to verify your program's integrity. The primary objective of
performing proof of your program's integrity is to ensure the absence of
runtime errors during its execution.

The analysis steps discussed here are only sound if you've previously
performed Flow Analysis. You shouldn't proceed further if you
still have unjustified flow analysis messages for your program.

Runtime Errors

There's always the potential for errors that aren't detected during
compilation to occur during a program's execution. These errors, called
runtime errors, are those targeted by GNATprove.

There are various kinds of runtime errors, the most common being references
that are out of the range of an array (
buffer overflow[#1] in Ada), subtype range
violations, overflows in computations, and divisions by zero. The code
below illustrates many examples of possible runtime errors, all within a
single statement. Look at the assignment statement setting the
I + J'th cell of an array A to the value P /Q.

show_runtime_errors.ads

1package Show_Runtime_Errors is
2
3 type Nat_Array is array (Integer range <>) of Natural;
4
5 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer);
6
7end Show_Runtime_Errors;

show_runtime_errors.adb

1package body Show_Runtime_Errors is
2
3 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer) is
4 begin
5 A (I + J) := P / Q;
6 end Update;
7
8end Show_Runtime_Errors;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Runtime_Errors
MD5: c0718b8cb6138b84a99e0040e2a9164e

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_runtime_errors.adb:5:12: medium: overflow check might fail, cannot prove lower bound for I + J [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: add precondition (if J >= 0 then I <= Integer'Last - J else I >= Integer'First - J) to subprogram at show_runtime_errors.ads:5]
show_runtime_errors.adb:5:12: medium: array index check might fail [reason for check: result of addition must be a valid index into the array] [possible fix: add precondition (if J >= 0 then I <= A'Last - J else I >= A'First - J) to subprogram at show_runtime_errors.ads:5]
show_runtime_errors.adb:5:22: medium: divide by zero might fail [possible fix: add precondition (Q /= 0) to subprogram at show_runtime_errors.ads:5]
show_runtime_errors.adb:5:22: medium: overflow check might fail, cannot prove lower bound for P / Q [reason for check: result of division must fit in a 32-bits machine integer] [possible fix: add precondition (P / Q in Integer) to subprogram at show_runtime_errors.ads:5]
show_runtime_errors.adb:5:22: medium: range check might fail, cannot prove lower bound for P / Q [reason for check: result of division must fit in the target type of the assignment] [possible fix: add precondition (P / Q in Natural) to subprogram at show_runtime_errors.ads:5]
gnatprove: unproved check messages considered as errors

There are quite a number of errors that may occur when executing this code.
If we don't know anything about the values of I, J, P, and
Q, we can't rule out any of those errors.

First, the computation of I + J can overflow, for example if I
is Integer'Last and J is positive.

A (Integer'Last + 1) := P / Q;

Next, the sum, which is used as an array index, may not be in the range of
the index of the array.

A (A'Last + 1) := P / Q;

On the other side of the assignment, the division may also overflow, though
only in the very special case where P is Integer'First and Q
is -1 because of the asymmetric range of signed integer types.

A (I + J) := Integer'First / -1;

The division is also not allowed if Q is 0.

A (I + J) := P / 0;

Finally, since the array contains natural numbers, it's also an error to
store a negative value in it.

A (I + J) := 1 / -1;

The compiler generates checks in the executable code corresponding to each
of those runtime errors. Each check raises an exception if it fails. For
the above assignment statement, we can see examples of exceptions raised
due to failed checks for each of the different cases above.

A (Integer'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : overflow check failed

A (A'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : index check failed

A (I + J) := Integer'First / (-1);
-- raised CONSTRAINT_ERROR : overflow check failed

A (I + J) := 1 / (-1);
-- raised CONSTRAINT_ERROR : range check failed

A (I + J) := P / 0;
-- raised CONSTRAINT_ERROR : divide by zero

These runtime checks are costly, both in terms of program size and
execution time. It may be appropriate to remove them if we can statically
ensure they aren't needed at runtime, in other words if we can prove that
the condition tested for can never occur.

This is where the analysis done by GNATprove comes in. It can be used to
demonstrate statically that none of these errors can ever occur at
runtime. Specifically, GNATprove logically interprets the meaning of every
instruction in the program. Using this interpretation, GNATprove generates
a logical formula called a verification condition for each check that
would otherwise be required by the Ada (and hence SPARK) language.

A (Integer'Last + 1) := P / Q;
-- medium: overflow check might fail

A (A'Last + 1) := P / Q;
-- medium: array index check might fail

A (I + J) := Integer'First / (-1);
-- medium: overflow check might fail

A (I + J) := 1 / (-1);
-- medium: range check might fail

A (I + J) := P / 0;
-- medium: divide by zero might fail

GNATprove then passes these verification conditions to an automatic prover,
stated as conditions that must be true to avoid the error. If every such
condition can be validated by a prover (meaning that it can be
mathematically shown to always be true), we've been able to prove that no
error can ever be raised at runtime when executing that program.

Modularity

To scale to large programs, GNATprove performs proofs on a per-subprogram
basis by relying on preconditions and postconditions to properly summarize
the input and output state of each subprogram. More precisely, when
verifying the body of a subprogram, GNATprove assumes it knows nothing
about the possible initial values of its parameters and of the global
variables it accesses except what you state in the subprogram's
precondition. If you don't specify a precondition, it can't make any
assumptions.

For example, the following code shows that the body of Increment can be
successfully verified: its precondition constrains the value of its
parameter X to be less than Integer'Last so we know the overflow
check is always false.

In the same way, when a subprogram is called, GNATprove assumes its
out and in out parameters and the global variables it writes
can be modified in any way compatible with their postconditions. For
example, since Increment has no postcondition, GNATprove doesn't know
that the value of X after the call is always less than
Integer'Last. Therefore, it can't prove that the addition following
the call to Increment can't overflow.

show_modularity.adb

 1procedure Show_Modularity is
 2
 3 procedure Increment (X : in out Integer) with
 4 Pre => X < Integer'Last is
 5 begin
 6 X := X + 1;
 7 -- info: overflow check proved
 8 end Increment;
 9
10 X : Integer;
11begin
12 X := Integer'Last - 2;
13 Increment (X);
14 -- After the call, GNATprove no longer knows the value of X
15
16 X := X + 1;
17 -- medium: overflow check might fail
18end Show_Modularity;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Modularity_1
MD5: ca8ff8d29792fd5a06f7cb0158e13689

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_modularity.adb:6:14: info: overflow check proved
show_modularity.adb:10:04: info: initialization of "X" proved
show_modularity.adb:13:04: info: precondition proved
show_modularity.adb:16:11: medium: overflow check might fail, cannot prove upper bound for X + 1 [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: call at line 13 should mention X (for argument X) in a postcondition]
gnatprove: unproved check messages considered as errors

Exceptions

There are two cases where GNATprove doesn't require modularity and hence
doesn't make the above assumptions. First, local subprograms without
contracts can be inlined if they're simple enough and are neither recursive
nor have multiple return points. If we remove the contract from
Increment, it fits the criteria for inlining.

show_modularity.adb

 1procedure Show_Modularity is
 2
 3 procedure Increment (X : in out Integer) is
 4 begin
 5 X := X + 1;
 6 -- info: overflow check proved, in call inlined at...
 7 end Increment;
 8
 9 X : Integer;
10begin
11 X := Integer'Last - 2;
12 Increment (X);
13 X := X + 1;
14 -- info: overflow check proved
15end Show_Modularity;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Modularity_2
MD5: 448d576897c3e4606cd4b90621aad63a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_modularity.adb:5:14: info: overflow check proved, in call inlined at show_modularity.adb:12
show_modularity.adb:9:04: info: initialization of "X" proved
show_modularity.adb:13:11: info: overflow check proved

GNATprove now sees the call to Increment exactly as if the increment on
X was done outside that call, so it can successfully verify that
neither addition can overflow.

Note

For more details on contextual analysis of subprograms, see the
SPARK User's Guide[#2].

The other case involves functions. If we define a function as an expression
function, with or without contracts, GNATprove uses the expression itself
as the postcondition on the result of the function.

In our example, replacing Increment with an expression function allows
GNATprove to successfully verify the overflow check in the addition.

show_modularity.adb

 1procedure Show_Modularity is
 2
 3 function Increment (X : Integer) return Integer is
 4 (X + 1)
 5 -- info: overflow check proved
 6 with Pre => X < Integer'Last;
 7
 8 X : Integer;
 9begin
10 X := Integer'Last - 2;
11 X := Increment (X);
12 X := X + 1;
13 -- info: overflow check proved
14end Show_Modularity;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Modularity_3
MD5: b2b67845362929472e4e23867fcbd5e7

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_modularity.adb:4:09: info: overflow check proved
show_modularity.adb:8:04: info: initialization of "X" proved
show_modularity.adb:11:09: info: precondition proved
show_modularity.adb:12:11: info: overflow check proved

Note

For more details on expression functions, see the
SPARK User's Guide[#3].

Contracts

Ada contracts are perfectly suited for formal verification, but are
primarily designed to be checked at runtime. When you specify the
-gnata switch, the compiler generates code that verifies the contracts
at runtime. If an Ada contract isn't satisfied for a given subprogram call,
the program raises the Assert_Failure exception. This switch is
particularly useful during development and testing, but you may also retain
run-time execution of assertions, and specifically preconditions, during
the program's deployment to avoid an inconsistent state.

Consider the incorrect call to Increment below, which violates its
precondition. One way to detect this error is by compiling the function
with assertions enabled and testing it with inputs that trigger the
violation. Another way, one that doesn't require guessing the needed
inputs, is to run GNATprove.

show_precondition_violation.adb

 1procedure Show_Precondition_Violation is
 2
 3 procedure Increment (X : in out Integer) with
 4 Pre => X < Integer'Last is
 5 begin
 6 X := X + 1;
 7 end Increment;
 8
 9 X : Integer;
10
11begin
12 X := Integer'Last;
13 Increment (X);
14end Show_Precondition_Violation;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Precondition_Violation
MD5: 60cb889128fc6bca10e21b1baf041258

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_precondition_violation.adb:13:04: medium: precondition might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from show_precondition_violation.adb:4

Similarly, consider the incorrect implementation of function Absolute
below, which violates its postcondition. Likewise, one way to detect this
error is by compiling the function with assertions enabled and testing with
inputs that trigger the violation. Another way, one which again doesn't
require finding the inputs needed to demonstrate the error, is to run
GNATprove.

show_postcondition_violation.adb

 1procedure Show_Postcondition_Violation is
 2
 3 procedure Absolute (X : in out Integer) with
 4 Post => X >= 0 is
 5 begin
 6 if X > 0 then
 7 X := -X;
 8 end if;
 9 end Absolute;
10
11 X : Integer;
12
13begin
14 X := 1;
15 Absolute (X);
16end Show_Postcondition_Violation;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Postcondition_Violation
MD5: fb1340de7e082d801f177bd8a0cf90a6

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_postcondition_violation.adb:4:14: medium: postcondition might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed postcondition from show_postcondition_violation.adb:4

The benefits of dynamically checking contracts extends beyond making
testing easier. Early failure detection also allows an easier recovery and
facilitates debugging, so you may want to enable these checks at runtime to
terminate execution before some damaging or hard-to-debug action occurs.

GNATprove statically analyses preconditions and postconditions. It verifies
preconditions every time a subprogram is called, which is the runtime
semantics of contracts. Postconditions, on the other hand, are verified
once as part of the verification of the subprogram's body. For example,
GNATprove must wait until Increment is improperly called to detect the
precondition violation, since a precondition is really a contract for the
caller. On the other hand, it doesn't need Absolute to be called to
detect that its postcondition doesn't hold for all its possible inputs.

Note

For more details on pre and postconditions, see the
SPARK User's Guide[#4].

Executable Semantics

Expressions in Ada contracts have the same semantics as Boolean expressions
elsewhere, so runtime errors can occur during their computation. To
simplify both debugging of assertions and combining testing and static
verification, the same semantics are used by GNATprove.

While proving programs, GNATprove verifies that no error can ever be raised
during the execution of the contracts. However, you may sometimes find
those semantics too heavy, in particular with respect to overflow checks,
because they can make it harder to specify an appropriate precondition. We
see this in the function Add below.

show_executable_semantics.adb

 1procedure Show_Executable_Semantics
 2 with SPARK_Mode => On
 3is
 4 function Add (X, Y : Integer) return Integer is (X + Y)
 5 with Pre => X + Y in Integer;
 6
 7 X : Integer;
 8begin
 9 X := Add (Integer'Last, 1);
10end Show_Executable_Semantics;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Executable_Semantics
MD5: d85fa0507d7c35fb98ade7815020117e

Build output

show_executable_semantics.adb:5:24: warning: explicit membership test may be optimized away [enabled by default]
show_executable_semantics.adb:5:24: warning: use 'Valid attribute instead [enabled by default]

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_executable_semantics.adb:5:20: medium: overflow check might fail, cannot prove lower bound for X + Y [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: use pragma Overflow_Mode or switch -gnato13 or unit Ada.Numerics.Big_Numerics.Big_Integers]
show_executable_semantics.adb:9:09: medium: precondition might fail, cannot prove upper bound for Add (Integer'Last, 1)
gnatprove: unproved check messages considered as errors

Runtime output

raised CONSTRAINT_ERROR : show_executable_semantics.adb:5 overflow check failed

GNATprove issues a message on this code warning about a possible overflow
when computing the sum of X and Y in the precondition. Indeed,
since expressions in assertions have normal Ada semantics, this addition
can overflow, as you can easily see by compiling and running the code that
calls Add with arguments Integer'Last and 1.

On the other hand, you sometimes may prefer GNATprove to use the
mathematical semantics of addition in contracts while the generated code
still properly verifies that no error is ever raised at runtime in the body
of the program. You can get this behavior by using the compiler switch
-gnato?? (for example -gnato13), which allows you to independently
set the overflow mode in code (the first digit) and assertions (the second
digit). For both, you can either reduce the number of overflow checks (the
value 2), completely eliminate them (the value 3), or preserve the default
Ada semantics (the value 1).

Note

For more details on overflow modes, see the
SPARK User's Guide[#5].

Additional Assertions and Contracts

As we've seen, a key feature of SPARK is that it allows us to state
properties to check using assertions and contracts. SPARK supports
preconditions and postconditions as well as assertions introduced by the
Assert pragma.

The SPARK language also includes new contract types used to assist formal
verification. The new pragma Assume is treated as an assertion
during execution but introduces an assumption when proving programs. Its
value is a Boolean expression which GNATprove assumes to be true without
any attempt to verify that it's true. You'll find this feature useful, but
you must use it with great care. Here's an example of using it.

incr.adb

1procedure Incr (X : in out Integer) is
2begin
3 pragma Assume (X < Integer'Last);
4 X := X + 1;
5end Incr;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Pragma_Assume
MD5: bfbc4b8aca259d7516b6acaee571f8c2

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
incr.adb:4:11: info: overflow check proved

Note

For more details on pragma Assume, see the
SPARK User's Guide[#6].

The Contract_Cases aspect is another construct introduced for
GNATprove, but which also acts as an assertion during execution. It allows
you to specify the behavior of a subprogram using a disjunction of
cases. Each element of a Contract_Cases aspect is a guard, which
is evaluated before the call and may only reference the subprogram's
inputs, and a consequence. At each call of the subprogram, one and only
one guard is permitted to evaluate to True. The consequence of that
case is a contract that's required to be satisfied when the subprogram
returns.

absolute.adb

 1procedure Absolute (X : in out Integer) with
 2 Pre => X > Integer'First,
 3 Contract_Cases => (X < 0 => X = -X'Old,
 4 X >= 0 => X = X'Old)
 5is
 6begin
 7 if X < 0 then
 8 X := -X;
 9 end if;
10end Absolute;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Absolute
MD5: 5ac868f35be18bb6fffe2444ecbea28d

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
absolute.adb:3:03: info: disjoint contract cases proved
absolute.adb:3:03: info: complete contract cases proved
absolute.adb:3:29: info: contract case proved
absolute.adb:3:36: info: overflow check proved
absolute.adb:4:29: info: contract case proved
absolute.adb:8:12: info: overflow check proved

Similarly to how it analyzes a subprogram's precondition, GNATprove
verifies the Contract_Cases only once. It verifies the validity of
each consequence (given the truth of its guard) and the disjointness and
completeness of the guard conditions (meaning that exactly one guard must
be true for each possible set of input values).

Note

For more details on Contract_Cases, see the
SPARK User's Guide[#7].

Debugging Failed Proof Attempts

GNATprove may report an error while verifying a program for any of the
following reasons:

	there might be an error in the program; or

	the property may not be provable as written because more information is
required; or

	the prover used by GNATprove may be unable to prove a perfectly valid
property.

We spend the remainder of this section discussing the sometimes tricky task
of debugging failed proof attempts.

Debugging Errors in Code or Specification

First, let's discuss the case where there's indeed an error in the program.
There are two possibilities: the code may be incorrect or, equally likely,
the specification may be incorrect. As an example, there's an error in our
procedure Incr_Until below which makes its Contract_Cases
unprovable.

show_failed_proof_attempt.ads

 1package Show_Failed_Proof_Attempt is
 2
 3 Incremented : Boolean := False;
 4
 5 procedure Incr_Until (X : in out Natural) with
 6 Contract_Cases =>
 7 (Incremented => X > X'Old,
 8 others => X = X'Old);
 9
10end Show_Failed_Proof_Attempt;

show_failed_proof_attempt.adb

 1package body Show_Failed_Proof_Attempt is
 2
 3 procedure Incr_Until (X : in out Natural) is
 4 begin
 5 if X < 1000 then
 6 X := X + 1;
 7 Incremented := True;
 8 else
 9 Incremented := False;
10 end if;
11 end Incr_Until;
12
13end Show_Failed_Proof_Attempt;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Failed_Proof_Attempt_1
MD5: 814636ae9df6f4f66ad69f5099a5729b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_failed_proof_attempt.ads:7:21: medium: contract case might fail
show_failed_proof_attempt.ads:8:21: medium: contract case might fail
gnatprove: unproved check messages considered as errors

Since this is an assertion that can be executed, it may help you find the
problem if you run the program with assertions enabled on representative
sets of inputs. This allows you to find bugs in both the code and its
contracts. In this case, testing Incr_Until with an input greater than
1000 raises an exception at runtime.

show_failed_proof_attempt.ads

 1package Show_Failed_Proof_Attempt is
 2
 3 Incremented : Boolean := False;
 4
 5 procedure Incr_Until (X : in out Natural) with
 6 Contract_Cases =>
 7 (Incremented => X > X'Old,
 8 others => X = X'Old);
 9
10end Show_Failed_Proof_Attempt;

show_failed_proof_attempt.adb

 1package body Show_Failed_Proof_Attempt is
 2
 3 procedure Incr_Until (X : in out Natural) is
 4 begin
 5 if X < 1000 then
 6 X := X + 1;
 7 Incremented := True;
 8 else
 9 Incremented := False;
10 end if;
11 end Incr_Until;
12
13end Show_Failed_Proof_Attempt;

main.adb

 1with Show_Failed_Proof_Attempt; use Show_Failed_Proof_Attempt;
 2
 3procedure Main is
 4 Dummy : Integer;
 5begin
 6 Dummy := 0;
 7 Incr_Until (Dummy);
 8
 9 Dummy := 1000;
10 Incr_Until (Dummy);
11end Main;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Failed_Proof_Attempt_2
MD5: bd87cb0f64a6468eaab3cad1678271db

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_failed_proof_attempt.ads:7:21: medium: contract case might fail
show_failed_proof_attempt.ads:8:21: medium: contract case might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed contract case at show_failed_proof_attempt.ads:8

The error message shows that the first contract case is failing, which
means that Incremented is True. However, if we print the value
of Incremented before returning, we see that it's False, as
expected for the input we provided. The error here is that guards of
contract cases are evaluated before the call, so our specification is
wrong! To correct this, we should either write X < 1000 as the guard of
the first case or use a standard postcondition with an if-expression.

Debugging Cases where more Information is Required

Even if both the code and the assertions are correct, GNATprove may still
report that it can't prove a verification condition for a property. This
can happen for two reasons:

	The property may be unprovable because the code is missing some
assertion. One category of these cases is due to the modularity of the
analysis which, as we discussed above, means that GNATprove only knows
about the properties of your subprograms that you have explicitly
written.

	There may be some information missing in the logical model of the program
used by GNATprove.

Let's look at the case where the code and the specification are correct but
there's some information missing. As an example, GNATprove finds the
postcondition of Increase to be unprovable.

show_failed_proof_attempt.ads

1package Show_Failed_Proof_Attempt is
2
3 C : Natural := 100;
4
5 procedure Increase (X : in out Natural) with
6 Post => (if X'Old < C then X > X'Old else X = C);
7
8end Show_Failed_Proof_Attempt;

show_failed_proof_attempt.adb

 1package body Show_Failed_Proof_Attempt is
 2
 3 procedure Increase (X : in out Natural) is
 4 begin
 5 if X < 90 then
 6 X := X + 10;
 7 elsif X >= C then
 8 X := C;
 9 else
10 X := X + 1;
11 end if;
12 end Increase;
13
14end Show_Failed_Proof_Attempt;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Failed_Proof_Attempt_3
MD5: e01fc27a981bcb80757f30c94768237e

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_failed_proof_attempt.ads:6:49: medium: postcondition might fail, cannot prove X = C
gnatprove: unproved check messages considered as errors

This postcondition is a conditional. It says that if the parameter (X)
is less than a certain value (C), its value will be increased by the
procedure while if it's greater, its value will be set to C
(saturated). When C has the value 100, the code of Increases adds
10 to the value of X if it was initially less than 90, increments X
by 1 if it was between 90 and 99, and sets X to 100 if it was greater
or equal to 100. This behavior does satisfy the postcondition, so why is
the postcondition not provable?

The values in the counterexample returned by GNATprove in its message gives
us a clue: C = 0 and X = 10 and X'Old = 0. Indeed, if C is not
equal to 100, our reasoning above is incorrect: the values of 0 for C
and X on entry indeed result in X being 10 on exit, which violates
the postcondition!

We probably didn't expect the value of C to change, or at least not to
go below 90. But, in that case, we should have stated so by either
declaring C to be constant or by adding a precondition to the
Increase subprogram. If we do either of those, GNATprove is able to
prove the postcondition.

Debugging Prover Limitations

Finally, there are cases where GNATprove provides a perfectly valid
verification condition for a property, but it's nevertheless not proved by
the automatic prover that runs in the later stages of the tool's
execution. This is quite common. Indeed, GNATprove produces its
verification conditions in first-order logic, which is not decidable,
especially in combination with the rules of arithmetic. Sometimes, the
automatic prover just needs more time. Other times, the prover will
abandon the search almost immediately or loop forever without reaching a
conclusive answer (either a proof or a counterexample).

For example, the postcondition of our GCD function below — which
calculates the value of the GCD of two positive numbers using Euclide's
algorithm — can't be verified with GNATprove's default settings.

show_failed_proof_attempt.ads

1package Show_Failed_Proof_Attempt is
2
3 function GCD (A, B : Positive) return Positive with
4 Post =>
5 A mod GCD'Result = 0
6 and B mod GCD'Result = 0;
7
8end Show_Failed_Proof_Attempt;

show_failed_proof_attempt.adb

 1package body Show_Failed_Proof_Attempt is
 2
 3 function GCD (A, B : Positive) return Positive is
 4 begin
 5 if A > B then
 6 return GCD (A - B, B);
 7 elsif B > A then
 8 return GCD (A, B - A);
 9 else
10 return A;
11 end if;
12 end GCD;
13
14end Show_Failed_Proof_Attempt;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Failed_Proof_Attempt_4
MD5: a6f1a39ceb0793df8a00691d59a5d9ce

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_failed_proof_attempt.ads:5:08: medium: postcondition might fail, cannot prove A mod GCD'Result = 0
gnatprove: unproved check messages considered as errors

The first thing we try is increasing the amount of time the prover is
allowed to spend on each verification condition using the --timeout
option of GNATprove (e.g., by using the dialog box in GNAT Studio). In this
example, increasing it to one minute, which is relatively high, doesn't
help. We can also specify an alternative automatic prover — if we have
one — using the option --prover of GNATprove (or the dialog box). For
our postcondition, we tried Alt-Ergo, cvc5, and Z3 without any luck.

show_failed_proof_attempt.ads

1package Show_Failed_Proof_Attempt is
2
3 function GCD (A, B : Positive) return Positive with
4 Post =>
5 A mod GCD'Result = 0
6 and B mod GCD'Result = 0;
7
8end Show_Failed_Proof_Attempt;

show_failed_proof_attempt.adb

 1package body Show_Failed_Proof_Attempt is
 2
 3 function GCD (A, B : Positive) return Positive
 4 is
 5 Result : Positive;
 6 begin
 7 if A > B then
 8 Result := GCD (A - B, B);
 9 pragma Assert ((A - B) mod Result = 0);
10 -- info: assertion proved
11 pragma Assert (B mod Result = 0);
12 -- info: assertion proved
13 pragma Assert (A mod Result = 0);
14 -- medium: assertion might fail
15 elsif B > A then
16 Result := GCD (A, B - A);
17 pragma Assert ((B - A) mod Result = 0);
18 -- info: assertion proved
19 else
20 Result := A;
21 end if;
22 return Result;
23 end GCD;
24
25end Show_Failed_Proof_Attempt;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Failed_Proof_Attempt_5
MD5: 954ecbf2177705770c3a44a477c1de17

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_failed_proof_attempt.adb:5:07: info: initialization of "Result" proved
show_failed_proof_attempt.adb:8:27: info: range check proved
show_failed_proof_attempt.adb:9:25: info: assertion proved
show_failed_proof_attempt.adb:9:33: info: division check proved
show_failed_proof_attempt.adb:11:25: info: assertion proved
show_failed_proof_attempt.adb:11:27: info: division check proved
show_failed_proof_attempt.adb:13:25: medium: assertion might fail [possible fix: subprogram at show_failed_proof_attempt.ads:3 should mention A in a precondition]
show_failed_proof_attempt.adb:13:27: info: division check proved
show_failed_proof_attempt.adb:16:30: info: range check proved
show_failed_proof_attempt.adb:17:25: info: assertion proved
show_failed_proof_attempt.adb:17:33: info: division check proved
show_failed_proof_attempt.ads:5:10: info: division check proved
show_failed_proof_attempt.ads:6:12: medium: postcondition might fail, cannot prove B mod GCD'Result = 0
show_failed_proof_attempt.ads:6:14: info: division check proved
gnatprove: unproved check messages considered as errors

To better understand the reason for the failure, we added intermediate
assertions to simplify the proof and pin down the part that's causing the
problem. Adding such assertions is often a good idea when trying to
understand why a property is not proved. Here, provers can't verify that if
both A - B and B can be divided by Result so can A. This
may seem surprising, but non-linear arithmetic, involving, for example,
multiplication, modulo, or exponentiation, is a difficult topic for provers
and is not handled very well in practice by any of the general-purpose ones
like Alt-Ergo, cvc5, or Z3.

Note

For more details on how to investigate unproved checks, see the
SPARK User's Guide[#8].

Code Examples / Pitfalls

We end with some code examples and pitfalls.

Example #1

The package Lists defines a linked-list data structure. We call
Link(I,J) to make a link from index I to index J and call
Goes_To(I,J) to determine if we've created a link from index I to
index J. The postcondition of Link uses Goes_To to state that
there must be a link between its arguments once Link completes.

lists.ads

 1package Lists with SPARK_Mode is
 2
 3 type Index is new Integer;
 4
 5 function Goes_To (I, J : Index) return Boolean;
 6
 7 procedure Link (I, J : Index) with Post => Goes_To (I, J);
 8
 9private
10
11 type Cell (Is_Set : Boolean := True) is record
12 case Is_Set is
13 when True =>
14 Next : Index;
15 when False =>
16 null;
17 end case;
18 end record;
19
20 type Cell_Array is array (Index) of Cell;
21
22 Memory : Cell_Array;
23
24end Lists;

lists.adb

 1package body Lists with SPARK_Mode is
 2
 3 function Goes_To (I, J : Index) return Boolean is
 4 begin
 5 if Memory (I).Is_Set then
 6 return Memory (I).Next = J;
 7 end if;
 8 return False;
 9 end Goes_To;
10
11 procedure Link (I, J : Index) is
12 begin
13 Memory (I) := (Is_Set => True, Next => J);
14 end Link;
15
16end Lists;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_01
MD5: c2246948c584304d5694b49b4d1fd0fc

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
lists.ads:7:47: medium: postcondition might fail [possible fix: you should consider adding a postcondition to function Goes_To or turning it into an expression function]
gnatprove: unproved check messages considered as errors

This example is correct, but can't be verified by GNATprove. This is
because Goes_To itself has no postcondition, so nothing is known about
its result.

Example #2

We now redefine Goes_To as an expression function.

lists.ads

 1package Lists with SPARK_Mode is
 2
 3 type Index is new Integer;
 4
 5 function Goes_To (I, J : Index) return Boolean;
 6
 7 procedure Link (I, J : Index) with Post => Goes_To (I, J);
 8
 9private
10
11 type Cell (Is_Set : Boolean := True) is record
12 case Is_Set is
13 when True =>
14 Next : Index;
15 when False =>
16 null;
17 end case;
18 end record;
19
20 type Cell_Array is array (Index) of Cell;
21
22 Memory : Cell_Array;
23
24 function Goes_To (I, J : Index) return Boolean is
25 (Memory (I).Is_Set and then Memory (I).Next = J);
26
27end Lists;

lists.adb

1package body Lists with SPARK_Mode is
2
3 procedure Link (I, J : Index) is
4 begin
5 Memory (I) := (Is_Set => True, Next => J);
6 end Link;
7
8end Lists;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_02
MD5: c65953bbe8a5f9fb77a4d94e2dd875f9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
lists.adb:5:18: info: discriminant check proved
lists.ads:7:47: info: postcondition proved
lists.ads:25:44: info: discriminant check proved

GNATprove can fully prove this version: Goes_To is an expression
function, so its body is available for proof (specifically, for creating
the postcondition needed for the proof).

Example #3

The package Stacks defines an abstract stack type with a Push
procedure that adds an element at the top of the stack and a function
Peek that returns the content of the element at the top of the stack
(without removing it).

stacks.ads

 1package Stacks with SPARK_Mode is
 2
 3 type Stack is private;
 4
 5 function Peek (S : Stack) return Natural;
 6 procedure Push (S : in out Stack; E : Natural) with
 7 Post => Peek (S) = E;
 8
 9private
10
11 Max : constant := 10;
12
13 type Stack_Array is array (1 .. Max) of Natural;
14
15 type Stack is record
16 Top : Positive;
17 Content : Stack_Array;
18 end record;
19
20 function Peek (S : Stack) return Natural is
21 (if S.Top in S.Content'Range then S.Content (S.Top) else 0);
22
23end Stacks;

stacks.adb

 1package body Stacks with SPARK_Mode is
 2
 3 procedure Push (S : in out Stack; E : Natural) is
 4 begin
 5 if S.Top >= Max then
 6 return;
 7 end if;
 8
 9 S.Top := S.Top + 1;
10 S.Content (S.Top) := E;
11 end Push;
12
13end Stacks;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_03
MD5: 917d624916c5ef14c4e454d6c56414fd

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
stacks.ads:7:14: medium: postcondition might fail
gnatprove: unproved check messages considered as errors

This example isn't correct. The postcondition of Push is only satisfied
if the stack isn't full when we call Push.

Example #4

We now change the behavior of Push so it raises an exception when the
stack is full instead of returning.

stacks.ads

 1package Stacks with SPARK_Mode is
 2
 3 type Stack is private;
 4
 5 Is_Full_E : exception;
 6
 7 function Peek (S : Stack) return Natural;
 8 procedure Push (S : in out Stack; E : Natural) with
 9 Post => Peek (S) = E;
10
11private
12
13 Max : constant := 10;
14
15 type Stack_Array is array (1 .. Max) of Natural;
16
17 type Stack is record
18 Top : Positive;
19 Content : Stack_Array;
20 end record;
21
22 function Peek (S : Stack) return Natural is
23 (if S.Top in S.Content'Range then S.Content (S.Top) else 0);
24
25end Stacks;

stacks.adb

 1package body Stacks with SPARK_Mode is
 2
 3 procedure Push (S : in out Stack; E : Natural) is
 4 begin
 5 if S.Top >= Max then
 6 raise Is_Full_E;
 7 end if;
 8
 9 S.Top := S.Top + 1;
10 S.Content (S.Top) := E;
11 end Push;
12
13end Stacks;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_04
MD5: b573ebe93f85ea171166b6953cbb8956

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
stacks.adb:6:10: medium: exception might be raised
gnatprove: unproved check messages considered as errors

The postcondition of Push is now proved because GNATprove only
considers execution paths leading to normal termination. But it issues a
message warning that exception Is_Full_E may be raised at runtime.

Example #5

Let's add a precondition to Push stating that the stack shouldn't be
full.

stacks.ads

 1package Stacks with SPARK_Mode is
 2
 3 type Stack is private;
 4
 5 Is_Full_E : exception;
 6
 7 function Peek (S : Stack) return Natural;
 8 function Is_Full (S : Stack) return Boolean;
 9 procedure Push (S : in out Stack; E : Natural) with
10 Pre => not Is_Full (S),
11 Post => Peek (S) = E;
12
13private
14
15 Max : constant := 10;
16
17 type Stack_Array is array (1 .. Max) of Natural;
18
19 type Stack is record
20 Top : Positive;
21 Content : Stack_Array;
22 end record;
23
24 function Peek (S : Stack) return Natural is
25 (if S.Top in S.Content'Range then S.Content (S.Top) else 0);
26 function Is_Full (S : Stack) return Boolean is (S.Top >= Max);
27
28end Stacks;

stacks.adb

 1package body Stacks with SPARK_Mode is
 2
 3 procedure Push (S : in out Stack; E : Natural) is
 4 begin
 5 if S.Top >= Max then
 6 raise Is_Full_E;
 7 end if;
 8 S.Top := S.Top + 1;
 9 S.Content (S.Top) := E;
10 end Push;
11
12end Stacks;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_05
MD5: 63c2dfd68dd5acd91d8d497206e7423e

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
stacks.adb:6:10: info: raise statement or expression proved unreachable
stacks.adb:8:22: info: overflow check proved
stacks.adb:9:19: info: index check proved
stacks.ads:11:14: info: postcondition proved
stacks.ads:25:52: info: index check proved

This example is correct. With the addition of the precondition, GNATprove
can now verify that Is_Full_E can never be raised at runtime.

Example #6

The package Memories defines a type Chunk that models chunks of
memory. Each element of the array, represented by its index, corresponds
to one data element. The procedure Read_Record reads two pieces of
data starting at index From out of the chunk represented by the value
of Memory.

memories.ads

 1package Memories is
 2
 3 type Chunk is array (Integer range <>) of Integer
 4 with Predicate => Chunk'Length >= 10;
 5
 6 function Is_Too_Coarse (V : Integer) return Boolean;
 7
 8 procedure Treat_Value (V : out Integer);
 9
10end Memories;

read_record.adb

 1with Memories; use Memories;
 2
 3procedure Read_Record (Memory : Chunk; From : Integer)
 4 with SPARK_Mode => On,
 5 Pre => From in Memory'First .. Memory'Last - 2
 6is
 7 function Read_One (First : Integer; Offset : Integer) return Integer
 8 with Pre => First + Offset in Memory'Range
 9 is
10 Value : Integer := Memory (First + Offset);
11 begin
12 if Is_Too_Coarse (Value) then
13 Treat_Value (Value);
14 end if;
15 return Value;
16 end Read_One;
17
18 Data1, Data2 : Integer;
19
20begin
21 Data1 := Read_One (From, 1);
22 Data2 := Read_One (From, 2);
23end Read_Record;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_06
MD5: aec8014dc291708999092fa123ee7416

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
read_record.adb:8:24: medium: overflow check might fail, cannot prove lower bound for First + Offset [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: use pragma Overflow_Mode or switch -gnato13 or unit Ada.Numerics.Big_Numerics.Big_Integers]
gnatprove: unproved check messages considered as errors

This example is correct, but it can't be verified by GNATprove, which
analyses Read_One on its own and notices that an overflow may occur in
its precondition in certain contexts.

Example #7

Let's rewrite the precondition of Read_One to avoid any possible overflow.

memories.ads

 1package Memories is
 2
 3 type Chunk is array (Integer range <>) of Integer
 4 with Predicate => Chunk'Length >= 10;
 5
 6 function Is_Too_Coarse (V : Integer) return Boolean;
 7
 8 procedure Treat_Value (V : out Integer);
 9
10end Memories;

read_record.adb

 1with Memories; use Memories;
 2
 3procedure Read_Record (Memory : Chunk; From : Integer)
 4 with SPARK_Mode => On,
 5 Pre => From in Memory'First .. Memory'Last - 2
 6is
 7 function Read_One (First : Integer; Offset : Integer) return Integer
 8 with Pre => First >= Memory'First
 9 and then Offset in 0 .. Memory'Last - First
10 is
11 Value : Integer := Memory (First + Offset);
12 begin
13 if Is_Too_Coarse (Value) then
14 Treat_Value (Value);
15 end if;
16 return Value;
17 end Read_One;
18
19 Data1, Data2 : Integer;
20
21begin
22 Data1 := Read_One (From, 1);
23 Data2 := Read_One (From, 2);
24end Read_Record;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_07
MD5: 6b4c6a41b652ad76bc7ef8934dcd9bfc

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
read_record.adb:9:49: medium: overflow check might fail, cannot prove lower bound for Memory'Last - First [reason for check: result of subtraction must fit in a 32-bits machine integer] [possible fix: use pragma Overflow_Mode or switch -gnato13 or unit Ada.Numerics.Big_Numerics.Big_Integers]
gnatprove: unproved check messages considered as errors

This example is also not correct: unfortunately, our attempt to correct
Read_One's precondition failed. For example, an overflow will occur at
runtime if First is Integer'Last and Memory'Last is
negative. This is possible here because type Chunk uses Integer as
base index type instead of Natural or Positive.

Example #8

Let's completely remove the precondition of Read_One.

memories.ads

 1package Memories is
 2
 3 type Chunk is array (Integer range <>) of Integer
 4 with Predicate => Chunk'Length >= 10;
 5
 6 function Is_Too_Coarse (V : Integer) return Boolean;
 7
 8 procedure Treat_Value (V : out Integer);
 9
10end Memories;

read_record.adb

 1with Memories; use Memories;
 2
 3procedure Read_Record (Memory : Chunk; From : Integer)
 4 with SPARK_Mode => On,
 5 Pre => From in Memory'First .. Memory'Last - 2
 6is
 7 function Read_One (First : Integer; Offset : Integer) return Integer is
 8 Value : Integer := Memory (First + Offset);
 9 begin
10 if Is_Too_Coarse (Value) then
11 Treat_Value (Value);
12 end if;
13 return Value;
14 end Read_One;
15
16 Data1, Data2 : Integer;
17
18begin
19 Data1 := Read_One (From, 1);
20 Data2 := Read_One (From, 2);
21end Read_Record;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_08
MD5: 5a806fb84b50d2dc1f2af428b1bc8d0a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
read_record.adb:5:51: info: overflow check proved
read_record.adb:8:40: info: overflow check proved, in call inlined at read_record.adb:19
read_record.adb:8:40: info: index check proved, in call inlined at read_record.adb:19
read_record.adb:8:40: info: overflow check proved, in call inlined at read_record.adb:20
read_record.adb:8:40: info: index check proved, in call inlined at read_record.adb:20

This example is correct and fully proved. We could have fixed the contract
of Read_One to correctly handle both positive and negative values of
Memory'Last, but we found it simpler to let the function be inlined for
proof by removing its precondition.

Example #9

The procedure Compute performs various computations on its argument.
The computation performed depends on its input range and is reflected in
its contract, which we express using a Contract_Cases aspect.

compute.adb

 1procedure Compute (X : in out Integer) with
 2 Contract_Cases => ((X in -100 .. 100) => X = X'Old * 2,
 3 (X in 0 .. 199) => X = X'Old + 1,
 4 (X in -199 .. 0) => X = X'Old - 1,
 5 X >= 200 => X = 200,
 6 others => X = -200)
 7is
 8begin
 9 if X in -100 .. 100 then
10 X := X * 2;
11 elsif X in 0 .. 199 then
12 X := X + 1;
13 elsif X in -199 .. 0 then
14 X := X - 1;
15 elsif X >= 200 then
16 X := 200;
17 else
18 X := -200;
19 end if;
20end Compute;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_09
MD5: 51962d1bb6dd1b081ed498dd11559685

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
compute.adb:2:03: medium: contract cases might not be disjoint
compute.adb:3:41: medium: contract case might fail
compute.adb:4:41: medium: contract case might fail
gnatprove: unproved check messages considered as errors

This example isn't correct. We duplicated the content of Compute's body
in its contract. This is incorrect because the semantics of
Contract_Cases require disjoint cases, just like a case
statement. The counterexample returned by GNATprove shows that X = 0 is
covered by two different case-guards (the first and the second).

Example #10

Let's rewrite the contract of Compute to avoid overlapping cases.

compute.adb

 1procedure Compute (X : in out Integer) with
 2 Contract_Cases => ((X in 0 .. 199) => X >= X'Old,
 3 (X in -199 .. -1) => X <= X'Old,
 4 X >= 200 => X = 200,
 5 X < -200 => X = -200)
 6is
 7begin
 8 if X in -100 .. 100 then
 9 X := X * 2;
10 elsif X in 0 .. 199 then
11 X := X + 1;
12 elsif X in -199 .. 0 then
13 X := X - 1;
14 elsif X >= 200 then
15 X := 200;
16 else
17 X := -200;
18 end if;
19end Compute;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Program_Integrity.Example_10
MD5: 01d33b10fd60f384ffa4ae8fea1e7d87

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
compute.adb:2:03: medium: contract cases might not be complete
gnatprove: unproved check messages considered as errors

This example is still not correct. GNATprove can successfully prove the
different cases are disjoint and also successfully verify each case
individually. This isn't enough, though: a Contract_Cases must cover
all cases. Here, we forgot the value -200, which is what GNATprove reports in
its counterexample.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Buffer_overflow

[#2]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_write_subprogram_contracts.html#contextual-analysis-of-subprograms-without-contracts

[#3]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#expression-functions

[#4]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/subprogram_contracts.html#preconditions

[#5]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/overflow_modes.html

[#6]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/assertion_pragmas.html#pragma-assume

[#7]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/subprogram_contracts.html#contract-cases

[#8]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_investigate_unproved_checks.html

State Abstraction

Abstraction is a key concept in programming that can drastically simplify
both the implementation and maintenance of code. It's particularly well
suited to SPARK and its modular analysis. This section explains what state
abstraction is and how you use it in SPARK. We explain how it impacts
GNATprove's analysis both in terms of information flow and proof of program
properties.

State abstraction allows us to:

	express dependencies that wouldn't otherwise be expressible because some
data that's read or written isn't visible at the point where a subprogram
is declared — examples are dependencies on data, for which we use the
Global contract, and on flow, for which we use the Depends
contract.

	reduce the number of variables that need to be considered in flow
analysis and proof, a reduction which may be critical in order to scale
the analysis to programs with thousands of global variables.

What's an Abstraction?

Abstraction is an important part of programming language design. It
provides two views of the same object: an abstract one and a refined
one. The abstract one — usually called specification — describes
what the object does in a coarse way. A subprogram's specification usually
describes how it should be called (e.g., parameter information such as how
many and of what types) as well as what it does (e.g., returns a result or
modifies one or more of its parameters).

Contract-based programming, as supported in Ada, allows contracts to be
added to a subprogram's specification. You use contracts to describe the
subprogram's behavior in a more fine-grained manner, but all the details of
how the subprogram actually works are left to its refined view, its
implementation.

Take a look at the example code shown below.

increase.ads

1procedure Increase (X : in out Integer) with
2 Global => null,
3 Pre => X <= 100,
4 Post => X'Old < X;

increase.adb

1procedure Increase (X : in out Integer) is
2begin
3 X := X + 1;
4end Increase;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.No_Abstraction
MD5: c4c8f229aeb1b5c12744d26369a8603f

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
increase.adb:3:11: info: overflow check proved
increase.ads:2:03: info: data dependencies proved
increase.ads:4:13: info: postcondition proved

We've written a specification of the subprogram Increase to say that it's
called with a single argument, a variable of type Integer whose
initial value is less than 100. Our contract says that the only effect of
the subprogram is to increase the value of its argument.

Why is Abstraction Useful?

A good abstraction of a subprogram's implementation is one whose
specification precisely and completely summarizes what its callers can rely
on. In other words, a caller of that subprogram shouldn't rely on any
behavior of its implementation if that behavior isn't documented in its
specification.

For example, callers of the subprogram Increase can assume that it
always strictly increases the value of its argument. In the code snippet
shown below, this means the loop must terminate.

increase.ads

1procedure Increase (X : in out Integer) with
2 Global => null,
3 Pre => X <= 100,
4 Post => X'Old < X;

client.adb

1with Increase;
2procedure Client is
3 X : Integer := 0;
4begin
5 while X <= 100 loop -- The loop will terminate
6 Increase (X); -- Increase can be called safely
7 end loop;
8 pragma Assert (X = 101); -- Will this hold?
9end Client;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Using_Abstraction
MD5: 9cd07cb04ae2194343931f0561693be4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
client.adb:8:19: medium: assertion might fail
gnatprove: unproved check messages considered as errors

Callers can also assume that the implementation of Increase won't cause
any runtime errors when called in the loop. On the other hand, nothing in
the specification guarantees that the assertion show above is correct: it
may fail if Increase's implementation is changed.

If you follow this basic principle, abstraction can bring you significant
benefits. It simplifies both your program's implementation and
verification. It also makes maintenance and code reuse much easier since
changes to the implementation of an object shouldn't affect the code using
this object. Your goal in using it is that it should be enough to
understand the specification of an object in order to use that object,
since understanding the specification is usually much simpler than
understanding the implementation.

GNATprove relies on the abstraction defined by subprogram contracts and
therefore doesn't prove the assertion after the loop in Client above.

Abstraction of a Package's State

Subprograms aren't the only objects that benefit from abstraction. The
state of a package — the set of persistent variables defined in it —
can also be hidden from external users. You achieve this form of
abstraction — called state abstraction — by defining variables in
the body or private part of a package so they can only be accessed through
subprogram calls. For example, our Stack package shown below provides
an abstraction for a Stack object which can only be modified using the
Pop and Push procedures.

package Stack is
 procedure Pop (E : out Element);
 procedure Push (E : in Element);
end Stack;

package body Stack is
 Content : Element_Array (1 .. Max);
 Top : Natural;
 ...
end Stack;

The fact that we implemented it using an array is irrelevant to the caller.
We could change that without impacting our callers' code.

Declaring a State Abstraction

Hidden state influences a program's behavior, so SPARK allows that state to
be declared. You can use the Abstract_State aspect, an abstraction
that names a state, to do this, but you aren't required to use it even for
a package with hidden state. You can use several state abstractions to
declare the hidden state of a single package or you can use it for a
package with no hidden state at all. However, since SPARK doesn't allow
aliasing, different state abstractions must always refer to disjoint sets
of variables. A state abstraction isn't a variable: it doesn't have a type
and can't be used inside expressions, either those in bodies or contracts.

As an example of the use of this aspect, we can optionally define a state
abstraction for the entire hidden state of the Stack package like this:

package Stack with
 Abstract_State => The_Stack
is
 ...

Alternatively, we can define a state abstraction for each hidden variable:

package Stack with
 Abstract_State => (Top_State, Content_State)
is
 ...

Remember: a state abstraction isn't a variable (it has no type) and can't
be used inside expressions. For example:

pragma Assert (Stack.Top_State = ...);
-- compilation error: Top_State is not a variable

Refining an Abstract State

Once you've declared an abstract state in a package, you must refine it
into its constituents using a Refined_State aspect. You must place
the Refined_State aspect on the package body even if the package
wouldn't otherwise have required a body. For each state abstraction you've
declared for the package, you list the set of variables represented by that
state abstraction in its refined state.

If you specify an abstract state for a package, it must be complete,
meaning you must have listed every hidden variable as part of some state
abstraction. For example, we must add a Refined_State aspect on our
Stack package's body linking the state abstraction (The_Stack) to
the entire hidden state of the package, which consists of both Content
and Top.

stack.ads

1package Stack with
2 Abstract_State => The_Stack
3is
4 type Element is new Integer;
5
6 procedure Pop (E : out Element);
7 procedure Push (E : Element);
8
9end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Content, Top))
 3is
 4 Max : constant := 100;
 5
 6 type Element_Array is array (1 .. Max) of Element;
 7
 8 Content : Element_Array := (others => 0);
 9 Top : Natural range 0 .. Max := 0;
10 -- Both Content and Top must be listed in the list of
11 -- constituents of The_Stack
12
13 procedure Pop (E : out Element) is
14 begin
15 E := Content (Top);
16 Top := Top - 1;
17 end Pop;
18
19 procedure Push (E : Element) is
20 begin
21 Top := Top + 1;
22 Content (Top) := E;
23 end Push;
24
25end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Refined_State
MD5: 3a794c7a4e4920dab7d01248e50901ab

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
stack.ads:6:20: info: initialization of "E" proved

Representing Private Variables

You can refine state abstractions in the package body, where all the
variables are visible. When only the package's specification is available,
you need a way to specify which state abstraction each private variable
belongs to. You do this by adding the Part_Of aspect to the
variable's declaration.

Part_Of annotations are mandatory: if you gave a package an abstract
state annotation, you must link all the hidden variables defined in its
private part to a state abstraction. For example:

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 type Element is new Integer;
 5
 6 procedure Pop (E : out Element);
 7 procedure Push (E : Element);
 8
 9private
10
11 Max : constant := 100;
12
13 type Element_Array is array (1 .. Max) of Element;
14
15 Content : Element_Array with Part_Of => The_Stack;
16 Top : Natural range 0 .. Max with Part_Of => The_Stack;
17
18end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Private_Variables
MD5: 3b5f7edca8a4511071d2397197b01fda

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Since we chose to define Content and Top in Stack's private
part instead of its body, we had to add a Part_Of aspect to both of
their declarations, associating them with the state abstraction
The_Stack, even though it's the only state abstraction. However, we
still need to list them in the Refined_State aspect in Stack's
body.

package body Stack with
 Refined_State => (The_Stack => (Content, Top))

Additional State

Nested Packages

So far, we've only discussed hidden variables. But variables aren't the
only component of a package's state. If a package P contains a nested
package, the nested package's state is also part of P's state. If the
nested package is hidden, its state is part of P's hidden state and
must be listed in P's state refinement.

We see this in the example below, where the package Hidden_Nested's
hidden state is part of P's hidden state.

p.ads

1package P with
2 Abstract_State => State
3is
4 package Visible_Nested with
5 Abstract_State => Visible_State
6 is
7 procedure Get (E : out Integer);
8 end Visible_Nested;
9end P;

p.adb

 1package body P with
 2 Refined_State => (State => Hidden_Nested.Hidden_State)
 3is
 4 package Hidden_Nested with
 5 Abstract_State => Hidden_State,
 6 Initializes => Hidden_State
 7 is
 8 function Get return Integer;
 9 end Hidden_Nested;
10
11 package body Hidden_Nested with
12 Refined_State => (Hidden_State => Cnt)
13 is
14 Cnt : Integer := 0;
15
16 function Get return Integer is (Cnt);
17 end Hidden_Nested;
18
19 package body Visible_Nested with
20 Refined_State => (Visible_State => Checked)
21 is
22 Checked : Boolean := False;
23
24 procedure Get (E : out Integer) is
25 begin
26 Checked := True;
27 E := Hidden_Nested.Get;
28 end Get;
29 end Visible_Nested;
30end P;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Nested_Packages
MD5: 8260089cbd651de296dd790506c76fd8

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
p.adb:6:07: info: flow dependencies proved
p.ads:7:22: info: initialization of "E" proved

Any visible state of Hidden_Nested would also have been part of P's
hidden state. However, if P contains a visible nested package, that
nested package's state isn't part of P's hidden state. Instead, you
should declare that package's hidden state in a separate state abstraction
on its own declaration, like we did above for Visible_Nested.

Constants that Depend on Variables

Some constants are also possible components of a state abstraction. These
are constants whose value depends either on a variable or a subprogram
parameter. They're handled as variables during flow analysis because they
participate in the flow of information between variables throughout the
program. Therefore, GNATprove considers these constants to be part of a
package's state just like it does for variables.

If you've specified a state abstraction for a package, you must list such
hidden constants declared in that package in the state abstraction
refinement. However, constants that don't depend on variables don't
participate in the flow of information and must not appear in a state
refinement.

Let's look at this example.

stack.ads

1package Stack with
2 Abstract_State => The_Stack
3is
4 type Element is new Integer;
5
6 procedure Pop (E : out Element);
7 procedure Push (E : Element);
8end Stack;

configuration.ads

1package Configuration with
2 Initializes => External_Variable
3is
4 External_Variable : Positive with Volatile;
5end Configuration;

stack.adb

 1with Configuration;
 2pragma Elaborate (Configuration);
 3
 4package body Stack with
 5 Refined_State => (The_Stack => (Content, Top, Max))
 6 -- Max has variable inputs. It must appear as a
 7 -- constituent of The_Stack
 8is
 9 Max : constant Positive := Configuration.External_Variable;
10
11 type Element_Array is array (1 .. Max) of Element;
12
13 Content : Element_Array := (others => 0);
14 Top : Natural range 0 .. Max := 0;
15
16 procedure Pop (E : out Element) is
17 begin
18 E := Content (Top);
19 Top := Top - 1;
20 end Pop;
21
22 procedure Push (E : Element) is
23 begin
24 Top := Top + 1;
25 Content (Top) := E;
26 end Push;
27
28end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Constants_And_Variables
MD5: 109a6340ef0f3b0dc88e0fe5888b9a53

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
stack.ads:6:20: info: initialization of "E" proved
configuration.ads:2:03: info: flow dependencies proved

Here, Max — the maximum number of elements that can be stored in
the stack — is initialized from a variable in an external package.
Because of this, we must include Max as part of the state abstraction
The_Stack.

Note

For more details on state abstractions, see the
SPARK User's Guide[#1].

Subprogram Contracts

Global and Depends

Hidden variables can only be accessed through subprogram calls, so you
document how state abstractions are modified during the program's execution
via the contracts of those subprograms. You use Global and
Depends contracts to specify which of the state abstractions are
used by a subprogram and how values flow through the different variables.
The Global and Depends contracts that you write when
referring to state abstractions are often less precise than contracts
referring to visible variables since the possibly different dependencies of
the hidden variables contained within a state abstraction are collapsed
into a single dependency.

Let's add Global and Depends contracts to the Pop
procedure in our stack.

stack.ads

 1package Stack with
 2 Abstract_State => (Top_State, Content_State)
 3is
 4 type Element is new Integer;
 5
 6 procedure Pop (E : out Element) with
 7 Global => (Input => Content_State,
 8 In_Out => Top_State),
 9 Depends => (Top_State => Top_State,
10 E => (Content_State, Top_State));
11
12end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Global_Depends
MD5: a7b383c35508d6a8294bf7cf0fe332ac

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

In this example, the Pop procedure only modifies the value of the
hidden variable Top, while Content is unchanged. By using distinct
state abstractions for the two variables, we're able to preserve this
semantic in the contract.

Let's contrast this example with a different representation of
Global and Depends contracts, this time using a single
abstract state.

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 type Element is new Integer;
 5
 6 procedure Pop (E : out Element) with
 7 Global => (In_Out => The_Stack),
 8 Depends => ((The_Stack, E) => The_Stack);
 9
10end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Global_Single_Abstract_State
MD5: f89f6026fa5ee3c18baf0af9d7c3dbca

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Here, Top_State and Content_State are merged into a single state
abstraction, The_Stack. By doing so, we've hidden the fact that
Content isn't modified (though we're still showing that Top may be
modified). This loss in precision is reasonable here, since it's the whole
point of the abstraction. However, you must be careful not to aggregate
unrelated hidden state because this risks their annotations becoming
meaningless.

Even though imprecise contracts that consider state abstractions as a whole
are perfectly reasonable for users of a package, you should write
Global and Depends contracts that are as precise as possible
within the package body. To allow this, SPARK introduces the notion of
refined contracts, which are precise contracts specified on the bodies of
subprograms where state refinements are visible. These contracts are the
same as normal Global and Depends contracts except they refer
directly to the hidden state of the package.

When a subprogram is called inside the package body, you should write
refined contracts instead of the general ones so that the verification can
be as precise as possible. However, refined Global and
Depends are optional: if you don't specify them, GNATprove will
compute them to check the package's implementation.

For our Stack example, we could add refined contracts as shown below.

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 type Element is new Integer;
 5
 6 procedure Pop (E : out Element) with
 7 Global => (In_Out => The_Stack),
 8 Depends => ((The_Stack, E) => The_Stack);
 9
10 procedure Push (E : Element) with
11 Global => (In_Out => The_Stack),
12 Depends => (The_Stack => (The_Stack, E));
13
14end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Content, Top))
 3is
 4 Max : constant := 100;
 5
 6 type Element_Array is array (1 .. Max) of Element;
 7
 8 Content : Element_Array := (others => 0);
 9 Top : Natural range 0 .. Max := 0;
10
11 procedure Pop (E : out Element) with
12 Refined_Global => (Input => Content,
13 In_Out => Top),
14 Refined_Depends => (Top => Top,
15 E => (Content, Top))
16 is
17 begin
18 E := Content (Top);
19 Top := Top - 1;
20 end Pop;
21
22 procedure Push (E : Element) with
23 Refined_Global => (In_Out => (Content, Top)),
24 Refined_Depends => (Content =>+ (Content, Top, E),
25 Top => Top) is
26 begin
27 Top := Top + 1;
28 Content (Top) := E;
29 end Push;
30
31end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Global_Refined
MD5: b7e700645885155ea7faf2f4170f0462

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Preconditions and Postconditions

We mostly express functional properties of subprograms using preconditions
and postconditions. These are standard Boolean expressions, so they can't
directly refer to state abstractions. To work around this restriction, we
can define functions to query the value of hidden variables. We then use
these functions in place of the state abstraction in the contract of other
subprograms.

For example, we can query the state of the stack with functions
Is_Empty and Is_Full and call these in the contracts of procedures
Pop and Push:

stack.ads

 1package Stack is
 2 type Element is new Integer;
 3
 4 function Is_Empty return Boolean;
 5 function Is_Full return Boolean;
 6
 7 procedure Pop (E : out Element) with
 8 Pre => not Is_Empty,
 9 Post => not Is_Full;
10
11 procedure Push (E : Element) with
12 Pre => not Is_Full,
13 Post => not Is_Empty;
14
15end Stack;

stack.adb

 1package body Stack is
 2
 3 Max : constant := 100;
 4
 5 type Element_Array is array (1 .. Max) of Element;
 6
 7 Content : Element_Array := (others => 0);
 8 Top : Natural range 0 .. Max := 0;
 9
10 function Is_Empty return Boolean is (Top = 0);
11 function Is_Full return Boolean is (Top = Max);
12
13 procedure Pop (E : out Element) is
14 begin
15 E := Content (Top);
16 Top := Top - 1;
17 end Pop;
18
19 procedure Push (E : Element) is
20 begin
21 Top := Top + 1;
22 Content (Top) := E;
23 end Push;
24
25end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Pre_Postconditions_1
MD5: fe9d4b65ba1beeabc7cf0feda29b8b3c

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
stack.adb:15:23: info: index check proved
stack.adb:16:18: info: range check proved
stack.adb:21:28: info: range check proved
stack.adb:22:16: info: index check proved
stack.ads:7:19: info: initialization of "E" proved
stack.ads:9:14: info: postcondition proved
stack.ads:13:14: info: postcondition proved

Just like we saw for Global and Depends contracts, you may
often find it useful to have a more precise view of functional contracts in
the context where the hidden variables are visible. You do this using
expression functions in the same way we did for the functions Is_Empty
and Is_Full above. As expression function, bodies act as contracts for
GNATprove, so they automatically give a more precise version of the
contracts when their implementation is visible.

You may often need a more constraining contract to verify the package's
implementation but want to be less strict outside the abstraction. You do
this using the Refined_Post aspect. This aspect, when placed on a
subprogram's body, provides stronger guarantees to internal callers of a
subprogram. If you provide one, the refined postcondition must imply the
subprogram's postcondition. This is checked by GNATprove, which reports a
failing postcondition if the refined postcondition is too weak, even if
it's actually implied by the subprogram's body. SPARK doesn't peform a
similar verification for normal preconditions.

For example, we can refine the postconditions in the bodies of Pop and
Push to be more detailed than what we wrote for them in their
specification.

stack.ads

 1package Stack is
 2 type Element is new Integer;
 3
 4 function Is_Empty return Boolean;
 5 function Is_Full return Boolean;
 6
 7 procedure Pop (E : out Element) with
 8 Pre => not Is_Empty,
 9 Post => not Is_Full;
10
11 procedure Push (E : Element) with
12 Pre => not Is_Full,
13 Post => not Is_Empty;
14
15end Stack;

stack.adb

 1package body Stack is
 2
 3 Max : constant := 100;
 4
 5 type Element_Array is array (1 .. Max) of Element;
 6
 7 Content : Element_Array := (others => 0);
 8 Top : Natural range 0 .. Max := 0;
 9
10 function Is_Empty return Boolean is (Top = 0);
11 function Is_Full return Boolean is (Top = Max);
12
13 procedure Pop (E : out Element) with
14 Refined_Post => not Is_Full and E = Content (Top)'Old
15 is
16 begin
17 E := Content (Top);
18 Top := Top - 1;
19 end Pop;
20
21 procedure Push (E : Element) with
22 Refined_Post => not Is_Empty and E = Content (Top)
23 is
24 begin
25 Top := Top + 1;
26 Content (Top) := E;
27 end Push;
28
29end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Pre_Postconditions_2
MD5: 4691565d58ba039b3cbd06e65cecfa88

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
stack.adb:14:22: info: refined post proved
stack.adb:14:51: info: index check proved
stack.adb:17:23: info: index check proved
stack.adb:18:18: info: range check proved
stack.adb:22:22: info: refined post proved
stack.adb:22:52: info: index check proved
stack.adb:25:28: info: range check proved
stack.adb:26:16: info: index check proved
stack.ads:7:19: info: initialization of "E" proved
stack.ads:9:14: info: postcondition proved
stack.ads:13:14: info: postcondition proved

Note

For more details on refinement in contracts, see the
SPARK User's Guide[#2].

Initialization of Local Variables

As part of flow analysis, GNATprove checks for the proper initialization of
variables. Therefore, flow analysis needs to know which variables are
initialized during the package's elaboration.

You can use the Initializes aspect to specify the set of visible
variables and state abstractions that are initialized during the
elaboration of a package. An Initializes aspect can't refer to a
variable that isn't defined in the unit since, in SPARK, a package can only
initialize variables declared immediately within the package.

Initializes aspects are optional. If you don't supply any, they'll
be derived by GNATprove.

For our Stack example, we could add an Initializes aspect.

stack.ads

1package Stack with
2 Abstract_State => The_Stack,
3 Initializes => The_Stack
4is
5 type Element is new Integer;
6
7 procedure Pop (E : out Element);
8
9end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Content, Top))
 3is
 4 Max : constant := 100;
 5
 6 type Element_Array is array (1 .. Max) of Element;
 7
 8 Content : Element_Array := (others => 0);
 9 Top : Natural range 0 .. Max := 0;
10
11 procedure Pop (E : out Element) is
12 begin
13 E := Content (Top);
14 Top := Top - 1;
15 end Pop;
16
17end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Local_Init
MD5: 710e74959fd2ef8f5089c4636d7ec13b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
stack.ads:3:03: info: flow dependencies proved
stack.ads:7:20: info: initialization of "E" proved

Flow analysis also checks for dependencies between variables, so it must be
aware of how information flows through the code that performs the
initialization of states. We discussed one use of the Initializes
aspect above. But you also can use it to provide flow information. If the
initial value of a variable or state abstraction is dependent on the value
of another visible variable or state abstraction from another package, you
must list this dependency in the Initializes contract. You specify
the list of entities on which a variable's initial value depends using an
arrow following that variable's name.

Let's look at this example:

q.ads

1package Q is
2 External_Variable : Integer := 2;
3end Q;

p.ads

1with Q;
2package P with
3 Initializes => (V1, V2 => Q.External_Variable)
4is
5 V1 : Integer := 0;
6 V2 : Integer := Q.External_Variable;
7end P;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Initializes
MD5: c8aa7f21729f3b926bf3d25a826cccb2

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
p.ads:3:03: info: flow dependencies proved

Here we indicated that V2's initial value depends on the value of
Q.External_Variable by including that dependency in the
Initializes aspect of P. We didn't list any dependency for
V1 because its initial value doesn't depend on any external
variable. We could also have stated that lack of dependency explicitly by
writing V1 => null.

GNATprove computes dependencies of initial values if you don't supply an
Initializes aspect. However, if you do provide an
Initializes aspect for a package, it must be complete: you must list
every initialized state of the package, along with all its external
dependencies.

Note

For more details on Initializes, see the
SPARK User's Guide[#3].

Code Examples / Pitfalls

This section contains some code examples to illustrate potential pitfalls.

Example #1

Package Communication defines a hidden local package, Ring_Buffer,
whose capacity is initialized from an external configuration during
elaboration.

configuration.ads

1package Configuration is
2
3 External_Variable : Natural := 1;
4
5end Configuration;

communication.ads

 1with Configuration;
 2
 3package Communication with
 4 Abstract_State => State,
 5 Initializes => (State => Configuration.External_Variable)
 6is
 7 function Get_Capacity return Natural;
 8
 9private
10
11 package Ring_Buffer with
12 Initializes => (Capacity => Configuration.External_Variable)
13 is
14 Capacity : constant Natural := Configuration.External_Variable;
15 end Ring_Buffer;
16
17end Communication;

communication.adb

 1package body Communication with
 2 Refined_State => (State => Ring_Buffer.Capacity)
 3is
 4
 5 function Get_Capacity return Natural is
 6 begin
 7 return Ring_Buffer.Capacity;
 8 end Get_Capacity;
 9
10end Communication;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_01
MD5: 207e999f85a5b39fa2b9aebbc836b479

Prover output

Phase 1 of 2: generation of Global contracts ...
communication.adb:2:41: error: "Capacity" cannot act as constituent of state "State"
communication.adb:2:41: error: missing Part_Of indicator at communication.ads:14 should specify encapsulator "State"
gnatprove: error during generation of Global contracts

This example isn't correct. Capacity is declared in the private part
of Communication. Therefore, we should have linked it to State by
using the Part_Of aspect in its declaration.

Example #2

Let's add Part_Of to the state of hidden local package Ring_Buffer,
but this time we hide variable Capacity inside the private part of
Ring_Buffer.

configuration.ads

1package Configuration is
2
3 External_Variable : Natural := 1;
4
5end Configuration;

communication.ads

 1with Configuration;
 2
 3package Communication with
 4 Abstract_State => State
 5is
 6private
 7
 8 package Ring_Buffer with
 9 Abstract_State => (B_State with Part_Of => State),
10 Initializes => (B_State => Configuration.External_Variable)
11 is
12 function Get_Capacity return Natural;
13 private
14 Capacity : constant Natural := Configuration.External_Variable
15 with Part_Of => B_State;
16 end Ring_Buffer;
17
18end Communication;

communication.adb

 1package body Communication with
 2 Refined_State => (State => Ring_Buffer.B_State)
 3is
 4
 5 package body Ring_Buffer with
 6 Refined_State => (B_State => Capacity)
 7 is
 8 function Get_Capacity return Natural is (Capacity);
 9 end Ring_Buffer;
10
11end Communication;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_02
MD5: b8d31fcfbd11bf305646efe07baeb91b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
communication.ads:10:06: info: flow dependencies proved

This program is correct and GNATprove is able to verify it.

Example #3

Package Counting defines two counters: Black_Counter and
Red_Counter. It provides separate initialization procedures for each,
both called from the main procedure.

counting.ads

1package Counting with
2 Abstract_State => State
3is
4 procedure Reset_Black_Count;
5 procedure Reset_Red_Count;
6end Counting;

counting.adb

 1package body Counting with
 2 Refined_State => (State => (Black_Counter, Red_Counter))
 3is
 4 Black_Counter, Red_Counter : Natural;
 5
 6 procedure Reset_Black_Count is
 7 begin
 8 Black_Counter := 0;
 9 end Reset_Black_Count;
10
11 procedure Reset_Red_Count is
12 begin
13 Red_Counter := 0;
14 end Reset_Red_Count;
15end Counting;

main.adb

1with Counting; use Counting;
2
3procedure Main is
4begin
5 Reset_Black_Count;
6 Reset_Red_Count;
7end Main;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_03
MD5: bc2d7ccd7419d34f7156a16dfc484229

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
main.adb:5:04: medium: "Counting.State" might not be initialized after elaboration of main program "Main"
counting.ads:2:21: warning: no procedure exists that can initialize abstract state "Counting.State"
gnatprove: unproved check messages considered as errors

This program doesn't read any uninitialized data, but GNATprove fails to
verify that. This is because we provided a state abstraction for package
Counting, so flow analysis computes the effects of subprograms in terms
of this state abstraction and thus considers State to be an in-out
global consisting of both Black_Counter and
Red_Counter. So it issues the message requiring that State be
initialized after elaboration as well as the warning that no procedure in
package Counting can initialize its state.

Example #4

Let's remove the abstract state on package Counting.

counting.ads

1package Counting is
2 procedure Reset_Black_Count;
3 procedure Reset_Red_Count;
4end Counting;

counting.adb

 1package body Counting is
 2 Black_Counter, Red_Counter : Natural;
 3
 4 procedure Reset_Black_Count is
 5 begin
 6 Black_Counter := 0;
 7 end Reset_Black_Count;
 8
 9 procedure Reset_Red_Count is
10 begin
11 Red_Counter := 0;
12 end Reset_Red_Count;
13end Counting;

main.adb

1with Counting; use Counting;
2
3procedure Main is
4begin
5 Reset_Black_Count;
6 Reset_Red_Count;
7end Main;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_04
MD5: 3ddd934b6ede6df7b823e46828694d12

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

This example is correct. Because we didn't provide a state abstraction,
GNATprove reasons in terms of variables, instead of states, and proves data
initialization without any problem.

Example #5

Let's restore the abstract state to package Counting, but this time
provide a procedure Reset_All that calls the initialization procedures
Reset_Black_Counter and Reset_Red_Counter.

counting.ads

1package Counting with
2 Abstract_State => State
3is
4 procedure Reset_Black_Count with Global => (In_Out => State);
5 procedure Reset_Red_Count with Global => (In_Out => State);
6 procedure Reset_All with Global => (Output => State);
7end Counting;

counting.adb

 1package body Counting with
 2 Refined_State => (State => (Black_Counter, Red_Counter))
 3is
 4 Black_Counter, Red_Counter : Natural;
 5
 6 procedure Reset_Black_Count is
 7 begin
 8 Black_Counter := 0;
 9 end Reset_Black_Count;
10
11 procedure Reset_Red_Count is
12 begin
13 Red_Counter := 0;
14 end Reset_Red_Count;
15
16 procedure Reset_All is
17 begin
18 Reset_Black_Count;
19 Reset_Red_Count;
20 end Reset_All;
21end Counting;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_05
MD5: d123ccc644fe6999699388708f2ecf89

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
counting.ads:4:37: info: data dependencies proved
counting.ads:5:37: info: data dependencies proved
counting.ads:6:14: info: initialization of "Black_Counter" constituent of "State" proved
counting.ads:6:14: info: initialization of "Red_Counter" constituent of "State" proved
counting.ads:6:37: info: data dependencies proved

This example is correct. Flow analysis computes refined versions of
Global contracts for internal calls and uses these to verify that
Reset_All indeed properly initializes State. The
Refined_Global and Global annotations are not mandatory and
can be computed by GNATprove.

Example #6

Let's consider yet another version of our abstract stack unit.

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 pragma Unevaluated_Use_Of_Old (Allow);
 5
 6 type Element is new Integer;
 7
 8 type Element_Array is array (Positive range <>) of Element;
 9 Max : constant Natural := 100;
10 subtype Length_Type is Natural range 0 .. Max;
11
12 procedure Push (E : Element) with
13 Post =>
14 not Is_Empty and
15 (if Is_Full'Old then The_Stack = The_Stack'Old else Peek = E);
16
17 function Peek return Element with Pre => not Is_Empty;
18 function Is_Full return Boolean;
19 function Is_Empty return Boolean;
20end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Top, Content))
 3is
 4 Top : Length_Type := 0;
 5 Content : Element_Array (1 .. Max) := (others => 0);
 6
 7 procedure Push (E : Element) is
 8 begin
 9 Top := Top + 1;
10 Content (Top) := E;
11 end Push;
12
13 function Peek return Element is (Content (Top));
14 function Is_Full return Boolean is (Top >= Max);
15 function Is_Empty return Boolean is (Top = 0);
16end Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_06
MD5: 9da2b74da203a639dc66b2d33cbd500d

Build output

stack.ads:15:39: error: there is no applicable operator "=" for package or procedure name
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
stack.ads:15:39: error: there is no applicable operator "=" for package or procedure name
gnatprove: error during generation of Global contracts

This example isn't correct. There's a compilation error in Push's
postcondition: The_Stack is a state abstraction, not a variable, and
therefore can't be used in an expression.

Example #7

In this version of our abstract stack unit, a copy of the stack is returned
by function Get_Stack, which we call in the postcondition of Push
to specify that the stack shouldn't be modified if it's full. We also
assert that after we push an element on the stack, either the stack is
unchanged (if it was already full) or its top element is equal to the
element just pushed.

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 pragma Unevaluated_Use_Of_Old (Allow);
 5
 6 type Stack_Model is private;
 7
 8 type Element is new Integer;
 9 type Element_Array is array (Positive range <>) of Element;
10 Max : constant Natural := 100;
11 subtype Length_Type is Natural range 0 .. Max;
12
13 function Peek return Element with Pre => not Is_Empty;
14 function Is_Full return Boolean;
15 function Is_Empty return Boolean;
16 function Get_Stack return Stack_Model;
17
18 procedure Push (E : Element) with
19 Post => not Is_Empty and
20 (if Is_Full'Old then Get_Stack = Get_Stack'Old else Peek = E);
21
22private
23
24 type Stack_Model is record
25 Top : Length_Type := 0;
26 Content : Element_Array (1 .. Max) := (others => 0);
27 end record;
28
29end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Top, Content))
 3is
 4 Top : Length_Type := 0;
 5 Content : Element_Array (1 .. Max) := (others => 0);
 6
 7 procedure Push (E : Element) is
 8 begin
 9 if Top >= Max then
10 return;
11 end if;
12 Top := Top + 1;
13 Content (Top) := E;
14 end Push;
15
16 function Peek return Element is (Content (Top));
17 function Is_Full return Boolean is (Top >= Max);
18 function Is_Empty return Boolean is (Top = 0);
19
20 function Get_Stack return Stack_Model is (Stack_Model'(Top, Content));
21
22end Stack;

use_stack.adb

 1with Stack; use Stack;
 2
 3procedure Use_Stack (E : Element) with
 4 Pre => not Is_Empty
 5is
 6 F : Element := Peek;
 7begin
 8 Push (E);
 9 pragma Assert (Peek = E or Peek = F);
10end Use_Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_07
MD5: 4831aa7f018f2e2d4e6d102095f8f631

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
use_stack.adb:9:19: medium: assertion might fail [possible fix: precondition of subprogram at line 3 should mention E]
gnatprove: unproved check messages considered as errors

This program is correct, but GNATprove can't prove the assertion in
Use_Stack. Indeed, even if Get_Stack is an expression function, its
body isn't visible outside of Stack's body, where it's defined.

Example #8

Let's move the definition of Get_Stack and other expression functions
inside the private part of the spec of Stack.

stack.ads

 1package Stack with
 2 Abstract_State => The_Stack
 3is
 4 pragma Unevaluated_Use_Of_Old (Allow);
 5
 6 type Stack_Model is private;
 7
 8 type Element is new Integer;
 9 type Element_Array is array (Positive range <>) of Element;
10 Max : constant Natural := 100;
11 subtype Length_Type is Natural range 0 .. Max;
12
13 function Peek return Element with Pre => not Is_Empty;
14 function Is_Full return Boolean;
15 function Is_Empty return Boolean;
16 function Get_Stack return Stack_Model;
17
18 procedure Push (E : Element) with
19 Post => not Is_Empty and
20 (if Is_Full'Old then Get_Stack = Get_Stack'Old else Peek = E);
21
22private
23
24 Top : Length_Type := 0 with Part_Of => The_Stack;
25 Content : Element_Array (1 .. Max) := (others => 0) with
26 Part_Of => The_Stack;
27
28 type Stack_Model is record
29 Top : Length_Type := 0;
30 Content : Element_Array (1 .. Max) := (others => 0);
31 end record;
32
33 function Peek return Element is (Content (Top));
34 function Is_Full return Boolean is (Top >= Max);
35 function Is_Empty return Boolean is (Top = 0);
36
37 function Get_Stack return Stack_Model is (Stack_Model'(Top, Content));
38
39end Stack;

stack.adb

 1package body Stack with
 2 Refined_State => (The_Stack => (Top, Content))
 3is
 4
 5 procedure Push (E : Element) is
 6 begin
 7 if Top >= Max then
 8 return;
 9 end if;
10 Top := Top + 1;
11 Content (Top) := E;
12 end Push;
13
14end Stack;

use_stack.adb

 1with Stack; use Stack;
 2
 3procedure Use_Stack (E : Element) with
 4 Pre => not Is_Empty
 5is
 6 F : Element := Peek;
 7begin
 8 Push (E);
 9 pragma Assert (Peek = E or Peek = F);
10end Use_Stack;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_08
MD5: 7e5204d3f69e71c212e7263906a89da4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
use_stack.adb:6:19: info: precondition proved
use_stack.adb:9:19: info: precondition proved
use_stack.adb:9:19: info: assertion proved
use_stack.adb:9:31: info: precondition proved
stack.adb:10:30: info: range check proved
stack.adb:11:16: info: index check proved
stack.ads:19:14: info: postcondition proved
stack.ads:20:60: info: precondition proved
stack.ads:33:55: info: index check proved

This example is correct. GNATprove can verify the assertion in
Use_Stack because it has visibility to Get_Stack's body.

Example #9

Package Data defines three variables, Data_1, Data_2 and
Data_3, that are initialized at elaboration (in Data's package
body) from an external interface that reads the file system.

external_interface.ads

 1package External_Interface with
 2 Abstract_State => File_System,
 3 Initializes => File_System
 4is
 5 type Data_Type_1 is new Integer;
 6 type Data_Type_2 is new Integer;
 7 type Data_Type_3 is new Integer;
 8
 9 type Data_Record is record
10 Field_1 : Data_Type_1;
11 Field_2 : Data_Type_2;
12 Field_3 : Data_Type_3;
13 end record;
14
15 procedure Read_Data (File_Name : String; Data : out Data_Record)
16 with Global => File_System;
17end External_Interface;

data.ads

 1with External_Interface; use External_Interface;
 2
 3package Data with
 4 Initializes => (Data_1, Data_2, Data_3)
 5is
 6 pragma Elaborate_Body;
 7
 8 Data_1 : Data_Type_1;
 9 Data_2 : Data_Type_2;
10 Data_3 : Data_Type_3;
11
12end Data;

data.adb

 1with External_Interface;
 2pragma Elaborate_All (External_Interface);
 3
 4package body Data is
 5begin
 6 declare
 7 Data_Read : Data_Record;
 8 begin
 9 Read_Data ("data_file_name", Data_Read);
10 Data_1 := Data_Read.Field_1;
11 Data_2 := Data_Read.Field_2;
12 Data_3 := Data_Read.Field_3;
13 end;
14end Data;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_09
MD5: 0ca44501f0c991865ea50d2ef663d992

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
data.adb:9:07: high: "External_Interface.File_System" must be mentioned as an input of the Initializes aspect of "Data" (SPARK RM 7.1.5(11))
gnatprove: unproved check messages considered as errors

This example isn't correct. The dependency between Data_1's, Data_2's, and
Data_3's initial values and File_System must be listed in
Data's Initializes aspect.

Example #10

Let's remove the Initializes contract on package Data.

external_interface.ads

 1package External_Interface with
 2 Abstract_State => File_System,
 3 Initializes => File_System
 4is
 5 type Data_Type_1 is new Integer;
 6 type Data_Type_2 is new Integer;
 7 type Data_Type_3 is new Integer;
 8
 9 type Data_Record is record
10 Field_1 : Data_Type_1;
11 Field_2 : Data_Type_2;
12 Field_3 : Data_Type_3;
13 end record;
14
15 procedure Read_Data (File_Name : String; Data : out Data_Record)
16 with Global => File_System;
17end External_Interface;

data.ads

 1with External_Interface; use External_Interface;
 2
 3package Data is
 4 pragma Elaborate_Body;
 5
 6 Data_1 : Data_Type_1;
 7 Data_2 : Data_Type_2;
 8 Data_3 : Data_Type_3;
 9
10end Data;

data.adb

 1with External_Interface;
 2pragma Elaborate_All (External_Interface);
 3
 4package body Data is
 5begin
 6 declare
 7 Data_Read : Data_Record;
 8 begin
 9 Read_Data ("data_file_name", Data_Read);
10 Data_1 := Data_Read.Field_1;
11 Data_2 := Data_Read.Field_2;
12 Data_3 := Data_Read.Field_3;
13 end;
14end Data;

Code block metadata

Project: Courses.Intro_To_Spark.State_Abstraction.Example_10
MD5: 60cba2c920c7b1031d13c82a982ed0e9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
data.adb:7:07: info: initialization of "Data_Read" proved
external_interface.ads:3:03: info: flow dependencies proved

This example is correct. Since Data has no Initializes aspect,
GNATprove computes the set of variables initialized during its elaboration
as well as their dependencies.

Footnotes

[#1]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/package_contracts.html#state-abstraction

[#2]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/subprogram_contracts.html#state-abstraction-and-contracts

[#3]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/package_contracts.html#package-initialization

Proof of Functional Correctness

This section is dedicated to the functional correctness of programs. It
presents advanced proof features that you may need to use for the
specification and verification of your program's complex properties.

Beyond Program Integrity

When we speak about the correctness of a program or subprogram, we mean
the extent to which it complies with its specification. Functional
correctness is specifically concerned with properties that involve the
relations between the subprogram's inputs and outputs, as opposed to other
properties such as running time or memory consumption.

For functional correctness, we usually specify stronger properties than
those required to just prove program integrity. When we're involved in a
certification processes, we should derive these properties from the
requirements of the system, but, especially in non-certification contexts,
they can also come from more informal sources, such as the program's
documentation, comments in its code, or test oracles.

For example, if one of our goals is to ensure that no runtime error is
raised when using the result of the function Find below, it may be
enough to know that the result is either 0 or in the range of A. We can
express this as a postcondition of Find.

show_find.ads

1package Show_Find is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Find (A : Nat_Array; E : Natural) return Natural with
6 Post => Find'Result in 0 | A'Range;
7
8end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 if A (I) = E then
 7 return I;
 8 end if;
 9 end loop;
10 return 0;
11 end Find;
12
13end Show_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Find_1
MD5: d8f4ace6620fd46af170977c29947289

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.adb:7:20: info: range check proved
show_find.ads:6:14: info: postcondition proved

In this case, it's automatically proved by GNATprove.

However, to be sure that Find performs the task we expect, we may want
to verify more complex properties of that function. For example, we want to
ensure it returns an index of A where E is stored and returns 0
only if E is nowhere in A. Again, we can express this as a
postcondition of Find.

show_find.ads

 1package Show_Find is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function Find (A : Nat_Array; E : Natural) return Natural with
 6 Post =>
 7 (if (for all I in A'Range => A (I) /= E)
 8 then Find'Result = 0
 9 else Find'Result in A'Range and then A (Find'Result) = E);
10
11end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 if A (I) = E then
 7 return I;
 8 end if;
 9 end loop;
10 return 0;
11 end Find;
12
13end Show_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Find_2
MD5: 8c12b9768228a3ea45ca02199f65057b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.ads:9:14: medium: postcondition might fail, cannot prove Find'Result in A'range
gnatprove: unproved check messages considered as errors

This time, GNATprove can't prove this postcondition automatically, but
we'll see later that we can help GNATprove by providing a loop invariant,
which is checked by GNATprove and allows it to automatically prove the
postcondition for Find.

Writing at least part of your program's specification in the form of
contracts has many advantages. You can execute those contracts during
testing, which improves the maintainability of the code by detecting
discrepancies between the program and its specification in earlier stages
of development. If the contracts are precise enough, you can use them as
oracles to decide whether a given test passed or failed. In that case, they
can allow you to verify the outputs of specific subprograms while running a
larger block of code. This may, in certain contexts, replace the need for
you to perform unit testing, instead allowing you to run integration tests
with assertions enabled. Finally, if the code is in SPARK, you can also use
GNATprove to formally prove these contracts.

The advantage of a formal proof is that it verifies all possible execution
paths, something which isn't always possible by running test cases. For
example, during testing, the postcondition of the subprogram Find shown
below is checked dynamically for the set of inputs for which Find is
called in that test, but just for that set.

show_find.ads

 1package Show_Find is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function Find (A : Nat_Array; E : Natural) return Natural with
 6 Post =>
 7 (if (for all I in A'Range => A (I) /= E)
 8 then Find'Result = 0
 9 else Find'Result in A'Range and then A (Find'Result) = E);
10
11end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 if A (I) = E then
 7 return I;
 8 end if;
 9 end loop;
10 return 0;
11 end Find;
12
13end Show_Find;

use_find.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Show_Find; use Show_Find;
 3
 4procedure Use_Find with
 5 SPARK_Mode => Off
 6is
 7 Seq : constant Nat_Array (1 .. 3) := (1, 5, 3);
 8 Res : Natural;
 9begin
10 Res := Find (Seq, 3);
11 Put_Line ("Found 3 in index #" & Natural'Image (Res) & " of array");
12end Use_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Find_3
MD5: 05283ef7808ee5d8254cfa4b883e639d

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.ads:9:14: medium: postcondition might fail, cannot prove Find'Result in A'range
gnatprove: unproved check messages considered as errors

Runtime output

Found 3 in index # 3 of array

However, if Find is formally verified, that verification checks its
postcondition for all possible inputs. During development, you can attempt
such verification earlier than testing since it's performed modularly on a
per-subprogram basis. For example, in the code shown above, you can
formally verify Use_Find even before you write the body for subprogram
Find.

Advanced Contracts

Contracts for functional correctness are usually more complex than
contracts for program integrity, so they more often require you to use the
new forms of expressions introduced by the Ada 2012 standard. In
particular, quantified expressions, which allow you to specify properties
that must hold for all or for at least one element of a range, come in
handy when specifying properties of arrays.

As contracts become more complex, you may find it useful to introduce new
abstractions to improve the readability of your contracts. Expression
functions are a good means to this end because you can retain their bodies
in your package's specification.

Finally, some properties, especially those better described as invariants
over data than as properties of subprograms, may be cumbersome to express
as subprogram contracts. Type predicates, which must hold for every object
of a given type, are usually a better match for this purpose. Here's an
example.

show_sort.ads

 1package Show_Sort is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function Is_Sorted (A : Nat_Array) return Boolean is
 6 (for all I in A'Range =>
 7 (if I < A'Last then A (I) <= A (I + 1)));
 8 -- Returns True if A is sorted in increasing order.
 9
10 subtype Sorted_Nat_Array is Nat_Array with
11 Dynamic_Predicate => Is_Sorted (Sorted_Nat_Array);
12 -- Elements of type Sorted_Nat_Array are all sorted.
13
14 Good_Array : Sorted_Nat_Array := (1, 2, 4, 8, 42);
15end Show_Sort;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Sort
MD5: d3b3d26d62074d11b19d9282cc548c1b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_sort.ads:7:32: info: index check proved
show_sort.ads:7:43: info: overflow check proved
show_sort.ads:7:43: info: index check proved
show_sort.ads:14:37: info: range check proved
show_sort.ads:14:37: info: predicate check proved

We can use the subtype Sorted_Nat_Array as the type of a variable that
must remain sorted throughout the program's execution. Specifying that an
array is sorted requires a rather complex expression involving quantifiers,
so we abstract away this property as an expression function to improve
readability. Is_Sorted's body remains in the package's specification
and allows users of the package to retain a precise knowledge of its
meaning when necessary. (You must use Nat_Array as the type of the
operand of Is_Sorted. If you use Sorted_Nat_Array, you'll get
infinite recursion at runtime when assertion checks are enabled since that
function is called to check all operands of type Sorted_Nat_Array.)

Ghost Code

As the properties you need to specify grow more complex, you may have
entities that are only needed because they are used in specifications
(contracts). You may find it important to ensure that these entities can't
affect the behavior of the program or that they're completely removed from
production code. This concept, having entities that are only used for
specifications, is usually called having ghost code and is supported in
SPARK by the Ghost aspect.

You can use Ghost aspects to annotate any entity including
variables, types, subprograms, and packages. If you mark an entity as
Ghost, GNATprove ensures it can't affect the program's
behavior. When the program is compiled with assertions enabled, ghost code
is executed like normal code so it can execute the contracts using it. You
can also instruct the compiler to not generate code for ghost entities.

Consider the procedure Do_Something below, which calls a complex
function on its input, X, and wants to check that the initial and
modified values of X are related in that complex way.

show_ghost.ads

 1package Show_Ghost is
 2
 3 type T is record
 4 A, B, C, D, E : Boolean;
 5 end record;
 6
 7 function Formula (X : T) return Boolean is
 8 ((X.A and X.B) or (X.C and (X.D or X.E)));
 9
10 function Is_Correct (X, Y : T) return Boolean is
11 (Formula (X) = Formula (Y));
12
13 procedure Do_Something (X : in out T);
14
15end Show_Ghost;

show_ghost.adb

 1package body Show_Ghost is
 2
 3 procedure Do_Some_Complex_Stuff (X : in out T) is
 4 begin
 5 X := T'(X.B, X.A, X.C, X.E, X.D);
 6 end Do_Some_Complex_Stuff;
 7
 8 procedure Do_Something (X : in out T) is
 9 X_Init : constant T := X with Ghost;
10 begin
11 Do_Some_Complex_Stuff (X);
12 pragma Assert (Is_Correct (X_Init, X));
13 -- It is OK to use X_Init inside an assertion.
14 end Do_Something;
15
16end Show_Ghost;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Ghost_1
MD5: 0a6caaec950b3b043a53c18bab3cb39b

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_ghost.adb:12:22: info: assertion proved

Do_Something stores the initial value of X in a ghost constant,
X_Init. We reference it in an assertion to check that the computation
performed by the call to Do_Some_Complex_Stuff modified the value of
X in the expected manner.

However, X_Init can't be used in normal code, for example to restore
the initial value of X.

show_ghost.ads

 1package Show_Ghost is
 2
 3 type T is record
 4 A, B, C, D, E : Boolean;
 5 end record;
 6
 7 function Formula (X : T) return Boolean is
 8 ((X.A and X.B) or (X.C and (X.D or X.E)));
 9
10 function Is_Correct (X, Y : T) return Boolean is
11 (Formula (X) = Formula (Y));
12
13 procedure Do_Something (X : in out T);
14
15end Show_Ghost;

show_ghost.adb

 1package body Show_Ghost is
 2
 3 procedure Do_Some_Complex_Stuff (X : in out T) is
 4 begin
 5 X := T'(X.B, X.A, X.C, X.E, X.D);
 6 end Do_Some_Complex_Stuff;
 7
 8 procedure Do_Something (X : in out T) is
 9 X_Init : constant T := X with Ghost;
10 begin
11 Do_Some_Complex_Stuff (X);
12 pragma Assert (Is_Correct (X_Init, X));
13
14 X := X_Init; -- ERROR
15
16 end Do_Something;
17
18end Show_Ghost;

use_ghost.adb

1with Show_Ghost; use Show_Ghost;
2
3procedure Use_Ghost is
4 X : T := (True, True, False, False, True);
5begin
6 Do_Something (X);
7end Use_Ghost;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Ghost_2
MD5: 464bb4bc355a648e2b92940ec80b4717

Build output

show_ghost.adb:14:12: error: ghost entity cannot appear in this context
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
show_ghost.adb:14:12: error: ghost entity cannot appear in this context
gnatprove: error during generation of Global contracts

When compiling this example, the compiler flags the use of X_Init
as illegal, but more complex cases of interference between ghost and
normal code may sometimes only be detected when you run GNATprove.

Ghost Functions

Functions used only in specifications are a common occurrence when writing
contracts for functional correctness. For example, expression functions
used to simplify or factor out common patterns in contracts can usually be
marked as ghost.

But ghost functions can do more than improve readability. In real-world
programs, it's often the case that some information necessary for
functional specification isn't accessible in the package's specification
because of abstraction.

Making this information available to users of the packages is generally out
of the question because that breaks the abstraction. Ghost functions come
in handy in that case since they provide a way to give access to that
information without making it available to normal client code.

Let's look at the following example.

stacks.ads

 1package Stacks is
 2
 3 pragma Unevaluated_Use_Of_Old (Allow);
 4
 5 type Stack is private;
 6
 7 type Element is new Natural;
 8 type Element_Array is array (Positive range <>) of Element;
 9 Max : constant Natural := 100;
10
11 function Get_Model (S : Stack) return Element_Array with Ghost;
12 -- Returns an array as a model of a stack.
13
14 procedure Push (S : in out Stack; E : Element) with
15 Pre => Get_Model (S)'Length < Max,
16 Post => Get_Model (S) = Get_Model (S)'Old & E;
17
18private
19
20 subtype Length_Type is Natural range 0 .. Max;
21
22 type Stack is record
23 Top : Length_Type := 0;
24 Content : Element_Array (1 .. Max) := (others => 0);
25 end record;
26
27end Stacks;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Ghost_Functions
MD5: e287612bd66753f07ac3eecb36c693de

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

Here, the type Stack is private. To specify the expected behavior of
the Push procedure, we need to go inside this abstraction and access
the values of the elements stored in S. For this, we introduce a
function Get_Model that returns an array as a representation of the
stack. However, we don't want code that uses the Stack package to use
Get_Model in normal code since this breaks our stack's abstraction.

Here's an example of trying to break that abstraction in the subprogram
Peek below.

stacks.ads

 1package Stacks is
 2
 3 pragma Unevaluated_Use_Of_Old (Allow);
 4
 5 type Stack is private;
 6
 7 type Element is new Natural;
 8 type Element_Array is array (Positive range <>) of Element;
 9 Max : constant Natural := 100;
10
11 function Get_Model (S : Stack) return Element_Array with Ghost;
12 -- Returns an array as a model of a stack.
13
14 procedure Push (S : in out Stack; E : Element) with
15 Pre => Get_Model (S)'Length < Max,
16 Post => Get_Model (S) = Get_Model (S)'Old & E;
17
18 function Peek (S : Stack; I : Positive) return Element is
19 (Get_Model (S) (I)); -- ERROR
20
21private
22
23 subtype Length_Type is Natural range 0 .. Max;
24
25 type Stack is record
26 Top : Length_Type := 0;
27 Content : Element_Array (1 .. Max) := (others => 0);
28 end record;
29
30end Stacks;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Ghost_Model
MD5: c00b5d86c9d0b665ccdda7f68f16f07a

Prover output

Phase 1 of 2: generation of Global contracts ...
stacks.ads:19:07: error: ghost entity cannot appear in this context
gnatprove: error during generation of Global contracts

We see that marking the function as Ghost achieves this goal: it
ensures that the subprogram Get_Model is never used in production code.

Global Ghost Variables

Though it happens less frequently, you may have specifications requiring
you to store additional information in global variables that isn't needed
in normal code. You should mark these global variables as ghost, allowing
the compiler to remove them when assertions aren't enabled. You can use
these variables for any purpose within the contracts that make up your
specifications. A common scenario is writing specifications for
subprograms that modify a complex or private global data structure: you can
use these variables to provide a model for that structure that's updated by
the ghost code as the program modifies the data structure itself.

You can also use ghost variables to store information about previous runs
of subprograms to specify temporal properties. In the following example, we
have two procedures, one that accesses a state A and the other that
accesses a state B. We use the ghost variable Last_Accessed_Is_A to
specify that B can't be accessed twice in a row without accessing A
in between.

call_sequence.ads

 1package Call_Sequence is
 2
 3 type T is new Integer;
 4
 5 Last_Accessed_Is_A : Boolean := False with Ghost;
 6
 7 procedure Access_A with
 8 Post => Last_Accessed_Is_A;
 9
10 procedure Access_B with
11 Pre => Last_Accessed_Is_A,
12 Post => not Last_Accessed_Is_A;
13 -- B can only be accessed after A
14
15end Call_Sequence;

call_sequence.adb

 1package body Call_Sequence is
 2
 3 procedure Access_A is
 4 begin
 5 -- ...
 6 Last_Accessed_Is_A := True;
 7 end Access_A;
 8
 9 procedure Access_B is
10 begin
11 -- ...
12 Last_Accessed_Is_A := False;
13 end Access_B;
14
15end Call_Sequence;

main.adb

1with Call_Sequence; use Call_Sequence;
2
3procedure Main is
4begin
5 Access_A;
6 Access_B;
7 Access_B; -- ERROR
8end Main;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Global_Ghost_Vars
MD5: f33fa2ad2bd31eb03d4400c78f22eb71

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
main.adb:7:04: medium: precondition might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : failed precondition from call_sequence.ads:11

Let's look at another example. The specification of a subprogram's expected
behavior is sometimes best expressed as a sequence of actions it must
perform. You can use global ghost variables that store intermediate values
of normal variables to write this sort of specification more easily.

For example, we specify the subprogram Do_Two_Things below in two
steps, using the ghost variable V_Interm to store the intermediate
value of V between those steps. We could also express this using an
existential quantification on the variable V_Interm, but it would be
impractical to iterate over all integers at runtime and this can't always
be written in SPARK because quantification is restricted to
for ... loop patterns.

Finally, supplying the value of the variable may help the prover verify the
contracts.

action_sequence.ads

 1package Action_Sequence is
 2
 3 type T is new Integer;
 4
 5 V_Interm : T with Ghost;
 6
 7 function First_Thing_Done (X, Y : T) return Boolean with Ghost;
 8 function Second_Thing_Done (X, Y : T) return Boolean with Ghost;
 9
10 procedure Do_Two_Things (V : in out T) with
11 Post => First_Thing_Done (V'Old, V_Interm)
12 and then Second_Thing_Done (V_Interm, V);
13
14end Action_Sequence;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Intermediate_Values
MD5: 2ffbd2cb187c0a81423c78e0989d62f0

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

Note

For more details on ghost code, see the
SPARK User's Guide[#1].

Guide Proof

Since properties of interest for functional correctness are more complex
than those involved in proofs of program integrity, we expect GNATprove to
initially be unable to verify them even though they're valid. You'll find
the techniques we discussed in Debugging Failed Proof Attempts to
come in handy here. We now go beyond those techniques and focus on more
ways of improving results in the cases where the property is valid but
GNATprove can't prove it in a reasonable amount of time.

In those cases, you may want to try and guide GNATprove to either complete
the proof or strip it down to a small number of easily-reviewable
assumptions. For this purpose, you can add assertions to break complex
proofs into smaller steps.

pragma Assert (Assertion_Checked_By_The_Tool);
-- info: assertion proved

pragma Assert (Assumption_Validated_By_Other_Means);
-- medium: assertion might fail

pragma Assume (Assumption_Validated_By_Other_Means);
-- The tool does not attempt to check this expression.
-- It is recorded as an assumption.

One such intermediate step you may find useful is to try to prove a
theoretically-equivalent version of the desired property, but one where
you've simplified things for the prover, such as by splitting up different
cases or inlining the definitions of functions.

Some intermediate assertions may not be proved by GNATprove either because
it's missing some information or because the amount of information
available is confusing. You can verify these remaining assertions by other
means such as testing (since they're executable) or by review. You can then
choose to instruct GNATprove to ignore them, either by turning them into
assumptions, as in our example, or by using a pragma Annotate. In
both cases, the compiler generates code to check these assumptions at
runtime when you enable assertions.

Local Ghost Variables

You can use ghost code to enhance what you can express inside intermediate
assertions in the same way we did above to enhance our contracts in
specifications. In particular, you'll commonly have local variables or
constants whose only purpose is to be used in assertions. You'll mostly
use these ghost variables to store previous values of variables or
expressions you want to refer to in assertions. They're especially useful
to refer to initial values of parameters and expressions since the
'Old attribute is only allowed in postconditions.

In the example below, we want to help GNATprove verify the postcondition of
P. We do this by introducing a local ghost constant, X_Init, to
represent this value and writing an assertion in both branches of an
if statement that repeats the postcondition, but using X_Init.

show_local_ghost.ads

 1package Show_Local_Ghost is
 2
 3 type T is new Natural;
 4
 5 function F (X, Y : T) return Boolean is (X > Y) with Ghost;
 6
 7 function Condition (X : T) return Boolean is (X mod 2 = 0);
 8
 9 procedure P (X : in out T) with
10 Pre => X < 1_000_000,
11 Post => F (X, X'Old);
12
13end Show_Local_Ghost;

show_local_ghost.adb

 1package body Show_Local_Ghost is
 2
 3 procedure P (X : in out T) is
 4 X_Init : constant T := X with Ghost;
 5 begin
 6 if Condition (X) then
 7 X := X + 1;
 8 pragma Assert (F (X, X_Init));
 9 else
10 X := X * 2;
11 pragma Assert (F (X, X_Init));
12 end if;
13 end P;
14
15end Show_Local_Ghost;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Local_Ghost
MD5: 071ee53a06a6b5880eee6e9ea06dbcf3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_local_ghost.adb:7:17: info: overflow check proved
show_local_ghost.adb:8:25: info: assertion proved
show_local_ghost.adb:10:17: info: overflow check proved
show_local_ghost.adb:11:25: info: assertion proved
show_local_ghost.ads:7:52: info: division check proved
show_local_ghost.ads:11:14: info: postcondition proved

You can also use local ghost variables for more complex purposes such as
building a data structure that serves as witness for a complex property of
a subprogram. In our example, we want to prove that the Sort procedure
doesn't create new elements, that is, that all the elements present in
A after the sort were in A before the sort. This property isn't
enough to ensure that a call to Sort produces a value for A that's
a permutation of its value before the call (or that the values are indeed
sorted). However, it's already complex for a prover to verify because it
involves a nesting of quantifiers. To help GNATprove, you may find it
useful to store, for each index I, an index J that has the expected
property.

procedure Sort (A : in out Nat_Array) with
 Post => (for all I in A'Range =>
 (for some J in A'Range => A (I) = A'Old (J)))
is
 Permutation : Index_Array := (1 => 1, 2 => 2, ...) with Ghost;
begin
 ...
end Sort;

Ghost Procedures

Ghost procedures can't affect the value of normal variables, so they're
mostly used to perform operations on ghost variables or to group together a
set of intermediate assertions.

Abstracting away the treatment of assertions and ghost variables inside a
ghost procedure has several advantages. First, you're allowed to use these
variables in any way you choose in code inside ghost procedures. This
isn't the case outside ghost procedures, where the only ghost statements
allowed are assignments to ghost variables and calls to ghost procedures.

As an example, the for loop contained in Increase_A couldn't
appear by itself in normal code.

show_ghost_proc.ads

 1package Show_Ghost_Proc is
 2
 3 type Nat_Array is array (Integer range <>) of Natural;
 4
 5 A : Nat_Array (1 .. 100) with Ghost;
 6
 7 procedure Increase_A with
 8 Ghost,
 9 Pre => (for all I in A'Range => A (I) < Natural'Last);
10
11end Show_Ghost_Proc;

show_ghost_proc.adb

 1package body Show_Ghost_Proc is
 2
 3 procedure Increase_A is
 4 begin
 5 for I in A'Range loop
 6 A (I) := A (I) + 1;
 7 end loop;
 8 end Increase_A;
 9
10end Show_Ghost_Proc;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Ghost_Proc
MD5: 4b9cfe25011169a0cd3b4a3b03135dc4

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_ghost_proc.adb:6:25: info: overflow check proved

Using the abstraction also improves readability by hiding complex code that
isn't part of the functional behavior of the subprogram. Finally, it can
help GNATprove by abstracting away assertions that would otherwise make its
job more complex.

In the example below, calling Prove_P with X as an operand only
adds P (X) to the proof context instead of the larger set of assertions
required to verify it. In addition, the proof of P need only be done
once and may be made easier not having any unnecessary information present
in its context while verifying it. Also, if GNATprove can't fully verify
Prove_P, you can review the remaining assumptions more easily since
they're in a smaller context.

procedure Prove_P (X : T) with Ghost,
 Global => null,
 Post => P (X);

Handling of Loops

When the program involves a loop, you're almost always required to provide
additional annotations to allow GNATprove to complete a proof because the
verification techniques used by GNATprove don't handle cycles in a
subprogram's control flow. Instead, loops are flattened by dividing them
into several acyclic parts.

As an example, let's look at a simple loop with an exit condition.

Stmt1;
loop
 Stmt2;
 exit when Cond;
 Stmt3;
end loop;
Stmt4;

As shown below, the control flow is divided into three parts.

[image: ../../../_images/05_loop.png]
The first, shown in yellow, starts earlier in the subprogram and enters the
loop statement. The loop itself is divided into two parts. Red represents
a complete execution of the loop's body: an execution where the exit
condition isn't satisfied. Blue represents the last execution of the loop,
which includes some of the subprogram following it. For that path, the exit
condition is assumed to hold. The red and blue parts are always executed
after the yellow one.

GNATprove analyzes these parts independently since it doesn't have a way to
track how variables may have been updated by an iteration of the loop. It
forgets everything it knows about those variables from one part when
entering another part. However, values of constants and variables that
aren't modified in the loop are not an issue.

In other words, handling loops in that way makes GNATprove imprecise when
verifying a subprogram involving a loop: it can't verify a property that
relies on values of variables modified inside the loop. It won't forget any
information it had on the value of constants or unmodified variables, but
it nevertheless won't be able to deduce new information about them from the
loop.

For example, consider the function Find which iterates over the array
A and searches for an element where E is stored in A.

show_find.ads

1package Show_Find is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Find (A : Nat_Array; E : Natural) return Natural;
6
7end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 pragma Assert (for all J in A'First .. I - 1 => A (J) /= E);
 7 -- assertion is not proved
 8 if A (I) = E then
 9 return I;
10 end if;
11 pragma Assert (A (I) /= E);
12 -- assertion is proved
13 end loop;
14 return 0;
15 end Find;
16
17end Show_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Loop
MD5: cb9cd0cb102c3baba3b21a788b6e4ae3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.adb:6:51: info: overflow check proved
show_find.adb:6:58: medium: assertion might fail, cannot prove A (J) /= E [possible fix: subprogram at show_find.ads:5 should mention A and E in a precondition]
show_find.adb:6:61: info: index check proved
show_find.adb:9:20: info: range check proved
show_find.adb:11:25: info: assertion proved
gnatprove: unproved check messages considered as errors

At the end of each loop iteration, GNATprove knows that the value stored at
index I in A must not be E. (If it were, the loop wouldn't
have reached the end of the interation.) This proves the second assertion. But
it's unable to aggregate this information over multiple loop iterations to
deduce that it's true for all the indexes smaller than I, so it can't
prove the first assertion.

Loop Invariants

To overcome these limitations, you can provide additional information to
GNATprove in the form of a loop invariant. In SPARK, a loop invariant is
a Boolean expression which holds true at every iteration of the loop. Like
other assertions, you can have it checked at runtime by compiling the
program with assertions enabled.

The major difference between loop invariants and other assertions is the
way it's treated for proofs. GNATprove performs the proof of a loop
invariant in two steps: first, it checks that it holds for the first
iteration of the loop and then it checks that it holds in an arbitrary
iteration assuming it held in the previous iteration. This is called
proof by induction[#2].

As an example, let's add a loop invariant to the Find function stating
that the first element of A is not E.

show_find.ads

1package Show_Find is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Find (A : Nat_Array; E : Natural) return Natural;
6
7end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 pragma Loop_Invariant (A (A'First) /= E);
 7 -- loop invariant not proved in first iteration
 8 -- but preservation of loop invariant is proved
 9 if A (I) = E then
10 return I;
11 end if;
12 end loop;
13 return 0;
14 end Find;
15
16end Show_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Loop_Invariant_1
MD5: 8d5fefdca9deacd4eb50850be91fbefe

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.adb:6:33: info: loop invariant preservation proved
show_find.adb:6:33: medium: loop invariant might fail in first iteration [possible fix: subprogram at show_find.ads:5 should mention A and E in a precondition]
show_find.adb:6:37: info: index check proved
show_find.adb:10:20: info: range check proved
gnatprove: unproved check messages considered as errors

To verify this invariant, GNATprove generates two checks. The first checks
that the assertion holds in the first iteration of the loop. This isn't
verified by GNATprove. And indeed there's no reason to expect the first
element of A to always be different from E in this iteration.
However, the second check is proved: it's easy to deduce that if the first
element of A was not E in a given iteration it's still not E in
the next. However, if we move the invariant to the end of the loop, then it
is successfully verified by GNATprove.

Not only do loop invariants allow you to verify complex properties of
loops, but GNATprove also uses them to verify other properties, such as the
absence of runtime errors over both the loop's body and the statements
following the loop. More precisely, when verifying a runtime check or other
assertion there, GNATprove assumes that the last occurrence of the loop
invariant preceding the check or assertion is true.

Let's look at a version of Find where we use a loop invariant instead
of an assertion to state that none of the array elements seen so far are
equal to E.

show_find.ads

1package Show_Find is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Find (A : Nat_Array; E : Natural) return Natural;
6
7end Show_Find;

show_find.adb

 1package body Show_Find is
 2
 3 function Find (A : Nat_Array; E : Natural) return Natural is
 4 begin
 5 for I in A'Range loop
 6 pragma Loop_Invariant
 7 (for all J in A'First .. I - 1 => A (J) /= E);
 8 if A (I) = E then
 9 return I;
10 end if;
11 end loop;
12 pragma Assert (for all I in A'Range => A (I) /= E);
13 return 0;
14 end Find;
15
16end Show_Find;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Loop_Invariant_2
MD5: 21588161eaddb82f54c3cb3dcc14a6ac

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_find.adb:7:13: info: loop invariant initialization proved
show_find.adb:7:13: info: loop invariant preservation proved
show_find.adb:7:39: info: overflow check proved
show_find.adb:7:49: info: index check proved
show_find.adb:9:20: info: range check proved
show_find.adb:12:22: info: assertion proved
show_find.adb:12:49: info: index check proved

This version is fully verified by GNATprove! This time, it proves that the
loop invariant holds in every iteration of the loop (separately proving
this property for the first iteration and then for the following
iterations). It also proves that none of the elements of A are equal to
E after the loop exits by assuming that the loop invariant holds in the
last iteration of the loop.

Note

For more details on loop invariants, see the
SPARK User's Guide[#3].

Finding a good loop invariant can turn out to be quite a challenge. To
make this task easier, let's review the four good properties of a good loop
invariant:

	Property

	Description

	INIT

	It should be provable in the first iteration of the
loop.

	INSIDE

	It should allow proving the absence of run-time errors
and local assertions inside the loop.

	AFTER

	It should allow proving absence of run-time errors,
local assertions, and the subprogram postcondition
after the loop.

	PRESERVE

	It should be provable after the first iteration of the
loop.

Let's look at each of these in turn. First, the loop invariant should be
provable in the first iteration of the loop (INIT). If your invariant fails
to achieve this property, you can debug the loop invariant's initialization
like any failing proof attempt using strategies for
Debugging Failed Proof Attempts.

Second, the loop invariant should be precise enough to allow GNATprove to
prove absence of runtime errors in both statements from the loop's body
(INSIDE) and those following the loop (AFTER). To do this, you should
remember that all information concerning a variable modified in the loop
that's not included in the invariant is forgotten by GNATprove. In
particular, you should take care to include in your invariant what's
usually called the loop's frame condition, which lists properties of
variables that are true throughout the execution of the loop even though
those variables are modified by the loop.

Finally, the loop invariant should be precise enough to prove that it's
preserved through successive iterations of the loop (PRESERVE). This is
generally the trickiest part. To understand why GNATprove hasn't been able
to verify the preservation of a loop invariant you provided, you may find
it useful to repeat it as local assertions throughout the loop's body to
determine at which point it can no longer be proved.

As an example, let's look at a loop that iterates through an array A
and applies a function F to each of its elements.

show_map.ads

 1package Show_Map is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function F (V : Natural) return Natural is
 6 (if V /= Natural'Last then V + 1 else V);
 7
 8 procedure Map (A : in out Nat_Array);
 9
10end Show_Map;

show_map.adb

 1package body Show_Map is
 2
 3 procedure Map (A : in out Nat_Array) is
 4 A_I : constant Nat_Array := A with Ghost;
 5 begin
 6 for K in A'Range loop
 7 A (K) := F (A (K));
 8 pragma Loop_Invariant
 9 (for all J in A'First .. K => A (J) = F (A'Loop_Entry (J)));
10 end loop;
11 pragma Assert (for all K in A'Range => A (K) = F (A_I (K)));
12 end Map;
13
14end Show_Map;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Loop_Invariant_3
MD5: 1a4583c9b2b772f79bcf29cff0caa96a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_map.adb:9:13: info: loop invariant initialization proved
show_map.adb:9:13: info: loop invariant preservation proved
show_map.adb:9:45: info: index check proved
show_map.adb:9:67: info: index check proved
show_map.adb:11:22: info: assertion proved
show_map.adb:11:49: info: index check proved
show_map.adb:11:62: info: index check proved
show_map.ads:6:35: info: overflow check proved

After the loop, each element of A should be the result of applying
F to its previous value. We want to prove this. To specify this
property, we copy the value of A before the loop into a ghost variable,
A_I. Our loop invariant states that the element at each index less than
K has been modified in the expected way. We use the Loop_Entry
attribute to refer to the value of A on entry of the loop instead of
using A_I.

Does our loop invariant have the four properties of a good loop-invariant?
When launching GNATprove, we see that INIT is fulfilled: the
invariant's initialization is proved. So are INSIDE and AFTER: no
potential runtime errors are reported and the assertion following the loop
is successfully verified.

The situation is slightly more complex for the PRESERVE
property. GNATprove manages to prove that the invariant holds after the
first iteration thanks to the automatic generation of frame conditions. It
was able to do this because it completes the provided loop invariant with
the following frame condition stating what part of the array hasn't been
modified so far:

pragma Loop_Invariant
 (for all J in K .. A'Last => A (J) = (if J > K then A'Loop_Entry (J)));

GNATprove then uses both our and the internally-generated loop invariants
to prove PRESERVE. However, in more complex cases, the heuristics used
by GNATprove to generate the frame condition may not be sufficient and
you'll have to provide one as a loop invariant. For example, consider a
version of Map where the result of applying F to an element at
index K is stored at index K-1:

show_map.ads

 1package Show_Map is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function F (V : Natural) return Natural is
 6 (if V /= Natural'Last then V + 1 else V);
 7
 8 procedure Map (A : in out Nat_Array);
 9
10end Show_Map;

show_map.adb

 1package body Show_Map is
 2
 3 procedure Map (A : in out Nat_Array) is
 4 A_I : constant Nat_Array := A with Ghost;
 5 begin
 6 for K in A'Range loop
 7 if K /= A'First then
 8 A (K - 1) := F (A (K));
 9 end if;
10 pragma Loop_Invariant
11 (for all J in A'First .. K =>
12 (if J /= A'First then A (J - 1) = F (A'Loop_Entry (J))));
13 -- pragma Loop_Invariant
14 -- (for all J in K .. A'Last => A (J) = A'Loop_Entry (J));
15 end loop;
16 pragma Assert (for all K in A'Range =>
17 (if K /= A'First then A (K - 1) = F (A_I (K))));
18 end Map;
19
20end Show_Map;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Loop_Invariant_4
MD5: 6c51768547d3baa2c19d0e33959388fe

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_map.adb:8:18: info: overflow check proved
show_map.adb:8:18: info: index check proved
show_map.adb:11:13: info: loop invariant initialization proved
show_map.adb:12:36: medium: loop invariant might not be preserved by an arbitrary iteration, cannot prove A (J - 1) = F (A'Loop_Entry (J))
show_map.adb:12:41: info: overflow check proved
show_map.adb:12:41: info: index check proved
show_map.adb:12:65: info: index check proved
show_map.adb:16:22: info: assertion proved
show_map.adb:17:50: info: overflow check proved
show_map.adb:17:50: info: index check proved
show_map.adb:17:65: info: index check proved
show_map.ads:6:35: info: overflow check proved
gnatprove: unproved check messages considered as errors

You need to uncomment the second loop invariant containing the frame condition
in order to prove the assertion after the loop.

Note

For more details on how to write a loop invariant, see the
SPARK User's Guide[#4].

Code Examples / Pitfalls

This section contains some code examples and pitfalls.

Example #1

We implement a ring buffer inside an array Content, where the contents
of a ring buffer of length Length are obtained by starting at index
First and possibly wrapping around the end of the buffer. We use a
ghost function Get_Model to return the contents of the ring buffer for
use in contracts.

ring_buffer.ads

 1package Ring_Buffer is
 2
 3 Max_Size : constant := 100;
 4
 5 type Nat_Array is array (Positive range <>) of Natural;
 6
 7 function Get_Model return Nat_Array with Ghost;
 8
 9 procedure Push_Last (E : Natural) with
10 Pre => Get_Model'Length < Max_Size,
11 Post => Get_Model'Length = Get_Model'Old'Length + 1;
12
13end Ring_Buffer;

ring_buffer.adb

 1package body Ring_Buffer is
 2
 3 subtype Length_Range is Natural range 0 .. Max_Size;
 4 subtype Index_Range is Natural range 1 .. Max_Size;
 5
 6 Content : Nat_Array (1 .. Max_Size) := (others => 0);
 7 First : Index_Range := 1;
 8 Length : Length_Range := 0;
 9
10 function Get_Model return Nat_Array with
11 Refined_Post => Get_Model'Result'Length = Length
12 is
13 Size : constant Length_Range := Length;
14 Result : Nat_Array (1 .. Size) := (others => 0);
15 begin
16 if First + Length - 1 <= Max_Size then
17 Result := Content (First .. First + Length - 1);
18 else
19 declare
20 Len : constant Length_Range := Max_Size - First + 1;
21 begin
22 Result (1 .. Len) := Content (First .. Max_Size);
23 Result (Len + 1 .. Length) := Content (1 .. Length - Len);
24 end;
25 end if;
26 return Result;
27 end Get_Model;
28
29 procedure Push_Last (E : Natural) is
30 begin
31 if First + Length <= Max_Size then
32 Content (First + Length) := E;
33 else
34 Content (Length - Max_Size + First) := E;
35 end if;
36 Length := Length + 1;
37 end Push_Last;
38
39end Ring_Buffer;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_01
MD5: 3afd7d58f97001618acc05062115f1a3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
ring_buffer.adb:11:22: info: refined post proved
ring_buffer.adb:11:38: info: range check proved
ring_buffer.adb:14:07: info: range check proved
ring_buffer.adb:14:41: info: length check proved
ring_buffer.adb:17:17: info: length check proved
ring_buffer.adb:17:20: info: range check proved
ring_buffer.adb:17:20: info: length check proved
ring_buffer.adb:20:61: info: range check proved
ring_buffer.adb:22:13: info: range check proved
ring_buffer.adb:22:31: info: length check proved
ring_buffer.adb:22:34: info: range check proved
ring_buffer.adb:22:34: info: length check proved
ring_buffer.adb:23:13: info: range check proved
ring_buffer.adb:23:40: info: length check proved
ring_buffer.adb:23:43: info: range check proved
ring_buffer.adb:23:43: info: length check proved
ring_buffer.adb:32:25: info: index check proved
ring_buffer.adb:34:37: info: index check proved
ring_buffer.adb:36:24: info: range check proved
ring_buffer.ads:11:14: info: postcondition proved

This is correct: Get_Model is used only in contracts. Calls to
Get_Model make copies of the buffer's contents, which isn't efficient,
but is fine because Get_Model is only used for verification, not in
production code. We enforce this by making it a ghost function. We'll
produce the final production code with appropriate compiler switches (i.e.,
not using -gnata) that ensure assertions are ignored.

Example #2

Instead of using a ghost function, Get_Model, to retrieve the contents
of the ring buffer, we're now using a global ghost variable, Model.

ring_buffer.ads

 1package Ring_Buffer is
 2
 3 Max_Size : constant := 100;
 4 subtype Length_Range is Natural range 0 .. Max_Size;
 5 subtype Index_Range is Natural range 1 .. Max_Size;
 6
 7 type Nat_Array is array (Positive range <>) of Natural;
 8
 9 type Model_Type (Length : Length_Range := 0) is record
10 Content : Nat_Array (1 .. Length);
11 end record
12 with Ghost;
13
14 Model : Model_Type with Ghost;
15
16 function Valid_Model return Boolean;
17
18 procedure Push_Last (E : Natural) with
19 Pre => Valid_Model
20 and then Model.Length < Max_Size,
21 Post => Model.Length = Model.Length'Old + 1;
22
23end Ring_Buffer;

ring_buffer.adb

 1package body Ring_Buffer is
 2
 3 Content : Nat_Array (1 .. Max_Size) := (others => 0);
 4 First : Index_Range := 1;
 5 Length : Length_Range := 0;
 6
 7 function Valid_Model return Boolean is
 8 (Model.Content'Length = Length);
 9
10 procedure Push_Last (E : Natural) is
11 begin
12 if First + Length <= Max_Size then
13 Content (First + Length) := E;
14 else
15 Content (Length - Max_Size + First) := E;
16 end if;
17 Length := Length + 1;
18 end Push_Last;
19
20end Ring_Buffer;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_02
MD5: 144f58bd95cd460e4ed388d4f3351fe3

Build output

ring_buffer.adb:8:08: error: ghost entity cannot appear in this context
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
ring_buffer.adb:8:08: error: ghost entity cannot appear in this context
gnatprove: error during generation of Global contracts

This example isn't correct. Model, which is a ghost variable, must not
influence the return value of the normal function Valid_Model. Since
Valid_Model is only used in specifications, we should have marked it as
Ghost. Another problem is that Model needs to be updated inside
Push_Last to reflect the changes to the ring buffer.

Example #3

Let's mark Valid_Model as Ghost and update Model inside
Push_Last.

ring_buffer.ads

 1package Ring_Buffer is
 2
 3 Max_Size : constant := 100;
 4 subtype Length_Range is Natural range 0 .. Max_Size;
 5 subtype Index_Range is Natural range 1 .. Max_Size;
 6
 7 type Nat_Array is array (Positive range <>) of Natural;
 8
 9 type Model_Type (Length : Length_Range := 0) is record
10 Content : Nat_Array (1 .. Length);
11 end record
12 with Ghost;
13
14 Model : Model_Type with Ghost;
15
16 function Valid_Model return Boolean with Ghost;
17
18 procedure Push_Last (E : Natural) with
19 Pre => Valid_Model
20 and then Model.Length < Max_Size,
21 Post => Model.Length = Model.Length'Old + 1;
22
23end Ring_Buffer;

ring_buffer.adb

 1package body Ring_Buffer is
 2
 3 Content : Nat_Array (1 .. Max_Size) := (others => 0);
 4 First : Index_Range := 1;
 5 Length : Length_Range := 0;
 6
 7 function Valid_Model return Boolean is
 8 (Model.Content'Length = Length);
 9
10 procedure Push_Last (E : Natural) is
11 begin
12 if First + Length <= Max_Size then
13 Content (First + Length) := E;
14 else
15 Content (Length - Max_Size + First) := E;
16 end if;
17 Length := Length + 1;
18 Model := (Length => Model.Length + 1,
19 Content => Model.Content & E);
20 end Push_Last;
21
22end Ring_Buffer;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_03
MD5: 08b74f5fe560d238550a06c6323959cf

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
ring_buffer.adb:8:21: info: range check proved
ring_buffer.adb:13:25: info: index check proved
ring_buffer.adb:15:37: info: index check proved
ring_buffer.adb:17:24: info: range check proved
ring_buffer.adb:18:13: info: discriminant check proved
ring_buffer.adb:18:41: info: range check proved
ring_buffer.adb:19:42: info: range check proved
ring_buffer.adb:19:42: info: length check proved
ring_buffer.ads:10:07: info: range check proved
ring_buffer.ads:21:14: info: postcondition proved

This example is correct. The ghost variable Model can be referenced
both from the body of the ghost function Valid_Model and the non-ghost
procedure Push_Last as long as it's only used in ghost statements.

Example #4

We're now modifying Push_Last to share the computation of the new
length between the operational and ghost code.

ring_buffer.ads

 1package Ring_Buffer is
 2
 3 Max_Size : constant := 100;
 4 subtype Length_Range is Natural range 0 .. Max_Size;
 5 subtype Index_Range is Natural range 1 .. Max_Size;
 6
 7 type Nat_Array is array (Positive range <>) of Natural;
 8
 9 type Model_Type (Length : Length_Range := 0) is record
10 Content : Nat_Array (1 .. Length);
11 end record
12 with Ghost;
13
14 Model : Model_Type with Ghost;
15
16 function Valid_Model return Boolean with Ghost;
17
18 procedure Push_Last (E : Natural) with
19 Pre => Valid_Model
20 and then Model.Length < Max_Size,
21 Post => Model.Length = Model.Length'Old + 1;
22
23end Ring_Buffer;

ring_buffer.adb

 1package body Ring_Buffer is
 2
 3 Content : Nat_Array (1 .. Max_Size) := (others => 0);
 4 First : Index_Range := 1;
 5 Length : Length_Range := 0;
 6
 7 function Valid_Model return Boolean is
 8 (Model.Content'Length = Length);
 9
10 procedure Push_Last (E : Natural) is
11 New_Length : constant Length_Range := Model.Length + 1;
12 begin
13 if First + Length <= Max_Size then
14 Content (First + Length) := E;
15 else
16 Content (Length - Max_Size + First) := E;
17 end if;
18 Length := New_Length;
19 Model := (Length => New_Length,
20 Content => Model.Content & E);
21 end Push_Last;
22
23end Ring_Buffer;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_04
MD5: e27f0b4729be72d83f2cb981b1d00412

Build output

ring_buffer.adb:11:45: error: ghost entity cannot appear in this context
gprbuild: *** compilation phase failed

Prover output

Phase 1 of 2: generation of Global contracts ...
ring_buffer.adb:11:45: error: ghost entity cannot appear in this context
gnatprove: error during generation of Global contracts

This example isn't correct. We didn't mark local constant New_Length as
Ghost, so it can't be computed from the value of ghost variable
Model. If we made New_Length a ghost constant, the compiler would
report the problem on the assignment from New_Length to Length. The
correct solution here is to compute New_Length from the value of the
non-ghost variable Length.

Example #5

Let's move the code updating Model inside a local ghost procedure,
Update_Model, but still using a local variable, New_Length, to
compute the length.

ring_buffer.ads

 1package Ring_Buffer is
 2
 3 Max_Size : constant := 100;
 4 subtype Length_Range is Natural range 0 .. Max_Size;
 5 subtype Index_Range is Natural range 1 .. Max_Size;
 6
 7 type Nat_Array is array (Positive range <>) of Natural;
 8
 9 type Model_Type (Length : Length_Range := 0) is record
10 Content : Nat_Array (1 .. Length);
11 end record
12 with Ghost;
13
14 Model : Model_Type with Ghost;
15
16 function Valid_Model return Boolean with Ghost;
17
18 procedure Push_Last (E : Natural) with
19 Pre => Valid_Model
20 and then Model.Length < Max_Size,
21 Post => Model.Length = Model.Length'Old + 1;
22
23end Ring_Buffer;

ring_buffer.adb

 1package body Ring_Buffer is
 2
 3 Content : Nat_Array (1 .. Max_Size) := (others => 0);
 4 First : Index_Range := 1;
 5 Length : Length_Range := 0;
 6
 7 function Valid_Model return Boolean is
 8 (Model.Content'Length = Length);
 9
10 procedure Push_Last (E : Natural) is
11
12 procedure Update_Model with Ghost is
13 New_Length : constant Length_Range := Model.Length + 1;
14 begin
15 Model := (Length => New_Length,
16 Content => Model.Content & E);
17 end Update_Model;
18
19 begin
20 if First + Length <= Max_Size then
21 Content (First + Length) := E;
22 else
23 Content (Length - Max_Size + First) := E;
24 end if;
25 Length := Length + 1;
26 Update_Model;
27 end Push_Last;
28
29end Ring_Buffer;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_05
MD5: cc97fb35205c9a6de06001cf489f34e9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
ring_buffer.adb:8:21: info: range check proved
ring_buffer.adb:13:61: info: range check proved, in call inlined at ring_buffer.adb:26
ring_buffer.adb:15:16: info: discriminant check proved, in call inlined at ring_buffer.adb:26
ring_buffer.adb:16:45: info: range check proved, in call inlined at ring_buffer.adb:26
ring_buffer.adb:16:45: info: length check proved, in call inlined at ring_buffer.adb:26
ring_buffer.adb:21:25: info: index check proved
ring_buffer.adb:23:37: info: index check proved
ring_buffer.adb:25:24: info: range check proved
ring_buffer.ads:10:07: info: range check proved
ring_buffer.ads:21:14: info: postcondition proved

Everything's fine here. Model is only accessed inside Update_Model,
itself a ghost procedure, so it's fine to declare local variable
New_Length without the Ghost aspect: everything inside a ghost
procedure body is ghost. Moreover, we don't need to add any contract to
Update_Model: it's inlined by GNATprove because it's a local procedure
without a contract.

Example #6

The function Max_Array takes two arrays of the same length (but not
necessarily with the same bounds) as arguments and returns an array with
each entry being the maximum values of both arguments at that index.

array_util.ads

1package Array_Util is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Max_Array (A, B : Nat_Array) return Nat_Array with
6 Pre => A'Length = B'Length;
7
8end Array_Util;

array_util.adb

 1package body Array_Util is
 2
 3 function Max_Array (A, B : Nat_Array) return Nat_Array is
 4 R : Nat_Array (A'Range);
 5 J : Integer := B'First;
 6 begin
 7 for I in A'Range loop
 8 if A (I) > B (J) then
 9 R (I) := A (I);
10 else
11 R (I) := B (J);
12 end if;
13 J := J + 1;
14 end loop;
15 return R;
16 end Max_Array;
17
18end Array_Util;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_06
MD5: 4b8a6a9b1a3d4d228fe1e944914084fe

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
array_util.adb:8:24: medium: array index check might fail [reason for check: value must be a valid index into the array] [possible fix: loop at line 7 should mention J in a loop invariant]
array_util.adb:13:17: medium: overflow check might fail, cannot prove upper bound for J + 1 [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: loop at line 7 should mention J in a loop invariant]
gnatprove: unproved check messages considered as errors

This program is correct, but GNATprove can't prove that J is always in
the index range of B (the unproved index check) or even that it's
always within the bounds of its type (the unproved overflow check). Indeed,
when checking the body of the loop, GNATprove forgets everything about the
current value of J because it's been modified by previous loop
iterations. To get more precise results, we need to provide a loop
invariant.

Example #7

Let's add a loop invariant that states that J stays in the index range
of B and let's protect the increment to J by checking that it's not
already the maximal integer value.

array_util.ads

1package Array_Util is
2
3 type Nat_Array is array (Positive range <>) of Natural;
4
5 function Max_Array (A, B : Nat_Array) return Nat_Array with
6 Pre => A'Length = B'Length;
7
8end Array_Util;

array_util.adb

 1package body Array_Util is
 2
 3 function Max_Array (A, B : Nat_Array) return Nat_Array is
 4 R : Nat_Array (A'Range);
 5 J : Integer := B'First;
 6 begin
 7 for I in A'Range loop
 8 pragma Loop_Invariant (J in B'Range);
 9 if A (I) > B (J) then
10 R (I) := A (I);
11 else
12 R (I) := B (J);
13 end if;
14 if J < Integer'Last then
15 J := J + 1;
16 end if;
17 end loop;
18 return R;
19 end Max_Array;
20
21end Array_Util;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_07
MD5: 917629e0683725c23198f8a905a73c57

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
array_util.adb:8:33: medium: loop invariant might not be preserved by an arbitrary iteration
gnatprove: unproved check messages considered as errors

The loop invariant now allows verifying that no runtime error can occur in
the loop's body (property INSIDE seen in section Loop Invariants).
Unfortunately, GNATprove fails to verify that the invariant
stays valid after the first iteration of the loop (property
PRESERVE). Indeed, knowing that J is in B'Range in a given
iteration isn't enough to prove it'll remain so in the next iteration. We
need a more precise invariant, linking J to the value of the loop index
I, like J = I - A'First + B'First.

Example #8

We now consider a version of Max_Array which takes arguments that have
the same bounds. We want to prove that Max_Array returns an array of
the maximum values of both its arguments at each index.

array_util.ads

 1package Array_Util is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 function Max_Array (A, B : Nat_Array) return Nat_Array with
 6 Pre => A'First = B'First and A'Last = B'Last,
 7 Post => (for all K in A'Range =>
 8 Max_Array'Result (K) = Natural'Max (A (K), B (K)));
 9
10end Array_Util;

array_util.adb

 1package body Array_Util is
 2
 3 function Max_Array (A, B : Nat_Array) return Nat_Array is
 4 R : Nat_Array (A'Range) := (others => 0);
 5 begin
 6 for I in A'Range loop
 7 pragma Loop_Invariant (for all K in A'First .. I =>
 8 R (K) = Natural'Max (A (K), B (K)));
 9 if A (I) > B (I) then
10 R (I) := A (I);
11 else
12 R (I) := B (I);
13 end if;
14 end loop;
15 return R;
16 end Max_Array;
17
18end Array_Util;

main.adb

1with Array_Util; use Array_Util;
2
3procedure Main is
4 A : Nat_Array := (1, 1, 2);
5 B : Nat_Array := (2, 1, 0);
6 R : Nat_Array (1 .. 3);
7begin
8 R := Max_Array (A, B);
9end Main;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_08
MD5: d0a04c214a632466a4fe4ec6cb7f8842

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
main.adb:8:09: medium: length check might fail [reason for check: array must be of the appropriate length]
array_util.adb:8:35: medium: loop invariant might not be preserved by an arbitrary iteration, cannot prove R (K) = Natural'max
array_util.adb:8:35: medium: loop invariant might fail in first iteration, cannot prove R (K) = Natural'max
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Loop_Invariant failed at array_util.adb:7

Here, GNATprove doesn't manage to prove the loop invariant even for the
first loop iteration (property INIT seen in section Loop Invariants).
In fact, the loop invariant is incorrect, as you can see by
executing the function Max_Array with assertions enabled: at each loop
iteration, R contains the maximum of A and B only until
I - 1 because the I'th index wasn't yet handled.

Example #9

We now consider a procedural version of Max_Array which updates its
first argument instead of returning a new array. We want to prove that
Max_Array sets the maximum values of both its arguments into each index
in its first argument.

array_util.ads

 1package Array_Util is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 procedure Max_Array (A : in out Nat_Array; B : Nat_Array) with
 6 Pre => A'First = B'First and A'Last = B'Last,
 7 Post => (for all K in A'Range =>
 8 A (K) = Natural'Max (A'Old (K), B (K)));
 9
10end Array_Util;

array_util.adb

 1package body Array_Util is
 2
 3 procedure Max_Array (A : in out Nat_Array; B : Nat_Array) is
 4 begin
 5 for I in A'Range loop
 6 pragma Loop_Invariant
 7 (for all K in A'First .. I - 1 =>
 8 A (K) = Natural'Max (A'Loop_Entry (K), B (K)));
 9 pragma Loop_Invariant
10 (for all K in I .. A'Last => A (K) = A'Loop_Entry (K));
11 if A (I) <= B (I) then
12 A (I) := B (I);
13 end if;
14 end loop;
15 end Max_Array;
16
17end Array_Util;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_09
MD5: 2de4bdd9c59d7d1eccb6259067ffdcf3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
array_util.adb:7:13: info: loop invariant preservation proved
array_util.adb:7:13: info: loop invariant initialization proved
array_util.adb:7:39: info: overflow check proved
array_util.adb:8:18: info: index check proved
array_util.adb:8:50: info: index check proved
array_util.adb:8:57: info: index check proved
array_util.adb:10:13: info: loop invariant initialization proved
array_util.adb:10:13: info: loop invariant preservation proved
array_util.adb:10:44: info: index check proved
array_util.adb:10:63: info: index check proved
array_util.adb:11:25: info: index check proved
array_util.adb:12:25: info: index check proved
array_util.ads:7:14: info: postcondition proved
array_util.ads:8:20: info: index check proved
array_util.ads:8:45: info: index check proved
array_util.ads:8:52: info: index check proved

Everything is proved. The first loop invariant states that the values of
A before the loop index contains the maximum values of the arguments of
Max_Array (referring to the input value of A with
A'Loop_Entry). The second loop invariant states that the values of
A beyond and including the loop index are the same as they were on
entry. This is the frame condition of the loop.

Example #10

Let's remove the frame condition from the previous example.

array_util.ads

 1package Array_Util is
 2
 3 type Nat_Array is array (Positive range <>) of Natural;
 4
 5 procedure Max_Array (A : in out Nat_Array; B : Nat_Array) with
 6 Pre => A'First = B'First and A'Last = B'Last,
 7 Post => (for all K in A'Range =>
 8 A (K) = Natural'Max (A'Old (K), B (K)));
 9
10end Array_Util;

array_util.adb

 1package body Array_Util is
 2
 3 procedure Max_Array (A : in out Nat_Array; B : Nat_Array) is
 4 begin
 5 for I in A'Range loop
 6 pragma Loop_Invariant
 7 (for all K in A'First .. I - 1 =>
 8 A (K) = Natural'Max (A'Loop_Entry (K), B (K)));
 9 if A (I) <= B (I) then
10 A (I) := B (I);
11 end if;
12 end loop;
13 end Max_Array;
14
15end Array_Util;

Code block metadata

Project: Courses.Intro_To_Spark.Proof_of_Functional_Correctness.Example_10
MD5: 8bdc8432cbb3f26f58f63457408c7172

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
array_util.adb:7:13: info: loop invariant initialization proved
array_util.adb:7:13: info: loop invariant preservation proved
array_util.adb:7:39: info: overflow check proved
array_util.adb:8:18: info: index check proved
array_util.adb:8:50: info: index check proved
array_util.adb:8:57: info: index check proved
array_util.adb:9:25: info: index check proved
array_util.adb:10:25: info: index check proved
array_util.ads:7:14: info: postcondition proved
array_util.ads:8:20: info: index check proved
array_util.ads:8:45: info: index check proved
array_util.ads:8:52: info: index check proved

Everything is still proved. GNATprove internally generates the frame
condition for the loop, so it's sufficient here to state that A before
the loop index contains the maximum values of the arguments of
Max_Array.

Footnotes

[#1]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#ghost-code

[#2]
https://en.wikipedia.org/wiki/Mathematical_induction

[#3]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/assertion_pragmas.html#loop-invariants

[#4]
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/how_to_write_loop_invariants.html

Introduction to Embedded Systems Programming

Release 2024-03

Mar 30, 2024

Copyright © 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This course will teach you the basics of the Embedded Systems Programming
using Ada.

This document was written by Patrick Rogers, with review by
Stephen Baird, Tucker Taft, Filip Gajowniczek, and Gustavo A. Hoffmann.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Contents:

	Introduction
	So, what will we actually cover?

	Definitions

	Down To The Bare Metal

	The Ada Drivers Library

	Low Level Programming
	Separation Principle

	Guaranteed Level of Support

	Querying Implementation Limits and Characteristics

	Querying Representation Choices

	Specifying Representation

	Unchecked Programming

	Data Validity

	Multi-Language Development
	General Interfacing
	Aspect/Pragma Convention

	Aspect/Pragma Import and Export

	Aspect/Pragma External_Name and Link_Name

	Package Interfaces

	Language-Specific Interfacing
	Package Interfaces.C

	Package Interfaces.C.Strings

	Package Interfaces.C.Pointers

	Package Interfaces.Fortran

	Machine Code Insertions (MCI)

	When Ada Is Not the Main Language

	Interacting with Devices
	Non-Memory-Mapped Devices

	Memory-Mapped Devices

	Dynamic Address Conversion

	Address Arithmetic

	General-Purpose Code Generators
	Aspect Independent

	Aspect Volatile

	Aspect Atomic

	Aspect Full_Access_Only

	Handling Interrupts
	Background

	Language-Defined Interrupt Model

	Interrupt Handlers

	Interrupt Management

	Associating Handlers With Interrupts

	Interrupt Priorities

	Common Design Idioms
	Parameterizing Handlers

	Multi-Level Handlers

	Final Points

	Conclusion

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

Introduction

This is a course about embedded systems programming. Embedded systems
are everywhere today, including — just to name a few — the thermostats that
control a building's temperature, the power-steering controller in
modern automobiles, and the control systems in charge of jet engines.

Clearly, much can depend on these systems operating correctly. It might
be only a matter of comfort if the thermostat fails. But imagine what
might happen if one of the critical control systems in your car failed
when you're out on the freeway. When a jet engine controller is designed
to have absolute control, it is known as a Full Authority Digital Engine
Controller, or FADEC for short. If a FADEC fails, the result can make
international news.

Using Ada can help you get it right, and for less cost than other languages,
if you use it well. Many industrial organizations developing critical
embedded software use Ada for that reason. Our goal is to get you started in
using it well.

The course is based on the assumption that you know some of the Ada
language already, preferably even some of the more advanced concepts.
You don't need to know how to use Ada constructs for embedded systems,
of course, but you do need to know at least the language basics.
If you need that introduction, see the course
Introduction to Ada.

We also assume that you already have some programming experience so we
won't cover CS-101.

Ideally, you also have some experience with low-level programming,
because we will focus on "how to do it in Ada." If you do, feel free to
gloss over the introductory material. If not, don't worry. We will cover
enough for the course to be of value in any case.

So, what will we actually cover?

We will introduce you to using Ada to do low level programming, such as
how to specify the layout of types, how to map variables of those types
to specific addresses, when and how to do unchecked programming (and
how not to), and how to determine the validity of incoming data, e.g.,
data from sensors that are occasionally faulty.

We will discuss development using more than Ada alone, nowadays a quite
common approach. Specifically, how to interface with code and data
written in other languages, and how (and why) to work with assembly
language.

Embedded systems interact with the outside world via embedded devices,
such as A/D converters, timers, actuators, sensors, and so forth.
Frequently these devices are mapped into the target memory address
space. We will cover how to define and interact with these memory-mapped
devices.

Finally, we will show how to handle interrupts in Ada, using portable
constructs.

Definitions

Before we go any further, what do we mean by "embedded system" anyway?
It's time to be specific. We're talking about a computer that is part of
a larger system, in which the capability to compute is not the larger
system's primary function. These computers are said to be "embedded" in
the larger system: the enclosing thermostat controlling the temperature,
the power steering controller in the enclosing automobile, and the FADEC
embedded in the enclosing aircraft. So these are not stand-alone
computers for general purpose application execution.

As such, embedded systems typically have reduced resources available,
especially power, which means reduced processor speed and reduced memory
on-board. For an example at the small end of the spectrum, consider the
computer embedded in a wearable device: it must run for a long time on a
very little battery, with comparatively little memory available. But
that's often true of bigger systems too, such as systems on aircraft
where power (and heat) are directly limiting factors.

As a result, developing embedded systems software can be more difficult
than general application development, not to mention that this software
is potentially safety-critical.

Ada is known for use in very large, very long-lived projects (e.g.,
deployed for decades), but it can also be used for very small systems
with tight resource constraints. We'll show you how.

We used the term "computer" above. You already know what that means, but
you may be thinking of your laptop or something like that, where the
processor, memory, and devices are all distinct, separate components.
That can be the case for embedded systems too, albeit in a different
form-factor such as rack-mounted boards. However, be sure to expand your
definition to include the notion of a system-on-chip (SoC), in which the
processor, memory, and various useful devices are all on a single chip.
Embedded systems don't necessarily involve SoC computers but they
frequently do. The techniques and information in this course work on any
of these kinds of computer.

Down To The Bare Metal

Ada has always had facilities designed specifically for embedded
systems. The language includes constructs for directly manipulating
hardware, for example, and direct interaction with assembly language.
These constructs are as effective as those of any high-level programming
language (yes, including C). These constructs are expressively powerful,
well-specified (so there are few surprises), efficient, and portable
(within reason).

We say "within reason" because portability is a difficult goal for
embedded systems. That's because the hardware is so much a part of the
application itself, rather than being abstracted away as in a
general-purpose application. That said, the hardware details can be
managed in Ada so that portability is maximized to the extent possible
for the application.

But strictly speaking, not all software can or should be absolutely
portable! If a specific device is required, well, the program won't work
with some other device. But to the extent possible portability is
obviously a good thing.

The Ada Drivers Library

Speaking of SoC computers, there is a library of freely-available device
drivers in Ada. Known as the Ada Driver Library (ADL), it supports many
devices on a number of vendors' products. Device drivers for timers,
I2C, SPI, A/D and D/A converters, DMA, General Purpose I/O, LCD
displays, sensors, and other devices are included. The ADL is available
on GitHub for both non-proprietary and commercial use here:
https://github.com/AdaCore/Ada_Drivers_Library.

An extensive description of a project using the ADL is available here:
https://blog.adacore.com/making-an-rc-car-with-ada-and-spark

We will refer to components of this library and use some of them as examples.

Footnotes

Low Level Programming

This section introduces a number of topics in low-level programming, in
which the hardware and the compiler's representation choices are much
more in view at the source code level. In comparatively high level code
these topics are "abstracted away" in that the programmer can assume
that the compiler does whatever is necessary on the current target
machine so that their code executes as intended. That approach is not
sufficient in low-level programming.

Note that we do not cover every possibility or language feature.
Instead, we cover the necessary concepts, and also potential surprises
or pitfalls, so that the parts not covered can be learned on your own.

Separation Principle

There is a language design principle underlying the Ada facilities
intended for implementing embedded software. This design principle
directly affects how the language is used, and therefore, the
portability and readability of the resulting application code.

This language design principle is known as the "separation principle."
What's being separated? The low-level, less portable aspects of some
piece of code are separated from the usage of that piece of code.

Don't confuse this with hiding unnecessary implementation details via
compile-time visibility control (i.e., information hiding and
encapsulation). That certainly should be done too. Instead, because of
the separation principle, we specify the low-level properties of
something once, when we declare it. From then on, we can use regular Ada
code to interact with it. That way the bulk of the code — the
usage — is like any other Ada code, and doesn't propagate the
low-level details all over the client code. This greatly simplifies
usage and understandability as well as easing porting to new
hardware-specific aspects. You change things in one place, rather than
everywhere.

For example, consider a device mapped to the memory address space of the
processor. To interact with the device we interact with one or more
memory cells. Reading input from the device amounts to reading the value
at the associated memory location. Likewise, sending output to the
device amounts to writing to that location.

To represent this device mapping we declare a variable of an appropriate
type and specify the starting address the object should occupy. (There
are other ways too, but for a single, statically mapped object this is
the simplest approach.) We'd want to specify some other characteristics
as well, but let's focus on the address.

[image: Memory-mapped device with Ada object declared at specific address]
If the hardware presents an interface consisting of multiple fields
within individual memory cells, we can use a record type instead of a
single unsigned type representing a single word. Ada allows us to
specify the exact record layout, down to the individual bit level, for
any types we may need to use for the record components. When we
declare the object we use that record type, again specifying the
starting address. Then we can just refer to the object's record
components as usual, having the compiler compute the address offsets
required to access the components representing the individual hardware
fields.

Note that we aren't saying that other languages cannot do this too. Many
can, using good programming practices. What we're saying is that those
practices are designed into the Ada way of doing it.

Guaranteed Level of Support

The Ada reference manual has an entire section dedicated to low-level
programming. That's section 13, "Representation Issues," which provides
facilities for developers to query and control aspects of various
entities in their code, and for interfacing to hardware. Want to specify
the exact layout for a record type's components? Easy, and the compiler
will check your layout too. Want to specify the alignment of a type?
That's easy too. And that's just the beginning. We'll talk about these
facilities as we go, but there's another point to make about this
section.

In particular, section 13 includes recommended levels of support to be
provided by language implementations, i.e., compilers and other
associated tools. Although the word "recommended" is used, the
recommendations are meant to be followed.

For example, section 13.3 says that, for some entity named X, "X'Address
should produce a useful result if X is an object that is aliased or of a
by-reference type, or is an entity whose Address has been specified."
So, for example, if the programmer specifies the address for a
memory-mapped variable, the compiler cannot ignore that specification
and instead, for the sake of performance, represent that variable using a
register. The object must be represented as an addressable entity, as
requested by the programmer. (Registers are not addressable.)

We mention this because, although the recommended levels of support are
intended to be followed, those recommendations become requirements
if the Systems Programming (SP) Annex is implemented by the vendor. In
that case the vendor's implementation of section 13 must support at
least the recommended levels. The SP Annex defines additional, optional
functionality oriented toward this programming domain; you want it
anyway. (Like all the annexes it adds no new syntax.) Almost all
vendors, if not literally all, implement the Annex so you can rely on
the recommended levels of support.

Querying Implementation Limits and Characteristics

Sometimes you need to know more about the underlying machine than is
typical for general purpose applications. For example, your numerical
analysis algorithm might need to know the maximum number of digits of
precision that a floating-point number can have on this specific
machine. For networking code, you will need to know the "endianness" of
the machine so you can know whether to swap the bytes in an Ethernet
packet. You'd go look in the limits.h file in C implementations,
but in Ada we go to a package named System to get this information.

Clearly, these implementation values will vary with the hardware, so the
package declares constants with implementation-defined values. The names
of the constants are what's portable, you can count on them being the
same in any Ada implementation.

However, vendors can add implementation-defined declarations to the
language-defined content in package System. You might require some of
those additions, but portability could then suffer when moving to a new
vendor's compiler. Try not to use them unless it is unavoidable. Ideally
these additions will appear in the private part of the package, so the
implementation can use them but application code cannot.

For examples of the useful, language-defined constants, here are those
for the numeric limits of an Ada compiler for an Arm 32-bit SoC:

Min_Int : constant := Long_Long_Integer'First;
Max_Int : constant := Long_Long_Integer'Last;

Max_Binary_Modulus : constant := 2 ** Long_Long_Integer'Size;
Max_Nonbinary_Modulus : constant := 2 ** Integer'Size - 1;

Max_Base_Digits : constant := Long_Long_Float'Digits;
Max_Digits : constant := Long_Long_Float'Digits;

Max_Mantissa : constant := 63;
Fine_Delta : constant := 2.0 ** (-Max_Mantissa);

Min_Int and Max_Int supply the most-negative and most-positive
integer values supported by the machine.

Max_Binary_Modulus is the largest power of two allowed as the modulus of
a modular type definition.

But a modular type need not be defined in terms of powers of two. An
arbitrary modulus is allowed, as long as it is not bigger than the
machine can handle. That's specified by Max_Nonbinary_Modulus, the
largest non-power-of-two value allowed as the modulus of a modular type
definition.

Max_Base_Digits is the largest value allowed for the requested decimal
precision in a floating-point type's definition.

We won't go over all of the above, you get the idea. Let's examine the
more important contents.

Two of the most frequently referenced constants in System are the
following, especially the first. (The values here are again for the Arm
32-bit SoC):

Storage_Unit : constant := 8;
Word_Size : constant := 32;

Storage_Unit is the number of bits per memory storage element. Storage
elements are the components of memory cells, and typically correspond to
the individually addressable memory elements. A "byte" would correspond
to a storage element with the above constant value.

Consider a typical idiom for determining the number of whole storage
elements an object named X occupies:

Units : constant Integer := (X'Size + Storage_Unit - 1) / Storage_Unit;

Remember that 'Size returns a value in terms of bits. There are more
direct ways to determine that size information but this will serve as an
example of the sort of thing you might do with that constant.

A machine "word" is the largest amount of storage that can be
conveniently and efficiently manipulated by the hardware, given the
implementation's run-time model. A word consists of some number of
storage elements, maybe one but typically more than one. As the unit the
machine natively manipulates, words are expected to be independently
addressable. (On some machines only words are independently
addressable.)

Word_Size is the number of bits in the machine word. On a 32-bit
machine we'd expect Word_Size to have a value of 32; on a 64-bit
machine it would probably be 64, and so on.

Storage_Unit and Word_Size are obviously related.

Another frequently referenced declaration in package System is
that of the type representing memory addresses, along with a constant
for the null address designating no storage element.

type Address is private;
Null_Address : constant Address;

You may be wondering why type Address is a private type, since that
choice means that we programmers cannot treat it like an ordinary
(unsigned) integer value. Portability is of course the issue, because
addressing, and thus address representation, varies among computer
architectures. Not all architectures have a flat address space directly
referenced by numeric values, although that is common. Some are
represented by a base address plus an offset, for example. Therefore,
the representation for type Address is hidden from us, the clients.
Consequently we cannot simply treat address values as numeric values.
Don't worry, though. The operations we need are provided.

Package System declares these comparison functions, for example:

function "<" (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;
function ">=" (Left, Right : Address) return Boolean;
function "=" (Left, Right : Address) return Boolean;

These functions are intrinsic, i.e., built-in, meaning that the compiler
generates the code for them directly at the point of calls. There is no
actual function body for any of them so there is no performance penalty.

Any private type directly supports the equality function, and
consequently the inequality function, as well as assignment. What we
don't get here is address arithmetic, again because we don't have a
compile-time view of the actual representation. That functionality is
provided by package System.Storage_Elements, a child package we will
cover later. We should say though, that the need for address arithmetic
in Ada is rare, especially compared to C.

Having type Address presented as a private type is not, strictly
speaking, required by the language. Doing so is a good idea for the
reasons given above, and is common among vendors. Not all vendors do,
though.

Note that Address is the type of the result of the query attribute
Address.

We mentioned potentially needing to swap bytes in networking
communications software, due to the differences in the "endianness" of
the machines communicating. That characteristic can be determined via a
constant declared in package System as follows:

type Bit_Order is (High_Order_First, Low_Order_First);
Default_Bit_Order : constant Bit_Order := implementation-defined;

High_Order_First corresponds to "Big Endian" and
Low_Order_First to "Little Endian." On a Big Endian machine, bit
0 is the most significant bit. On a Little Endian machine, bit 0 is the
least significant bit.

Strictly speaking, this constant gives us the default order for bits
within storage elements in record representation clauses, not the order
of bytes within words. However, we can usually use it for the byte order
too. In particular, if Word_Size is greater than Storage_Unit, a
word necessarily consists of multiple storage elements, so the default bit
ordering is the same as the ordering of storage elements in a word.

Let's take that example of swapping the bytes in a received Ethernet
packet. The "wire" format is Big Endian so if we are running on a Little
Endian machine we must swap the bytes received.

Suppose we want to retrieve typed values from a
given buffer or bytes. We get the bytes from the buffer into a variable named
Value, of the type of
interest, and then swap those bytes within Value if necessary.

 ...
begin
 Value := ...

 if Default_Bit_Order /= High_Order_First then
 -- we're not on a Big Endian machine
 Value := Byte_Swapped (Value);
 end if;
end Retrieve_4_Bytes;

We have elided the code that gets the bytes into Value, for the sake of
simplicity. How the bytes are actually swapped by function Byte_Swapped
is also irrelevant. The point here is the if-statement: the expression
compares the Default_Bit_Order constant to
High_Order_First to see if this execution is on a Big Endian
machine. If not, it swaps the bytes because the incoming bytes are
always received in "wire-order," i.e., Big Endian order.

Another important set of declarations in package System define the
values for priorities, including interrupt priorities. We will ignore
them until we get to the section on interrupt handling.

Finally, and perhaps surprisingly, a few declarations in package
System are almost always (if not actually always) ignored.

type Name is implementation-defined-enumeration-type;
System_Name : constant Name := implementation-defined;

Values of type Name are the names of alternative machine
configurations supported by the implementation. System_Name represents
the current machine configuration. We've never seen any actual use of
this.

Memory_Size is an implementation-defined value that is intended
to reflect the memory size of the configuration, in units of storage
elements. What the value actually refers to is not specified. Is it the
size of the address space, i.e., the amount possible, or is it the
amount of physical memory actually on the machine, or what? In any case,
the amount of memory available to a given computer is neither dependent
upon, nor reflected by, this constant. Consequently, Memory_Size
is not useful either.

Why have something defined in the language that nobody uses? In short,
it seemed like a good idea at the time when Ada was first defined.
Upward-compatibility concerns propagate these declarations forward as
the language evolves, just in case somebody does use them.

Querying Representation Choices

As we mentioned in the introduction, in low-level programming the
hardware and the compiler's representation choices can come to the
forefront. You can, therefore, query many such choices.

For example, let's say we want to query the addresses of some objects
because we are calling the imported C memcpy function. That function
requires two addresses to be passed to the call: one for the source, and
one for the destination. We can use the 'Address attribute to get
those values.

We will explore importing routines and objects implemented in other
languages elsewhere. For now, just understand that we will have an Ada
declaration for the imported routine that tells the compiler how it
should be called. Let's assume we have an Ada function declared like so:

function MemCopy
 (Destination : System.Address;
 Source : System.Address;
 Length : Natural)
return Address
with
 Import,
 Convention => C,
 Link_Name => "memcpy",
 Pre => Source /= Null_Address and then
 Destination /= Null_Address and then
 not Overlapping (Destination, Source, Length),
 Post => MemCopy'Result = Destination;
-- Copies Length bytes from the object designated by Source to the object
-- designated by Destination.

The three aspects that do the importing are specified after the reserved
word with but can be ignored for this discussion. We'll talk
about them later. The preconditions make explicit the otherwise implicit
requirements for the arguments passed to memcpy, and the postcondition
specifies the expected result returned from a successful call. Neither
the preconditions nor the postconditions are required for importing
external entities but they are good "guard-rails" for using those
entities. If we call it incorrectly the precondition will inform us, and
likewise, if we misunderstand the result the postcondition will let us
know (at least to the extent that the return value does that).

For a sample call to our imported routine, imagine that we have a
procedure that copies the bytes of a String parameter into a
Buffer parameter, which is just a contiguous array of bytes. We need to
tell MemCopy the addresses of the arguments passed so we apply the
'Address attribute accordingly:

procedure Put (This : in out Buffer; Start : Index; Value : String) is
 Result : System.Address with Unreferenced;
begin
 Result := MemCopy (Destination => This (Start)'Address,
 Source => Value'Address,
 Length => Value'Length);
end Put;

The order of the address parameters is easily confused so we use the
named association format for specifying the actual parameters in the
call.

Although we assign Result we don't otherwise use it, so we tell the
compiler this is not a mistake via the Unreferenced aspect. And if we
do turn around and reference it the compiler will complain, as it should.
Note that Unreferenced is defined by GNAT, so usage is not necessarily
portable. Other vendors may or may not implement something like it, perhaps
with a different name.

(We don't show the preconditions for Put, but they would have specified
that Start must be a valid index into this particular buffer, and that
there must be room in the Buffer argument for the number of bytes in
Value when starting at the Start index, so that we don't copy
past the end of the Buffer argument.)

There are other characteristics we might want to query too.

We might want to ask the compiler what alignment it chose for a given
object (or type, for all such objects).

For a type, when Alignment returns a non-zero value we can be sure that
the compiler will allocate storage for objects of the type at correspondingly
aligned addresses (unless we force it to do otherwise). Similarly, references
to dynamically allocated objects of the type will be to properly aligned
locations. Otherwise, an Alignment of zero means that the guarantee does
not hold. That could happen if the type is packed down
into a composite object, such as an array of Booleans. We'll discuss
"packing" soon. More commonly, the smallest likely value is 1, meaning
that any storage element's address will suffice. If the machine has no
particular natural alignments, then all type alignments will probably
be 1 by default. That would be somewhat rare today, though, because
modern processors usually have comparatively strict alignment requirements.

We can ask for the amount of storage associated with various entities.
For example, when applied to a task, 'Storage_Size tells us the
number of storage elements reserved for the task's execution. The value
includes the size of the task's stack, if it has one. We aren't told if
other required storage, used internally in the implementation, is also
included in this number. Often that other storage is not included in
this number, but it could be.

Storage_Size is also defined for access types. The meaning is a
little complicated. Access types can be classified into those that
designate only variables and constants ("access-to-object") and those that can
designate subprograms. Each access-to-object type has an associated storage
pool. The storage allocated by new comes from the pool, and instances
of Unchecked_Deallocation return storage to the pool.

When applied to an access-to-object type, Storage_Size gives us
the number of storage elements reserved for the corresponding pool.

Note that Storage_Size doesn't tell us how much available,
unallocated space remains in a pool. It includes both allocated and
unallocated space. Note, too, that although each access-to-object type
has an associated pool, that doesn't mean that each one has a distinct,
dedicated pool. They might all share one, by default. On an operating
system, such as Linux, the default shared pool might even be implicit,
consisting merely of calls to the OS routines in C.

As a result, querying Storage_Size for access types and tasks is
not necessarily all that useful. Specifying the sizes, on the other hand,
definitely can be useful.

That said, we can create our own pool types and define precisely how
they are sized and how allocation and deallocation work, so in that case
querying the size for access types could be more useful.

For an array type or object, 'Component_Size provides the size in
bits of the individual components.

More useful are the following two attributes that query a degree
of memory sharing between objects.

Applied to an object, 'Has_Same_Storage is a Boolean function that takes
another object of any type as the argument. It indicates whether the two
objects' representations occupy exactly the same bits.

Applied to an object, 'Overlaps_Storage is a Boolean function that takes
another object of any type as the argument. It indicates whether the two
objects' representations share at least one bit.

Generally, though, we specify representation characteristics far more
often than we query them. Rather than describe all the possibilities, we
can just say that all the representation characteristics that can be
specified can also be queried. We cover specifying representation
characteristics next, so just assume the corresponding queries are
available.

That said, there is one particular representation query we need to talk about
explicitly, now, because there is a lot of confusion about it: the
'Size attribute. The confusion stems from the fact that there are
multiple contexts for applying the attribute, and multiple reasonable
interpretations possible. We can apply the 'Size attribute to a
type, in an attempt to get information about all objects of the type, or
we can apply it to individual objects to get specific information. In
both cases, what actual information do we get? In the original version
of Ada these questions weren't really answered so vendors did what they
thought was correct. But they did not agree with each other, and
portability became a problem.

For example, suppose you want to convert some value to a series of bytes
in order to send the value over the wire. To do that you need to know
how many bytes are required to represent the value. Many applications
queried the size of the type to determine that, and then, when porting
to a new vendor's compiler, found that their code no longer worked
correctly. The new vendor's implementation wasn't wrong, it was just
different.

Later versions of Ada answered these questions, where possible,
so let's examine the contexts and meaning. Above all, though, remember
that 'Size returns values in terms of bits.

If we apply 'Size to a type, the resulting value depends on the
kind of type.

For scalar types, the attribute returns the minimum number of bits
required to represent all the values of the type. Here's a diagram
showing what the category "scalar types" includes:

[image: Scalar types tree]
Consider type Boolean, which has two possible values. One bit
will suffice, and indeed the language standard requires
Boolean'Size to be the value 1.

This meaning also applies to subtypes, which can constrain the number of
values for a scalar type. Consider subtype Natural. That's a subtype
defined by the language to be type Integer but with a range of
0 .. Integer'Last.
On a 32-bit machine we would expect Integer to be a native type, and
thus 32-bits. On such a machine if we say Integer'Size we will
indeed get 32. But if we say Natural'Size we will get 31, not 32,
because only 31 bits are needed to represent that range on that machine.

The size of objects, on the other hand, cannot be just a matter of the
possible values. Consider type Boolean again, where
Boolean'Size is required to be 1. No compiler is likely to
allocate one bit to a Boolean variable, because typical machines
don't support individually-addressable bits. Instead, addresses refer to
storage elements, of a size indicated by the Storage_Unit
constant. The compiler will allocate the smallest number of storage
elements necessary, consistent with other considerations such as
alignment. Therefore, for a machine that has Storage_Unit set to
a value of eight, we can assume that a compiler for that machine will
allocate an entire eight-bit storage element to a stand-alone
Boolean variable. The other seven bits are simply not used by
that variable. Moreover, those seven bits are not used by any other
stand-alone object either, because access would be far less efficient,
and such sharing would require some kind of locking to prevent tasks
from interfering with each other when accessing those stand-alone
objects. (Stand-alone objects are independently addressable; they
wouldn't stand alone otherwise.)

By the same token (and still assuming a 32-bit machine), a compiler will
allocate more than 31 bits to a variable of subtype Natural because
there is no 31-bit addressable unit. The variable will get all 32-bits.

Note that we're talking about individual, stand-alone variables.
Components of composite types, on the other hand, might indeed share
bytes if the individual components don't require all the bits of their
storage elements. You'd have to request that representation, though,
with most implementations, because accessing the components at run-time
would require more machine instructions. We'll go into the details of
that later.

Let's talk further about sizes of types.

For record types, 'Size gives the minimum number of bits required
to represent the whole composite value. But again, that's not
necessarily the number of bits required for the objects' in-memory
representation. The order of the components within the record can make
a difference, as well as their alignments. The compiler will respect the
alignment requirements of the components, and may add padding bytes
within the record and also at the end to ensure components start at
addresses compatible with their alignment requirements. As a result the
overall size could be larger.

Note that Ada compilers are allowed to reorder the components; the order
in memory might not match the order in the source code.

For example, consider this record type and its components:

[image: Memory allocated to a record with unoptimized layout]
In the figure, we see a record type with some components, and a sample
layout for that record type assuming the compiler does not reorder the
components. Observe that some bytes allocated to objects of type R are
unused (the darkly shaded ones). In this case that's because the
alignment of subtype S happens to be 4 on this machine. The component
X of that subtype S cannot start at byte offset 1, or 2, or 3,
because those addresses would not satisfy the alignment constraint of
S. (We're assuming byte 0 is at a word-aligned address.) Therefore,
X starts at the object's starting address plus 4. Components
B and C are of types that have an alignment of 1, so they
can start at any storage element.
They immediately follow the bytes allocated to component X.
Therefore, R'Size is 80, or 10 bytes. The three bytes following
component M are simply not used.

But what about the two bytes following the last component C? They could
be allocated to stand-alone objects if they would fit. More likely, though,
the compiler will allocate those two bytes to objects of type R, that
is, 12 bytes instead of 10 are allocated. As a result, 96 bits are
actually used in memory. The extra, unused 16 bits are "padding."

Why add unused padding? It simplifies the memory allocation of objects of type
R. Suppose some array type has components of record type R.
Assuming the first component is aligned properly, every following
component will also be aligned properly, automatically, because the two
padding bytes are considered parts of the components.

To make that work, the compiler takes the most stringent alignment of
all the record type's components and uses that for the alignment of the
overall record type. That way, any address that satisfies the record
object's alignment will satisfy the components' alignment requirements.
The alignment is component X, of subtype S, is 4. The other
components have an alignment of 1, therefore R'Alignment is 4. An
aligned address plus 12 will also be an aligned address.

This rounding up based on alignment is recommended behavior for the
compiler, not a requirement, but is reasonable and typical among
vendors. Although it can result in unused storage, that's the price paid
for speed of access (or even correctness for machines that would fault
on misaligned component accesses).

As you can see, alignment is a critical factor in the sizes of composite
objects. If you care about the layout of the type you very likely need
to care about the alignment of the components and overall record type.

Ada compilers are allowed to reorder the components of record types in
order to minimize these gaps or satisfy the alignment requirements of
the components. Some compilers do, some don't. Consider the type R
again, this time with the first two components switched in the component
declaration order:

[image: Memory allocated to a record with optimized layout]
Now R'Size will report 56 bits instead of 80. The one trailing byte will
still be padding, but only that one.

What about unbounded types, for example type String? Querying the
'Size in that case would provide an implementation-defined result.
A somewhat
silly thing to do, really, since the type — by definition —
doesn't specify how many components are involved.

Usually, though, you don't want to query the size of a type. Most of the
time what you want is the size of objects of the type. Going back to
sending values over the wire, the code should query the size of the
parameter holding the value to be sent. That will tell you how many
bits are really needed.

One last point: GNAT, and now Ada 202x, define an attribute named
Object_Size. It does just what the name suggests: what
'Size does when applied to objects rather than types. GNAT also
defines another attribute, named Value_Size, that does what
'Size does when applied to types. The former is far more useful
so Ada has standardized it.

Specifying Representation

Recall that we said Boolean'Size is required to be 1, and that
stand-alone objects of type Boolean are very likely allocated some
integral number of storage elements (e.g., bytes) in memory, typically
one. What about arrays of Booleans? Suppose we have an array of 16
Boolean components. How big are objects of the array type? It depends on
the machine. Continuing with our hypothetical (but typical)
byte-addressable machine, for the sake of efficient access each
component is almost certainly allocated an individual byte rather than a
single bit, just like stand-alone objects. Consequently, our array of 16
Booleans will be reported by 'Size to be 128 bits, i.e., 16
bytes. If you wanted a bit-mask, in which each Boolean component is
allocated a single bit and the total array size is 16 bits, you'd have a
problem. The compiler assumes you want speed of access rather than
storage minimization, and normally that would be the right assumption.

Naturally there is a solution. Ada allows us to specify the
representation characteristics of types, and thus objects of those
types, including their bit-wise layouts. It also allows us to specify
the representation of individual objects. You should understand, though,
that the compiler is not required to do what you ask, because you might
ask the impossible. For example, if you specify that
the array of 16 Booleans is to be represented completely in 15 bits,
what can the compiler do? Rejecting that specification is the only
reasonable response. But if you specify something possible, the compiler
must do what you ask, absent some compelling reason to the contrary.

With that in mind, let's examine setting the size for types.

So, how do we specify that we want our array of 16 Boolean components
to be allocated one bit per component, for a total allocation of 16
bits? There are a couple of ways, one somewhat better than the other.

First, you can ask that the compiler "pack" the components into as small
a number of bits as it can:

type Bits16 is array (0 .. 15) of Boolean with
 Pack;

That likely does what you want: Bits16'Size will probably be 16.

But realize that the Pack aspect (and corresponding pragma) is merely a
request that the compiler do its best to minimize the number of bits
allocated, not necessarily that it do exactly what you expected or
required.

We could set the size of the entire array type:

type Bits16 is array (0 .. 15) of Boolean with
 Size => 16;

But the language standard says that a Size clause on array and record
types should not affect the internal layout of their components. That's
Implementation Advice, so not normative, but implementations are really
expected to follow the advice, absent some compelling reason. That's
what the Pack aspect, record representation clauses, and
Component_Size clauses are for. (We'll talk about record representation
clauses momentarily.) That said, at least one other vendor's compiler would
have changed the size of the array type because of the Size clause, so
GNAT defines a configuration pragma named Implicit_Packing that
overrides the default behavior. With that pragma applied, the Size
clause would compile and suffice to make the overall size be 16. That's a
vendor-defined pragma though, so not portable.

Therefore, the best way to set the size for the array type is to set the
size of the individual components, via the Component_Size aspect as the
Implementation Advice indicates. That will say what we really want,
rather than a "best effort" request for the compiler, and is portable:

type Bits16 is array (0 .. 15) of Boolean with
 Component_Size => 1;

With this approach the compiler must either use the specified size for
each component or refuse to compile the code. If it compiles, objects
of the array type will be 16 bits total (plus any padding bits required to
make objects have a size that is a multiple of Storage_Unit, typically
zero on modern machines).

Now that we have a bit-mask array type, let's put it to use.

Let's say that you have an object that is represented as a simple signed
integer because, for most usage, that's the appropriate representation.
Sometimes, though, let's say you need to access individual bits of the object
instead of the whole numeric value. Signed integer types don't provide
bit-level access. In Ada we'd say that the "view" presented by the object's
type doesn't include bit-oriented operations. Therefore, we need to add a
view to the object that does provide them. A different view will require an
additional type for the same object.

Applying different types, and thus their operations, to the same object is
known as type punning[#1] in computer programming.
Realize that doing so circumvents the static strong typing we harness to
protect us from ourselves and from others. Use it with care! (For example,
limit the compile-time visibility to such code.)

One way to add a view is to express an "overlay," in which an object of one
type is placed at the same memory location as a distinct object of a different
type, thus "overlaying" one object over the other in memory. The different
types present different views, therefore different operations available for
the shared memory cells. Our hypothetical example uses two views, but you can
overlay as many different views as needed. (That said, requiring a large number
of different views of the same object would be suspect.)

There are other ways in Ada to apply different views, some more flexible than
others, but an overlay is a simple one that will often suffice.

Here is an implementation of the overlay approach, using our bit-mask array
type:

type Bits32 is array (0 .. 31) of Boolean with
 Component_Size => 1;

X : Integer;
Y : Bits32 with Address => X'Address;

We can query the addresses of objects, and other things too, but objects,
especially variables, are the most common case. In the above, we say
X'Address to query the starting address of object X. With that
information we know what address to specify for our bit-mask overlay object
Y. Now X and Y are aliases for the same memory cells, and
therefore we can manipulate and query that memory as either a signed integer or
as an array of bits. Reading or updating individual array components accesses
the individual bits of the overlaid object.

Instead of the Bits32 array type, we could have specified a modular type
for the overlay Y to get a view providing bit-oriented operations.
Overlaying such an array was a common idiom prior to the introduction of
modular "unsigned" types in Ada, and remains useful for accessing individual
bits. In other words, using a modular type for Y, you could indeed
access an individual bit by passing a mask value to the and operator
defined in any modular type's view. Using a bit array representation lets the
compiler do that work for you, in the generated code. The source code will be
both easier to read and more explicit about what it is doing when using the bit
array overlay.

One final issue remains: in our specific overlay example the compiler would
likely generate code that works. But strictly speaking it might not.

The Ada language rules say that for such an overlaid object
— Y in the example above — the compiler should not perform
optimizations regarding Y that it would otherwise apply in the absence
of aliases. That's necessary, functionally, but may imply degraded performance
regarding Y, so keep it in mind. Aliasing precludes some desirable
optimizations.

But what about X in the example above? We're querying that object's
address, not specifying it, so the RM rule precluding optimizations doesn't
apply to X. That can be problematic.

The compiler might very well place X in a register, for example, for the
sake of the significant performance increase (another way of being friendly).
But in that case System.Null_Address will be returned by the
X'Address query and, consequently, the declaration for Y will not
result in the desired overlaying.

Therefore, we should mark X as explicitly aliased to ensure that
X'Address is well-defined:

type Bits32 is array (0 .. 31) of Boolean with
 Component_Size => 1;

X : aliased Integer;
Y : Bits32 with Address => X'Address;

The only difference in the version above is the addition of aliased in
the declaration of X. Now we can be certain that the optimizer will not
represent X in some way incompatible with the idiom, and
X'Address will be well-defined.

In our example X and Y are clearly declared in the same
compilation unit. Most compilers will be friendly in this scenario,
representing X in such a way that querying the address will return a
non-null address value even if aliased is not applied. Indeed,
aliased is relatively new to Ada, and earlier compilers typically
emitted code that would handle the overlay as intended.

But suppose, instead of being declared in the same declarative part, that
X was declared in some other compilation unit. Let's say it is in the
visible part of a package declaration. (Assume X is visible to clients
for some good reason.) That package declaration can be, and usually will be,
compiled independently of clients, with the result that X might be
represented in some way that cannot supporting querying the address
meaningfully.

Therefore, the declaration of X in the package spec should be marked as
aliased, explicitly:

package P is
 X : aliased Integer;
end P;

Then, in the client code declaring the overlay, we only declare Y,
assuming a with-clause for P:

type Bits32 is array (0 .. 31) of Boolean with
 Component_Size => 1;

Y : Bits32 with Address => P.X'Address;

All well and good, but how did the developer of the package know that some
other unit, a client of the package, would query the address of X, such
that it needed to be marked as aliased? Indeed, the package developer might not
know. Yet the programmer is responsible for ensuring a valid and appropriate
Address value is used in the declaration of Y. Execution is
erroneous otherwise, so we can't say what would happen in that case. Maybe an
exception is raised or a machine trap, maybe not.

Worse, the switches that were applied when compiling the spec for package
P can make a difference: P.X might not be placed in a register
unless the optimizer is enabled. Hence the client code using Y might
work as expected when built for debugging, with the optimizer disabled, and
then not do so when re-built for the final release. You'd probably have to
solve this issue by debugging the application.

On a related note, you may be asking yourself how to know that type
Integer is 32 bits wide, so that we know what size array to use for the
bit-mask. The answer is that you just have to know the target well when doing
low-level programming. The hardware becomes much more visible, as we mentioned.

That said, you could at least verify the assumption:

pragma Compile_Time_Error (Integer'Object_Size /= 32,
 "Integers expected to be 32 bits");
X : aliased Integer;
Y : Bits32 with Address => X'Address;

That's a vendor-defined pragma so this is not fully portable. It isn't
an unusual pragma, though, so at least you can probably get the same
functionality even if the pragma name varies.

Overlays aren't always structured like our example above, i.e., with two
objects declared at the same time. We might apply a different type to the same
memory locations at different times. Here's an example from the ADL to
illustrate the idea. We'll elaborate on this example later, in another section.

First, a package declaration, with two functions that provide a device-specific
unique identifier located in shared memory. Each function provides the same Id
value in a distinct format. One format is a string of 12 characters, the other
is a sequence of three 32-bit values. Hence both representations are the same
size.

package STM32.Device_Id is

 subtype Device_Id_Image is String (1 .. 12);

 function Unique_Id return Device_Id_Image;

 type Device_Id_Tuple is array (1 .. 3) of UInt32
 with Component_Size => 32;

 function Unique_Id return Device_Id_Tuple;

end STM32.Device_Id;

In the package body we implement the functions as two ways to access the
same shared memory, specified by ID_Address:

with System;

package body STM32.Device_Id is

 ID_Address : constant System.Address := System'To_Address (16#1FFF_7A10#);

 function Unique_Id return Device_Id_Image is
 Result : Device_Id_Image with Address => ID_Address, Import;
 begin
 return Result;
 end Unique_Id;

 function Unique_Id return Device_Id_Tuple is
 Result : Device_Id_Tuple with Address => ID_Address, Import;
 begin
 return Result;
 end Unique_Id;

end STM32.Device_Id;

System'To_Address is just a convenient way to convert a numeric value
into an Address value. The primary benefit is that the call is a static
expression, but we can ignore that here. Using Import is a good idea to
ensure that the Ada code does no initialization of the object, since the value
is coming from the hardware via the shared memory. Doing so may not be
necessary, depending on the type used, but is a good habit to develop.

The point of this example is that we have one object declaration per function,
of a type corresponding to the intended function result type. Because each
function places their local object at the same address, they are still
overlaying the shared memory.

Now let's return, momentarily, to setting the size of entities, but now let's
focus on setting the size of objects.

We've said that the size of an object is not necessarily the same as the
size of the object's type. The object size won't be smaller, but it
could be larger. Why? For a stand-alone object or a parameter, most
implementations will round the size up to a storage element boundary, or
more, so the object size might be greater than that of the type. Think
back to Boolean, where Size is required to be 1, but stand-alone
objects are probably allocated 8 bits, i.e., an entire storage element (on our
hypothetical byte-addressed machine).

Likewise, recall that numeric type declarations are mapped to underlying
hardware numeric types. These underlying numeric types provide at least
the capabilities we request with our type declarations, e.g., the range
or number of digits, perhaps more. But the mapped numeric hardware type
cannot provide less than requested. If there is no underlying hardware
type with at least our requested capabilities, our declarations won't compile.
That mapping means that specifying the size of a numeric type doesn't
necessarily affect the size of objects of the type. That numeric
hardware type is the size that it is, and is fixed by the hardware.

For example, let's say we have this declaration:

type Device_Register is range 0 .. 2**5 - 1 with Size => 5;

That will compile successfully, because there will be a signed integer
hardware type with at least that range. (Not necessarily, legally
speaking, but realistically speaking, there will be such a hardware
type.) Indeed, it may be an 8-bit signed integer, in which case
Device_Register'Size will give us 5, but objects of the type will have a
size of 8, unavoidably, even though we set Size to 5.

The difference between the type and object sizes can lead to potentially
problematic code:

type Device_Register is range 0 .. 2**8 - 1 with Size => 8;

My_Device : Device_Register
 with Address => To_Address (...);

The code compiles successfully, and tries to map a byte to a hardware
device that is physically connected to one storage element in the
processor memory space. The actual address is elided as it is not
important here.

That code might work too, but it might not. We might think that
My_Device'Size is 8, and that My_Device'Address points at an
8-bit location. However, this isn't necessarily so, as we saw with the
supposedly 5-bit example earlier. Maybe the smallest signed integer the
hardware has is 16-bits wide. The code would compile because a 16-bit
signed numeric type can certainly handle the 8-bit range requested.
My_Device'Size would be then 16, and because 'Address gives us
the starting storage element, My_Device'Address might designate the
high-order byte of the overall 16-bit object. When the compiler reads
the two bytes for My_Device what will happen? One of the bytes will be
the data presented by the hardware device mapped to the memory. The
other byte will contain undefined junk, whatever happens to be in the
memory cell at the time. We might have to debug the code a long time to
identify that as the problem. More likely we'll conclude we have a
failed device.

The correct way to write the code is to specify the size of the
object instead of the type:

type Device_Register is range 0 .. 2**8 - 1;

My_Device : Device_Register with
 Size => 8,
 Address => To_Address (...);

If the compiler cannot support stand-alone 8-bit objects for the type, the code
won't compile.

Alternatively, we could change the earlier Size clause on the
type to apply Object_Size instead:

type Device_Register is range 0 .. 2**8 - 1 with Object_Size => 8;

My_Device : Device_Register with
 Address => To_Address (...);

The choice between the two approaches comes down to personal preference,
at least if only a small number of stand-alone objects of the type are
going to be declared. With either approach, if the implementation cannot
support 8-bit stand-alone objects, we find out that there is a problem at
compile-time. That's always cheaper than debugging.

You might conclude that setting the Size for a type serves no purpose.
That's not an unreasonable conclusion, given what you've seen, but in
fact there are reasons to do so. However, there are only a few specific
cases so we will save the reasons for the discussions of the specific
cases.

There is one general case, though, for setting the 'Size of a type.
Specifically, you may want to specify the size that you think is the
minimum possible, and you want the compiler to confirm that belief. This
would be one of the so-called "confirming" representation clauses, in
which the representation detail is what the compiler would have chosen
anyway, absent the specification. You're not actually changing anything,
you're just getting confirmation via Size whether or not the compiler
accepts the clause. Suppose, for example, that you have an enumeration type
with 256 values. For enumeration types, the compiler allocates the smallest
number of bits required to represent all the values, rounded up to the
nearest storage element. (It's not like C, where enums are just named
int values.) For 256 values, an eight-bit byte would suffice, so setting
the size to 8 would be confirming. But suppose we actually had 257
enumerals, accidentally? Our size clause set to 8 would not compile, and
we'd be told that something is amiss.

However, note that if your supposedly "confirming" size clause actually
specifies a size larger than what the compiler would have chosen, you won't
know, because the compiler will silently accept sizes larger than necessary. It
just won't accept sizes that are too small.

There are other confirming representation clauses as well. Thinking
again of enumeration types, the underlying numeric values are
integers, starting with zero and consecutively increasing from there
up to N-1, where N is the total number of enumeral values.

For example:

type Commands is (Off, On);

for Commands use (Off => 0, On => 1);

As a result, Off is encoded as 0 and On as 1. That specific
underlying encoding is guaranteed by the language, as of Ada 95, so this is
just a confirming representation clause nowadays. But it was not guaranteed in
the original version of the language, so if you wanted to be sure of the
encoding values you would have specified the above. It wasn't necessarily
confirming before Ada 95, in other words.

But let's also say that the underlying numeric values are not what you
want because you're interacting with some device and the commands are
encoded with values other than 0 and 1. Maybe you want to use an
enumeration type because you want to specify all the possible values
actually used by clients. If you just used some numeric type instead and
made up constants for On and Off, there's nothing to keep clients
from using other numeric values in place of the two constants (absent some
comparatively heavy code to prevent that from happening). Better to use
the compiler to make that impossible in the first place, rather than
debug the code to find the incorrect values used. Therefore, we could
specify different encodings:

for Commands use (Off => 2, On => 4);

Now the compiler will use those encoding values instead of 0 and 1,
transparently to client code.

The encoding values specified must maintain the relative ordering,
otherwise the relational operators won't work correctly. For example,
for type Commands above, Off is less than On, so the specified encoding
value for Off must be less than that of On.

Note that the values given in the example no longer increase consecutively,
i.e., there's a gap. That gap is OK, in itself. As long as we use the two
enumerals the same way we'd use named constants, all is well. Otherwise,
there is both a storage issue and a performance issue possible. Let's
say that we use that enumeration type as the index for an array type.
Perfectly legal, but how much storage is allocated to objects of this
array type? Enough for exactly two components? Four, with two unused? The
answer depends on the compiler, and is therefore not portable. The bigger the
gaps, the bigger the overall storage difference possible. Likewise,
imagine we have a for-loop iterating over the index values of one of
these array objects. The for-loop parameter cannot be coded by the
compiler to start at 0, clearly, because there is no index (enumeration)
value corresponding to 0. Similarly, to get the next index, the compiler
cannot have the code simply increment the current value. Working around
that takes some extra code, and takes some extra time that would not be
required if we did not have the gaps.

The performance degradation can be significant compared to the usual
code generated for a for-loop. Some coding guidelines say that you
shouldn't use an enumeration representation clause for this reason, with
or without gaps. Now that Ada has type predicates we could limit the
values used by clients for a numeric type, so an enumeration type is not
the only way to get a restricted set of named, encoded values.

type Commands is new Integer with
 Static_Predicate => Commands in 2 | 4;

On : constant Commands := 2;
Off : constant Commands := 4;

The storage and performance issues bring us back to confirming clauses.
We want the compiler to recognize them as such, so that it can generate
the usual code, thereby avoiding the unnecessary portability and
performance issues. Why would we have such a confirming clause now? It
might be left over from the original version of the language, written
before the Ada 95 change. Some projects have lifetimes of several
decades, after all, and changing the code can be expensive (certified
code, for example). Whether the compiler does recognize confirming
clauses is a feature of the compiler implementation. We can expect a
mature compiler to do so, but there's no guarantee.

Now let's turn to what is arguably the most common representation
specification, that of record type layouts.

Recall from the discussion above that Ada compilers are allowed to
reorder record components in physical memory. In other words, the
textual order in the source code is not necessarily the physical order
in memory. That's different from, say, C, where what you write is what
you get, and you better know what you're doing. On some targets a
misaligned struct component access will perform very poorly, or even
trap and halt, but that's not the C compiler's fault. In Ada you'd have to
explicitly specify the problematic layout. Otherwise, if compilation is
successful, the Ada compiler must find a representation that will work,
either by reordering the components or by some other means. Otherwise it
won't compile.

GNAT did not reorder components until relatively recently but does now,
at least for the more egregious performance cases. It does this reordering
silently, too, although there is a switch to have it warn you when it does.
To prevent reordering, GNAT defines a pragma named
No_Component_Reorder that does what the name suggests. You can apply
it to individual record types, or globally, as a configuration pragma. But
of course because the pragma is vendor defined it is not portable.

Therefore, if you care about the record components' layout in memory, the
best approach is to specify the layout explicitly. For example, perhaps you
are passing data to code written in C. In that case, you need the component
order in memory to match the order given in the corresponding C struct
declaration. That order in memory is not necessarily guaranteed from the
order in the Ada source code. The Ada compiler is allowed to chose the
representation unless you specify it, and it might chose a different layout
from the one given. (Ordinarily, letting the compiler chose the layout is the
most desirable approach, but in this case we have an external layout
requirement.)

Fortunately, specifying a record type's layout is straightforward.
The record layout specification consists of the storage places for some
or all components, specified with a record representation clause. This
clause specifies the order, position, and size of components (including
discriminants, if any).

The approach is to first define the record type, as usual, using any
component order you like — you're about to specify the physical
layout explicitly, in the next step.

Let's reuse that record type from the earlier discussion:

type My_Int is range 1 .. 10;

subtype S is Integer range 1 .. 10;

type R is record
 M : My_Int;
 X : S;
 B : Boolean;
 C : Character;
end record;

The resulting layout might be like so, assuming the compiler doesn't reorder
the components:

[image: Memory allocated to a record with unoptimized layout]
As a result, R'Size will be 80 bits (10 bytes), but those last two bytes
will be will be allocated to objects, for an Object_Size of 96 bits (12
bytes). We'll change that with an explicit layout specification.

Having declared the record type, the second step consists of defining
the corresponding record representation clause giving the components'
layout. The clause uses syntax that somewhat mirrors that of a record
type declaration. The components' names appear, as in a record type
declaration. But now, we don't repeat the components' types, instead we
give their relative positions within the record, in terms of a relative
offset that starts at zero. We also specify the bits we want them to
occupy within the storage elements starting at that offset.

for R use record
 X at 0 range 0 .. 31; -- note the order swap,
 M at 4 range 0 .. 7; -- with this component
 B at 5 range 0 .. 7;
 C at 6 range 0 .. 7;
end record;

Now we'll get the optimized order, and we'll always get that order, or
the layout specification won't compile in the first place. In the
following diagram, both layouts, the default, and the one resulting from
the record representation clause, are depicted for comparison:

[image: Memory allocated to a record with optimized layout]
R'Size will be 56 bits (7 bytes), but that last padding byte will also
be allocated to objects, so the Object_Size will be 64 bits (8 bytes).

Notice how we gave each component an offset, after the reserved word
at. These offsets are in terms of storage elements, and specify their
positions within the record object as a whole. They are relative to the
beginning of the memory allocated to the record object so they are
numbered starting at zero. We want the X component to be the very first
component in the allocated memory so the offset for that one is zero.
The M component, in comparison, starts at an offset of 4 because we are
allocating 4 bytes to the prior component X: bytes 0 through 3
specifically. M just occupies one storage element so the next component,
B, starts at offset 5. Likewise, component C starts at offset 6.

Note that there is no requirement for the components in the record
representation clause to be in any particular textual order. The offsets alone
specify the components' order in memory. A good style, though, is to order the
components in the representation clause so that their textual order
corresponds to their order in memory. Doing so facilitates our verifying that
the layout is correct because the offsets will be increasing as we read the
specification.

An individual component may occupy part of a single storage element, all
of a single storage element, multiple contiguous storage elements, or a
combination of those (i.e., some number of whole storage elements but
also part of another). The bit "range" specifies this bit-specific
layout, per component, by specifying the first and last bits occupied.
The X component occupies 4 complete 8-bit storage elements, so the bit
range is 0 through 31, for a total of 32 bits. All the other components
each occupy an entire single storage element so their bit ranges are 0
through 7, for a total of 8 bits.

The text specifying the offset and bit range is known as a
"component_clause" in the syntax productions. Not all components need be
specified by component_clauses, but (not surprisingly) at most one
clause is allowed per component. Really none are required but it would
be strange not to have some. Typically, all the components are given
positions. If component_clauses are given for all components, the
record_representation_clause completely specifies the representation of
the type and will be obeyed exactly by the implementation.

Components not otherwise given an explicit placement are given positions
chosen by the compiler. We don't say that they "follow" those explicitly
positioned because there's no requirement that the explicit positions
start at offset 0, although it would be unusual not to start there.

Placements must not make components overlap, except for components of
variant parts, a topic covered elsewhere. You can also specify the
placement of implementation-defined components, as long as you have a
name to refer to them. (In addition to the components listed in the
source code, the implementation can add components to help implement
what you wrote explicitly.) Such names are always attribute
references but the specific attributes, if any, are
implementation-defined. It would be a mistake for the compiler to define
such implicit components without giving you a way to refer to them.
Otherwise they might go exactly where you want some other component to
be placed, or overlap that place.

The positions (offsets) and the bit numbers must be static, informally
meaning that they are known at compile-time. They don't have to be
numeric literals, though. Numeric constants would work, but literals are
the most common by far.

Note that the language does not limit support for component clauses to
specific component types. They need not be one of the integer types, in
particular. For example, a position can be given for components that are
themselves record types, or array types. Even task types are allowed as
far as the language goes, although the implementation might require a
specific representation, such as the component taking no bits whatsoever
(0 .. -1). There are restrictions that keep things sane, for
example rules about how a component name can be used within the overall
record layout construct, but not restrictions on the types allowed for
individual components. For example, here is a record layout containing a
String component, arbitrarily set to contain 11 characters:

type R is record
 S : String (1 .. 11);
 B : Boolean;
end record;

for R use record
 S at 0 range 0 .. 87;
 B at 11 range 0 .. 7;
end record;

Component S is to be the first component in memory in this example,
hence the position offset is 0, for the first byte of S. Next, S
is 11 characters long, or 88 bits, so the bit range is 0 .. 87. That's 11
bytes of course, so S occupies storage elements 0 .. 10. Therefore, the
next component position must be at least 11, unless there is to be a
gap, in which case it would be greater than 11. We'll place B
immediately after the last character of S, so B is at storage
element offset 11 and occupying all that one byte's bits.

We'll have more to say about record type layouts but first we need to talk
about alignment.

Modern target architectures are comparatively strict about the address
alignments for some of their types. If the alignment is off, an access
to the memory for objects of the type can have highly undesirable
consequences. Some targets will experience seriously degraded
performance. On others, the target will halt altogether. As you can see,
getting the alignment correct is a low-level, but vital, part of correct
code on these machines.

Normally the compiler does this work for us, choosing an alignment that
is both possible for the target and also optimal for speed of access.
You can, however, override the compiler's alignment choice using an
attribute definition clause or the Alignment aspect. You can do
so on types other than record types, but specifying it on record types
is typical. Here's our example record type with the alignment specified
via the aspect:

type My_Int is range 1 .. 10;

subtype S is Integer range 1 .. 10;

type R is record
 M : My_Int;
 X : S;
 B : Boolean;
 C : Character;
end record with
 Alignment => 1;

Alignment values are in terms of storage elements. The effect of the
aspect or attribute clause is to ensure that the starting address of the
memory allocated to objects of the type will be a multiple of the
specified value.

In fact, whenever we specify a record type layout we really should also
specify the record type's alignment, even though doing so is optional.
Why? The alignment makes a difference in the overall record object's
size. We've seen that already, with the padding bytes: the compiler will
respect the alignment requirements of the components, and may add
padding bytes within the record and also at the end to ensure components
start at addresses compatible with their alignment requirements. The
alignment also affects the size allocated to the record type even when
the components are already aligned. As a result the overall size could
be larger than we want for the sake of space. Additionally, when we pass
such objects to code written in other languages, we want to ensure that
the starting address of these objects is aligned as the external code
expects. The compiler might not choose that required alignment by
default.

Specifying alignment for record types is so useful that in the first
version of Ada there was no syntax to specify alignment for anything
other than record types (via the obsolete at mod clause on record
representation clauses).

For that reason GNAT provides a pragma named Optimize_Alignment. This is
a configuration pragma that affects the compiler's choice of default
alignments where no alignment is explicitly specified. There is a
time/space trade-off in the selection of these values, as we've seen.
The normal choice tries to balance these two characteristics, but with
an argument to the pragma you can give more weight to one or the other.
The best approach is to specify the alignments explicitly, per type, for
those that require specific alignment values. The pragma has the nice
property of giving general guidance to the compiler for what should be
done for the other types and objects not explicitly specified.

Now let's look into the details. We'll use a case study for this
purpose, including specifying sizes as well as alignments.

The code for the case study is as follows. It uses Size clauses to
specify the Sizes, instead of the Size aspect, just to
emphasize that the Size clause approach is not obsolete.

package Some_Types is

 type Temperature is range -275 .. 1_000;

 type Identity is range 1 .. 127;

 type Info is record
 T : Temperature;
 Id : Identity;
 end record;

 for Info use record
 T at 0 range 0 .. 15;
 Id at 2 range 0 .. 7;
 end record;

 for Info'Size use 24;

 type List is array (1 .. 3) of Info;
 for List'Size use 24 * 3;

end Some_Types;

When we compile this, the compiler will complain that the size for
List is too small, i.e., that the minimum allowed is 96 bits instead
of the 72 we specified. We specified 24 * 3 because we said the record
size should be 24 bits, and we want our array to contain 3 record
components of that size, so 72 seems right.

What's wrong? As we've shown earlier, specifying the record type size
doesn't necessarily mean that objects (in this case array components)
are that size. The object size could be bigger than we specified for the
type. In this case, the compiler says we need 96 total bits for the
array type, meaning that each of the 3 array components is 32 bits wide
instead of 24.

Why is it 32 bits? Because the alignment for Info is 2 (on this
machine). The record alignment is a multiple of the largest
alignment of the enclosed components. The alignment for type Temperature
(2), is larger than the alignment for type Identity (1), therefore the
alignment for the whole record type is 2. We need to go from that number
of storage elements to a number of bits for the size.

Here's where it gets subtle. The alignment is in terms of storage
elements. Each storage element is of a size in bits given by
System.Storage_Unit. We've said that on our hypothetical machine
Storage_Unit is 8, so storage elements are 8 bits wide on this machine.
Bytes, in other words. Therefore, to get the required size in bits, we
have to find a multiple of the two 8-bit bytes (specified by the
alignment) that has at least the number of bits we gave in the Size
clause. Two bytes only provides 16 bits, so that's not big enough, we
need at least 24 bits. The next multiple of 2 bytes is 4 bytes,
providing 32 bits, which is indeed larger than 24. Therefore, the
overall size of the record type, consistent with the alignment, is 4
bytes, or 32 bits. That's why the compiler says each array component is
32 bits wide.

But for our example let's say that we really want to use only 72 total
bits for the array type (and that we want three array components).
That's the size we specified, after all. So how do we get the record
type to be 24 bits instead of 32? Yes, you guessed it, we change the
alignment for the record type. If we change it from 2 to 1, the size of
24 bits will work. Adding this Alignment clause line will do that:

for Info'Alignment use 1;

An alignment of 1 means that any address will work, assuming that
addresses refer to entire storage elements. (An alignment of 0 would
mean that the address need not start on a storage element boundary, but
we know of no such machines.)

We can even entirely replace the Size clause with the Alignment
clause, because the Size clause specifying 24 bits is just confirming:
it's the value that 'Size would return anyway. The problem is the object
size.

Now, you may be wondering why an alignment of 1 would work, given that
the alignment of the Temperature component is 2. Wouldn't it slow down
the code, or even trap? Well, maybe. It depends on the machine. If it
doesn't work we would just have to use 32 bits for the record type, with
the original alignment of 2, for a larger total array size. Of course, if the
compiler recognizes that a representation cannot be supported it must reject
the code, but the compiler might not recognize the problem.

We said earlier that there are only a small number of reasons to specify
'Size for a type. We can mention one of them now. Setting 'Size
can be useful to give the minimum number of bits to use for a component
of a packed composite type, that is, within either a record type or an
array type that is explicitly packed via the aspect or pragma Pack. It
says that the compiler, when giving its best effort, shouldn't compress
components of the type any smaller than the number of bits specified.
No, it isn't earth-shattering, but other uses are more valuable, to be
discussed soon.

One thing we will leave unaddressed (pun intended) is the question of
bit ordering and byte ordering within our record layouts. In other
words, the "endian-ness". That's a subject beyond the scope of this
course. Suffice it to say that GNAT provides a way to specify record
layouts that are independent of the endian-ness of the machine, within
some implementation-oriented limits. That's obviously useful when the
code might be compiled for a different ISA in the future. On the other
hand, if your code is specifically for a single ISA, e.g. Arm, even if
different boards and hardware vendors are involved, there's no need to
be independent of the endian-ness. It will always be the same in that
case. (Those are "famous last words" though.) For an overview of the
GNAT facility, an attribute named attribute Scalar_Storage_Order
see
https://www.adacore.com/papers/lady-ada-mediates-peace-treaty-in-endianness-war.

Although specifying record type layouts and alignments are perhaps the
most common representation characteristics expressed, there are a couple
of other useful cases. Both involve storage allocation.

One useful scenario concerns tasking. We can specify the number of
storage elements reserved for the execution of a task object, or all
objects of a task type. You use the Storage_Size aspect to do so:

task Servo with
 Storage_Size => 1 * 1024,
 ...

Or the corresponding pragma:

task Servo is
 pragma Storage_Size (1 * 1024);
end Servo;

The aspect seems textually cleaner and lighter unless you have task
entries to declare as well. In that case the line for the pragma
wouldn't add all that much. That's a matter of personal aesthetics
anyway.

The specified number of storage elements includes the size of
the task's stack (GNAT does have one, per task). The language does not
specify whether or not it includes other storage associated with the
task used for implementing and managing the task execution. With GNAT,
the extent of the primary stack size is the value returned, ignoring any
other storage used internally in the run-time library for managing the
task.

The GNAT run-time library allocates a default stack amount to each task,
with different defaults depending on the underlying O.S., or lack
thereof, and the target. You need to read the documentation to find the
actual amount, or, with GNAT, read the code.

You would need to specify this amount in order to either increase or
decrease the allocated storage. If the task won't run properly, perhaps
crashing at strange and seemingly random places, there's a decent chance
it is running out of stack space. That might also be the reason if you
have a really deep series of subprogram calls that fails. The correction
is to increase the allocation, as shown above. How much? Depends on the
application code. The quick-and-dirty approach is to iteratively
increase the allocation until the task runs properly. Then, reverse the
approach until it starts to fail again. Add a little back until it runs,
and leave it there. We'll mention a much better approach momentarily
(GNATstack).

Even if the task doesn't seem to run out of task stack, you might want
to reduce it anyway, to the extent possible, because the total amount of
storage on your target might be limited. Some of the GNAT bare-metal
embedded targets have very small amounts of memory available, so much so that
the default task stack allocations would exhaust the memory available
quickly. That's what the example above does: empirical data showed that
the Servo task could run with just 1K bytes allocated, so we reduced it
from the default accordingly. (We specified the size with that
expression for the sake of readability, relative to using literals
directly.)

Notice we said "empirical data" above. How do we know that we exercised
the task's thread of control exhaustively, such that the arrived-at
allocation value covers the worst case? We don't, not with certainty. If
we really must know the allocation will suffice for all cases, say
because this is a high-integrity application, we would use
GNATstack. GNATstack is an offline tool that exploits data generated
by the compiler to compute worst-case stack requirements per subprogram and per
task. As a static analysis tool, its computation is based on information
known at compile time. It does not rely on empirical run-time
information.

The other useful scenario for allocating storage concerns access types,
specifically access types whose values designate objects, as opposed to
designating subprograms. (Remember, objects are either variables or
constants.) There is no notion of dynamically allocating procedures and
functions in Ada so access-to-subprogram types are not relevant here.
But objects can be of protected types (or task types), and protected
objects can "contain" entries and protected subprograms, so there's a lot
of expressive power available. You just don't dynamically
allocate procedures or functions as such.

First, a little background on access types, to supplement what we said earlier.

By default, the implementation chooses a standard storage pool for each
named access-to-object type. The storage allocated by an allocator (i.e.,
new) for such a type comes from the associated pool.

Several access types can share the same pool. By default, the
implementation might choose to have a single global storage pool, used
by all such access types. This global pool might consist merely of calls
to operating system routines (e.g., malloc), or it might be a
vendor-defined pool instead. Alternatively, the implementation might
choose to create a new pool for each access-to-object type, reclaiming
the pool's memory when the access type goes out of scope (if ever).
Other schemes are possible.

Finally, users may define new pool types, and may override the choice of
pool for an access-to-object type by specifying Storage_Pool for
the type. In this case, allocation (via new) takes memory from
the user-defined pool and deallocation puts it back into that pool,
transparently.

With that said, here's how to specify the storage to be used for an
access-to-object type. There are two ways to do it.

If you specify Storage_Pool for an access type, you indicate a
specific pool object to be used (user-defined or vendor-defined). The
pool object determines how much storage is available for allocation via
new for that access type.

Alternatively, you can specify Storage_Size for the access type.
In this case, an implementation-defined pool is used for the access
type, and the storage available is at least the amount requested, maybe
more (it might round up to some advantageous block size, for example).
If the implementation cannot satisfy the request, Storage_Error is
raised.

It should be clear that that the two alternatives are mutually
exclusive. Therefore the compiler will not allow you to specify both.

Each alternative has advantages. If your only concern is the total
number of allocations possible, use Storage_Size and let the
implementation do the rest. However, maybe you also care about the
behavior of the allocation and deallocation routines themselves, beyond
just providing and reclaiming the storage. In that case, use
Storage_Pool and specify a pool object of the appropriate type.
For example, you (or the vendor, or someone else) might create a pool
type in which the allocation routine performs in constant time, because
you want to do new in a real-time application where
predictability is essential.

Lastly, an idiom: when using Storage_Size you may want to specify
a value of zero. That means you intend to do no allocations whatsoever,
and want the compiler to reject the code if you try. Why would you want an
access type that doesn't allow dynamically allocating objects? It isn't as
unreasonable as it might sound. If you plan to use the access type
strictly with aliased objects, never doing any allocations, you can have
the compiler enforce your intent. There are application domains that
prohibit dynamic allocations due to the difficulties in analyzing their
behavior, including issues of fragmentation and exhaustion. Access types
themselves are allowed in these domains. You'd simply use them to designate
aliased objects alone. In addition, in this usage scenario, if the
implementation associates an actual pool with each access type, the
pool's storage would be wasted since you never intend to allocate any
storage from it. Specifying a size of 0 tells the implementation not to
waste that storage.

Before we end this section, there is a GNAT compiler switch you should
know about. Th -gnatR? switch instructs the compiler to list the
representation details for the types, objects and subprograms in the
compiled file(s). Both implementation-defined and user-defined
representation details are presented. The '?' is just a placeholder and
can be one of the following characters:

[0|1|2|3|4][e][j][m][s]

Increasing numeric values provide increasing amounts of information. The
default is '1' and usually will suffice. See the GNAT User's Guide for
Native Platforms for the details of the switch in
section 4.3.15 Debugging Control[#2].

You'll have to scroll down some to find that specific switch but it is
worth finding and remembering. When you cannot understand what the
compiler is telling you about the representation of something, this
switch is your best friend.

Unchecked Programming

Ada is designed to be a reliable language by default, based as it is on
static strong typing and high-level semantics. Many of the pitfalls that
a developer must keep in the back of their mind with other languages do
not apply in Ada, and are typically impossible. That protection extends
to low-level programming as well, e.g., the Separation Principle.
Nevertheless, low-level programming occasionally does require mechanisms
that allow us to go beyond the safety net provided by the type rules and
high-level language constructs.

One such mechanism (unchecked conversion) provides a way to circumvent
the type system, a system otherwise firmly enforced by the compiler on
our behalf. Note that by "circumventing the type system" we do not
include so-called "checked" conversions. These conversions have
meaningful semantics, and are, therefore, allowed by the language using a
specific syntax. This conversion syntax is known as "functional" syntax
because it looks like a function call, except that the "function" name is
a type name, and the parameter is the object or value being converted to
that type. These conversions are said to be "checked" because only
specific kinds of types are allowed, and the compiler checks that such
conversions are indeed between these allowed types.

Instead, this section discusses "unchecked" programming, so-called
because the compiler does not check for meaningful semantics. There are
multiple mechanisms for unchecked programming in Ada: in addition to
circumventing the type system, we can also deallocate a
previously-allocated object, and can create an access value without the
usual checks. In all cases the responsibility for correct meaning and
behavior rests on the developer. Very few, if any, checks are done by
the compiler. If we convert a value to another type that generally makes
no sense, for example a task object converted to a record type, we are
on our own. If we deallocate an allocated object more than once, it is
our fault and Bad Things inevitably result.

Likened to "escape hatches," the facilities for unchecked programming
are explicit in Ada. Their use is very clear in the source code, and is
relatively heavy: each mechanism is provided by the language in the form
of a generic library subprogram that must be specified in a context clause
("with-clause") at the top of the file, and then instantiated prior to
use, like any generic. For an introduction to generic units in Ada, see
that section in the introductory Ada course:
Introduction to Ada

You should understand that the explicitly unchecked facilities in Ada
are no more unsafe than the implicitly unchecked facilities in other
languages. There's no safety-oriented reason to "drop down" to C, for example,
to do low-level programming. For that matter, the low-level programming
facilities in Ada are at least as powerful as those in other languages,
and probably more so.

We will explore unchecked storage deallocation in a separate book so
let's focus on unchecked type conversions.

Unchecked type conversions are achieved by instantiating this
language-defined generic library function, a "child" of the root package
named "Ada":

generic
 type Source(<>) is limited private;
 type Target(<>) is limited private;
function Ada.Unchecked_Conversion (S : Source) return Target
 with Pure, Nonblocking, Convention => Intrinsic;

The function, once instantiated and eventually invoked, returns the caller's
value passed to S (of type Source) as if it is a value of type
Target. That value can then be used in any way consistent with the
Target type.

The two generic parameters, Source and Target, are defined in a
manner that makes them very permissive in terms of the types they will accept
when instantiated. To understand how, you need to understand a little
bit of Ada's terminology and design for generic unit parameters. (If you
are already familiar with generic formal types and how they are matched,
feel free to skip this material.)

First, the terminology. The type parameters defined by a generic unit
are known as "generic formal types," or "generic formals" for short.
Types Source and Target are the generic formals in the unit
above. When instantiating such a generic, clients must specify a type for each
generic formal type. The types specified by the client are known as
"generic actual types," or "generic actuals" for short. You can remember
that by the fact that the actuals are the types "actually" given to the
generic unit to work with when instantiated. (You may laugh, but that
mnemonic works.)

Now we're ready to discuss the language design concept. The idea is
that the syntax of a generic formal type indicates what kind of generic
actual is required for a legal instantiation. This is known as the
"Contract Model" because we can think of the formal parameters as
expressing a contract between the generic unit's implementation and the
client code that instantiates the generic. The contract is enforced by
the compiler, in that it will reject any instantiation that attempts to
specify some actual type that does not match the formal's requirements.

For example, if the generic computes some value for any floating point
type, that floating-point type would be declared as a generic formal
type, and would be defined so that only some floating-point type
could be used for the corresponding actual type:

generic
 type Real is digits <>;

The formal parameter syntax reflects the syntax of a floating-point type
declaration, except that the <> (the "box") indicates that the generic
does not care how many digits are available. The generic actual will be
some floating point type and it will specify the number of decimal
digits.

If instead we try to match that formal with some actual that is anything
other than a floating-point type the compiler will reject the instantiation.
Therefore, within the generic body, the implementation code can be
written with the assurance that the characteristics and capabilities
required of a floating point type will be available. That's the Contract
Model in full: the requirements are a matter of the generic unit's
purpose and implementation, so the formal parameters reflect those
requirements and the compiler ensures they will be met.

Some generic units, though, do not require specifically numeric actual
types. These generics can use less specific syntax for their formal types,
and as a result, more kinds of actual types are permitted in the
instantiations. Remember the Contract Model and this will make sense.
The contract between the generic and the clients is, in this case, more
permissive: it does not require a numeric type in order to implement
whatever it does.

For illustration, suppose we want a generic procedure that will exchange
two values of some type. What operations does the generic unit require
in the implementation in order to swap two values? There are two:
assignment, as you might expect, but also the ability to declare objects
of the type (the "temporary" used to hold one of the values during the
swap steps). As long as the body can do that, any type will suffice, so
the generic formals are written to be that permissive. What is the
syntax that expresses that permissiveness, you ask? To answer that, first
consider simple, non-generic private types from the user's point of view.
For example:

package P is
 type Foo is private;
 procedure Do_Something (This : Foo);
private
 type Foo is ... -- whatever
end P;

There are two "views" associated with the package: one for the "visible"
part of the package spec (declaration), known as the "partial" view, and
one for the "private" part of the package spec and the package body,
known as the "full" view. The differences between the two views are a
function of compile-time visibility.

The partial view is what clients (i.e., users) of the package have: the
ability to do things that a type name provides, such as declarations of
objects, as well as some basic operations such as assignment, some
functions for equality and inequality, some conversions, and whatever
subprograms work on the type (the procedure Do_Something above).
Practically speaking, that's about all that the partial view provides.
That's quite a lot, in fact, and corresponds to the classic definition
of an "abstract data type."

The code within the package private part and package body has the full
view. This code has compile-time visibility to the full definition for
type Foo, so there are additional capabilities available to this code.
For example, if the full definition for Foo is as an array type,
indexing will be available with the private part and body. If Foo is
fully defined as some numeric type, arithmetic operations will be
possible within the package, and so on.

Therefore, the full view provides capabilities for type Foo that users
of the type cannot access via the partial view. Only the implementation
for type Foo and procedure Do_Something have the potential to
access them.

Now, back to the generic formal parameter. If the generic unit doesn't
care what the actual type is, and just needs to be able do assignment
and object declaration, a "generic formal private type" expresses exactly
that:

generic
 type Item is private;
procedure Exchange(Left, Right : in out Item);

procedure Exchange(Left, Right : in out Item) is
 Old_Left : Item;
begin
 Old_Left := Left;
 Left := Right;
 Right := Old_Left;
end Exchange;

Inside generic procedure Exchange, the view of type Item is as if
Item were some private type declared in a package, with only the partial
view available. But the operations provided by a partial view are sufficient
to implement the body of Exchange: only assignment and object
declaration are required. Any additional capabilities that the generic
actual type may have — array indexing, arithmetic operators,
whatever — are immaterial because they are not required. That's
the Contract Model: only the specified view's required capabilities are
important. Anything else the type can also do is not relevant.

But consider limited types. Those types don't allow assignment, by
definition. Therefore, an instantiation that specified a limited actual
type for the generic formal type Item above would be rejected by the
compiler. The contract specifies the ability to do assignment so a
limited type would violate the contract.

Finally, as mentioned, our Exchange generic needs to declare the
"temporary" object Old_Left. A partial view of a private type allows
that. But not all types are sufficient, by their name alone, to declare
objects. Unconstrained array types, such as type String, are a familiar
example: they require the bounds to be specified when declaring objects;
the name String alone is insufficient. Therefore, such types would also
violate the contract and, therefore, would be rejected by the compiler when
attempting to instate generic procedure Exchange.

Suppose, however, that we have some other generic unit whose
implementation does not need to declare objects of the formal type. In
that case, a generic actual type that did not support object declaration
(by the name alone) would be acceptable for an instantiation. The
generic formal syntax for expressing that contract uses these tokens:
(<>) in addition to the other syntax mentioned earlier:

generic
 type Foo(<>) is private;

In the above, the generic formal type Foo expresses the fact that it can
allow unconstrained types — known as "indefinite types" —
when instantiated because it will not attempt to use that type name to
declare objects. Of course, the compiler will also allow constrained
types (e.g., Integer, Boolean, etc.) in instantiations because it
doesn't matter one way or the other inside the generic implementation.
The Contract Model says that additional capabilities, declaring objects
in this case, are allowed but not required. (There is a way to declare
objects of indefinite types, but not using the type name alone. The
unchecked facilities don't need to declare objects so we will not show
how to do it.)

Now that you understand the Contract Model (perhaps more than you
cared), we are ready to examine the generic formal type parameters for
Ada.Unchecked_Conversion. Here's the declaration again:

generic
 type Source(<>) is limited private;
 type Target(<>) is limited private;
function Ada.Unchecked_Conversion (S : Source) return Target
 with Pure, Nonblocking, Convention => Intrinsic;

The two generic formal types, Source, and Target, are the types
used for the incoming value and the returned value, respectively. Both formals
are "indefinite, limited private types" in the jargon, but now you know
what that means. Inside the implementation of the generic function,
neither Source nor Target will be used to declare objects (the
(<>) syntax). Likewise, neither type will be used in an assignment
statement (the "limited" reserved word). And finally, no particular kind of
type is required for Source or Target (the private
reserved word). That's a fairly restricted usage within the generic
implementation, but as a result the contract can be very permissive: the
generic can be instantiated with almost any type. It doesn't matter if the
actual is limited or not, private or not, and indefinite or not. The generic
implementation doesn't need those capabilities to implement a conversion so
they are not part of the contract expressed by the generic formal types.

What sort of type would be disallowed? Abstract types, and incomplete
types. However, it is impossible to declare objects of those types, for
good reasons, so unchecked conversion is never needed for them.

Note that the result value is returned by-reference whenever possible,
in which case it is just a view of the Source bits in the formal
parameter S and not a copy. For a Source type that is not a
by-copy type, the result of an unchecked conversion will typically be
returned by-reference (so that the result and the parameter S
share the same storage); for a by-copy Source type, a copy is made.

The compiler can restrict instantiations but implementers are advised by
the language standard to avoid them unless they are required by the
target environment. For example, an instantiation for types for which
unchecked conversion can't possibly make sense might be disallowed.

Clients can apply language- and vendor-defined restrictions as well,
via pragma Restrictions. In particular, the language defines
the No_Dependence restriction, meaning that no client's context clause
can specify the unit specified. As a result no client can instantiate
the generic for unchecked conversion:

pragma Restrictions (No_Dependence => Ada.Unchecked_Conversion);

hence there would be no use of unchecked conversion.

From the Contract Model's point of view most any type can be converted
to some other type via this generic function. But practically speaking,
some limitations are necessary. The following must all be true for the
conversion effect to be defined by the language:

	S'Size = Target'Size

	S'Alignment is a multiple of Target'Alignment, or
Target'Alignment is 0 (meaning no alignment required whatsoever)

	Target is not an unconstrained composite type

	S and Target both have a contiguous representation

	The representation of S is a representation of an object of the
target subtype

We will examine these requirements in turn, but realize that they are
not a matter of legality. Compilers can allow instantiations that
violate these requirements. Rather, they are requirements for
conversions to have the defined effect.

The first requirement is that the size (in bits) for the parameter S, of
type Source, is the same as the size of the Target type. That's
reasonable if you consider it. What would it mean to convert, for
example, a 32-bit value to an 8-bit value? Which 8 bits should be used?

As a result, one of the few reasons for setting the size of a type (as
opposed to the size of an object) is for the sake of well-defined unchecked
conversions. We might make the size larger than it would need to be
because we want to convert a value of that type to what would otherwise
be a larger Target type.

Because converting between types that are not the same size is so open
to interpretation, most compilers will issue a warning when the sizes
are not the same. Some will even reject the instantiation. GNAT will
issue a warning for these cases when the warnings are enabled, but will
allow the instantiation. We're supposed to know what we are doing, after
all. The warning is enabled via the specific -gnatwz switch or the
more general -gnatwa switch. GNAT tries to be permissive. For example,
in the case of discrete types, a shorter source is first zero or sign
extended as necessary, and a shorter target is simply truncated on the
left. See the GNAT RM for the other details.

The next requirement concerns alignment. As we mentioned earlier, modern
architectures tend to have strict alignment requirements. We can
meaningfully convert to a type with a stricter alignment, or to a type
with no alignment requirement, but converting in the other direction would
require a copy.

Next, recall that objects of unconstrained types, such as unconstrained
array types or discriminated record types, must have their constraints
specified when the objects are declared. We cannot just declare a String
object, for example, we must also specify the lower and upper bounds.
Those bounds are stored in memory, logically as part of the String
object, since each object could have different bounds (that's the point,
after all). What, then, would it mean to convert some value of a type
that has no bounds to a type that requires bounds? The third requirement
says that it is not meaningful to do so.

The next requirement is that the argument for S, and the conversion
target type Target, have a contiguous representation in memory. In other
words, each storage unit must be immediately adjacent, physically, to
the next logical storage unit in the value. Such a representation for
any given type is not required by the language, although on typical
modern architectures it is common. (The type
System.Storage_Elements.Storage_Array is an exception, in that a
contiguous representation is guaranteed.) An instance of
Ada.Unchecked_Conversion just takes the bits of S and treats them
as if they are bits for a value of type Target (more or less), and does
not handle issues of segmentation.

The last requirement merely states that the bits of the argument S, when
treated as a value of type Target, must actually be a bit-pattern
representing a value of type Target (strictly, the subtype). For
example, with signed integers, any bit pattern (of the right size)
represents a valid value for those types. In contrast, consider an
enumeration type. By default, the underlying representational values are
the same as the position values, i.e., starting at zero and increasing
by one. But users can override that representation: they can start with
any value and, although the values must increase, they need not increase
by one:

type Toggle_Switch is (Off, On);
for Toggle_Switch use (Off => 0, On => 4);

If we covert an unsigned integer (of the right size) to a Toggle_Switch
value, what would it mean if the Source value was neither 0 nor 4?

We've said that the instantiations are likely allowed, hence callable
functions are created. If the above requirements are not met, what happens?

What happens depends on the Target type, that is, the result type for
the conversion. Specifically, it depends on whether the target type is a
"scalar" type. As we mentioned earlier, a scalar type is either a
"discrete" type or a "real" type, which are themselves further defined,
as the figure below indicates. Any other type is a non-scalar type,
e.g., record types, access types, task types, and so on.

[image: Scalar types tree]
When the requirements for meaningful instantiations are not respected
and the Target type is a scalar type, the result returned from the call
is implementation defined and is potentially an invalid representation. For
example, type Toggle_Switch is an enumeration type, hence it is a scalar
type. Therefore, if we covert an unsigned integer (of the right size) to
a Toggle_Switch value, and the Source value is neither 0 nor 4,
the resulting value is an invalid representation. That's the same as an
object of type Toggle_Switch that is never assigned a value. The random
junk in the bits may or may not be a valid Toggle_Switch value. That's
not a good situation, clearly, but it is well-defined: if it is
detected, either Constraint_Error or Program_Error is raised. If
the situation is not detected, execution continues using the invalid
representation. In that case it may or may not be detected, near the
call or later. For example:

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;

procedure Demo is

 type Toggle_Switch is (Off, On) with Size => 8;
 for Toggle_Switch use (Off => 1, On => 4);

 function As_Toggle_Switch is new Ada.Unchecked_Conversion
 (Source => Unsigned_8, Target => Toggle_Switch);

 T1 : Toggle_Switch;
 T2 : Toggle_Switch;
begin
 T1 := As_Toggle_Switch (12); -- neither 1 nor 4
 if T1 = Off then
 Put_Line ("T1's off");
 else
 Put_Line ("T1's on");
 end if;
 T2 := T1;
 if T2 = Off then
 Put_Line ("T2's off");
 else
 Put_Line ("T2's on");
 end if;
 Put_Line (T2'Image);
end Demo;

In the execution of the code above, the invalid representation value in
T1 is not detected, except that it is copied into T2, where it is
eventually detected when 'Image is applied to T2. The invalid
representation is not detected in the assignment statement or the
comparison because we want the optimizer to be able to avoid emitting a
check prior to every use of the value. Otherwise the generated code
would be too slow. (The language explicitly allows this optimization.)

The evaluation of an object having an invalid representation value due
to unchecked conversion is a so-called "bounded error" because the
results at run-time are predictable and limited to one of those three
possibilities: the two possible exceptions, or continued execution.

Continued execution might even work as hoped, but such code is not
portable and should be avoided. A new vendor's compiler, or even a new
version of a given vendor's compiler, might detect the situation and
raise an exception. That happens, and it ends up costing developer time
to make the required application code changes.

The possibilities get much worse when the result type is not a scalar
type. In this case, the effect of the call — not the value
returned by the call — is implementation defined. As a result, the
possible run-time behavior is unpredictable and, consequently, from the
language rules point of view anything is possible. Such execution is
said to be "erroneous."

Why the difference based on scalar versus non-scalar types? Scalar types
have a simple representation: their bits directly represent their
values. Non-scalar types don't always have a simple representation that
can be verified by examining their bits.

For example, we can have record types with discriminants that control
the size of the corresponding objects because the record type contains
an array component that uses the discriminant to set the upper bound.
These record types might have multiple discriminants, and multiple
dependent components. As a result, an implementation could have hidden,
internal record components. These internal components might be used to
store the starting address of the dependent components, for example, or
might use pointers to provide a level of indirection. If an unchecked
conversion did not provide correct values for these internal components,
the effect of referencing the record object would be unpredictable.

Even a comparatively simple record type with one such dependent
component is sufficient to illustrate the problem. There are no
internal, hidden components involved:

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with System; use System; -- for Storage_Unit
with System.Storage_Elements; use System.Storage_Elements;

procedure Demo_Erroneous is

 subtype Buffer_Size is Storage_Offset range 1 .. Storage_Offset'Last;

 type Bounded_Buffer (Capacity : Buffer_Size) is record
 Content : Storage_Array (1 .. Capacity);
 Length : Storage_Offset := 0;
 end record;

 procedure Show_Capacity (This : Bounded_Buffer);

 subtype OneK_Bounded_Buffer is Bounded_Buffer (Capacity => 1 * 1024);

 function As_OneK_Bounded_Buffer is new Ada.Unchecked_Conversion
 (Source => Storage_Array, Target => OneK_Bounded_Buffer);

 Buffer : OneK_Bounded_Buffer;
 Sequence : Storage_Array (1 .. Buffer'Size / Storage_Unit);

 procedure Show_Capacity (This : Bounded_Buffer) is
 begin
 Put_line ("This.Capacity is" & This.Capacity'Image);
 end Show_Capacity;

begin
 Buffer := As_OneK_Bounded_Buffer (Sequence);
 Put_Line ("Buffer capacity is" & Buffer.Capacity'Image);
 Show_Capacity (Buffer);
 Put_Line ("Done");
end Demo_Erroneous;

In the above, the type Bounded_Buffer has an array component
Content that depends on the discriminant Capacity for the number
of array components. This is an extremely common idiom. However, unchecked
conversion is only meaningful, as defined earlier, when converting to
constrained target types. Bounded_Buffer is not constrained, so we
define a constrained subtype (OneK_Bounded_Buffer) for the sake of the
conversion.

The specific Buffer object is 8320 bits (1024 * 8, plus 2 * 64), as is
the Sequence object, so the sizes are the same.

The alignment of OneK_Bounded_Buffer is 8, and Storage_Array's
alignment is 1, so the Target type is a multiple of the Source
type, as required.

Both types have a contiguous representation, and the sequence of bytes
can be a valid representation for the record type, although it certainly
might not be valid. For example, if we change the discriminant from what
the subtype specifies, we would have an invalid representation for that
subtype.

So we can reasonably invoke an unchecked conversion between the array of
bytes and the record type. However, as you can see in the code and as
the compiler warns, we never assigned a value to the Sequence array
object. The unchecked conversion from that Sequence of bytes includes the
discriminant value, so it is very possible that we will get a
discriminant value that is not 1K.

We can test that possibility by running the program. In the first call
to Put_Line, the program prints the Capacity discriminant for the
Buffer object. The compiler knew it was 1024, so it doesn't get the
discriminant component from memory, it just directly prints 1024.
However, we can force the compiler to query the discriminant in memory.
We can pass Buffer to procedure Show_Capacity, which takes any
Bounded_Buffer, and there query (print) the Capacity component
under that different view. That works because the view inside the procedure
Show_Capacity is as of Bounded_Buffer, in which the discriminant
value is unknown at compile-time.

In the above examples, we are responsible for ensuring that the
enumeration representation encoding and the record discriminant value
are correct when converted from some other type. That's not too hard to
recognize because we can literally see in the source code
that there is something to be maintained by the conversions. However,
there might be hidden implementation artifacts that we cannot see in the
source code but that must be maintained nevertheless.

For example, the compiler's implementation for some record type might
use dynamic memory allocations instead of directly representing some
components. That would not appear in the source code. As a simpler
example of invisible implementation issues, consider again our earlier
record type:

[image: A record type layout with unused bytes]
As we discussed earlier, between the bytes that are allocated to the
record components are some other bytes that are not used at all. As
usual, the compiler must implement the language-defined equality
operator for the record type. One way to implement that function would
be to generate code that checks the equality for each component
individually, ignoring any unused bytes. But suppose you have a large
record type with many components. The code for checking record level
equality will be extensive and inefficient. An alternative
implementation for the compiler would be to use a "block compare"
machine instruction to check the equality of the entire record at once,
rather than component-by-component. That will be considerably more
efficient because the block-compare instruction just compares the bits
from one starting address to another ending address. But in that case
the "unused" bytes are not skipped so the values within those bytes become
significant. Comparison of those unused bytes will only work if their
values are defined and assigned in each record object. Compilers that
may use a block-comparison approach will, therefore, always set those
unused bytes to a known value (typically zero). That is part of the
valid representation for values of the type, and consequently must be
maintained by our unchecked conversions. This being a non-scalar target
type, failure to do so results in erroneous execution, i.e., undefined
behavior. "There be dragons" as ancient maps of the unknown world once
said.

As you can see, you should use unchecked conversions with considerable
care and thought. Moreover, because unchecked programming is such a
low-level activity, and has vendor-defined implementation issues, it is
not only less portable than high-level coding, it is also less portable
than other low-level programming. You will be well served if you limit
the use of unchecked conversions overall. If your application code is
performing unchecked conversions all over the code, something is very
likely wrong, or at least very questionable. A well-designed Ada program
should not need ubiquitous unchecked conversions.

That said, of course sometimes unchecked conversions are reasonable. But
even then, it is better to isolate and hide their use via compile-time
visibility controls. For example, instead of having clients invoke
unchecked conversion instances many times, have a procedure that is
invoked many times, and let the procedure body do the conversion. That
way, the clients see a high-level specification of functionality, and,
if the conversion needs to be changed later, there is only that one
conversion usage (the procedure body) to change. This approach is really
just another example of isolating and hiding code that might need to
change in the future.

Data Validity

Our earlier demo program assigned an incorrect value via unchecked
conversion into an object of an enumeration type that had non-standard
representation values. The value assigned was not one of those
representation values so the object had an invalid representation. Certain uses
of an invalid representation value will be erroneous, and we saw that the
effect of erroneous execution was unpredictable and unbounded.

That example was somewhat artificial, for the sake of illustration. But
we might get an invalid value in a real-world application. For example,
we could get an invalid value from a sensor. Hardware sensors are
frequently unreliable and noisy. We might get an invalid value from a
call to an imported function implemented in some other language.
Whenever an assignment is aborted, the target of the assignment might
not be fully assigned, leading to so-called "abnormal" values. Other causes are
also possible. The problem is not unusual in low-level programming.

How do we avoid the resulting bounded errors and erroneous execution?

In addition to assignment statements, we can safely apply the Valid
attribute to the object. This language-defined attribute returns a Boolean
value indicating whether or not the object's value is a valid representation
for the object's subtype. (More details in a moment.) There is no
portable alternative to check an object's validity. Here's an example:

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;
with System;

procedure Demo_Validity_Check is

 type Toggle_Switch is (Off, On) with Size => 8;
 for Toggle_Switch use (Off => 1, On => 4);

 T1 : Toggle_Switch;

 function Sensor_Reading (Default : Toggle_Switch) return Toggle_Switch is

 function As_Toggle_Switch is new Ada.Unchecked_Conversion
 (Source => Unsigned_8, Target => Toggle_Switch);

 Result : Toggle_Switch;
 Sensor : Unsigned_8;
 -- for Sensor'Address use System'To_Address (...);

 begin
 Result := As_Toggle_Switch (Sensor);
 return (if Result'Valid then Result else Default);
 end Sensor_Reading;

begin
 T1 := Sensor_Reading (Default => Off); -- arbitrary
 Put_Line (T1'Image);
end Demo_Validity_Check;

In the above, Sensor_Reading is the high-level, functional API provided
to clients. The function hides the use of the unchecked conversion, and
also hides the memory-mapped hardware interface named Sensor. We've
commented out the address clause since we don't really have a memory
mapped device available. You can experiment with this program by
changing the code to assign a value to Sensor (e.g., when it is
declared). It is an unsigned 8-bit quantity so any value in the
corresponding range would be allowed.

In addition to checking for a valid representation, thus preventing the
bounded error, Valid also checks that the object is not abnormal, so
erroneous execution can be prevented too. (It also checks that any
subtype predicate defined for the Target type is also satisfied, but
that's a lesson for another day.)

However, the Valid attribute can be applied only to scalar objects.
There is no language-defined attribute for checking objects of composite types.
That's because it would be very hard to implement for some types, if not
impossible. For example, given a typical run-time model, it is
impossible to check the validity of an access value component.
Therefore, you must individually check the validity of scalar record or
array components.

At least, you would have to check them individually in standard Ada.
GNAT defines another Boolean attribute, named Valid_Scalars, to check
them all for us. This attribute returns True if the evaluation of
Valid returns True for every scalar subcomponent of the enclosing
composite type. It also returns True when there are no scalar
subcomponents. See the GNAT RM for more information.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Type_punning

[#2]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#debugging-control

Multi-Language Development

Software projects often involve more than one programming language. Typically
that's because there is existing code that already does something we need done
and, for that specific code, it doesn't make economic sense to redevelop it in
some other language. Consider the rotor blade model in a high-fidelity
helicopter simulation. Nobody touches the code for that model except for a few
specialists, because the code is extraordinarily complex. (This complexity is
unavoidable because a rotor blade's dynamic behavior is so complex. You can't
even model it as one physical piece because the tip is traveling so much faster
than the other end.) Complex and expensive models like that are a simulator
company's crown jewels; their cost is meant to be amortized over as many
projects as possible. Nobody would imagine redeveloping it simply because a new
project is to be written in a different language.

Therefore, Ada includes extensive facilities to "import" foreign entities into
Ada code, and to "export" Ada entities to code in foreign languages. The
facilities are so useful that Ada has been used purely as "glue code" to allow
code written in two other programming languages to be used together.

You've already seen an introduction to Ada and C code working together in the
"Interfacing" section of the Ada introductory course.
If you have not seen that material, be sure to see it first. We will cover some
further details not already discussed there, and then go into the details of
the facilities not covered elsewhere, but we assume you're familiar with it.

The Ada foreign language interfacing facilities include both "general" and
"language-specific" capabilities. The "general" facilities are known as such
because they are not tied to any specific language. These pragmas and aspects
work with any of the supported foreign languages. In contrast, the
"language-specific" interfacing facilities are collections of Ada declarations
that provide Ada analogues for specific foreign language types and subprograms.
For example, as you saw in that "Interfacing" section, there is a package with
a number of declarations for C types, such as int, float, and
double, as well as C "strings", with subprograms to convert back and forth
between them and Ada's string type. Other languages are also supported, both by
the Ada Standard and by vendor additions. You will frequently use both the
"general" and the "language-specific" facilities together.

All these interfacing capabilities are defined in Annex B of the language
standard. Note that Annex B is not a "Specialized Needs" annex, unlike some of
the other annexes. The Specialized Needs annexes are wholly optional, whereas
all Ada implementations must implement Annex B. However, some parts of Annex B
are optional, so more precisely we should say that every implementation must
support all the required features of Annex B. That comes down mainly to the
package Interfaces (more on that package in a moment). However, if an
implementation does implement any optional part of Annex B, it must be
implemented as described by the standard, or with less functionality. An
implementation cannot use the same name for some facility (aspect, etc.) but
with different semantics. That's true of the Specialized Needs annexes too:
not every part need be implemented, but any part that is implemented must
conform to the standard. In practice, for Annex B, all implementations provide
the required parts, but not all provide support for all the "language-specific"
foreign languages' interfaces. The vendors make a business decision for the
optional parts, just as they do regarding the Specialized Needs annexes.

General Interfacing

In the "Interfacing" section of the Ada introductory course you saw that Ada
defines aspects and pragmas for working with foreign languages. These aspects
and pragmas are functionally interchangeable, and we will use whichever one of
the two that is most convenient in our discussion. The pragmas are officially
"obsolescent," but that merely means that a newer approach is available, in
this case the corresponding aspects. You can use either one without concern for
future support because language constructs that are obsolescent are not removed
from the language. Any compiler that supports such constructs will almost
certainly support them forever, for the sake of not invalidating existing
customers' code. The pragmas have been in the language since Ada 95 so there's
a lot of existing code using them. Changing the compiler isn't cost-free, after
all, so why spend the money to potentially lose a customer? Likewise, a brand
new compiler will also probably support them, for the sake of potentially
gaining a customer.

The general interfacing facility consists of these aspects and pragmas,
specifically Import, Export, and Convention. As you saw in
the Ada Introduction course, Import brings a foreign entity into Ada
code, Export does the opposite, and Convention supplies
additional information and directives to the compiler. We will go into the
details of each.

Regardless of whether the Ada code is importing or exporting some entity, there
will be an Ada declaration for that entity. That declaration tells the compiler
how the entity can be used, as usual. The interfacing aspects and pragmas are
then applied to these Ada declarations.

If we are exporting, then the entity is implemented in Ada. For a subprogram
that means there will also be a subprogram body matching the declaration, and
the compiler will enforce that requirement as usual. In contrast, if we are
importing a subprogram, then it is not implemented in Ada, and therefore there
will be no corresponding subprogram body for the Ada declaration. The compiler
would not allow it if we tried. In that case the Import is the
subprogram's completion.

Subprograms often have a separate declaration. Sometimes that's required, for
example when we want to include a subprogram as part of a package's API, but at
other times it is optional. Remember that a subprogram body acts as a
corresponding declaration when there is no separate declaration defined. Thus,
either way, we have a subprogram declaration available for the interfacing
aspects and/or pragmas.

For data that are imported or exported, we'll have the declaration of the
object in Ada to which we can apply the necessary interfacing aspects/pragmas.
But we will also have the types for these objects, and as you will see, the
types can be part of interfacing too.

Aspect/Pragma Convention

As you saw in the
"Interfacing" section of the Ada introductory course,
when importing and exporting you'll also specify the "convention" for the
entity in question. The pragmas for importing and exporting include a parameter
for this purpose. When using the aspects, you'll specify the Convention
aspect too.

For types, though, you will specify the Convention aspect/pragma alone,
without Import or Export. In this case the convention specifies
the layout for objects of that type, presumably a layout different than the Ada
compiler would normally use. You would need to specify this other layout either
because you're going to later declare and export an object of the type, or
because you are going to declare an object of the type and pass it as a
argument to an imported subprogram.

For example, Ada specifies that multi-dimensional arrays are represented in
memory in row-major order. In contrast, the Fortran standard specifies
column-major order. If we want to define a type in Ada that can be used for
passing parameters to Fortran routines, we need to specify that convention for
the type. For example:

type Matrix is array (Rows, Columns) of Float
 with Convention => Fortran;

(Rows and Columns are user-defined discrete subtypes.)

As a result when we declare Matrix objects the Ada compiler will use the
column-major layout. That makes it possible to pass objects of the type to
imported Fortran subprograms because the formal parameter will also be of type
Matrix. The imported Fortran routine will then see the parameter in
memory as it expects to see it. So although you wouldn't need to import or
export a type itself, you might very well import or export an object of the
type, or pass it as a argument.

When Convention is applied to subprograms, a natural mistake is to think
that we are specifying the programming language used to implement the
subprogram. In reality, the convention indicates the subprogram calling
convention, not the implementation language. The calling convention specifies
how parameters are passed to and from subprogram calls, how result values for
functions are returned, the order that parameters are pushed on the call stack,
how dynamically-sized parameters are passed, and so on. Ordinarily these are
matters you don't need to consider because you're working within a single
convention automatically, in other words the one used by the Ada compiler
you're using.

To illustrate that the convention is not the implementation language, consider
a subprogram that we intend to import and call from Ada. This imported routine
is implemented in assembly language, but, in addition, let's say it is written
to use the same calling convention as the Ada compiler we are using for Ada
code. Therefore, the calling convention would be Ada even though the
implementation is in assembler.

procedure P (X : Integer) with
 ...
 Convention => Ada,
 ...

In the example above, Ada is known as a convention identifier, as is
Fortran in the earlier example. Convention identifiers are defined by
the Ada language standard, but also by Ada vendors.

The Ada standard defines two convention identifiers: Ada (the default),
and Intrinsic. In addition, Annex B defines convention identifiers
C, COBOL, and Fortran. Support for these Annex B
conventions is optional.

GNAT supports the standard and Annex B conventions, as well as the following:
Assembler, "C_PLUS_PLUS" (or CPP), Stdcall, WIN32,
and a few others. C_PLUS_PLUS is the convention identifier required by
the standard when C++ is supported. (Convention identifiers are actual
identifiers, not strings, so they must obey the syntax rules for identifiers.
"C++" would not be a valid identifier.) See the GNAT User Guide for those other
GNAT-specific conventions.

Stdcall and WIN32 actually do specify a particular calling
convention, but for those convention identifiers that are language names, how
do we get from the name to a calling convention?

The ultimate requirement for any calling convention is compatibility with the
Ada compiler we are using. Specifically, the Ada compiler must recognize what
the calling convention specifies, and support importing and exporting
subprograms with that convention applied.

For the Ada convention that's simple. There is no standard calling
convention for Ada. Convention Ada simply means the calling convention
applied by the Ada compiler we happen to be using. (We'll talk about
Intrinsic shortly.)

So far, so good. But how to we get from those other language names to
corresponding calling conventions? There is no standard calling convention for,
say, C, any more than there is a standard calling convention for Ada.

In fact we don't get to the calling convention, at least not directly. What the
language name in the convention identifier actually tells us is that, when that
convention is supported, there is a compiler for that foreign language that
uses a calling convention known to, and supported by, the Ada compiler we are
using. The Ada compiler vendor defines which languages it supports, after all.
For example, when supported, convention C means that there is a
compatible C compiler known to the Ada compiler vendor. For GNAT you can guess
which C compiler that might be.

It's actually pretty straightforward once you have the big picture. If the
convention is supported, the Ada compiler in use knows of a compiler for that
language with which it can work. Annex B just defines some convention
identifiers for the sake of portability.

But suppose a given Ada compiler supports more than one vendor for a given
programming language? In that case the Ada compiler would define and support
multiple convention identifiers for the same programming language. Presumably
these identifiers would be differentiated by the compiler vendors' names. Thus
we might have available conventions GNU_Fortran and
Intel_Fortran if both were supported. The Fortran convention
identifier would then indicate the default vendor's compiler.

The Intrinsic calling convention represents subprograms that are
"built in" to the compiler. When such a subprogram is called the compiler
doesn't actually generate the code for an out-of-line call. Instead, the
compiler emits the assembly code — often just a single instruction
— corresponding to the intrinsic subprogram's name. There will be a
separate declaration for the subprogram, but no actual subprogram body
containing a sequence of statements. The compiler just knows what to emit in
place of the call.

For example:

function Shift_Left
 (Value : Unsigned_16;
 Amount : Natural)
 return Unsigned_16
 with ..., Convention => Intrinsic;

The effect is much like a subprogram call that is always in-lined, except that
there's no body for the subprogram. In this example the compiler simply issues
a shift-left instruction in assembly language.

You'll see the Intrinsic convention applied to many language-defined
subprograms. For example:

generic
 type Source(<>) is limited private;
 type Target(<>) is limited private;
function Ada.Unchecked_Conversion(S : Source) return Target
 with ..., Convention => Intrinsic;

Thus when we call an instantiation of Ada.Unchecked_Conversion there is
no actual call made to some subprogram. The compiler just treats the bits of
S as a value of type Target.

Intrinsic subprograms are a good way to access interesting capabilities of the
target hardware, without having to write the assembly language yourself
(although we will show how to do that, later, directly in Ada). For example,
some targets provide an instruction that atomically compares and swaps a value
in memory. Ada 2022 just added a standard package for this, but before that we
could use the following to access a gcc built-in:

-- Perform an atomic compare and swap: if the current value of
-- Destination.all is Comparand, then write New_Value into Destination.all.
-- Returns an indication of whether the swap took place.

function Sync_Val_Compare_And_Swap_Bool_8
 (Destination : access Unsigned_8;
 Comparand : Unsigned_8;
 New_Value : Unsigned_8)
 return Boolean
with Convention => Intrinsic,
 ...

We would specify additional aspects beyond that of Convention but these
have not yet been discussed. That's what the ellipses indicate in the various
examples above.

Aspect/Pragma Import and Export

You've already seen these aspects in the Ada Introduction course, but for
completeness: Import brings a foreign entity into Ada code, and
Export makes an Ada entity available to foreign code. In practice, these
entities consist of objects and subprograms, but the language doesn't impose
many restrictions. It is up to the vendor to decide what makes sense for their
specific target.

The aspects Import and Export are so-called Boolean aspects
because their value is either True or False. For example:

Obj : Matrix with
 Export => True,
 ...

For any Boolean-valued aspect the default is True so you only need to
give the value explicitly if that value is False. There would be no
point in doing that in these two cases, of course. Hence we just give the
aspect name:

Obj : Matrix with
 Export,
 ...

Recall that objects of some types are initialized automatically during the
objects' elaboration, unless they are explicitly initialized as part of their
declarations. Access types are like that, for example. Objects of these types
are default initialized to null as part of ensuring that their values
are always meaningful (absent unchecked conversion).

type Reference is access Integer;

Obj : Reference;

In the above the value of Obj is null, just as if we had
explicitly set it that way.

But that initialization is a problem if we are importing an object of an access
type. Presumably the value is set by the foreign code, so automatic
initialization to null would overwrite the incoming value. Therefore, the
language guarantees that implicit initialization won't be applied to imported
objects.

type Reference is access Integer;

Obj : Reference with Import;

Now the value of Obj is whatever the foreign code sets it to, and is
not, in other words, overwritten during elaboration of the declaration.

Aspect/Pragma External_Name and Link_Name

For an entity with a True Import or Export aspect, we can
also specify a so-called external name or link name. These names are specified
via aspects External_Name and Link_Name respectively.

An external name is a string value indicating the name for some entity as known
by foreign language code. For an entity that Ada code imports, this is the name
that the foreign code declares it to be. For an entity that Ada code exports,
this is the name that the foreign code is told to use. This string value is
exactly the name to be used, so if you misspell the name the link will fail.
For example:

function Sync_Val_Compare_And_Swap_Bool_8
 (Destination : access Unsigned_8;
 Comparand : Unsigned_8;
 New_Value : Unsigned_8)
 return Boolean
with
 Import,
 Convention => Intrinsic,
 External_Name => "__sync_bool_compare_and_swap_1";

The External_Name and Link_Name values are strings because the
foreign unit names don't necessary follow the Ada rules for identifiers (the
leading underscores in this case). Note that the ending digit in the name above
is different from the declared Ada name.

Usually, the name of the imported or exported entity is precisely known and
hence exactly specified by External_Name. Sometimes, however, a
compilation system may have a linker "preprocessor" that augments the name
actually used by the linkage step. For example, an implementation might always
prepend "_" and then pass the result to the system linker. In that case we
don't want to specify the exact name. Instead, we want to provide the
"starting point" for the name modification. That's the purpose of the
aspect Link_Name.

If you don't specify either External_Name or Link_Name the
compilation system will choose one in some implementation-defined manner.
Typically this would be the entity's defining name in the Ada declaration, or
some simple transformation thereof. But usually we know the name exactly and
so we use External_Name to give it.

As you can see, it really wouldn't make sense to specify both
External_Name and Link_Name since the semantics of the two
conflict. But if both are specified for some reason, the External_Name
value is ignored.

Note that Link_Name cannot be specified for Intrinsic subprograms
because there is no actual unit being linked into the executable, because
intrinsics are built-in. In this case you must specify the
External_Name.

Finally, because you will see a lot the pragma usage we should go into enough
detail so that you know what you're looking at when you see them.

Pragma Import and pragma Export work almost like a subprogram
call. Parameters cannot be omitted unless named notation is used. Reordering
the parameters is not permitted, however, unlike subprogram calls.

The BNF syntax is as follows. We show Import, but Export has identical
parameters:

pragma Import(
 [Convention =>] convention_identifier,
 [Entity =>] local_name
 [, [External_Name =>] external_name_string_expression]
 [, [Link_Name =>] link_name_string_expression]);

As you can see, the parameters correspond to the individual aspects
Convention, External_Name, and Link_Name. When using
aspects you don't need to say which Ada entity you're applying the aspects to,
because the aspects are part of the entity declaration syntax. In contrast,
the pragma is distinct from the declaration so we must specify what's being
imported or exported via the Entity parameter. That's the declared Ada
name, in other words. Note that both the External_Name and
Link_Name parameters are optional.

Here's that same built-in function, using the pragma to import it:

-- Perform an atomic compare and swap: if the current value of
-- Destination.all is Comparand, then write New_Value into Destination.all.
-- Returns an indication of whether the swap took place.

function Sync_Val_Compare_And_Swap_Bool_8
 (Destination : access Unsigned_8;
 Comparand : Unsigned_8;
 New_Value : Unsigned_8)
 return Boolean;

pragma Import (Intrinsic,
 Sync_Val_Compare_And_Swap_Bool_8,
 "__sync_bool_compare_and_swap_1");

The first pragma parameter is for the convention. The next parameter, the
Entity, is the Ada unit's declared name. The last parameter is the
external name. The compiler either knows what we are referencing by that
external name or it will reject the pragma. As we mentioned before, the string
value for the name is not required to match the Ada unit name.

You will see later that there are other convention identifiers as well, but we
will wait for the
Specific Interfacing section
to introduce those.

Package Interfaces

Package Interfaces must be provided by all Ada implementations. The
package is intended to provide types that reflect the actual numeric types
provided by the target hardware. Of course, the standard has no way to know
what hardware is involved, therefore the actual content is
implementation-defined. But even so, it is possible to standardize the names for
these types, and that is what the language standard does.

Specifically, the standard defines the format for the names for the hardware's
signed and modular (unsigned) integer types, and for the floating-point types.

The signed integers have names of the form Integer_n, where n is the
number of bits used by the machine-supported type. The type for an eight-bit
signed integer would be named Integer_8, for example, and then
Integer_16 and so on for the larger types, for as many as the target
machine supports.

Likewise, for the unsigned integers, the names are of the form
Unsigned_n, with the same meaning for n. The colloquial eight-bit
"byte" would be named Unsigned_8, with Unsigned_16 for the 16-bit
version, and so on, again for as many as the machine supports.

For floating-point types it is harder to talk about a format that is
sufficiently common to standardize. The IEEE floating-point standard is well
known and widely used, however, so if the machine does support the IEEE format
that name can be used. Such types would be named IEEE_Float_n, again
with the same meaning for n. Thus we might see declarations for types
IEEE_Float_32 and IEEE_Float_64 and so on, for all the machine
supported floating-point types.

In addition to these type declarations, for the unsigned integers only, there
will be declarations for shift and rotate operations provided as intrinsic
functions.

The resulting package declaration might look something like this:

package Interfaces is

 type Integer_8 is range -2 ** 7 .. 2 ** 7 - 1;

 type Integer_16 is range -2 ** 15 .. 2 ** 15 - 1;

 type Integer_32 is range -2 ** 31 .. 2 ** 31 - 1;

 ...

 type Unsigned_8 is mod 2 ** 8;

 function Shift_Left (Value : Unsigned_8; Amount : Natural) return Unsigned_8;
 function Shift_Right (Value : Unsigned_8; Amount : Natural) return Unsigned_8;
 function Rotate_Left (Value : Unsigned_8; Amount : Natural) return Unsigned_8;
 function Rotate_Right (Value : Unsigned_8; Amount : Natural) return Unsigned_8;
 function Shift_Right_Arithmetic (Value : Unsigned_8; Amount : Natural)
 return Unsigned_8;

 type Unsigned_16 is mod 2 ** 16;

 function Shift_Left (Value : Unsigned_16; Amount : Natural)
 return Unsigned_16;
 function Shift_Right (Value : Unsigned_16; Amount : Natural)
 return Unsigned_16;
 ...

 type Unsigned_32 is mod 2 ** 32;

 function Shift_Left (Value : Unsigned_32; Amount : Natural)
 return Unsigned_32;
 function Shift_Right (Value : Unsigned_32; Amount : Natural)
 return Unsigned_32;
 ...

 type IEEE_Float_32 is digits 6;
 type IEEE_Float_64 is digits 15;
 ...

end Interfaces;

As you can see, when you need to write code in terms of the hardware's numeric
types, this package is a great resource. There's no need to declare your own
UInt32 type, for example, although of course you could, trivially:

type UInt32 is mod 2 ** 32;

But if you do, realize that you won't get the shift and rotate operations for
your type. Those are only defined for the types in package Interfaces.
If you do need to declare such a type, and you do want the additional
shift/rotate operations, use inheritance:

type UInt32 is new Interfaces.Unsigned_32;

GNAT also defines a pragma, as an alternative to inheritance:

type UInt32 is mod 2 ** 32;
pragma Provide_Shift_Operators (UInt32);

The approach using inheritance is preferable because it is portable, all other
things being equal.

One reason to make up your own unsigned type is that you need one that does not
in fact reflect the target hardware's numeric types. For example, a hardware
device register might have gaps of bits that are currently not used by the
device. Those gaps are frequently not the size of a type declared in package
Interfaces. We might need an Unsigned_3 type, for example. That's
a reasonable thing to do.

Language-Specific Interfacing

In addition to the aspects and pragmas for importing and exporting entities
that work with any language, Ada also defines standard language-specific
facilities for interfacing with a set of foreign languages. The standard
defines which languages, but vendors can (and do) expand the set.

Specifically, the "language-specific" interfacing facilities are collections of
Ada declarations that provide Ada analogues for specific foreign language types
and subprograms. Package Interfaces is the root package for a hierarchy
of packages that organize these declarations by language, with one or more
child packages per language.

Note that the declarations within package Interfaces are, by definition,
compile-time visible to any child package in the subsystem. Thus whenever one
of the language-specific packages needs to mention the machine types they are
automatically available.

The standard defines specific support for foreign languages C, COBOL, and
Fortran. Thus there are one or more child packages rooted at Interfaces
that have those language names as their child package names:
Interfaces.C, Interfaces.COBOL, and Interfaces.Fortran.

The material below will focus on C and, to a lesser extent, Fortran, ignoring
altogether the support for COBOL. That's not because COBOL is unimportant.
There is a lot of COBOL business software out there in use. Rather, we skip
COBOL because it is not relevant to embedded systems. Similarly, although
Fortran is extensively used, especially in high-performance computing, it is
not used extensively in embedded systems. We will provide some information
about the Fortran support but will not dwell on it.

Even though we do not consider C to be appropriate for large development
projects, neither technically not economically, it has its place in small,
low-criticality embedded systems. Ada developers can profit from existing
device drivers and mature libraries coded in C, for example. Hence interfacing
to it is important.

What about C++? Interfacing to C++ is tricky compared to C, because of the
vendor-defined name-mangling, automatic invocations of constructors and
destructors, exceptions, and so on. Generally, interfacing with C++ code can
be facilitated by preventing much of those difficulties using the
extern "C" {... } linkage-specification. Doing so then makes the
bracketed C++ code look like C, so the C interfacing facilities then can be
used.

Package Interfaces.C

The child package Interfaces.C supports interfacing with units written
in the C programming language. Support is in the form of Ada constants and
types, and some subprograms. The constants correspond to C's limits.h
header file, and the Ada types correspond to types for C's int,
short, unsigned_short, unsigned_long,
unsigned_char, size_t, and so on. There is also support for
converting Ada's type String to/from char_array, and similarly
for type Wide_String, etc.

It's a large package so we will elide parts. The idea is to give you a feel for
what's there. If you want the details, see either the Ada reference manual or
bring up the source code in GNAT Studio.

package Interfaces.C is

 -- Declaration's based on C's <limits.h>

 CHAR_BIT : constant := 8;
 SCHAR_MIN : constant := -128;
 SCHAR_MAX : constant := 127;
 UCHAR_MAX : constant := 255;

 -- Signed and Unsigned Integers. Note that in GNAT, we have ensured that
 -- the standard predefined Ada types correspond to the standard C types

 type int is new Integer;
 type short is new Short_Integer;
 type long is range -(2 ** (System.Parameters.long_bits - Integer'(1)))
 .. +(2 ** (System.Parameters.long_bits - Integer'(1))) - 1;
 type long_long is new Long_Long_Integer;

 type signed_char is range SCHAR_MIN .. SCHAR_MAX;
 for signed_char'Size use CHAR_BIT;

 type unsigned is mod 2 ** int'Size;
 type unsigned_short is mod 2 ** short'Size;
 type unsigned_long is mod 2 ** long'Size;
 type unsigned_long_long is mod 2 ** long_long'Size;

 ...

 -- Floating-Point

 type C_float is new Float;
 type double is new Standard.Long_Float;
 type long_double is new Standard.Long_Long_Float;

 -- Characters and Strings --

 type char is new Character;

 nul : constant char := char'First;

 function To_C (Item : Character) return char;
 function To_Ada (Item : char) return Character;

 type char_array is array (size_t range <>) of aliased char;
 for char_array'Component_Size use CHAR_BIT;

 ...

end Interfaces.C;

The primary purpose of these types is for use in the formal parameters of Ada
subprograms imported from C or exported to C. The various conversion functions
can be called from within Ada to manipulate the actual parameters.

When writing the Ada subprogram declaration corresponding to a C function, an
Ada procedure directly corresponds to a void function. An Ada procedure also
corresponds to a C function if the return value is always to be ignored.
Otherwise, the Ada declaration should be a function.

As we said, the types declared in this package can be used as the formal
parameter types. That is the intended and recommended approach. However, some
Ada types naturally correspond to C types, and you might see them used instead
of those from Interfaces.C. Type int is the C native integer type
for the target, for example, as is type Integer in Ada. Likewise, C's
type float and type Ada's Float are likely compatible. GNAT goes
to some lengths to maintain compatibility with C, since the two gcc compilers
share so much internal technology. Other vendors might not do so. Best practice
is use the types in Interfaces.C for your parameters.

Of course, the types in Interfaces.C are not sufficient for all uses.
You will often need to use user-defined types for the formal parameters, such
as enumeration types and record types.

Ada enumeration types are compatible with C's enums but note that C requires
enum values to be the size of an int, whereas Ada does not. The Ada
compiler uses whatever sized machine type will support the specified number of
enumeral values. It might therefore be smaller than an int but it might
also be larger. (Declaring more enumeration values than would fit in an integer
is unlikely except in tool-generated code, but it is possible.) For example:

type Small_Enum is (A, B, C);

If we printed the object size for Small_Enum we'd get 8 (on a typical
machine with GNAT). Therefore, applying the aspect Convention to the Ada
enumeration type declaration is a good idea:

type Small_Enum is (A, B, C) with Convention => C;

Now the object size will be 32, the same as int.

Speaking of enumeration types, note that Ada 2022 added a boolean type to
Interfaces.C named C_Bool to match that of C99, so you should use
it instead of Ada's Boolean type for formal parameters.

A simple Ada record type is compatible with a C struct, but remember that the
Ada compiler is allowed to reorder the record components. The compiler would do
that if it saw that the layout was inefficient, but the point here is that the
compiler could do it silently. As a result, you should specify the record
layout explicitly using a record representation clause, matching the layout of
the C struct in question. Then there will be no question of the layouts
matching. Once your record types get more complicated, for example with
discriminants or tagged record extensions, things get tricky. Your best bet it
to stick with the simple cases when interfacing to C.

Some types that you might think would correspond do not, at least not
necessarily. For example, an Ada access type's value might be represented as a
simple address, but it might not. In GNAT, an access value designating a value
of some unconstrained array type (e.g., String) is comprised of two
addresses, by default. One designates the characters and the other designates
the bounds. You can override that with a pragma, but you must know to do so.
For example, if we run the following program, we will see that the object size
for the access type Name is twice the object size of
System.Address:

with Ada.Text_IO; use Ada.Text_IO;
with System; use System;

procedure Demo is

 type Name is access String;

begin
 Put_Line (Address'Object_Size'Image);
 Put_Line (Name'Object_Size'Image);
end Demo;

Some Ada types simply have no corresponding type in C, such as record
extensions, task types, and protected types. You'll have to pass those as an
"opaque" type, usually as an address. It isn't clear that a C function would
know what to do with values of these types, but the general notion of passing
an opaque type as an address is useful and not uncommon. Of course, that
approach forgoes all type safety, so avoid it when possible.

In addition to the types for the formal parameters, you'll also need to know
how parameters are passed to and from C functions. That affects the parameter
profiles on both sides, Ada and C. The text in Annex B for Interfaces.C
specifies how parameters are to be passed back and forth between Ada and C so
that your subprogram declarations can be portable. That's the approach for each
supported programming language, i.e., in the discussion of the corresponding
child package under Interfaces.

The rules are expressed in terms of scalar types, "elementary" types, array
types, and record types. Remember that scalar types are composed of the
discrete types and the real types, so we're talking about the signed and
modular integers, enumerations, floating-point, and the two kinds of
fixed-point types. The "elementary" types consist of the scalars and access
types. The rules are fairly intuitive, but throw in Ada's access parameters and
parameter modes and some subtleties arise. We won't cover all the various rules
but will explore some of the subtleties.

First, the easy cases: mode in scalar parameters, such as int,
as simply passed by copy. Scalar parameters are passed by copy anyway in Ada so
the mechanism aligns with C in a straightforward manner. A record type T
is passed by reference, so on the C side we'd see t* where t is a C
struct corresponding to T. A constrained array type in Ada with a
component type T would correspond to a C formal parameter t* where
t corresponds to T. An Ada access parameter access T
corresponds on the C side to t* where t corresponds to T. And
finally, a private type is passed according to the full definition of the type;
the fact that it is private is just a matter of controlling the client
view, being private doesn't affect how it is passed. There are other simple
cases, such as access-to-subprogram types, but we can leave that to the Annex.

Now to the more complicated cases. First, some C ABIs (application binary
interfaces) pass small structs by copy instead of by reference. That can make
sense, in particular when the struct is small, say the size of an address or
smaller. In that case there's no performance benefit to be had by passing a
reference. When that situation applies, there is another convention we have
not yet mentioned: C_Pass_By_Copy. As a result the record parameter
will be passed by copy instead of the default, by reference (i.e., T
rather than *T), as long as the mode is in. For example:

type R2 is record
 V : int;
end record
with Convention => C_Pass_By_Copy;

procedure F2 (P : R2) with
 Import,
 Convention => C,
 External_Name => "f2";

struct R2 {
 int V;
};

void f2 (R2 p);

On the C side we expect that p is passed by copy and indeed that is how we
find it. That said, passing record values to structs by reference is the more
common programmer choice. Like arrays, records are typically larger than an
address. The point here is that the Ada code can be configured easily to match
the C code.

Next, consider passing array values, both to and from C. When passing an array
value to C, remember that Ada array types have bounds. Those bounds are either
specified at compile time when they are declared, or, for unconstrained array
types, specified elsewhere, at run-time.

Array types are not first-class types in C, and C has no notion of
unconstrained array types, or even of upper bounds. Therefore, passing an
unconstrained array type value is interesting. One approach is to avoid them.
Instead, declare a sufficiently large constrained array as a subtype of the
unconstrained array type, and then just pass the actual upper bound you want,
along with the array object itself.

type List is array (Integer range <>) of Interfaces.C.int;

subtype Constrained_List is List (1 .. 100);

procedure P (V : Constrained_List; Size : Interfaces.C.int);
pragma Import (C, P, "p");

Obj : Constrained_List := (others => 42); -- arbitrary values

With that, we can just pass the value by reference as usual on the C side:

void p (int* v, int size) {
 // whatever
}

But that's assuming we know how many array components are sufficient from the C
code's point of view. In the example above we'll pass a value up to 100 to the
Size parameter and hope that is sufficient.

Really, it would work to use the unconstrained array type as the formal
parameter type instead:

type List is array (Integer range <>) of Interfaces.C.int;

procedure P (V : List; Size : Interfaces.C.int);
pragma Import (C, P, "p");

The C function parameter profile wouldn't change. But why does this work? With
values of unconstrained array types, the bounds are stored with the value.
Typically they are stored just ahead of the first component, but it is
implementation-defined. So why doesn't the above accidentally pass the bounds
instead of the first array component itself? It works because we are guaranteed
by the Ada language that passing an array will pass (the address of) the
components, not the bounds, even for Ada unconstrained array types.

Now for the other direction: passing an array from C to Ada. Here the lack of
bounds information on the C side really makes a difference. We can't just pass
the array by itself because that would not include the bounds, unlike an Ada
call to an Ada routine. In this case the approach is the similar to the first
alternative described above, in which we declare a very large array and then
pass the bounds explicitly:

type List is array (Natural) of int;
-- DO NOT DECLARE AN OBJECT OF THIS TYPE

procedure P (V : List; Size : Interfaces.C.int);
pragma Export (C, P, "p");

procedure P (V : List; Size : Interfaces.C.int) is
begin
 for J in 0 .. Size - 1 loop
 -- whatever
 end loop;
end P;

extern void p (int* v, int size);

int x [100];

p (x, 100); // call to Ada routine, passing x

The fundamental idea is to declare an Ada type big enough to handle anything
conceivably needed on the C side. Subtype Natural means
0 .. Integer'Last so List is quite large indeed. Just be sure
never to declare an object of that type. You'll probably run out of storage on
an embedded target.

Earlier we said that it is the Ada type that determines how parameters are
passed, and that scalars and elementary types are always passed by copy. For
mode in that's simple, the copy to the C formal parameter is done and
that's all there is to it. But suppose the mode is instead out or
in out? In that case the presumably updated value must be returned to
the caller, but C doesn't do that by copy. Here the compiler will come to the
rescue and make it work, transparently. Specifically, we just declare the Ada
subprogram's formal parameter type as usual, but on the C formal we use a
reference. We're talking about scalar and elementary types so let's use
int arbitrarily. We make the mode in out but out would
also serve:

procedure P (Formal : in out int);

void function p (int* formal);

Now the compiler does its magic: it generates code to make a copy of the actual
parameter, but it makes that copy into a hidden temporary object. Then, when
calling the C routine, it passes the address of the hidden object, which
corresponds to the reference expected on the C side. The C code updates the
value of the temporary object via the reference, and then, on return, the
compiler copies the value back from the temporary to the actual parameter.
Problem solved, if a bit circuitous.

There are other aspects to interfacing with C, such as variadic functions that
take a varying number of arguments, but you can find these elsewhere in the
learn courses.

Next, we examine the child packages under Interfaces.C. These packages
are not used as much as the parent Interfaces.C package so we will
provide an overview. You can look up the contents within GNAT Studio or the Ada
language standard.

Package Interfaces.C.Strings

Package Interfaces.C declares types and subprograms allowing an Ada
program to allocate, reference, update, and free C-style strings. In
particular, the private type chars_ptr corresponds to a common use of
char * in C programs, and an object of this type can be passed to
imported subprograms for which char * is the type of the argument of the
C function. A subset of the package content is as follows:

package Interfaces.C.Strings is

 type chars_ptr is private;
 ...

 function New_Char_Array (Chars : in char_array) return chars_ptr;

 function New_String (Str : in String) return chars_ptr;

 procedure Free (Item : in out chars_ptr);
 ...

 function Value (Item : in chars_ptr) return char_array;
 function Value (Item : in chars_ptr) return String;
 ...

 function Strlen (Item : in chars_ptr) return size_t;

 procedure Update (Item : in chars_ptr;
 Offset : in size_t;
 Chars : in char_array;
 Check : in Boolean := True);

 ...

end Interfaces.C.Strings;

Note that allocation might be via malloc, or via Ada’s allocator new. In
either case, the returned value is guaranteed to be compatible with
char*. Deallocation must be via the supplied procedure Free.

An amusing point is that you can overwrite the end of the char array just like
you can in C, via procedure Update. The Check parameter indicates
whether overwriting past the end is checked. The default is True, unlike
in C, but you could pass an explicit False if you felt the need to do
something questionable.

Package Interfaces.C.Pointers

The generic package Interfaces.C.Pointers allows us to perform C-style
operations on pointers. It includes an access type named Pointer,
various Value functions that dereference a Pointer value and
deliver the designated array, several pointer arithmetic operations, and "copy"
procedures that copy the contents of a source pointer into the array designated
by a destination pointer.

We won't go into the details further. See the Ada RM for more.

Package Interfaces.Fortran

Like Interfaces.C, package Interfaces.Fortran defines Ada types to be
used when working with subprograms using the Fortran calling convention. These
types have representations that are identical to the default representations of
the Fortran intrinsic types Integer, Real, Double Precision, Complex,
Logical, and Character in some supported Fortran implementation. And like
the C package, the ways that parameters of various types are passed are also
specified.

We leave the details to you to look up in the language standard, if you find
them needed in an embedded application.

Machine Code Insertions (MCI)

When working close to the hardware, especially when interacting with a device,
it is not uncommon for the hardware to require a very specific set of assembly
language instructions to be generated. There are two ways to achieve this: the
right way and the wrong way.

The wrong way is to experiment with the source code and compiler switches until
you get the exact assembly code you need generated (assuming it is possible at
all). But what happens when the next compiler release arrives with a new
optimization? And abandon all hope if you go to a new compiler vendor. This
approach is both labor-intensive and very brittle.

The right way is to express the precise assembly code sequence explicitly
within the Ada source code. (That's true to any high level language, not just
Ada.) Or you can call an intrinsic function, if there is one that does exactly
what you need. We will focus on inserting it directly, in what is known as
"machine code insertion", or "inline assembler."

As an example of the need for this capability, consider the GPIO (General
Purpose I/O) port on an STM32 Arm microcontroller. Each port contains 16
individual I/O pins, each of which can be configured as an independent discrete
input or output, or as a control line for a device, with pull-up or pull-down
registers, with different clock speeds, and so on. Different on-chip devices
use various collections of pins in ways specific to the devices, and require
exclusive assignment of the pins. However, any given pin can be used by several
different devices. For example, pin 11 on port A ("PA11") can be used by USART
#1 as the clear-to-send ("CTS") line, or the CAN #1 bus Rx line, or Channel 4
of Timer 1, among others. Therefore, one of the responsibilities of the system
designer is to allocate pins to devices, ensuring that they are allocated
uniquely. It is difficult to debug the case in which a pin is accidentally
configured for one device and then reconfigured for use with another device
(assuming the first device remains in use). To help ensure exclusive
allocations, every GPIO port on this Arm implementation has a way of locking
the configuration of each I/O pin. That way, some other part of the software
can't successfully change the configuration accidentally, for use with some
other device. Even if the same configuration was to be used for another device,
the lock prevents the accidental update so we find out about the unintentional
sharing.

To lock a pin on a port requires a special sequence of reads and writes to a
GPIO register for that port. A specific bit pattern is required during the
reads and writes. The sequence and bit pattern is such that accidentally
locking the pin is highly unlikely.

Once we see how to express assembly language sequences in general we will see
how to get the necessary sequence to lock a port/pin pair. Unfortunately,
although you can express exactly the code sequence required, such a sequence of
assembly language instructions is clearly target hardware-specific. That means
portability is inherently limited. Moreover, the syntax for expressing it
varies with the vendor, even for the same target hardware. Being able to insert
it at the Ada source level doesn't help with either portability issue. You
should understand that the use-case for machine code insertion is for small,
short sequences. Otherwise you would write the code in assembly language
directly, in a separate file. That might obtain a degree of vendor
independence, at least for the given target, but not necessarily. The use of
inline assembler is intended for cases in which a separate file containing
assembly language is not simpler.

With those caveats in place, let's first examine how to do it in general and
then how to express it with GNAT specifically.

The right way to express an arbitrary sequence of one or more assembly language
statements is to use so-called "code statements." A code statement is an Ada
statement, but it is also a qualified expression of a type defined in package
System.Machine_Code. The content of that package, and the details of
code statements, are implementation-defined. Although that affects portability
there really is no alternative because we are talking about machine instruction
sets, which vary considerably and cannot be standardized at this level.

Package System.Machine_Code contains types whose values provide a way of
expressing assembly instructions. For example, let's say that there is a "HLT"
instruction that halts the processor for some target. There is no other
parameter required, just that op-code. Let's also say that one of the types in
System.Machine_Code is for these "short" instructions consisting only of
an op-code. The syntax for the type declaration would then allow the following
code statement:

Short_Instruction'(Command => HLT);

Each of Short_Instruction, Command, and HLT are defined by
the vendor in this hypothetical version of package System.Machine_Code.
You can see why we say that it is both a statement (note the semicolon) and a
qualified expression (note the apostrophe).

Code statements must appear in a subprogram body, after the begin. Only
code statements are allowed in such a body, only use-clauses can be in the
declarative part, and no exception handlers are allowed. The complete example
would be as follows:

procedure Halt -- stops processor
 with Inline;

with System.Machine_Code; use System.Machine_Code;
procedure Halt is
begin
 Short_Instruction'(Command => HLT);
end Halt;

With that, to halt the processor the Ada code can simply call procedure
Halt. When the optimizer is enabled there will be no code emitted to
make the call, we'd simply see the halt instruction emitted directly in-line.

Package System.Machine_Code provides access to machine instructions but
as we mentioned, the content is vendor-defined. In addition, the package itself
is optional, but is required if Annex C, the Systems Programming Annex, is
implemented by the vendor. In practice most all vendors provide this annex.

In GNAT, the content of System.Machine_Code looks something like this:

type Asm_Input_Operand is ...
type Asm_Output_Operand is ...
type Asm_Input_Operand_List is array (Integer range <>) of Asm_Input_Operand;
type Asm_Output_Operand_List is array (Integer range <>) of Asm_Output_Operand;

type Asm_Insn is private;

...

function Asm
 (Template : String;
 Outputs : Asm_Output_Operand := No_Output_Operands;
 Inputs : Asm_Input_Operand := No_Input_Operands;
 Clobber : String := "";
 Volatile : Boolean := False) return Asm_Insn;

With this package content, the expression in a code statement is of type
Asm_Insn, short for "assembly instruction." Multiple overloaded functions named
Asm return values of that type.

The Template parameter in a string containing one or more assembly
language instructions. These instructions are specific to the target machine.
The parameter Outputs provides mappings from registers to source-level
entities that are updated by the assembly statement(s). Inputs provides
mappings from source-level entities to registers for inputs. Volatile,
when True, tells the compiler not to optimize the call away, and Clobber
tells the compiler which registers, or memory, if any, are altered by the
instructions in Template. ("Clobber" is colloquial English for
"destroy.") That last is important because the compiler was likely already
using some of those registers so the compiler will need to restore them after
the call.

We could say, for example, the following, taking all the defaults except for
Volatile:

Asm ("nop", Volatile => True);

As you can imagine the full details are extensive, beyond the scope of this
introduction. See the GNAT User Guide ("Inline Assembler") for all the gory
details.

Now, back to our GPIO port/bin locking example. The port type is declared as
follows:

type GPIO_Port is limited record
 ...
 LCKR : Word with Atomic; -- lock register
 ...
end record with ...

We've elided all but the LCKR component representing the "lock register"
within each port. We'd have a record representation clause to ensure the
required layout but that's not important here. Word is an unsigned
(modular) 32-bit integer type. One of the hardware requirements for accessing
the lock register is that the entire register has to be read or written
whenever any bits within it are accessed. The compiler must not, for example,
write one of the bytes within the register in order to set or clear a bit
within that part of the register. Therefore we mark the register as Atomic. If
the compiler cannot honor that aspect the compilation will fail, so we would
know there is a problem.

Per the ST Micro Reference Manual, the lock control bit is referred to as
LCKK and is bit #16, i.e., the first in the upper half of the
LCKR register word.

LCCK : constant Word := 16#0001_0000#; -- the "lock control bit"

That bit is also known as the "Lock Key" (hence the abbreviation) because it is
used to control the locking of port/pin configurations.

There are 16 GPIO pins per port, represented by the lower 16 bits of the
register. Each one of these 16 bits corresponds to one of the 16 GPIO pins on a
port. If any given bit reads as a 1 then the corresponding pin is locked.

Graphically that looks like this:

[image: gpio pin locking register]
Therefore, the Ada types are:

type GPIO_Pin is
 (Pin_0, Pin_1, Pin_2, Pin_3, Pin_4, Pin_5, Pin_6, Pin_7,
 Pin_8, Pin_9, Pin_10, Pin_11, Pin_12, Pin_13, Pin_14, Pin_15);

for GPIO_Pin use (Pin_0 => 16#0001#,
 Pin_1 => 16#0002#,
 Pin_2 => 16#0004#,
 ...
 Pin_15 => 16#8000#);

Note that we had to override the default enumeration representation so that
each pin — each enumeral value — would occupy a single dedicated
bit in the bit-mask.

With that in place, let's lock a pin. A specific sequence is required to set a
pin's lock bit. The sequence writes and reads values from the port's LCKR
register. Remember that this 32-bit register has 16 bits for the pin mask (0
.. 15), with bit #16 used as the "lock control bit".

	write a 1 to the lock control bit with a 1 in the pin bit mask for the pin
to be locked

	write a 0 to the lock control bit with a 1 in the pin bit mask for the pin
to be locked

	do step 1 again

	read the entire LCKR register

	read the entire LCKR register again (optional)

Throughout the sequence the same value for the lower 16 bits of the word must
be maintained (i.e., the pin mask), including when clearing the LCCK bit in the
upper half.

If we wrote this in Ada it would look like this:

procedure Lock (Port : in out GPIO_Port; Pin : GPIO_Pin) is
 Temp : Word with Volatile;
begin
 -- set the lock control bit and the pin bit, clear the others
 Temp := LCCK or Pin'Enum_Rep;
 -- write the lock and pin bits
 Port.LCKR := Temp;
 -- clear the lock bit in the upper half
 Port.LCKR := Pin'Enum_Rep;
 -- write the lock bit again
 Port.LCKR := Temp;
 -- read the lock bit
 Temp := Port.LCKR;
 -- read the lock bit again
 Temp := Port.LCKR;
end Lock;

Pin'Enum_Rep gives us the underlying value for the enumeration value. We
cannot use 'Pos because that attribute provides the logical position
number within the enumerated values, and as such always increases
consecutively. We need the underlying representation value that we specified
explicitly.

The Ada procedure works, but only if the optimizer is enabled (which also
precludes debugging). But even so, there is no guarantee that the required
assembly language instruction sequence would be generated, especially one that
maintains that required bit mask value on each access. A machine-code insertion
is appropriate for all the reasons presented earlier:

procedure Lock (Port : in out GPIO_Port;
 Pin : GPIO_Pin) is
 use System.Machine_Code, ASCII, System;
begin
 Asm ("orr r3, %1, #65536" & LF & HT & -- 0) Temp := LCCK or Pin'Enum_Rep
 "str r3, [%0, #28]" & LF & HT & -- 1) Port.LCKR := Temp
 "str %1, [%0, #28]" & LF & HT & -- 2) Port.LCKR := Pin'Enum_Rep
 "str r3, [%0, #28]" & LF & HT & -- 3) Port.LCKR := Temp
 "ldr r3, [%0, #28]" & LF & HT & -- 4) Temp := Port.LCKR
 "ldr r3, [%0, #28]" & LF & HT, -- 5) Temp := Port.LCKR
 Inputs => (Address'Asm_Input ("r", This'Address), -- %0
 (GPIO_Pin'Asm_Input ("r", Pin))), -- %1
 Volatile => True,
 Clobber => ("r3"));
end Lock;

We've combined the instructions into one Asm expression. As a result, we
can use ASCII line-feed and horizontal tab characters to format the listing
produced by the compiler so that each instruction is on a separate line and
aligned with the previous instruction, as if we had written the sequence in
assembly language directly. That enhances readability later, during examination
of the compiler output to verify the required sequence was emitted.

In the above, "%0" is the first input, containing the address of the
Port parameter. "%1" is the other input, the value of the
Pin parameter. We're using register r3 explicitly, as the
"temporary" variable, so we tell the compiler that it has been "clobbered."

If we examine the assembly language output from compiling the file, we find the
body of procedure Lock is as hoped:

ldr r2, [r0, #4]
ldrh r1, [r0, #8]
.syntax unified
orr r3, r1, #65536
str r3, [r2, #28]
str r1, [r2, #28]
str r3, [r2, #28]
ldr r3, [r2, #28]
ldr r3, [r2, #28]

The first two statements load register 2 (r2) and register 1 (r1) with the
subprogram parameters, i.e., the port and pin, respectively. Register 2 gets
the starting address of the port record, in particular. (Offset #28 is the
location of the LCKR register. The port is passed by reference so that address
is actually that of the hardware device.)

We will have separately declared procedure Lock with inlining enabled,
so whenever we call the procedure we will get the exact assembly language
sequence required to lock the indicated pin on the given port, without any
additional code for a procedure call.

Note that we get the calling convention right automatically, because the
subprogram is not a foreign entity written in some other language (such as
assembly language). It's an Ada subprogram with special content so the
Ada convention applies as usual.

When Ada Is Not the Main Language

When multiple programming languages are involved, the main procedure might not
be implemented in Ada. Maybe the bulk of the program is written in C, for
example, and this C code calls some Ada routines that have been exported (with
the C convention).

That means the Ada builder does not create the executable image's entry point.
In fact the Ada main procedure is never the entry point for the final
executable image, it's just where the application code begins, like the C
main function. There are setup and initialization steps that must happen
before any program can execute on a target, and the entry point code is
responsible for this functionality. For example, on a bare machine target, the
hardware must be initialized, the trap vectors installed, the segments
initialized, and so on. On a target running an operating system, the OS is
responsible for that initialization but there will be OS-specific
initialization steps too. For example, if command-line arguments are supported
these may be gathered. All this initialization code is generated by the
builder, regardless of the language, followed by a call to the main routine.

Some of the initialization is specific to Ada programming, and must occur
before any calls occur to the exported Ada routines. In particular, the entry
point code emitted by the Ada builder initializes the Ada run-time system and
calls all the elaboration routines for the library units in the application
code. Only then does the emitted code invoke the Ada main. If the Ada builder
is not going to create the executable it has no chance to emit the code to do
that prior initialization. A foreign language builder will not emit such code,
so we have a problem.

You could learn enough about how the foreign builder works, and how your Ada
builder works, to create a work-around. You could learn what the Ada builder
would emit, in other words, and ensure those routines are called manually,
either directly or by augmenting the builder scripts (assuming that's
possible). But the work-around would be labor-intensive and not robust to
changes by the tool vendors. It would be an ugly hack, in other words.

That work-around would not be portable either. The Ada standard can't address
hardware- or OS-specific initialization, but it can standardize the name for a
routine to do the Ada-specific initialization. Specifically, procedure
adainit initializes the Ada application code and the Ada run-time
library. Similarly, one might need to shut down the Ada code when no further
calls will be made to the exported Ada routines. Procedure adafinal
performs this shut-down functionality. Neither procedure has parameters.

The main function in the other language is intended to import these routines
and manually call them each exactly once. adainit must be called prior
to any calls to the Ada code, and adafinal is to be called after all the
calls to the Ada code.

For example:

#include "stdio.h"

extern int checksum (char *input, int count);

extern void adainit (void);
extern void adafinal (void);

int main (int argc, char *argv[]) {
 char * Str = "Hello World!";
 int sum;
 adainit ();
 sum = checksum (Str, strlen (Str));
 adafinal ();
 printf ("checksum for '%s' is %d", Str, sum);
 return 0;
}

In the above, we have an Ada routine to compute a checksum, called by a C main
function. Therefore, we use "extern" to tell the C compiler that the "checksum"
function is defined elsewhere, i.e., in the Ada routine. Likewise, we tell the
compiler that functions adainit and adafinal are defined elsewhere.
The call to adainit is made before the call to any Ada code, thus all
the elaboration code is guaranteed to happen before checksum needs it.
Once the Ada code is not needed, the call to adafinal can be made.

Both adainit and adafinal have no effect after the first
invocation. That means you cannot structure your foreign code to iteratively
call the two routines whenever you want to invoke some Ada code. In practice
you just call them once in the main and be done with it.

Footnotes

Interacting with Devices

Interacting with hardware devices is one of the more frequent activities
in embedded systems programming. It is also one of the most enjoyable
because you can make something happen in the physical world. There's a
reason that making an LED blink is the "hello world" of embedded
programming. Not only is it easy to do, it is surprisingly satisfying. I
suspect that even the developers of "Full Authority Digital Engine
Controllers" (FADEC) — the computers that are in complete, total
control of commercial airline engines — have fond memories of
making an LED blink early in their careers. And of course a blinking LED
is a good way to indicate application status, especially if off-board
I/O is limited, which is often the case.

Working at the device register level can be error prone and relatively
slow, in terms of source-lines-of-code (SLOC) produced. That's partly
because the hardware is in some cases complicated, and partly because of
the way the software is written. Using bit masks for setting and
clearing bits is not a readable approach, comparatively speaking.
There's just not enough information transmitted to the reader. It might
be clear enough when written, but will you see it that way months later?
Readability is important because programs are read many more times than
they are written. Also, an unreadable program is more difficult to
maintain, and maintenance is where most money is spent in long-lived
applications. Comments can help, until they are out of date. Then they
are an active hindrance.

For example, what do you think the following code does? This is real
code, where temp and temp2 are unsigned 32-bit integers:

temp = ((uint32_t)(GPIO_AF) <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;

That's unfair to ask, absent any context. The code configures a general
purpose I/O (GPIO) pin on an Arm microcontroller for one of the
"alternate functions". GPIOx is a pointer to a GPIO port,
GPIO_PinSource is a GPIO pin number, and GPIO_AF is the
alternate function number. But let's say you knew that. Is the code
correct? The longer it takes to know, the less productive you are.

The fact that the code above is in C is beside the point. If we wrote it the
same way in Ada it would be equally opaque, if not more so. There are
simpler approaches. Judicious use of record and array types is one. We'll
say more about that later, but the underlying idea is to let the compiler do
as much work for us as possible. For example, the data structures used in
the code above require explicit shifting whenever they are accessed. If we
can avoid that at the source code level — by having the compiler do it
for us — we will have simplified the code considerably. Furthermore,
letting the compiler do the work for us makes the code more maintainable
(which is where the money is). For example, if the code does the shifting
explicitly and the data structures are changed, we'll have to change the
number of bits to shift left or right. Constants will help there, but we
still have to remember to change them; the compiler won't complain if we
forget. In contrast, if we let the compiler do this shifting for us, the
amounts to shift will be changed automatically.

Some devices are very simple. In these cases the application may
interact directly with the device without unduly affecting productivity.
For example, there was a board that had a user-accessible rotary switch
with sixteen distinct positions. Users could set the switch to whatever
the application code required, e.g., to indicate some configuration
information. The entire software interface to this device consisted of a single
read-only 8-bit byte in memory. That's all there was to it: you read the memory
and thus got the numeric setting of the switch.

More complex devices, however, usually rely on software abstraction to
deal with the complexity. Just as abstraction is a fundamental way to
combat complexity in software, abstraction also can be used to combat
the complexity of driving sophisticated hardware. The abstraction is presented
to users by a software "device driver" that exists as a layer between
the application code and the hardware device. The layer hides the gory
details of the hardware manipulation behind subprograms, types, and
parameters.

We say that the device driver layer is an abstraction because, at the
least, the names of the procedures and functions indicate what they do,
so at the call site you can tell what is being done. That's the point
of abstraction: it allows us to focus on what, rather than how. Consider
that GPIO pin configuration code block again. Instead of writing that
block every time we need to configure the alternate function for a pin,
suppose we called a function:

GPIO_PinAFConfig(USARTx_TX_GPIO_PORT, USARTx_TX_SOURCE, USARTx_TX_AF);

The GPIO_PinAFConfig function is part of the GPIO device driver
provided by the STM32 Standard Peripherals Library (SPL). Even though
that's not the best function name conceivable, calls to the function
will be far more readable than the code of the body, and we only have to
make sure the function implementation is correct once. And assuming the
device drivers' subprograms can be inlined, the subprogram call imposes
no performance penalty.

Note the first parameter to the call above: USARTx_TX_GPIO_PORT.
There are multiple GPIO ports on an Arm implementation; the vendor
decides how many. In this case one of them has been connected to a USART
(Universal Synchronous Asynchronous Receiver Transmitter), an external
device for sending and receiving serial data. When there are multiple devices,
good software engineering suggests that the device driver present a given
device as one of a type. That's what an "abstract data type" (ADT) provides for
software and so the device driver applies the same design. An ADT is
essentially a class, in class-oriented languages. In Ada, an ADT is represented
as a private type declared in a package, along with subprograms that take
the type as a parameter.

The Ada Drivers Library (ADL) provided by AdaCore and the Ada community
uses this design to supply Ada drivers for the timers, I2C, A/D and D/A
converters, and other devices common to microcontrollers. Multiple
devices are presented as instances of abstract data types. A variety of
development platforms from various vendors are supported, including the
STM32 series boards. The library is available on GitHub for both
non-proprietary and commercial use here:
https://github.com/AdaCore/Ada_Drivers_Library. We are going to use some
of these drivers as illustrations in the following sections.

Non-Memory-Mapped Devices

Some devices are connected to the processor on a dedicated bus that is
separate from the memory bus. The Intel processors, for example, used to
have (and may still have) instructions for sending and receiving data on
this bus. These are the "in" and "out" instructions, and their
data-length specific variants.

The original version of Ada defined a package named Low_Level_IO
for such architectures, but there were very few implementations (maybe
just one, known to support the Intel processors). As a result, the
package was actually removed from the language standard. Implementations
could still support the package, it just wouldn't be a standard package.
That's different from constructs that are marked as "obsolescent" by the
standard, e.g., the pragmas replaced by aspects, among other things.
Obsolescent constructs are still part of the standard.

If a given target machine has such I/O instructions for the device bus,
these can be invoked in Ada via machine-code insertions. For example:

procedure Send_Control (Device : Port; Data : Unsigned_16) is
 pragma Suppress (All_Checks);
begin
 asm ("outw %1, (%0)",
 Inputs => (Port'Asm_Input("dx",Device),
 Unsigned_16'Asm_Input("ax",Data)),
 Clobber => "ax, dx");
end Send_Control;

procedure Receive_Control (Device : Port; Data : out Unsigned_16) is
 pragma Suppress (All_Checks);
begin
 asm ("inw (%1), %0",
 Inputs => (Port'Asm_Input("dx",Device)),
 Outputs => (Unsigned_16'Asm_Output("=ax",Data)),
 Clobber => "ax, dx",
 Volatile => True);
end Receive_Control;

Applications could use these subprograms to set the frequency of the
Intel PC tone generator, for example, and to turn it on and off. (You
can't do that any more in application code because modern operating
systems don't give applications direct access to the hardware, at least
not by default.)

Although the Low_Level_IO package is no longer part of the language, you
can write this sort of thing yourself, or vendors can do it. That's
possible because the Systems Programming Annex, when implemented,
guarantees fully effective use of machine-code inserts. That means you
can express anything the compiler could emit. The guarantee is important
because otherwise the compiler might "get in the way." For example,
absent the guarantee, the compiler would be allowed to insert additional
assembly language statements in between yours. That can be a real
problem, depending on what your statements do. For instance, if your MCI
assembly statements do something and then check a resulting condition
code, such as the overflow flag, those interleaved compiler-injected
statements might clear that condition code before your code can check
it. Fortunately, the annex guarantees that sort of thing cannot happen.

Memory-Mapped Devices

In another earlier chapter,
we said that we could query the address of some object, and we also
showed how to use that result to specify the address of some other
object. We used that capability to create an "overlay," in which two
objects are used to refer to the same memory locations. As we indicated
in that discussion, you would not use the same type for each object
— the point, after all, is to provide a view of the shared
underlying memory cells that is not already available otherwise. Each
distinct type would provide a distinct view of the memory values, that
is, a set of operations providing some required functionality.

For example, here's an overlay composed of a 32-bit signed integer object
and a 32-bit array object:

type Bits32 is array (0 .. 31) of Boolean
 with Component_Size => 1;

X : aliased Integer_32;
Y : Bits32 with Address => X'Address;

Because one view is as an integer and the other as an array, we can
access that memory using the two different views' operations. Using the
view as an array object (Y) we can access individual bits of the
memory shared with X. Using the view as an integer (X), we
can do arithmetic on the contents of that memory. (We could have used an
unsigned integer instead of the signed type, and thereby gained the
bit-oriented operations, but that's not the point.)

Very often, though, there is only one Ada object that we place at some
specific address. That's because the Ada object is meant to be the
software interface to some memory-mapped hardware device. In this
scenario we don't have two overlaid Ada objects, we just have one. The
other "object" is the hardware device mapped to that starting address.
Since they are at the same memory location(s), accessing the Ada object
accesses the hardware device.

For a real-world but nonetheless simple example, recall that example of
a rotary switch on the front of our embedded computer that we mentioned
in the introduction. This switch allows humans to provide some very
simple input to the software running on the computer.

Rotary_Switch : Unsigned_8 with
 Address => System.Storage_Elements.To_Address (16#FFC0_0801#);

We declare the object and also specify the address, but not by querying
some entity. We already know the address from the hardware
documentation. But we cannot simply use an integer address literal from
that documentation because type System.Address is almost always a
private type. We need a way to compose an Address value from an
integer value. The package System.Storage_Elements defines an
integer representation for Address values, among other useful
things, and a way to convert those integer values to Address
values. The function To_Address does that conversion.

As a result, in the Ada code, reading the value of the variable
Rotary_Switch reads the number on the actual hardware switch.

Note that if you specify the wrong address, it is hard to say what
happens. Likewise, it is an error for an address clause to disobey the
object's alignment. The error cannot be detected at compile time, in
general, because the address is not necessarily known at compile time.
There's no requirement for a run-time check for the sake of efficiency,
since efficiency seems paramount here. Consequently, this misuse of
address clauses is just like any other misuse of address clauses —
execution of the code is erroneous, meaning all bets are off. You need
to know what you're doing.

What about writing to the variable? Is that meaningful? In this
particular example, no. It is effectively read-only memory.
But for some other device it very well could be meaningful, certainly.
It depends on the hardware. But in this case, assigning a value to the
Rotary_Switch variable would have no effect, which could be confusing to
programmers. It looks like a variable, after all. We wouldn't declare it
as a constant because the human user could rotate the switch, resulting
in a different value read. Therefore, we would hide the Ada variable
behind a function, precluding the entire issue. Clients of the
function can then use it for whatever purpose they require, e.g., as the
unique identifier for a computer in a rack.

Let's talk more about the type we use to represent a memory-mapped
device. As we said, that type defines the view we have for the object,
and hence the operations we have available for accessing the underlying
mapped device.

We choose the type for the representative Ada variable based on the
interface of the hardware mapped to the memory. If the interface is a
single monolithic register, for example, then an integer (signed or
unsigned) of the necessary size will suffice. But suppose the interface
is several bytes wide, and some of the bytes have different purposes
from the others? In that case, a record type is the obvious solution,
with distinct record components dedicated to the different parts of the
hardware interface. We could use individual bits too, of course, if
that's what the hardware does. Ada is particularly good at this
fine-degree of representation because record components of any types can
be specified in the layout, down to the bit level, within the record.

In addition, we might want to apply more than one type, at any one time,
to a given memory-mapped device. Doing so allows the client code some
flexibility, or it might facilitate an internal implementation. For
example, the STM32 boards from ST Microelectronics include a 96-bit
device unique identifier on each board. The identifier starts at a fixed memory
location. In this example we provide two different views —
types — for the value. One type provides the
identifier as a String containing twelve characters, whereas another
type provides the value as an array of three 32-bit unsigned words
(i.e., 12 bytes). The two types are applied by two overloaded functions
that are distinguished by their return type:

package STM32.Device_Id is

 subtype Device_Id_Image is String (1 .. 12);

 function Unique_Id return Device_Id_Image;

 type Device_Id_Tuple is array (1 .. 3) of UInt32
 with Component_Size => 32;

 function Unique_Id return Device_Id_Tuple;

end STM32.Device_Id;

The subtype Device_Id_Image is the view of the 96-bits as an
array of twelve 8-bit characters. (Using type String here isn't essential. We
could have defined an array of bytes instead of Character.) Similarly,
subtype Device_Id_Tuple is the view of the 96-bits as an array of
three 32-bit unsigned integers. Clients can then choose how they want to
view the unique id by choosing which function to call.

In the package body we implement the functions as two ways to access the
same shared memory:

with System;

package body STM32.Device_Id is

 ID_Address : constant System.Address := System'To_Address (16#1FFF_7A10#);

 function Unique_Id return Device_Id_Image is
 Result : Device_Id_Image with Address => ID_Address, Import;
 begin
 return Result;
 end Unique_Id;

 function Unique_Id return Device_Id_Tuple is
 Result : Device_Id_Tuple with Address => ID_Address, Import;
 begin
 return Result;
 end Unique_Id;

end STM32.Device_Id;

The GNAT-defined attribute System'To_Address in the declaration
of ID_Address is the same as the function
System.Storage_Elements.To_Address except that, if the argument is
static, the function result is static. This means that such an
expression can be used in contexts (e.g., preelaborable packages) which
require a static expression and where the function call could not be
used (because the function call is always non-static, even if its argument
is static).

The only difference in the bodies is the return type and matching type
for the local Result variable. Both functions read from the same
location in memory.

Earlier we indicated that the bit-pattern implementation of the
GPIO function could be expressed differently, resulting in more
readable, therefore maintainable, code. The fact that the code is in C
is irrelevant; the same approach in Ada would not be any better. Here's
the complete code for the function body:

void GPIO_PinAFConfig(GPIO_TypeDef *GPIOx,
 uint16_t GPIO_PinSource,
 uint8_t GPIO_AF)
{
 uint32_t temp = 0x00;
 uint32_t temp_2 = 0x00;

 /* Check the parameters */
 assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
 assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
 assert_param(IS_GPIO_AF(GPIO_AF));

 temp = ((uint32_t)(GPIO_AF) <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
 GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
 temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
 GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
}

The problem, other than the magic numbers (some named constants would
have helped), is that the code is doing nearly all the work instead of
off-loading it to the compiler. Partly that's because in C we cannot
declare a numeric type representing a 4-bit quantity, so everything is done in
terms of machine units, in this case 32-bit unsigned integers.

Why do we need 4-bit values? At the hardware level, each memory-mapped
GPIO port has a sequence of 16 4-bit quantities, one for each of the 16
pins on the port. Those 4-bit quantities specify the "alternate
functions" that the pin can take on, if needed. The alternate functions
allow a given pin to do more than act as a single discrete I/O pin. For
example, a pin could be connected to the incoming lines of a USART. We
use the configuration routine to apply the specific 4-bit code representing
the alternate function required for our application.

These 16 4-bit alternate function fields are contiguous in the
register (hence memory) so we can represent them as an array with a
total size of 64-bits (i.e., 16 times 4). In the C version this array
has two components of type uint32_t so it must compute where the
corresponding 4-bit value for the pin is located within those two words.
In contrast, the Ada version of the array has components of the 4-bit
type, rather than two 32-bit components, and simply uses the pin number
as the index. The resulting Ada procedure body is extremely simple:

procedure Configure_Alternate_Function
 (Port : in out GPIO_Port;
 Pin : GPIO_Pin;
 AF : GPIO_Alternate_Function_Code)
is
begin
 Port.AFR (Pin) := AF;
end Configure_Alternate_Function;

In the Ada version, AFR is a component within the
GPIO_Port record type, much like in the C code's struct. However,
Ada allows us to declare a much more descriptive set of types, and it is
these types that allows the developer to off-load the work to the compiler.

First, in Ada we can declare a 4-bit numeric type:

type Bits_4 is mod 2**4 with Size => 4;

The Bits_4 type was already globally defined elsewhere so we just
derive our 4-bit "alternate function code" type from it. Doing so allows the
compiler to enforce simple strong typing so that the two value spaces
are not accidentally mixed. This approach also increases understanding
for the reader:

type GPIO_Alternate_Function_Code is new Bits_4;
-- We cannot use an enumeration type because there are duplicate binary
-- values

Hence type GPIO_Alternate_Function_Code is a copy of
Bits_4 in terms of operations and values, but is not the same
type as Bits_4 so the compiler will keep them separate for us.

We can then use that type as the array component type for the representation
of the AFR:

type Alternate_Function_Fields is
 array (GPIO_Pin) of GPIO_Alternate_Function_Code
 with Component_Size => 4, Size => 64; -- both in units of bits

Note that we can use the GPIO Pin parameter directly as the index into
the array type, obviating any need to massage the Pin value in
the procedure. That's possible because the type GPIO_Pin is an
enumeration type:

type GPIO_Pin is
 (Pin_0, Pin_1, Pin_2, Pin_3, Pin_4, Pin_5, Pin_6, Pin_7,
 Pin_8, Pin_9, Pin_10, Pin_11, Pin_12, Pin_13, Pin_14, Pin_15);

for GPIO_Pin use
 (Pin_0 => 16#0001#,
 Pin_1 => 16#0002#,
 Pin_2 => 16#0004#,
 Pin_3 => 16#0008#,
 Pin_4 => 16#0010#,
 Pin_5 => 16#0020#,
 Pin_6 => 16#0040#,
 Pin_7 => 16#0080#,
 Pin_8 => 16#0100#,
 Pin_9 => 16#0200#,
 Pin_10 => 16#0400#,
 Pin_11 => 16#0800#,
 Pin_12 => 16#1000#,
 Pin_13 => 16#2000#,
 Pin_14 => 16#4000#,
 Pin_15 => 16#8000#);

In the hardware, the GPIO_Pin values don't start at zero and
monotonically increase. Instead, the values are bit patterns, where one
bit within each value is used. The enumeration representation clause
allows us to express that representation.

Type Alternate_Function_Fields is then used to declare the
AFR record component in the GPIO_Port record type:

type GPIO_Port is limited record
 MODER : Pin_Modes_Register;
 OTYPER : Output_Types_Register;
 Reserved_1 : Half_Word;
 OSPEEDR : Output_Speeds_Register;
 PUPDR : Resistors_Register;
 IDR : Half_Word; -- input data register
 Reserved_2 : Half_Word;
 ODR : Half_Word; -- output data register
 Reserved_3 : Half_Word;
 BSRR_Set : Half_Word; -- bit set register
 BSRR_Reset : Half_Word; -- bit reset register
 LCKR : Word with Atomic;
 AFR : Alternate_Function_Fields;
 Unused : Unaccessed_Gap;
end record with
 Size => 16#400# * 8;

for GPIO_Port use record
 MODER at 0 range 0 .. 31;
 OTYPER at 4 range 0 .. 15;
 Reserved_1 at 6 range 0 .. 15;
 OSPEEDR at 8 range 0 .. 31;
 PUPDR at 12 range 0 .. 31;
 IDR at 16 range 0 .. 15;
 Reserved_2 at 18 range 0 .. 15;
 ODR at 20 range 0 .. 15;
 Reserved_3 at 22 range 0 .. 15;
 BSRR_Set at 24 range 0 .. 15;
 BSRR_Reset at 26 range 0 .. 15;
 LCKR at 28 range 0 .. 31;
 AFR at 32 range 0 .. 63;
 Unused at 40 range 0 .. 7871;
end record;

These declarations define a record type that matches the content and
layout of the STM32 GPIO Port memory-mapped device.

Let's compare the two procedure implementations again. Here they are, for
convenience:

void GPIO_PinAFConfig(GPIO_TypeDef *GPIOx,
 uint16_t GPIO_PinSource,
 uint8_t GPIO_AF)
{
 uint32_t temp = 0x00;
 uint32_t temp_2 = 0x00;

 /* Check the parameters */
 assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
 assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
 assert_param(IS_GPIO_AF(GPIO_AF));

 temp = ((uint32_t)(GPIO_AF) <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
 GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF <<
 ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4));
 temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
 GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
}

procedure Configure_Alternate_Function
 (Port : in out GPIO_Port;
 Pin : GPIO_Pin;
 AF : GPIO_Alternate_Function_Code)
is
begin
 Port.AFR (Pin) := AF;
end Configure_Alternate_Function;

Which one is correct? Both. But clearly, the Ada version is far simpler,
so much so that it is immediately obvious that it is correct. Not so for
the coding approach used in the C version, comparatively speaking. It is
true that the Ada version required a couple more type declarations, but
those make the procedure body far simpler. That resulting simplicity is
a reflection of the balance between data structures and executable
statements that we should always try to achieve. Ada just makes that
easier to achieve than in some other languages.

Of course, the underlying hardware likely has no machine-supported 4-bit
unsigned type so larger hardware numeric types are used in the generated code. Hence there are
shifts and masking being done in the Ada version as well, but they do
not appear in the source code. The developer has let the compiler do
that work. An additional benefit of this approach is that the compiler
will change the shifting and masking code for us if we change the
explicit type declarations.

Why is simplicity so important? Simplicity directly increases
understandability, which directly affects correctness and
maintainability, which greatly affects the economic cost of the
software. In large, long-lived projects, maintenance is by far the
largest economic cost driver. In high-integrity applications,
correctness is essential. Therefore, doing anything reasonable to keep
the code as simple as possible is usually worth the effort. In some
projects the non-functional requirements, especially performance, can
dictate less simple code, but that won't apply to all of the code. Where
possible, simplicity rules.

One more point about the GPIO ports. There are as many of these ports as
the Arm microcontroller vendor decides to implement. And as we said,
they are memory-mapped, at addresses specified by the vendor. If the
memory used by all the ports is contiguous, we can conveniently use an
array of the GPIO_Port record type to represent all the ports
implemented. We would just set the array object's address at the address
specified for the first port object in memory. Then, normal array
indexing will provide access to any given port in the memory-mapped
hardware.

This array approach requires each array component — the
GPIO_Port record type — to be the right size so that all
the array components start on addresses corresponding to the start of
the next port in hardware.

That starting address correspondence for the array components is
obtained automatically as long as the record type includes all the
memory used by any individual device. In that case the next array
component will indeed start at an address matching the next device in
hardware. Note that this assumes the first array component matches the
address of the first hardware device in memory. The first array
component is at the same address as the whole array object itself (a
fact that is guaranteed by the language), so the array address must be
set to whatever the vendor documentation specified for the first port.

However, in some cases the vendor will leave gaps of unused memory for
complicated memory-mapped objects like these ports. They do so for the
sake of future expansion of the implementation, e.g., to add new
features or capacity. The gaps are thus between consecutive hardware
devices.

These gaps are presumably (hopefully!) included in the memory layout
documented for the device, but it won't be highlighted particularly. You
should check, therefore, that the documented starting addresses of the
second and subsequent array components are what you will get with a
simple array object having components of that record type.

For example, the datasheet for the STM32F407 Arm implementation indicates
that the GPIO ports start at address 16#4002_0000#. That's where GPIO_A begins.
The next port, GPIO_B, starts at address 16#4002_0400#, or a byte offset
of 1024 in decimal. In the STM32F4 Reference Manual, however, the
GPIO port register layout indicates a size for any one port that is much
less than 1024 bytes. As you saw earlier in the corresponding record type
declaration, on the STM32F4 each port only requires 40 (decimal) bytes.
Hence there's a gap of unused memory between the ports, including after
the last port, of 984 bytes (7872 bits).

To represent the gap, an "extra", unused record component was added,
with the necessary location and size specified within the record type,
so that the unused memory is included in the representation. As a
result, each array component will start at the right address (again, as
long as the first one does). Telling the compiler, and future
maintainers, that this extra component is not meant to be referenced by
the software would not hurt. You can use the pragma or aspect
Unreferenced for that purpose. Here's the code again, for
convenience:

type GPIO_Port is limited record
 MODER : Pin_Modes_Register;
 OTYPER : Output_Types_Register;
 Reserved_1 : Half_Word;
 OSPEEDR : Output_Speeds_Register;
 PUPDR : Resistors_Register;
 IDR : Half_Word; -- input data register
 Reserved_2 : Half_Word;
 ODR : Half_Word; -- output data register
 Reserved_3 : Half_Word;
 BSRR_Set : Half_Word; -- bit set register
 BSRR_Reset : Half_Word; -- bit reset register
 LCKR : Word with Atomic;
 AFR : Alternate_Function_Fields;
 Unused : Unaccessed_Gap with Unreferenced;
end record with
 Size => 16#400# * 8;

for GPIO_Port use record
 MODER at 0 range 0 .. 31;
 OTYPER at 4 range 0 .. 15;
 Reserved_1 at 6 range 0 .. 15;
 OSPEEDR at 8 range 0 .. 31;
 PUPDR at 12 range 0 .. 31;
 IDR at 16 range 0 .. 15;
 Reserved_2 at 18 range 0 .. 15;
 ODR at 20 range 0 .. 15;
 Reserved_3 at 22 range 0 .. 15;
 BSRR_Set at 24 range 0 .. 15;
 BSRR_Reset at 26 range 0 .. 15;
 LCKR at 28 range 0 .. 31;
 AFR at 32 range 0 .. 63;
 Unused at 40 range 0 .. 7871;
end record;

The type for the gap, Unaccessed_Gap, must represent 984
bytes so we declared an array like so:

Gap_Size : constant := 984; -- bytes
-- There is a gap of unused, reserved memory after the end of the
-- bytes used by any given memory-mapped GPIO port. The size of the
-- gap is indicated in the STM32F405xx etc. Reference Manual, RM 0090.
-- Specifically, Table 1 shows the starting and ending addresses mapped
-- to the GPIO ports, for an allocated size of 16#400#, or 1024 (decimal)
-- bytes per port. However, in the same document, the register map for
-- these ports shows only 40 bytes currently in use. Presumably this gap is
-- for future expansion when additional functionality or capacity is added,
-- such as more pins per port.

type Unaccessed_Gap is array (1 .. Gap_Size) of Unsigned_8 with
 Component_Size => Unsigned_8'Size,
 Size => Gap_Size * Unsigned_8'Size;
-- This type is used to represent the necessary gaps between GPIO
-- ports in memory. We explicitly allocate a record component of
-- this type at the end of the record type for that purpose.

We also set the size of the entire record type to 16#400# bytes since
that is the total of the required bytes plus the gap, as per the
documentation. As such, this is a "confirming" size clause because the
reserved gap component increases the required size to that value (which
is the point). We don't really need to do both, i.e., declare the reserved
gap component and also set the record type size to the larger value. We
could have done either one alone. One could argue that setting the size
alone would have been simpler, in that it would obviate the type
declaration and corresponding record component declaration. Being doubly
explicit seemed a good idea at the time.

Dynamic Address Conversion

In the overlay example there were two distinct Ada objects, of two different
types, sharing one (starting) address. The overlay provides two
views of the memory at that address because there are two types
involved. In this idiom the address is known when the code is written,
either because it is a literal value specified in some hardware spec, or
it is simply the address of the other object (in which case the actual
address value is neither known nor relevant).

When there are several views required, declaring multiple overlaid
variables at the same address absolutely can work, but can be less
convenient than an alternative idiom. The alternative is to convert an
address value to a value of an access type. Dereferencing the resulting
access value provides a view of the memory corresponding to the
designated type, starting at the converted address value.

For example, perhaps a networking component is given a buffer — an
array of bytes — representing a received message. A
subprogram is called with the buffer as a parameter, or the parameter
can be the address of the buffer. If the subprogram must interpret this
array via different views, this alternative approach works well. We
could have an access type designating a message preamble, for example,
and convert the first byte's address into such an access value.
Dereferencing the conversion gives the preamble value. Likewise, the
subprogram might need to compute a checksum over some of the bytes, so a
different view, one of an array of a certain set size, could be used.
Again, we could do that with overlaid objects but the alternative can be
more convenient.

Here's a simple concrete example to illustrate the approach. Suppose we
want to have a utility to swap the two bytes at any arbitrary address.
Here's the declaration:

procedure Swap2 (Location : System.Address);

Callers pass the address of an object intended to have its (first) two
bytes swapped:

Swap2 (Z'Address);

In the call, Z is of type Interfaces.Integer_16, for
example, or Unsigned_16, or even something bigger as long as you
only care about swapping the first two bytes.

The incomplete implementation using the conversion idiom could be like so:

procedure Swap2 (Location : System.Address) is
 X : Word renames To_Pointer (Location).all;
begin
 X := Shift_Left (X, 8) or Shift_Right (X, 8);
end Swap2;

The declaration of X is the pertinent part.

In the declaration, X is of type Word, a type (not yet
shown) derived from Interfaces.Unsigned_16. Hence X can
have the inherited shift and logical or operations applied.

The To_Pointer (Location) part of the declaration is a function
call. The function returns the conversion of the incoming address value
in Location into an access value designating Word values.
We'll explain how to do that momentarily. The .all explicitly
dereferences the access value resulting from the function call.

Finally, X renames the Word designated by the
converted access value. The benefit of the renaming, in addition to the
simpler name, is that the function is only called once, and the access value
deference is only evaluated once.

Now for the rest of the implementation not shown earlier.

type Word is new Interfaces.Unsigned_16;

package Word_Ops is new System.Address_To_Access_Conversions (Word);
use Word_Ops;

System.Address_To_Access_Conversions is a language-defined
generic package that provides just two functions: one to convert an
address value to an access type, and one to convert in the opposite
direction:

generic
 type Object (<>) is limited private;
package System.Address_To_Access_Conversions is

 type Object_Pointer is access all Object;

 function To_Pointer (Value : Address) return Object_Pointer;
 function To_Address (Value : Object_Pointer) return Address;

 pragma Convention (Intrinsic, To_Pointer);
 pragma Convention (Intrinsic, To_Address);

end System.Address_To_Access_Conversions;

Object is the generic formal type parameter, i.e., the type we
want our converted addresses to designate via the type
Object_Pointer. In the byte-swapping example, the type
Word was passed to Object in the instantiation.

The access type used by the functions is Object_Pointer,
declared along with the functions. Object_Pointer designates
values of the type used for the generic actual parameter, in this case
Word.

Note the pragma Convention applied to each function, indicating
that there is no actual function call involved; the compiler emits the
code directly, if any code is actually required. Otherwise the compiler
just treats the incoming Address bits as a value of type
Object_Pointer.

The instantiation specifies type Word as the generic actual type
parameter, so now we have a set of functions for that type, in
particular To_Pointer.

Let's look at the code again, this time with the additional declarations:

type Word is new Interfaces.Unsigned_16;

package Word_Ops is new System.Address_To_Access_Conversions (Word);
use Word_Ops;

procedure Swap2 (Location : System.Address) is
 X : Word renames To_Pointer(Location).all;
begin
 X := Shift_Left (X, 8) or Shift_Right (X, 8);
end Swap2;

Word_Ops is the generic instance, followed immediately by a
use clause so that we can refer to the visible content of the
package instance conveniently.

In the renaming expression, To_Pointer (Location) converts the
incoming address in Location to a pointer designating the
Word at that address. The .all dereferences the resulting
access value to get the designated Word value. Hence X
refers to that two-byte value in memory.

We could almost certainly achieve the same affect by replacing the call to
the function in To_Pointer with a call to an instance of
Ada.Unchecked_Conversion. The conversion would still be between
an access type and a value of type System.Address, but the access type
would require declaration by the user. In both cases there would be an
instantiation of a language-defined facility, so there's not much saving
in lines of source code, other than the access type declaration. Because
System.Address_To_Access_Conversions is explicitly intended for
this purpose, good style suggests its use in preference to unchecked
conversion, but both approaches are common in production code.

In either case, the conversion is not required to work, although in
practice it will, most of the time. Representing an access value as an
address value is quite common because it matches the typical underlying
hardware's memory model. But even so, a single address is not
necessarily sufficient to represent an access value for any given
designated type. In that case problems arise, and they are difficult to
debug.

For example, in GNAT, access values designating values of unconstrained
array types, such as String, are represented as two addresses,
known as "fat pointers". One address points to the bounds for the
specific array object, since they can vary. The other address designates
the characters. Therefore, conversions of a single address to an access
value requiring fat pointers will not work using unchecked
conversions. (There is a way, however, to tell GNAT to use a single address
value, but it is an explicit step in the code. Once done, though, unchecked
conversions would then work correctly.)

You can alternatively use generic package
System.Address_To_Access_Conversions. That generic is defined for the
purpose of converting addresses to access values, and vice versa. But note
that the implementation of the generic's routines must account for the
representation their compiler uses for unbounded types like String.

Address Arithmetic

Part of "letting the compiler do the work for you" is not doing address
arithmetic in the source code if you can avoid it. Instead, for
instance, use the normal "dot notation" to reference components, and let
the compiler compute the offsets to those components. The approach to
implementing procedure Configure_Alternate_Function for a
GPIO_Port is a good example.

That said, sometimes address arithmetic is the most direct expression of
what you're trying to implement. For example, when implementing your own
memory allocator, you'll need to do address arithmetic.

Earlier in this section we mentioned the package
System.Storage_Elements, for the sake of the function that
converts integer values to address values. The package also defines
functions that provide address arithmetic. These functions work in terms
of type System.Address and the package-defined type
Storage_Offset. The type Storage_Offset is an integer type
with an implementation-defined range. As a result you can have positive
and negative offsets, as needed. Addition and subtraction of offsets
to/from addresses is supported, as well as the mod operator.

Combined with package System (for type System.Address),
the functions and types in this package provide the kinds of address
arithmetic other languages provide. Nevertheless, you should prefer
having the compiler do these computations for you, if possible.

Here's an example illustrating the facilities. The procedure defines an
array of record values, then traverses the array, printing the array
components as it goes. (This is not the way to really implement such code.
It's just an illustration for address arithmetic.)

with Ada.Text_IO; use Ada.Text_IO;
with System.Storage_Elements; use System.Storage_Elements;
with System.Address_To_Access_Conversions;

procedure Demo_Address_Arithmetic is

 type R is record
 X : Integer;
 Y : Integer;
 end record;

 R_Size : constant Storage_Offset := R'Object_Size / System.Storage_Unit;

 Objects : aliased array (1 .. 10) of aliased R; -- arbitrary bounds

 Objects_Base : constant System.Address := Objects'Address;

 Offset : Storage_Offset;

 -- display the object of type R at the address specified by Location
 procedure Display_R (Location : in System.Address) is

 package R_Pointers is new System.Address_To_Access_Conversions (R);
 use R_Pointers;

 Value : R renames To_Pointer (Location).all;
 -- The above converts the address to a pointer designating an R value
 -- and dereferences it, using the name Value to refer to the
 -- dereferenced R value.
 begin
 Put (Integer'Image (Value.X));
 Put (", ");
 Put (Integer'Image (Value.Y));
 New_Line;
 end Display_R;

begin
 Objects := ((0,0), (1,1), (2,2), (3,3), (4,4),
 (5,5), (6,6), (7,7), (8,8), (9,9));

 Offset := 0;

 -- walk the array of R objects, displaying each one individually by
 -- adding the offset to the base address of the array
 for K in Objects'Range loop
 Display_R (Objects_Base + Offset);
 Offset := Offset + R_Size;
 end loop;
end Demo_Address_Arithmetic;

Seriously, this is just for the purpose of illustration. It would be
much better to just index into the array directly.

Footnotes

General-Purpose Code Generators

In another chapter,
we mentioned that the best way to get a
specific set of machine instructions emitted from the compiler is to
write them ourselves, in the Ada source code, using machine-code
insertions (MCI). The rationale was that the code generator will make
reasonable assumptions, including the assumption that performance is of
uppermost importance, but that these assumptions can conflict with device
requirements.

For example, the code generator might not issue the specific sequence of
machine code instructions required by the hardware. The GPIO pin "lock"
sequence in that referenced chapter is a good example. Similarly, the
optimizer might remove what would otherwise be "redundant" read/writes
to a memory-mapped variable.

The code generator might issue instructions to read a small field in a
memory-mapped record object using byte-sized accesses, when instead the
device requires whole-word or half-word access instructions.

The code generator might decide to load a variable from memory into a
register, accessing the register when the value is required. Typically
that approach will yield far better performance than going to memory
every time the value is read or updated. But suppose the variable is for
a memory-mapped device? In that case we really need the generated code
to go to memory every time.

As you can see, there are times when we cannot let the code generator
make the usual assumptions. Therefore, Ada provides aspects and pragmas
that developers can use to inform the compiler of facts that affect code
generation in this regard.

These facilities are defined in the Systems Programming Annex, C.6,
specifically. The title of that sub-clause is "Shared Variables" because
the objects (memory) can be shared between tasks as well as between
hardware devices and the host computer. We ignore the context of
variables shared between tasks, focusing instead of shared memory-mapped
devices, as this course is about embedded systems.

When describing these facilities we will use aspects, but remember that
the corresponding pragmas are defined as well, except for one. (We'll
mention it later.) For the other aspects, the pragmas existed first and,
although obsolescent, remain part of the language and supported. There's
no need to change your existing source code using the pragmas to use the
aspects instead, unless you need to change it for some other reason.

As this is an introduction, we will not go into absolutely all the details,
but will instead give a sense of what the language provides, and why.

Aspect Independent

To interface with a memory-mapped device, there will be an Ada object of an
appropriate type that is mapped to one or more bytes of memory. The
software interacts with the device by reading and/or writing to the
memory locations mapped to the device, using the operations defined by
the type in terms of normal Ada semantics.

Some memory-mapped devices can be directly represented by a single
scalar value, usually of some signed or unsigned numeric type.
More sophisticated devices almost always involve several distinct
input and output fields. Therefore, representation in the software as a
record object is very common. Ada record types have such extensive and
flexible support for controlling their representation, down to the
individual bit level, that using a record type makes sense. (And as
mentioned, using normal record component access via the "dot notation"
offloads to the compiler the address arithmetic needed to access
individual memory locations mapped to the device.) And of course the
components of the mapped record type can themselves be of scalar and
composite types too, so an extensive descriptive capability exists with
Ada.

Let's say that one of these record components is smaller than the size
of the smallest addressable memory unit on the machine, which is to say,
smaller than the machine instructions can read/write memory
individually. A Boolean record component is a good example, and very
common. The machine cannot usually read/write single bits in memory, so
the generated code will almost certainly read or write a byte to get the
enclosed single-bit Boolean component. It might use a larger sized access too,
a half-word or word. Then the generated code masks off the bits that are
not of interest and does some shifts to get the desired component.

Reading and writing the bytes surrounding the component accessed in the
source code can cause a problem. In particular, some devices react to
being read or written by doing something physical in the hardware.
That's the device designer's intent for the software. But we don't want
that to happen accidentally due to surrounding bytes being accessed.

Therefore, to prevent these "extra" bytes from being accessed, we need a
way to tell the compiler that we need the read or write accesses for the
given object to be independent of the surrounding memory. If the
compiler cannot do so, we'll get an error and the compilation will fail.
That beats debugging, every time.

Therefore, the aspect Independent specifies that the code
generated by the compiler must be able to load and store the memory for
the specified object without also accessing surrounding memory. More
completely, it declares that a type, object, or component must be
independently addressable by the hardware. If applied to a type, it
applies to all objects of the type.

Likewise, aspect Independent_Components declares that the individual
components of an array or record type must be independently addressable.

With either aspect the compiler will reject the declaration if independent
access is not possible for the type/object in question.

For example, if we try to mark each Boolean component of a record type
as Independent we can do so, either individually or via
Indepndent_Components, but doing so will require that each
component is a byte in size (or whatever the smallest addressable unit
happens to be on this machine). We cannot make each Boolean component
occupy one bit within a given byte if we want them to be independently
accessed.

package P is

 type R is record
 B0 : Boolean;
 B1 : Boolean;
 B2 : Boolean;
 B3 : Boolean;
 B4 : Boolean;
 B5 : Boolean;
 end record with
 Size => 8,
 Independent_Components;

 for R use record
 B0 at 0 range 0 .. 0;
 B1 at 0 range 1 .. 1;
 B2 at 0 range 2 .. 2;
 B3 at 0 range 3 .. 3;
 B4 at 0 range 4 .. 4;
 B5 at 0 range 5 .. 5;
 end record;

end P;

For a typical target machine the compiler will reject that code,
complaining that the Size for R' must be at least 48 bits,
i.e., 8 bits per component. That's because the smallest quantity this
machine can independently address is an 8-bit byte.

But if we don't really need the individual bits to be independently
accessed — and let's hope no hardware designer would define such a
device — then we have more flexibility. We could, for example,
require that objects of the entire record type be independently
accessible:

package Q is

 type R is record
 B0 : Boolean;
 B1 : Boolean;
 B2 : Boolean;
 B3 : Boolean;
 B4 : Boolean;
 B5 : Boolean;
 end record with
 Size => 8,
 Independent;

 for R use record
 B0 at 0 range 0 .. 0;
 B1 at 0 range 1 .. 1;
 B2 at 0 range 2 .. 2;
 B3 at 0 range 3 .. 3;
 B4 at 0 range 4 .. 4;
 B5 at 0 range 5 .. 5;
 end record;

end Q;

This the compiler should accept, assuming a machine that can access
bytes in memory individually, without having to read some number of
other bytes.

But for another twist, suppose we need one of the components
to be aliased, so that we can construct access values designating it via
the Access attribute? For example, given the record type R
above, and some object Foo of that type, suppose we want to say
Foo.B0'Access? We'd need to mark the component as aliased:

package QQ is

 type R is record
 B0 : aliased Boolean;
 B1 : Boolean;
 B2 : Boolean;
 B3 : Boolean;
 B4 : Boolean;
 B5 : Boolean;
 end record with
 Size => 8,
 Independent;

 for R use record
 B0 at 0 range 0 .. 0;
 B1 at 0 range 1 .. 1;
 B2 at 0 range 2 .. 2;
 B3 at 0 range 3 .. 3;
 B4 at 0 range 4 .. 4;
 B5 at 0 range 5 .. 5;
 end record;

end QQ;

The compiler will once again reject the code, complaining that the size
of B0 must be a multiple of a Storage_Unit, in other words, the
size of something independently accessible in memory on this machine.

Why? The issue here is that aliased objects, including components of
composite types, must be represented in such a way that creating the
designating access ("pointer") value is possible. The component B0, if
allocated only one bit, would not allow an access value to be created
due to the usual machine accessibility limitation we've been discussing.

Similarly, a record component that is of some by-reference type, such as
any tagged type, introduces the same issues as an aliased component. That's
because the underlying implementation of by-reference parameter passing is
much like a 'Access attribute reference.

As important as the effect of this aspect is, you probably won't see it
specified. There are other aspects that are more typically required.
However, the semantics of Independent are part of the semantics
of some of these other aspects. Applying them applies Independent
too, in effect. So even though you don't typically apply it directly,
you need to understand the independent access semantics. We discuss
these other, more commonly applied aspects next.

These representation aspects may be specified for an object declaration,
a component declaration, a full type declaration, or a generic formal
(complete) type declaration. If any of these aspects are specified True
for a type, then the corresponding aspect is True for all objects of the
type.

Aspect Volatile

Earlier we said that the compiler (specifically the optimizer) might
decide to load a variable from memory into a register, accessing the
register when the value is required or updated. Similarly, the compiler
might reorder instructions, and remove instructions corresponding to
redundant assignments in the source code. Ordinarily we'd want those
optimizations, but in the context of embedded memory-mapped devices they
can be problematic.

The hardware might indeed require the source code to read or write to
the device in a way that the optimizer would consider redundant, and in
order to interact with the device we need every read and write to go to
the actual memory for the mapped device, rather than a register. As
developers we have knowledge about the context that the compiler lacks.

The compiler is aware of the fact that the Ada object is memory-mapped
because of the address clause placing the object at a specific address.
But the compiler does not know we are interacting with an external
hardware device. Perhaps, instead, the object is mapped to a specific
location because some software written in another language expects to
access it there. In that case redundant reads or writes of the same
object really would be redundant. The fact that we are interacting with
a hardware device makes a difference.

In terms of the language rules, we need reading from, and writing to,
such devices to be part of what the language refers to as the "external
effects" of the software. These effects are what the code must actually
produce. Anything else — the internal effects — could be
removed by the optimizer.

For example, suppose you have a program that writes a value to some
variable and also writes the string literal "42" to a file. That's is
absolutely all that the program contains.

with Ada.Text_IO; use Ada.Text_IO;

procedure Demo is
 Output : File_Type;
 Silly : Integer;
begin
 Silly := 0;
 Create (Output, Out_File, "output.txt");
 Put (Output, "42");
 Close (Output);
end Demo;

The value of the variable Silly is not used in any way so there
is no point in even declaring the variable, much less generating code to
implement the assignment. The update to the variable has only
an internal effect. With warnings enabled we'll receive notice from
the compiler, but they're just warnings.

However, writing to the file is an external effect because the file
persists beyond the end of the program's execution. The optimizer (when
enabled) would be free to remove any access to the variable
Silly, but not the write to the file.

We can make the compiler recognize that a software object is part of an
external effect by applying the aspect Volatile. (Aspect
Atomic is pertinent too. More in a moment.) As a result, the
compiler will generate memory load or store instructions for every read or
update to the object that occurs in the source code. Furthermore, it
cannot generate any additional loads or stores to that variable, and it
cannot reorder loads or stores from their order in the source code.
"What You See Is What You Get" in other words.

with Ada.Text_IO; use Ada.Text_IO;

procedure Demo is
 Output : File_Type;
 Silly : Integer with Volatile;
begin
 Silly := 0;
 Create (Output, Out_File, "output.txt");
 Put (Output, "42");
 Close (Output);
end Demo;

If we compile the above, we won't get the warning we got earlier
because the compiler is now required to generate the assignment for
Silly.

The variable Silly is not even a memory-mapped object, but
remember that we said these aspects are important to the tasking context
too, for shared variables. We're ignoring that context in this course.

There is another reason to mark a variable as Volatile. Sometimes
you want to have exactly the load and store instructions generated that
match those of the Ada code, even though the volatile object is not a
memory-mapped object.
For example, elsewhere
we said that the best way to achieve exact assembly instruction
sequences is the use of machine-code inserts (MCI). That's true, but for
the moment let's say we want to write it in Ada without the MCIs. Our
earlier example was the memory-mapped GPIO ports on Arm microcontrollers
produced by ST Microelectronics. Specifically, these ports have a "lock"
per GPIO pin that allows the developer to configure the pin and then
lock it so that no other configuration can accidentally change the
configuration of that pin. Doing so requires an exact sequence of loads
and stores. If we wrote this in Ada it would look like this:

procedure Lock
 (Port : in out GPIO_Port;
 Pin : GPIO_Pin)
is
 Temp : Word with Volatile;
begin
 -- set the lock control bit and the pin
 -- bit, clear the others
 Temp := LCCK or Pin'Enum_Rep;

 -- write the lock and pin bits
 Port.LCKR := Temp;

 -- clear the lock bit in the upper half
 Port.LCKR := Pin'Enum_Rep;

 -- write the lock bit again
 Port.LCKR := Temp;

 -- read the lock bit
 Temp := Port.LCKR;

 -- read the lock bit again
 Temp := Port.LCKR;
end Lock;

Temp is marked volatile for the sake of getting exactly the load
and stores that we express in the source code, corresponding to the
hardware locking protocol. It's true that Port is a memory-mapped
object, so it too would be volatile, but we also need Temp to be
volatile.

This high-level coding approach will work, and is simple enough that
MCIs might not be needed. However, what really argues against it is that
the correct sequence of emitted code requires the optimizer to remove
all the other cruft that the code generator would otherwise include.
(The gcc code generator used by the GNAT compiler generates initially
poor code, by design, relying on the optimizer to clean it up.) In other
words, we've told the optimizer not to change or add loads and stores
for Temp, but without the optimizer enabled the code generator
generates other code that gets in the way. That's OK in itself, as far
as procedure Lock is concerned, but if the optimizer is
sufficiently enabled we cannot debug the rest of the code. Using MCIs
avoids these issues. The point, though, is that not all volatile objects
are memory mapped.

So far we've been illustrating volatility with scalar objects, such as
Lock.Temp above. What about objects of array and record types?
(There are other "composite" types in Ada but they are not pertinent
here.)

When aspect Volatile is applied to a record type or an object of
such a type, all the record components are automatically volatile too.

For an array type (but not a record type), a related aspect
Volatile_Components declares that the components of the array
type — but not the array type itself — are volatile. However, if
the Volatile aspect is specified, then the Volatile_Components
aspect is automatically applied too, and vice versa. Thus components of array
types are covered automatically.

If an object (of an array type or record type) is marked volatile then
so are all of its subcomponents, even if the type itself is not marked
volatile.

Therefore aspects Volatile and Volatile_Components are nearly
equivalent. In fact, Volatile_Components is superfluous. The
language provides the Volatile_Components aspect only to give
symmetry with the Atomic_Components and
Independent_Components aspects. You can simply apply
Volatile and be done with it.

Finally, note that applying aspect Volatile does not implicitly
apply Independent, although you can specify it explicitly if need
be.

Aspect Atomic

Consider the GPIO pin configuration lock we've mentioned a few times
now, that freezes the configuration of a given pin on a given GPIO port.
The register, named LCKR for "lock register", occupies 32-bits, but only
uses 17 total bits (currently). The low-order 16 bits, [0:15], represent
the 16 GPIO pins on the given port. Bit #16 is the lock bit. That bit is
the first bit in the upper half of the entire word. To freeze the
configuration of a given pin in [0:15], the lock bit must be set at the
same time as the bit to be frozen. In other words, the lower half and
the upper half of the 32-bit word representing the register must be
written together, at the same time. That way, accidental (un)freezing is
unlikely to occur, because the most efficient, hence typical way for the
generated code to access individual bits is for the compiler to load or
store just the single byte that contains the bit or bits in question.

This indivisibility effect can be specified via aspect Atomic. As
a result, all reads and updates of such an object as a whole
are indivisible. In practice that means that the entire object
is accessed with one load or store instruction. For a 16-bit object, all
16-bits are loaded and stored at once. For a 32-bit object, all 32-bits
at once, and so on. The upper limit is the size of the largest machine
scalar that the processor can manipulate with one instruction, as
defined by the target processor. The typical lower bound is 8, for a
byte-addressable machine.

Therefore, within the record type representing a GPIO port, we include
the lock register component and apply the aspect Atomic:

type GPIO_Port is limited record
 ...
 LCKR : UInt32 with Atomic;
 ...
end record with
 ...
 Size => 16#400# * 8;

Hence loads and stores to the LCKR component will be done
atomically, otherwise the compiler will let us know that it is
impossible. That's all we need to do for the lock register to be read
and updated atomically.

You should understand that only accesses to the whole, entire object are
atomic. In the case of the lock register, the entire object is a record
component, but that causes no problems here.

There is, however, something we must keep in mind when manipulating the
values of atomic objects. For the lock register we're using a scalar
type to represent the register, an unsigned 32-bit integer. There are no
sub-components because scalar types don't have components, by
definition. We simply use the bit-level operations to set and clear the
individual bits. But we cannot set the bits — the lock bit and the
bit for the I/O pin to freeze — one at a time because the locking
protocol requires all the bits to be written at the same time, and only
the entire 32-bit load and stores are atomic. Likewise, if instead of a
scalar we used a record type or an array type to represent the bits in
the lock register, we could not write individual record or array
components one at a time, for the same reason we could not write
individual bits using the unsigned scalar. The Atomic aspect only
applies to loads and stores of the entire register.

Therefore, to update or read individual parts of an atomic object we
must use a coding idiom in which we explicitly read or write the entire
object to get to the parts. For example, to read an individual record
component, we'd first read the entire record object into a temporary
variable, and then access the component of that temporary variable.
Likewise, to update one or more individual components, we'd first read
the record object into a temporary variable, update the component or
components within that temporary, and then write the temporary back to
the mapped device object. This is known as the "read-modify-write"
idiom. You'll see this idiom often, regardless of the programming
language, because the hardware requirement is not unusual. Fortunately
Ada defines another aspect that makes the compiler do this for us. We'll
describe it in the next section.

Finally, there are issues to consider regarding the other aspects
described in this section.

If you think about atomic behavior in the context of machine
instructions, loading and storing from/to memory atomically can only be
performed for quantities that are independently addressable.
Consequently, all atomic objects are considered to be specified as
independently addressable too. Aspect specifications and representation
items cannot change that fact. You can expect the compiler to reject any
aspect or representation choice that would prevent this from being true.

Likewise, atomic accesses only make sense on actual memory locations, not
registers. Therefore all atomic objects are volatile objects too,
automatically.

However, unlike volatile objects, the components of an atomic object are
not automatically atomic themselves. You'd have to mark these types or
objects explicitly, using aspect Atomic_Components. Unlike
Volatile_Components, aspect Atomic_Components is thus
useful.

As is usual with Ada programming, you can rely on the compiler to inform
you of problems. The compiler will reject an attempt to specify
Atomic or Atomic_Components for an object or type if the
implementation cannot support the indivisible and independent reads and
updates required.

Aspect Full_Access_Only

Many devices have single-bit flags in the hardware that are not
allocated to distinct bytes. They're packed into bytes and words shared
with other flags. It isn't just individual bits either. Multi-bit fields
that are smaller than a byte, e.g., two 4-bit quantities packed into a
byte, are common. We saw that with the GPIO alternate functions codes earlier.

Ordinarily in Ada we represent such composite hardware interfaces using a
record type. (Sometimes an array type makes more sense. That doesn't
change anything here.) Compared to using bit-patterns, and the resulting
bit shifting and masking in the source code, a record type representation
and the resulting "dot notation" for accessing components is far more
readable. It is also more robust because the compiler does all the work of
retrieving these individual bits and bit-fields for us, doing any shifting
and masking required in the generated code. The loads and stores are done
by the compiler in whatever manner the compiler thinks most efficient.

When the hardware device requires atomic accesses to the memory mapped
to such flags, we cannot let the compiler generate whatever width load
and store accesses it thinks best. If full-word access is required, for
example, then only loads and stores for full words can work. Yet aspect
Atomic only guarantees that the entire object, in this case the
record object, is loaded and stored indivisibly, via one instruction.
The aspect doesn't apply to reads and updates to individual record
components.

In the section on Atomic above, we mentioned that proper access to
individual components of atomic types/objects can be achieved by a
"read-modify-write" idiom. In this idiom, to read a component you first
read into a temporary the entire enclosing atomic object. Then you read
the individual component from that temporary variable. Likewise, to update
an individual component, you start with the same approach but then update
the component(s) within the temporary, then store the entire temporary
back into the mapped atomic object. Applying aspect Atomic to the
enclosing object ensures that reading and writing the temporary will be
atomic, as required.

Using bit masks and bit patterns to access logical components as an
alternative to a record type doesn't change the requirement for the
idiom.

Consider the STM32F4 DMA device. The device contains a 32-bit stream
configuration register that requires 32-bit reads and writes. We can map
that register to an Ada record type like so:

type Stream_Config_Register is record
 -- ...
 Direction : DMA_Data_Transfer_Direction;
 P_Flow_Controller : Boolean;
 TCI_Enabled : Boolean; -- transfer complete
 HTI_Enabled : Boolean; -- half-transfer complete
 TEI_Enabled : Boolean; -- transfer error
 DMEI_Enabled : Boolean; -- direct mode error
 Stream_Enabled : Boolean;
end record
 with Atomic, Size => 32;

The "confirming" size clause ensures we have declared the type correctly
such that it will fit into 32-bits. There will also be a record
representation clause to ensure the record components are located
internally as required by the hardware. We don't show that part.

The aspect Atomic is applied to the entire record type, ensuring that
the memory mapped to the hardware register is loaded and stored only as
32-bit quantities. In this example it isn't that we want the loads and stores
to be indivisible. Rather, we want the generated machine instructions that load
and store the object to use 32-bit word instructions, even if we are only
reading or updating a component of the object. That's what the hardware
requires for all accesses.

Next we'd use that type declaration to declare one of the components of
an enclosing record type representing one entire DMA "stream":

type DMA_Stream is record
 CR : Stream_Config_Register;
 NDTR : Word; -- upper half must remain at reset value
 PAR : Address; -- peripheral address register
 M0AR : Address; -- memory 0 address register
 M1AR : Address; -- memory 1 address register
 FCR : FIFO_Control_Register;
end record
 with Volatile, Size => 192; -- 24 bytes

Hence any individual DMA stream record object has a component named
CR that represents the corresponding configuration register.

The DMA controllers have multiple streams per unit so we'd declare an
array of DMA_Stream components. This array would then be part of
another record type representing a DMA controller. Objects of the
DMA_Controller type would be mapped to memory, thus mapping the
stream configuration registers to memory.

Now, given all that, suppose we want to enable a stream on a given DMA
controller. Using the read-modify-write idiom we would do it like so:

procedure Enable
 (Unit : in out DMA_Controller;
 Stream : DMA_Stream_Selector)
is
 Temp : Stream_Config_Register;
 -- these registers require 32-bit accesses, hence the temporary
begin
 Temp := Unit.Streams (Stream).CR; -- read entire CR register
 Temp.Stream_Enabled := True;
 Unit.Streams (Stream).CR := Temp; -- write entire CR register
end Enable;

That works, and of course the procedural interface presented to clients
hides the details, as it should.

To be fair, the bit-pattern approach can express the idiom concisely, as
long as you're careful. Here's the C code to enable and disable a
selected stream:

#define DMA_SxCR_EN ((uint32_t)0x00000001)

/* Enable the selected DMAy Streamx by setting EN bit */
DMAy_Streamx->CR |= DMA_SxCR_EN;

/* Disable the selected DMAy Streamx by clearing EN bit */
DMAy_Streamx->CR &= ~DMA_SxCR_EN;

The code reads and writes the entire CR register each time it is
referenced so the requirement is met.

Nevertheless, the idiom is error-prone. We might forget to use it at all,
or we might get it wrong in one of the very many places where we need to
access individual components.

Fortunately, Ada provides a way to have the compiler implement the idiom
for us, in the generated code. Aspect Full_Access_Only specifies
that all reads of, or writes to, a component are performed by reading
and/or writing all of the nearest enclosing full access object. Hence we
add this aspect to the declaration of Stream_Config_Register like
so:

type Stream_Config_Register is record
 -- ...
 Direction : DMA_Data_Transfer_Direction;
 P_Flow_Controller : Boolean;
 TCI_Enabled : Boolean; -- transfer complete interrupt
 HTI_Enabled : Boolean; -- half-transfer complete
 TEI_Enabled : Boolean; -- transfer error interrupt
 DMEI_Enabled : Boolean; -- direct mode error interrupt
 Stream_Enabled : Boolean;
end record
 with Atomic, Full_Access_Only, Size => 32;

Everything else in the declaration remains unchanged.

Note that Full_Access_Only can only be applied to Volatile
types or objects. Atomic types are automatically Volatile
too, so either one is allowed. You'd need one of those aspects anyway
because Full_Access_Only just specifies the accessing instruction
requirements for the generated code when accessing components.

The big benefit comes in the source code accessing the components.
Procedure Enable is now merely:

procedure Enable
 (Unit : in out DMA_Controller;
 Stream : DMA_Stream_Selector)
is
begin
 Unit.Streams (Stream).CR.Stream_Enabled := True;
end Enable;

This code works because the compiler implements the
read-modify-write idiom for us in the generated code.

The aspect Full_Access_Only is new in Ada 2022, and is based on
an implementation-defined aspect that GNAT first defined named
Volatile_Full_Access. You'll see that GNAT aspect throughout the
Arm device drivers in the Ada Drivers Library, available here:
https://github.com/AdaCore/Ada_Drivers_Library. Those drivers were the
motivation for the GNAT aspect.

Unlike the other aspects above, there is no pragma corresponding to the
aspect Full_Access_Only defined by Ada 2022. (There is such a
pragma for the GNAT-specific version named Volatile_Full_Access,
as well as an aspect.)

Footnotes

Handling Interrupts

Background

Embedded systems developers offload functionality from the application
processor onto external devices whenever possible. These external
devices may be on the same "chip" as the central processor (e.g., within
a System-on-Chip) or they may just be on the same board, but the point
here is that they are not the processor executing the application.
Offloading work to these other devices enables us to get more
functionality implemented in a target platform that is usually very
limited in resources. If the processor has to implement everything we
might miss deadlines or perhaps not fit into the available code space.
And, of course, some specialized functionality may simply require an external
device, such as a sensor.

For a simple example, a motor encoder is a device attached to a motor
shaft that can be used to count the number of full or partial rotations
that the shaft has completed. When the shaft is rotating quickly, the
application would need to interact with the encoder frequently to get an
up-to-date count, representing a non-trivial load on the application
processor. There are ways to reduce that load, which we discuss shortly,
but by far the simplest and most efficient approach is to do it all in
hardware: use a timer device driven directly by the encoder. The timer
is connected to the encoder such that the encoder signals act like an
external clock driving the timer's internal counter. All the application
processor must do to get the encoder count is query the timer's counter.
The timer is almost certainly memory-mapped, so querying the timer
amounts to a memory access.

In some cases, we even offload communication with these external devices
onto other external devices. For example, the I2C[#1]
(Inter-Integrated Circuit) protocol is a popular two-wire serial protocol for
communicating between low-level hardware devices. Individual bits of the
data are sent by driving the data line high and low in time with the
clock signal on the other line. The protocol has been around for a long
time and many embedded devices use it to communicate. We could have the
application drive the data line for each individual bit in the protocol.
Known as "bit-banging," that would be a significant load on the
processor when the overall traffic volume is non-trivial. Fortunately,
there are dedicated devices — I2C transceivers — that will
implement the protocol for us. To send application data to another
device using the I2C protocol, we just give the transceiver the data and
destination address. The rest is done in the transceiver hardware.
Receiving data is of course also possible. I2C transceivers are
ubiquitous because the protocol is so common among device
implementations. A
USART[#2]
/ UART[#3]
is a similar example.

Having offloaded some of the work, the application must have some way to
interact with the device in order to know what is happening. Maybe the
application has requested the external device perform some service
— an analog-to-digital conversion, say — and must know when
that function has completed. Maybe a communications device is receiving
incoming data for the application to process. Or maybe that
communications device has completed sending outgoing data and is ready
for more to send.

Ultimately, interaction with the external device will be either
synchronous or asynchronous, and has system-level design implications.

For synchronous interaction, the application periodically queries the
device, typically a status flag or function on the device. Known as "polling,"
this approach is simple to implement but wastes cycles when the external
device has not yet completed the request. After all, the point of
offloading the work is to allow the application processor to execute
other functionality. Polling negates that benefit. On the other hand, if
the expected time to completion is extremely short, polling can be
sufficiently efficient to make sense.

Usually, there's enough time involved so that polling is undesirable. The
external environment takes time to respond and change state. Maybe a
sensor has been designed to wait passively for something to happen in
the external world, and only on the infrequent occurrence of that event
should the application be notified. Perhaps a switch is to be toggled in
certain circumstances, or an intruder detected. In this case, nothing
happens for extended intervals.

As a consequence of all this, there's a very good chance that the
internal processor should not poll these external devices.

Before we discuss the asynchronous alternative, there's another issue to
consider. However the notification from the external device is
implemented, a very quick response from the internal processor may be
required. Think back to that serial port with a USART again. The USART
is responsible for composing the arriving characters (or bytes) from
their individual incoming bits on the receiving line. When all the bits
for a single character have arrived, what happens next depends on the
software design. In the simplest case, the internal processor copies the
single character from the USART to an internal buffer and then goes back
to doing something else while the next full character arrives in the
USART. The response to the USART must be fairly quick because the next
incoming character's bits are arriving. The internal processor must get
the current character before it is overwritten by the next arriving
character, otherwise we'll lose data. So we can say that the response to
the notification from the external device must often be very quick.

Now, ideally in the USART case, we would further offload the work from
the internal processor. Instead of having the processor copy each
arriving character from the USART into an application buffer, we would
have another external hardware device — a
direct memory access (DMA)[#4]
device — copy each arriving character from the USART to the
buffer. A DMA device copies data from one location to another, in this
case from the address of the USART's one-character memory-mapped
register to the address of the application buffer in memory. The copy is
performed by the DMA hardware so it is extremely fast and costs the main
processor no cycles. But even with this approach, we need to notify the
application that a complete message is ready for processing. We might
need to do that quickly so that enough time remains for the application
to process the message content prior to the arrival of the next message.

Therefore, the general requirement is for an external device to be able
to asynchronously notify the internal processor, and for the
notification to be implemented in such a way that the beginning of the
response can be sufficiently and predictably quick.

Fortunately, computers already have such a mechanism: interrupts. The
details vary considerably with the hardware architecture, but the
overall idea is independent of the
ISA[#5]: an
external event can trigger a
response from the processor by becoming "active." The current state of
the application is temporarily stored, and then an interrupt response
routine, known as an "interrupt handler" is executed. Upon completion of
the handler, the original state of the application is restored and the
application continues execution. The time between the interrupt becoming
active and the start of the responding handler execution is known as the
"interrupt latency."

Hardware interrupts typically have priorities assigned, depending on the
hardware. These priorities are applied when multiple interrupts are
triggered at the same time, to define the order in which the interrupts
are presented and the handlers invoked. The canonical model is that only
higher-priority interrupts can preempt handlers executing in response to
interrupts with lower or equal priority.

Ada defines a model for hardware interrupts and interrupt handling that
closely adheres to the conceptual model described above. If you have
experience with interrupt handling, you will recognize them in the Ada
model. One very important point to make about the Ada facilities is that
they are highly portable, so they don't require extensive changes when
moving to an new target computer. Part of that portability is due to the
language-defined model.

Before we go into the Ada facility details, there's a final point.
Sometimes we do want the application to wait for the external device.
When would that be the case? To answer that, we need to introduce another
term. The act of saving and restoring the state of the interrupted
application software is known as "interrupt context switching." If the
time for the device to complete the application request is approximately
that of the context switching, the application might as well wait for
the device after issuing the request.

Another reason to consider polling is that the architectural complexity
of interrupt handling is greater than that of polling. If your system
has some number of devices to control and polling them would be fast
enough for the application to meet requirements, it is simpler to do so.
But that will likely only work for a few devices, or at least a few that
have short response time requirements.

The application code can wait for the device by simply entering a loop,
exiting only when some external device status flag indicates completion
of the function. The loop itself, in its simplest form, would contain
only the test for exiting. As mentioned earlier, polling in a tight loop
like this only makes sense for very fast device interactions. That's not
the usual situation though, so polling should not be your default design
assumption. Besides, active polling consumes power. On an embedded
platform, conserving power is often important.

That loop polling the device will never exit if the device can fail to
signal completion. Or maybe it might take too long in some odd case. If you
don't want to be potentially stuck in the loop indefinitely, chewing up cycles
and power, you can add an upper bound on the number of attempts, i.e.,
loop iterations. For example:

procedure Await_Data_Ready (This : in out Three_Axis_Gyroscope) is
 Max_Status_Attempts : constant := 10_000;
 -- This upper bound is arbitrary but must be sufficient for the
 -- slower gyro data rate options and higher clock rates. It need
 -- not be as small as possible, the point is not to hang forever.
begin
 Polling: for K in 1 .. Max_Status_Attempts loop
 if Data_Status (This).ZYX_Available then
 return;
 end if;
 end loop Polling;
 raise Gyro_Failure;
end Await_Data_Ready;

In the above, Data_Status is a function that returns a record
object containing Boolean flags. The if-statement queries one of those
flags. Thus the loop either detects the desired device status or raises
an exception after the maximum number of attempts have been made. In
this version, the maximum is a known upper bound so a local constant will
suffice. The maximum could be passed as a parameter instead, or declared in a global "configuration" package containing such constants.

Presumably, the upper bound on the attempts is either specified by the
device documentation or empirically determined. Sometimes, however, the
documentation will instead specify a maximum possible response time, for
instance 30 milliseconds. Any time beyond that maximum indicates a
device failure.

In the code above, the number of iterations indirectly defines the
amount of elapsed time the caller waits. That time varies with the
target's system clock and the generated instructions' required clock
cycles, hence the approach is not portable. Alternatively, we can work in
terms of actual time, which will be portable across all targets with a
sufficiently precise clock.

You can use the facilities in package Ada.Real_Time to work with
time values. That package defines a type Time_Span representing
time intervals, useful for expressing relative values such as elapsed
time. There is also type Time representing an absolute value on
the timeline. A function Clock returns a value of type
Time representing "now," along with overloaded addition and
subtraction operators taking Time and Time_Span
parameters. The package also provides operators for comparing
Time values. (The value returned by Clock is monotonically
increasing so you don't need to handle time zone jumps and other such
things, unlike the function provided by Ada.Calendar.)

If the timeout is not context-specific then we'd use a constant as we
did above, otherwise we'd allow the caller to specify the timeout. For
example, here's a polling routine included with the DMA device driver
we've mentioned a few times now. Some device-specific parts have been
removed to keep the example simple. The appropriate timeout varies, so it
is a parameter to the call:

procedure Poll_For_Completion
 (This : in out DMA_Controller;
 Stream : DMA_Stream_Selector;
 Timeout : Time_Span;
 Result : out DMA_Error_Code)
is
 Deadline : constant Time := Clock + Timeout;
begin
 Result := DMA_No_Error; -- initially
 Polling : loop
 exit Polling when Status (This, Stream, Transfer_Complete_Indicated);
 if Clock >= Deadline then
 Result := DMA_Timeout_Error;
 return;
 end if;
 end loop Polling;
 Clear_Status (This, Stream, Transfer_Complete_Indicated);
end Poll_For_Completion;

In this approach, we compute the deadline as a point on the timeline by
adding the value returned from the Clock function (i.e., "now")
to the time interval specified by the parameter. Then, within the loop,
we compare the value of the Clock to that deadline.

Finally, with another design approach we can reduce the
processor cycles "wasted" when the polled device is not yet ready.
Specifically, in the polling loop, when the device has not yet completed the
requested function, we can temporarily relinquish the processor so that other
tasks within the application can execute. That isn't perfect because we're
still checking the device status even though we cannot exit the loop.
And it requires other tasks to exist in your design, although that's
probably a good idea for other reasons (e.g., logical threads having
different, non-harmonic periods). This approach would look like this (an
incomplete example):

procedure Poll_With_Delay is
 Next_Release : Time;
 Period : constant Time_Span := Milliseconds (30); -- let's say
begin
 Next_Release := Clock;
 loop
 exit when Status (...);
 Next_Release := Next_Release + Period;
 delay until Next_Release;
 end loop;
end Poll_With_Delay;

The code above will check the status of some device every 30
milliseconds (an arbitrary period just for illustration) until the
Status function result allows the loop to exit. If the device
"hangs" the loop is never exited, but as you saw there are ways to
address that possibility. When the code does not exit the loop, the next
point on the timeline is computed and the task executing the code then
suspends, allowing the other tasks in the application to execute.
Eventually, the next release point is reached and so the task becomes
ready to execute again (and will, subject to priorities).

But how long should the polling task suspend when awaiting the device?
We need to suspend long enough for the other tasks to get something
done, but not so long that the device isn't handled fast enough. Finding
the right balance is often not simple, and is further complicated by the
"task switching" time. That's the time it takes to switch the execution
context from one task to another, in this case in response to the "delay
until" statement suspending the polling task. And it must be considered
in both directions: when the delay expires we'll eventually switch back
to the polling task.

As you can see, polling is easily expressed but has potentially
significant drawbacks and architectural ramifications so it should be
avoided as a default approach.

Now let's explore the Ada interrupt facilities.

Language-Defined Interrupt Model

The Ada language standard defines a model for hardware interrupts, as
well as language-defined mechanisms for handling interrupts consistent
with that model. The model is defined in Annex C, the "Systems
Programming" annex, section 3 "Interrupt Support." The following is the
text of that section with only a few simplifications and elisions.

	Interrupts are said to occur. An occurrence of an interrupt is separable
into generation and delivery.

	Generation of an interrupt is the event in
the underlying hardware or system that makes the interrupt available to
the program.

	Delivery is the action that invokes part of the program as
response to the interrupt occurrence.

	Between generation and delivery, the interrupt occurrence is pending.

	Some or all interrupts may be blocked. When an interrupt is blocked, all
occurrences of that interrupt are prevented from being delivered.

	Certain interrupts are reserved. A reserved interrupt is either an
interrupt for which user-defined handlers are not supported, or one
which already has an attached handler by some other
RTL-defined means. The set of reserved interrupts is
determined by the hardware and run-time library (RTL).

	Program units can be connected to non-reserved interrupts. While
connected, the program unit is said to be attached to that interrupt.
The execution of that program unit, the interrupt handler, is invoked
upon delivery of the interrupt occurrence.

	While a handler is attached to an interrupt, it is called once for each
delivered occurrence of that interrupt.

	The corresponding interrupt is blocked while the handler executes. While
an interrupt is blocked, all occurrences of that interrupt are prevented
from being delivered. Whether such occurrences remain pending or are
lost is determined by the hardware and the RTL.

	Each interrupt has a default treatment which determines the system's
response to an occurrence of that interrupt when no user-defined handler
is attached. The set of possible default treatments is defined by the RTL.

	An exception propagated from a handler that is invoked by an interrupt
has no effect. In particular, it is not propagated out of the handler,
in the same way that exceptions do not propagate outside of task bodies.

	If the Ceiling_Locking policy is in effect, the interrupt handler
executes with the active priority that is the ceiling priority of the
corresponding protected object. ("Protected object" is abbreviated as
"PO" for convenience).

	If the hardware or the underlying system holds pending interrupt
occurrences, the RTL must provide for later delivery of
these occurrences to the program.

(The above is not everything in the model but we can ignore the rest in
this introduction.)

Because interrupt occurrences are generated by the hardware and
delivered by the underlying system software (run-time library or
real-time operating system), the application code is mainly responsible
for responding to occurrences. Of course, the application must first
configure the relevant external devices so that they generate the
expected interrupts.

The actual response is application-specific but is also
hardware-specific. The latter often (but not always) requires clearing
the interrupt status within the generating device so that the same
occurrence is not delivered again.

Furthermore, the standard model requires the underlying software to
block further occurrences while the handler executes, and only allow
preemption by higher-priory interrupt occurrences (if any). The
application handlers are not responsible for these semantics either. As
you will see, the choice of program unit used for expressing handlers
makes this all very convenient for the developer.

As a consequence, in terms of the response, the application developer
must write the specific handlers and attach those handlers to the
corresponding interrupts. Attaching the handlers is implemented in the
underlying system software, and it is this same underlying software that
delivers the occurrences.

We will now explore the Ada facilities in detail. At the end of this
chapter we will explore some common idioms using these mechanisms,
especially with regard to the handlers' interaction with the rest of the
application.

Interrupt Handlers

Interrupt handling is, by definition, asynchronous: some event occurs
that causes the processor to suspend the application, respond to the
event, and then resume application execution.

Because these events are asynchronous, the actions performed by the
interrupt handler and the application are subject to the same sorts of
race conditions as multiple tasks acting on shared data.

For example, a "reader" task may be in the act of reading (copying) the
value of some shared variable, only to be preempted by a "writer" task
that updates the value of the variable. In that case, when the "reader"
task resumes execution, it will finish the read operation but will, as a
result, have a value that is partly from the old value and partly from
the new value. The effect is unpredictable. An interrupt handler can
have the same effect on shared data as the preempting "writer" task that
interrupts the "reader" task. This problem is possible for shared data
of any type that is not atomically read or written. You can think of
large record objects if that helps, but it even applies to some scalars.

That scenario applies even if no explicit tasks are declared in the
application. That's because an implicit "environment task" is executing
the main subprogram. In that case, the main subprogram is the entire
application, but more typically some non-null application code is
actively executing in one or more tasks.

But it's not just a matter of tasks. We said that interrupts usually have
priorities. Typically that means a higher-priority interrupt will preempt
the execution of the handler for a lower-priority interrupt. It's the same
issue.

Furthermore, the fact that an interrupt has occurred needs to be
communicated to the application, for example to say that updated data
are available, perhaps a sensor reading or characters from a serial
port. As we said above, we usually don't want to poll for that fact, so
the application must be able to suspend until the event has occurred.
Often we'll have a dedicated task within the application that suspends,
rather than the entire application, but that's an application detail.

Ada's protected objects address all these asynchronous issues. Shared data
declared within a protected object can be accessed only via protected
procedures or protected entries, both of which execute with mutually
exclusive access. Hence no race conditions are possible.

Here is an extremely simple, but realistic, example of a PO. This is not
an interrupt handler example — we'll get to that — but it
does show a shared variable and a protected procedure that executes with
mutually exclusive access no matter how many tasks concurrently call it.
The PO provides unique serial numbers.

protected Serial_Number is
 procedure Get_Next (Number : out Positive);
private
 Value : Positive := 1;
end Serial_Number;

protected body Serial_Number is

 procedure Get_Next (Number : out Positive) is
 begin
 Number := Value;
 Value := Value + 1;
 end Get_Next;

end Serial_Number;

Imagine there are multiple assembly lines creating devices of various
sorts. Each device gets a unique serial number. These assembly lines run
concurrently, so the calls to Get_Next occur concurrently. Without
mutually exclusive access to the Value variable, multiple devices
could get the same serial number.

Protected entries can suspend a caller until some condition is true; in
this case, the fact that an interrupt has occurred and been handled. (As
we will see, a protected entry is not the only way to synchronize with an
accessing task, but it is the most robust and general.)

Here's an example of a PO with a protected entry:

protected type Persistent_Signal is
 entry Wait;
 procedure Send;
private
 Signal_Arrived : Boolean := False;
end Persistent_Signal;

protected body Persistent_Signal is

 entry Wait when Signal_Arrived is
 begin
 Signal_Arrived := False;
 end Wait;

 procedure Send is
 begin
 Signal_Arrived := True;
 end Send;

end Persistent_Signal;

This is a PO providing a "Persistent Signal" abstraction. It allows a
task to wait for a "signal" from another task. The signal is not lost if
the receiving task is not already waiting, hence the term "persistent."
Specifically, if Signal_Arrived is False, a caller to Wait
will be suspended until Signal_Arrived becomes True. A caller to
Send sets Signal_Arrived to True. If a caller to
Wait was already present, suspended, it will be allowed to
continue execution. If no caller was waiting, eventually some caller
will arrive, find Signal_Arrived True, and will be allowed to
continue. In either case, the Signal_Arrived flag will be set back
to False before the Wait caller is released. Protected objects
can have a priority assigned, similar to tasks, so they are integrated
into the global priority semantics including interrupt priorities.

Therefore, in Ada an interrupt handler is a protected procedure declared
within some protected object (PO). A given PO may handle more than one
interrupt, and if so, may use one or more protected procedures to do so.

Interrupts can be attached to a protected procedure handler using a
mechanism we'll discuss shortly. When the corresponding interrupt
occurs, the attached handler is invoked. Any exceptions propagated by
the handler's execution are ignored and do not go past the procedure.

While the protected procedure handler executes, the corresponding
interrupt is blocked. As a consequence, another occurrence of that same
interrupt will not preempt the handler's execution. However, if the
hardware does not allow interrupts to be blocked, no blocking occurs and
a subsequent occurrence would preempt the current execution of the
handler. In that case, your handlers must be written with that
possibility in mind. Most targets do block interrupts so we will
assume that behavior in the following descriptions.

The standard mutually exclusive access provided to the execution of
protected procedures and entries is enforced whether the "call"
originates in hardware, via an interrupt, or in the application
software, via some task. While any protected action in the PO executes,
the corresponding interrupt is blocked, such that another occurrence
will not preempt the execution of that actions' procedure or entry body
execution in the PO.

On some processors blocked interrupts are lost, they do not persist.
However, if the hardware can deliver an interrupt that had been blocked,
the Systems Programming Annex requires the handler to be invoked again
later, subject to the PO semantics described above.

The default treatment for a given interrupt depends on the RTL implementation.
The default may be to jump immediately to system-defined handler that
merely loops forever, thereby "hanging" the system and preventing any
further execution of the application. On a bare-board target that would
be a very common approach. Alternatively the default could be to ignore
the interrupt entirely.

As mentioned earlier, some interrupts may be reserved, meaning that the
application cannot install a replacement handler. For instance, most
bare-board systems include a clock that is driven by a dedicated
interrupt. The application cannot (or at least should not) override the
interrupt handler for that interrupt. The determination of which
interrupts are reserved is RTL-defined. Attempting to attach
a user-defined handler for a reserved interrupt raises Program_Error,
and the existing treatment is unchanged.

Interrupt Management

Ada defines a standard package that provides a primary type for
identifying individual interrupts, as well as subprograms that take a
parameter of that type in order to manage the system's interrupts and
handlers. The package is named Ada.Interrupts, appropriately.

The primary type in that package is named Interrupt_Id and is an
compiler-defined discrete type, meaning that it is either an
integer type (signed or not) or an enumeration type. That representation
is guaranteed so you can be sure that Interrupt_Id can be used,
for example, as the index for an array type.

Package Ada.Interrupts provides functions to query whether a
given interrupt is reserved, or if an interrupt has a handler attached.
Procedures are defined to allow the application to attach and detach
handlers, among other things. These procedures allow the application to
dynamically manage interrupts. For example, when a new external device is
added, perhaps as a "hot spare" replacing a damaged device, or when a
new external device is simply connected to the target, the application
can arrange to handle the new interrupts without having to recompile the
application or restart application execution.

However, typically you will not use these procedures or functions to
manage interrupts. In part that's because the architecture is usually
static, i.e., the handlers are set up once and then never changed. In
that case you won't need to query whether a given exception is reserved
at run-time, or to check whether a handler is attached. You'd know that
already, as part of the system architecture choices. For the same
reasons, another mechanism for attaching handlers is more commonly used,
and will be explained in that section. The package's type
Interrupt_Id, however, will be used extensively.

A child package Ada.Interrupts.Names defines a target-dependent
set of constants providing meaningful names for the Interrupt_Id values
the target supports. Both the number of constants and their names are
defined by the compiler, reflecting the variations in hardware
available. This package and the enclosed constants are used all the
time. For the sake of illustration, here is part of the package
declaration for a Cortex M4F microcontroller supported by GNAT:

package Ada.Interrupts.Names is
 Sys_Tick_Interrupt : constant Interrupt_ID := 1;
 ...
 EXTI0_Interrupt : constant Interrupt_ID := 8;

 DMA1_Stream0_Interrupt : constant Interrupt_ID := 13;
 ...
 HASH_RNG_Interrupt : constant Interrupt_ID := 80;
 ...
end Ada.Interrupts.Names;

Notice HASH_RNG_Interrupt, the name for Interrupt_Id value
80 on this target. That is the interrupt that the on-chip random number
generator hardware uses to signal that a new value is available. We will
use this interrupt in an example at the end of this chapter.

The representation chosen by the compiler for Interrupt_Id
is very likely an integer, as in the above package, so the child package
provides readable names for the numeric values. If Interrupt_Id
is represented as an enumeration type the enumeral values are probably
sufficiently readable, but the child package must be provided by the
vendor nonetheless.

Associating Handlers With Interrupts

As we mentioned above, the Ada standard provides two ways to attach
handlers to interrupts. One is procedural, described earlier. The other
mechanism is automatic, achieved during elaboration of the protected
object enclosing the handler procedure. The behavior is not unlike the
activation of tasks: declared tasks are activated automatically as a
result of their elaboration, whereas dynamically allocated tasks are
activated as a result of their allocations.

We will focus exclusively on the automatic, elaboration-driven
attachment model because that is the more common usage, and as a result,
that is what GNAT supports on bare-board targets. It is also the
mechanism that the standard Ravenscar and Jorvik profiles require. Our examples
are consistent with those targets.

In the elaboration-based attachment model, we specify the interrupt to
be attached to a given protected procedure within a protected object.
This interrupt specification occurs within the enclosing protected
object declaration. (Details in a moment.) When the enclosing PO is
elaborated, the run-time library installs that procedure as the handler
for that interrupt. A given PO may contain one or more interrupt handler
procedures, as well as any other protected subprograms and entries.

In particular, we can associate an interrupt with a protected procedure
by applying the aspect Attach_Handler to that procedure as part
of its declaration, with the Interrupt_Id value as the aspect
parameter. The association can also be achieved via a pragma with the
same name as the aspect. Strictly speaking, the pragma
Attach_Handler is obsolescent, but that just means that there is
a newer way to make the association (i.e., the aspect). The pragma is
not illegal and will remain supported. Because the pragma existed in a
version of Ada prior to aspects you will see a lot of existing code
using the pragma. You should become familiar with it. There's no
language-driven reason to change the source code to use the aspect. New
code should arguably use the aspect, but there's no technical reason to
prefer one over the other.

Here is an example of a protected object with one protected procedure
interrupt handler. It uses the Attach_Handler aspect to tie a
random number generator interrupt to the
RNG_Controller.Interrupt_Handler procedure:

protected RNG_Controller is
 ...
 entry Get_Random (Value : out UInt32);
private

 Last_Sample : UInt32 := 0;
 Buffer : Ring_Buffer;
 Data_Available : Boolean := False;

 procedure Interrupt_Handler with
 Attach_Handler => Ada.Interrupts.Names.HASH_RNG_Interrupt;

end RNG_Controller;

That's all that the developer must do to install the handler. The
compiler and run-time library do the rest, automatically.

The local variables are declared in the private part, as required by the
language, because they are shared data meant to be protected from race
conditions. Therefore, the only compile-time access possible is via visible
subprograms and entries declare in the visible part. Those subprograms
and entries execute with mutually exclusive access so no race conditions
are possible, as guaranteed by the language.

Note that procedure Interrupt_Handler is declared in the private
part of RNG_Controller, rather than the visible part. That
location is purely a matter of choice (unlike the variables), but there
is a good reason to hide it: application software can call an interrupt
handler procedure too. If you don't ever intend for that to happen, have
the compiler enforce your intent. An alert code reader will then recognize that
clients cannot call that procedure. If, on the other hand, the handler is
declared in the visible part, the reader must examine more of the code to
determine whether there are any callers in the application code. Granted, a
software call to an interrupt handler is rare, but not illegal, so you
should state your intent in the code in an enforceable manner.

Be aware that the Ada compiler is allowed to place restrictions on
protected procedure handlers. The compiler can restrict the content of
the procedure body, for example, or it might forbid calls to the handler
from the application software. The rationale is to allow direct
invocation by the hardware, to minimize interrupt latency to the extent
possible.

For completeness, here's the same RNG_Controller protected object
using the pragma instead of the aspect to attach the interrupt to the
handler procedure:

protected RNG_Controller is
 ...
 entry Get_Random (Value : out UInt32);
private

 Last_Sample : UInt32 := 0;
 Buffer : Ring_Buffer;
 Data_Available : Boolean := False;

 procedure Interrupt_Handler;
 pragma Attach_Handler (Interrupt_Handler,
 Ada.Interrupts.Names.HASH_RNG_Interrupt;

end RNG_Controller;

As you can see, there isn't much difference. The aspect is somewhat more
succinct. (The choice of where to declare the procedure remains the
same.)

In this attachment model, protected declarations containing interrupt
handlers must be declared at the library level. That means they must be
declared in library packages. (Protected objects cannot
be library units themselves, just as tasks cannot. They must be declared
within some other unit.) Here is the full declaration for the
RNG_Controller PO declared within a package — in this case
within a package body:

with Ada.Interrupts.Names;
with Bounded_Ring_Buffers;

package body STM32.RNG.Interrupts is

 package UInt32_Buffers is new Bounded_Ring_Buffers (Content => UInt32);
 use UInt32_Buffers;

 protected RNG_Controller is
 ...
 entry Get_Random (Value : out UInt32);
 private

 Last_Sample : UInt32 := 0;
 Samples : Ring_Buffer (Upper_Bound => 9); -- arbitrary
 Data_Available : Boolean := False;

 procedure Interrupt_Handler with
 Attach_Handler => Ada.Interrupts.Names.HASH_RNG_Interrupt;

 end RNG_Controller;

 ...

end STM32.RNG.Interrupts;

But note that we're talking about protected declarations, a technical
term that encompasses not only protected types but also
anonymously-typed protected objects. In the RNG_Controller
example, the PO does not have an explicit type declared; it is
anonymously-typed. (Task objects can also be anonymously-typed.) You
don't have to use a two-step process of first declaring the type and
then an object of the type. If you only need one, no explicit type is
required.

Although interrupt handler protected types must be declared at library
level, the Ada model allows you to have an object of the type declared
elsewhere, not necessarily at library level. However, note that the
Ravenscar and Jorvik profiles require protected interrupt handler
objects — anonymously-typed or not — to be declared at the
library level too, for the sake of analysis. The profiles also require
the elaboration-based attachment mechanism we have shown. For the sake
of the widest applicability, and because with GNAT the most likely use-case
involves either Ravenscar or Jorvik, we are following those restrictions
in our examples.

Interrupt Priorities

Many (but not all) processors assign priorities to interrupts, with
blocking and preemption among priorities of different levels, much like
preemptive priority-based task semantics. Consequently, the priority
semantics for interrupt handlers are as if a hardware "task," executing
at an interrupt level priority, calls the protected procedure handler.

Interrupt handlers in Ada are protected procedures, which do not have
priorities individually, but the enclosing protected object can be
assigned a priority that will apply to the handler(s) when executing.

Therefore, protected objects can have priorities assigned using values
of subtype System.Interrupt_Priority, which are high enough to
require the blocking of one or more interrupts. The specific values
among the priority subtypes are not standardized but the intent is that
interrupt priorities are higher (more urgent) than non-interrupt
priorities, as if they are declared like so in package System:

subtype Any_Priority is Integer range compiler-defined;

subtype Priority is Any_Priority
 range Any_Priority'First .. compiler-defined;

subtype Interrupt_Priority is Any_Priority
 range Priority'Last + 1 .. Any_Priority'Last;

For example, here are the subtype declarations in the GNAT
compiler for an Arm Cortex M4 target:

subtype Any_Priority is Integer range 0 .. 255;
subtype Priority is Any_Priority range Any_Priority'First .. 240;
subtype Interrupt_Priority is Any_Priority range
 Priority'Last + 1 .. Any_Priority'Last;

Although the ranges are compiler-defined, when the Systems
Programming Annex is implemented the range of
System.Interrupt_Priority must include at least one value.
Vendors are not required to have a distinct priority value in
Interrupt_Priority for each hardware interrupt possible on a
given target. On a bare-metal target, they probably will have a
one-to-one correspondence, but might not in a target with an RTOS or
host OS.

A PO containing an interrupt handler procedure must be given a priority
within the Interrupt_Priority subtype's range. To do so, we apply
the aspect Interrupt_Priority to the PO. Perhaps confusingly, the
aspect and the value's required subtype have the same name.

with Ada.Interrupts.Names; use Ada.Interrupts.Names;
with System; use System;

package Gyro_Interrupts is

 protected Handler with
 Interrupt_Priority => Interrupt_Priority'Last
 is
 private
 procedure IRQ_Handler;
 pragma Attach_Handler (IRQ_Handler, EXTI2_Interrupt);
 end Handler;

end Gyro_Interrupts;

The code above uses the highest (most urgent) interrupt priority value
but some other value could be used instead, as long as it is in the
Interrupt_Priority subtype's range. Constraint_Error is
raised otherwise.

There is also an alternative pragma, now obsolescent, with the same name
as the aspect and subtype. Here is an example:

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

package Gyro_Interrupts is

 protected Handler is
 pragma Interrupt_Priority (245);
 private
 procedure IRQ_Handler;
 pragma Attach_Handler (IRQ_Handler, EXTI2_Interrupt);
 end Handler;

end Gyro_Interrupts;

In the above we set the interrupt priority to 245, presumably a value
conformant with this specific target. You should be familiar with this
pragma too, because there is some much existing code using it. New code
should use the aspect, ideally.

If we don't specify the priority for some protected object containing an
interrupt handler (using either the pragma or the aspect), the initial
priority of protected objects of that type is compiler-defined,
but within the range of the subtype Interrupt_Priority. Generally
speaking, you should specify the priorities per those of the interrupts
handled, assuming they have distinct values, so that you can reason
concretely about the relative blocking behavior at run-time.

Note that the parameter specifying the priority is optional for the
Interrupt_Priority pragma. When none is given, the effect is as
if the value Interrupt_Priority'Last was specified.

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

package Gyro_Interrupts is

 protected Handler is
 pragma Interrupt_Priority;
 private
 ...
 end Handler;

end Gyro_Interrupts;

No pragma parameter is given in the above, therefore
Gyro_Interrupts.Handler executes at Interrupt_Priority'Last
when invoked.

While an interrupt handler is executing, the corresponding interrupt is
blocked. Therefore, the same interrupt will not be delivered again while
the handler is executing. Plus, the protected object semantics mean that
no software caller is also concurrently executing within the protected
object. So no data race conditions are possible. If the system does not
support blocking, however, the interrupt is not blocked when the handler
executes.

In addition, when interrupt priorities are involved, hardware blocking
typically extends to interrupts of equal or lower priority.

You should understand that a higher-priority interrupt could preempt the
execution of a lower-priority interrupt's handler. Handlers do not
define "critical sections" in which the processor cannot be preempted at
all (other than the case of the highest priority interrupt).

Preemption does not cause data races, usually, because the typical case
is to have a given protected object handle only one interrupt. It
follows that only that one interrupt handler has visibility to the
protected data in any given protected object, therefore only that one
handler can update it. Any preempting handler would be in a different
protected object, hence the preempting handler could not possibly
update the data in the preempted handler's PO. No data race condition is
possible.

However, protected objects can contain handlers for more than one
interrupt. In that case, depending on the priorities, the execution of a
higher-priority handler could preempt the execution of a lower priority
handler in that same PO. Because each handler in the PO can update the
local protected data, these data are effectively shared among
asynchronous writers. Data race conditions are, as a result, possible.

The solution to the case of multiple handlers in a single PO is to
assign the PO a priority not less than the highest of the interrupt
priorities for which it contains handlers. That's known as the "ceiling
priority" and works the same as when applying the ceiling for the
priorities of caller tasks in the software. Then, whenever any interrupt
handled by that PO is delivered, the handler executes at the ceiling
priority, not necessarily the priority of the specific interrupt
handled. All interrupts at a priority equal or lower than the PO
priority are blocked, so no preemption by another handler within that
same PO is possible. As a result, a handler for a higher priority
interrupt must be in a different PO. If that higher priority handler is
invoked, it can indeed preempt the execution of the handler for the lower
priority interrupt in another PO. But because these two handlers will
not be in the same PO, they will not share the data, so again no race
condition is possible.

Note also that software callers will execute at the PO priority as well,
so their priority may be increased during that execution. As you can
see, the Ceiling Priority Protocol integrates application-level
priorities, for tasks and protected objects, with interrupt-level
priorities for interrupt handlers.

The Ceiling Locking Protocol is requested by specifying the
Ceiling_Locking policy (see ARM D.3) to the pragma
Locking_Policy. Both Ravenscar and Jorvik do so, automatically.

Common Design Idioms

In this section we explore some of the common idioms used when writing
interrupt handlers in Ada.

Parameterizing Handlers

Suppose we have more than one instance of a kind of device. For
example, multiple DMA controllers are often available on a
System-on-Chip such as an Arm microcontroller. We can simplify our
code by defining a device driver type, with one object of
the type per supported hardware device. This is the same abstract data
type (ADT) approach we'd take for software objects in application code,
and in general for device drivers when multiple hardware instances are
available.

We can also apply the ADT approach to interrupt handlers when we have
multiple devices of a given kind that can generate interrupts. In this
case, the type will be fully implemented as a protected type containing
at least one interrupt handling procedure, with or without additional
protected procedures or entries.

As is the case with abstract data types in general, we can tailor each
object with discriminants defined with the type, in order to
"parameterize" the type and thus allow distinct objects to have
different characteristics. For example, we might define a bounded buffer
ADT with a discriminant specifying the upper bound, so that distinct
objects of the single type could have different bounds. In the case of
hardware device instances, one of these parameters will often specify
the device being driven, but we can also specify other device-specific
characteristics. In particular, for interrupt handler types both the
interrupt to handle and the interrupt priority can be discriminants.
That's possible because the aspects/pragmas do not require their values
to be specified via literals, unlike what was done in the
RNG_Controller example above.

For example, here is the declaration for an interrupt handler ADT named
DMA_Interrupt_Controller. This type manages the interrupts for a
given DMA device, known as a DMA_Controller. Type
DMA_Controller is itself an abstract data type, declared
elsewhere.

protected type DMA_Interrupt_Controller
 (Controller : not null access DMA_Controller;
 Stream : DMA_Stream_Selector;
 IRQ : Ada.Interrupts.Interrupt_Id;
 IRQ_Priority : System.Interrupt_Priority)
with
 Interrupt_Priority => IRQ_Priority
is

 procedure Start_Transfer
 (Source : Address;
 Destination : Address;
 Data_Count : UInt16);

 procedure Abort_Transfer (Result : out DMA_Error_Code);

 procedure Clear_Transfer_State;

 function Buffer_Error return Boolean;

 entry Wait_For_Completion (Status : out DMA_Error_Code);

private

 procedure Interrupt_Handler with Attach_Handler => IRQ;

 No_Transfer_In_Progess : Boolean := True;
 Last_Status : DMA_Error_Code := DMA_No_Error;
 Had_Buffer_Error : Boolean := False;

end DMA_Interrupt_Controller;

In the above, the Controller discriminant provides an access
value designating the specific DMA_Controller device instance to
be managed. Each DMA device supports multiple independent conversion
"streams" so the Stream discriminant specifies that
characteristic. The IRQ and IRQ_Priority discriminants
specify the handler values for that specific device and stream. These
discriminant values are then used in the Interrupt_Priority
pragma and the Attach_Handler aspect in the private part. ("IRQ"
is a command handler name across programming languages, and is an
abbreviation for "interrupt request.")

Here then are the declarations for two instances of the interrupt
handler type:

DMA2_Stream0 : DMA_Interrupt_Controller
 (Controller => DMA_2'Access,
 Stream => Stream_0,
 IRQ => DMA2_Stream0_Interrupt,
 IRQ_Priority => Interrupt_Priority'Last);

DMA2_Stream5 : DMA_Interrupt_Controller
 (Controller => DMA_2'Access,
 Stream => Stream_5,
 IRQ => DMA2_Stream5_Interrupt,
 IRQ_Priority => Interrupt_Priority'Last);

In the above, both objects DMA2_Stream0 and DMA2_Stream5
are associated with the same object named DMA2, an instance of
the DMA_Controller type. The difference in the objects is the
stream that generates the interrupts they handle. One object handles
Stream_0 interrupts and the other handles those from
Stream_5. Package Ada.Interrupts.Names for this target
(for GNAT) declares distinct names for the streams and devices
generating the interrupts, hence DMA2_Stream0_Interrupt and
DMA2_Stream5_Interrupt.

On both objects the priority is the highest interrupt priority (and
hence the highest overall), Interrupt_Priority'Last. That will
work, but of course all interrupts will be blocked during the execution
of the handler, as well as the execution of any other subprogram or
entry in the same PO. That means that the clock interrupt is blocked for
that interval, for example. We use that interrupt value in our
demonstrations for expedience, but in a real application you'd almost
certainly use a lower value specific to the interrupt handled.

We could reduce the number of discriminants, and also make the code more
robust, by taking advantage of the requirement that type
Interrupt_Id be a discrete type. As such, it can be used as
the index type into arrays. Here is a driver example with only the
Interrupt_Id discriminant required:

Device_Priority : constant array (Interrupt_Id) of Interrupt_Priority := (...);

protected type Device_Interface
 (IRQ : Interrupt_Id)
with
 Interrupt_Priority => Device_Priority (IRQ)
is
 procedure Handler with Attach_Handler => IRQ;
 ...
end Device_Interface;

Now we use the one IRQ discriminant both to assign the priorities
for distinct objects and to attach their handler procedures.

Multi-Level Handlers

Interrupt handlers are intended to be very brief, in part because they
prevent lower priority interrupts and application tasks from executing.

However, complete interrupt processing may require more than just the
short protected procedure handler’s activity. Therefore, two levels of
handling are common: the protected procedure interrupt handler and a
task. The handler does the least possible and then signals the task to
do the rest.

Of course, sometimes the handler does everything required and just needs
to signal the application. In that case, the awakened task does no
further "interrupt processing" but simply uses the result.

Regardless, the same issues apply: 1) How do application tasks synchronize
with the handlers? Assuming the task is not polling the event, at some
point the task must stop what it was doing and suspend, waiting for the
handler to signal it. 2) Once synchronized, how can the handlers pass
data to the tasks?

Using protected objects for interrupt handling provides an efficient
mechanism that elegantly addresses both issues. In addition, when data
communication is not required, another standard language mechanism is
available. These give rise to two design idioms. We will explore both.

In the first idiom, the protected object contains a protected entry as
well as the interrupt handler procedure. The task suspends on the entry
when ready for the handler results, controlled by the barrier condition
as usual. The protected handler procedure responds to interrupts,
managing data (if any) as required. When ready, based on what the
handler does, the handler sets the entry barrier to True. That allows
the suspended task to execute the entry body. The entry body can do
whatever is required, possibly just copying the local protected data to
the entry parameters. Of course, the entry may be used purely for
synchronizing with the handler, i.e., suspending and resuming the task,
in which case there would be no parameters passed.

The image below depicts this design.

[image: Diagram for Design Idiom #1]
The DMA_Interrupt_Controller described earlier actually uses this
design.

protected type DMA_Interrupt_Controller
 (Controller : not null access DMA_Controller;
 Stream : DMA_Stream_Selector;
 IRQ : Ada.Interrupts.Interrupt_Id;
 IRQ_Priority : System.Interrupt_Priority)
with
 Interrupt_Priority => IRQ_Priority
is

 procedure Start_Transfer
 (Source : Address;
 Destination : Address;
 Data_Count : UInt16);

 procedure Abort_Transfer (Result : out DMA_Error_Code);

 procedure Clear_Transfer_State;

 function Buffer_Error return Boolean;

 entry Wait_For_Completion (Status : out DMA_Error_Code);

private

 procedure Interrupt_Handler with Attach_Handler => IRQ;

 No_Transfer_In_Progess : Boolean := True;
 Last_Status : DMA_Error_Code := DMA_No_Error;
 Had_Buffer_Error : Boolean := False;

end DMA_Interrupt_Controller;

The client application code (task) calls procedure
Start_Transfer to initiate the DMA transaction, then presumably
goes off to accomplish something else, and eventually calls the
Wait_For_Completion entry. That call blocks the task if the
device has not yet completed the DMA transfer. The interrupt handler
procedure, cleverly named Interrupt_Handler, handles the
interrupts, one of which indicates that the transfer has completed.
Device errors also generate interrupts so the handler detects them and
acts accordingly. Eventually, the handler sets the barrier to True and
the task can get the status via the entry parameter.

procedure Start_Transfer
 (Source : Address;
 Destination : Address;
 Data_Count : UInt16)
is
begin
 No_Transfer_In_Progess := False;
 Had_Buffer_Error := False;
 Clear_All_Status (Controller.all, Stream);
 Start_Transfer_with_Interrupts
 (Controller.all,
 Stream,
 Source,
 ...,
 Enabled_Interrupts =>
 (Half_Transfer_Complete_Interrupt => False,
 others => True));
end Start_Transfer;

entry Wait_For_Completion
 (Status : out DMA_Error_Code)
when
 No_Transfer_In_Progress
is
begin
 Status := Last_Status;
end Wait_For_Completion;

In the above, the entry barrier consists of the Boolean variable
No_Transfer_In_Progress. Procedure Start_Transfer first
sets that variable to False so that a caller to
Wait_For_Completion will suspend until the transaction completes
one way or the other. Eventually, the handler sets
No_Transfer_In_Progress to True.

procedure Interrupt_Handler is
 subtype Checked_Status_Flag is DMA_Status_Flag with
 Static_Predicate => Checked_Status_Flag /= Half_Transfer_Complete_Indicated;
begin
 for Flag in Checked_Status_Flag loop
 if Status (Controller.all, Stream, Flag) then
 case Flag is
 when FIFO_Error_Indicated =>
 Last_Status := DMA_FIFO_Error;
 Had_Buffer_Error := True;
 No_Transfer_In_Progess := not Enabled (Controller.all, Stream);
 when Direct_Mode_Error_Indicated =>
 Last_Status := DMA_Direct_Mode_Error;
 No_Transfer_In_Progess := not Enabled (Controller.all, Stream);
 when Transfer_Error_Indicated =>
 Last_Status := DMA_Transfer_Error;
 No_Transfer_In_Progess := True;
 when Transfer_Complete_Indicated =>
 Last_Status := DMA_No_Error;
 No_Transfer_In_Progess := True;
 end case;
 Clear_Status (Controller.all, Stream, Flag);
 end if;
 end loop;
end Interrupt_Handler;

This device driver doesn't bother with interrupts indicating that
transfers are half-way complete so that specific status flag is
ignored. In response to an interrupt, the handler checks each status
flag to determine what happened. Note the resulting assignments for
both the protected variables Last_Status and
No_Transfer_In_Progess. The variable
No_Transfer_In_Progess controls the entry, and
Last_Status is passed to the caller via the entry formal
parameter. When the interrupt handler exits, the resulting protected
action allows the now-enabled entry call to execute.

In the second design idiom, the handler again synchronizes
with the application task, but not using a protected entry.

The image below depicts this design.

[image: Diagram for Design Idiom #2]
In this approach, the task synchronizes with the handler using a
Suspension_Object variable. The type Suspension_Object is
defined in the language standard package
Ada.Synchronous_Task_Control. Essentially, the type provides a
thread-safe Boolean flag. Callers can suspend themselves (hence the
package name) until another task resumes them by setting the flag to
True. Here's the package declaration, somewhat elided:

package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);

 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 ...
end Ada.Synchronous_Task_Control;

Tasks call Suspend_Until_True to suspend themselves on some
object of the type passed as the parameter. The call suspends the caller
until that object becomes True. If it is already True, the caller
continues immediately. Objects of type Suspension_Object are
automatically set to False initially, and become True via a call
to Set_True. As part of the return from a call to
Suspend_Until_True, the flag is set back to False. As a result,
you probably only need those two subprograms.

The interrupt handler procedure responds to interrupts, eventually
setting some visible Suspension_Object to True so that the caller
will be signaled and resume. Here's an example showing both the protected
object, with handler, and a Suspension_Object declaration:

with Ada.Interrupts.Names; use Ada.Interrupts.Names;
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

package Gyro_Interrupts is

 Data_Available : Suspension_Object;

 protected Handler is
 pragma Interrupt_Priority;
 private
 procedure IRQ_Handler
 with Attach_Handler => EXTI2_Interrupt;
 end Handler;

end Gyro_Interrupts;

In the code above, Gyro_Interrupts.Data_Available is the
Suspension_Object variable visible both to the interrupt handler
PO and the client task.

EXTI2_Interrupt is "external interrupt number 2" on this
particular microcontroller. It is connected to an external device, not
on the SoC itself. Specifically, it is connected to a
L3GD20 MEMS motion sensor[#6],
a three-axis digital output gyroscope. This gyroscope can be
either polled or generate interrupts when ever data are available. The
handler is very simple:

with STM32.EXTI; use STM32.EXTI;

package body Gyro_Interrupts is

 protected body Handler is

 procedure IRQ_Handler is
 begin
 if External_Interrupt_Pending (EXTI_Line_2) then
 Clear_External_Interrupt (EXTI_Line_2);
 Set_True (Data_Available);
 end if;
 end IRQ_Handler;

 end Handler;

end Gyro_Interrupts;

The handler simply clears the interrupt and resumes the caller task via
a call to Set_True on the variable declared in the package spec.

The lack of an entry means that no data can be passed to the task via
entry parameters. It is possible to pass data to the task but doing so
would require an additional protected procedure or function.

The gyroscope hardware device interface is in package L3GD20. Here
are the pertinent parts:

package L3GD20 is

 type Three_Axis_Gyroscope is tagged limited private;

 procedure Initialize
 (This : in out Three_Axis_Gyroscope;
 Port : Any_SPI_Port;
 Chip_Select : Any_GPIO_Point);

 ...

 procedure Enable_Data_Ready_Interrupt (This : in out Three_Axis_Gyroscope);

 ...

 type Angle_Rate is new Integer_16;

 type Angle_Rates is record
 X : Angle_Rate; -- pitch, per Figure 2, pg 7 of the Datasheet
 Y : Angle_Rate; -- roll
 Z : Angle_Rate; -- yaw
 end record with Size => 3 * 16;

 ...

 procedure Get_Raw_Angle_Rates
 (This : Three_Axis_Gyroscope;
 Rates : out Angle_Rates);

 ...

end L3GD20;

With those packages available, we can write a simple main program to use
the gyro. The real demo displayed the readings on an LCD but we've
elided all those irrelevant details:

with Gyro_Interrupts;
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
with L3GD20; use L3GD20;
with STM32.Board;
...

procedure Demo_L3GD20 is

 Axes : L3GD20.Angle_Rates;

 ...

 procedure Await_Raw_Angle_Rates (Rates : out L3GD20.Angle_Rates) is
 begin
 Suspend_Until_True (Gyro_Interrupts.Data_Available);
 L3GD20.Get_Raw_Angle_Rates (STM32.Board.Gyro, Rates);
 end Await_Raw_Angle_Rates;

 ...

begin
 Configure_Gyro;
 Configure_Gyro_Interrupt;
 ...
 loop
 Await_Raw_Angle_Rates (Axes);
 ...
 end loop;
end Demo_L3GD20;

The demo is a main procedure, even though we've been describing the
client application code in terms of tasks. The main procedure is
executed by the implicit "environment task" so it all still works.
Await_Raw_Angle_Rates suspends (if necessary) on
Gyro_Interrupts.Data_Available and then calls
L3GD20.Get_Raw_Angle_Rates to get the rate values.

The operations provided by Suspension_Object are faster than
protected entries, and noticeably so. However, that performance
difference is due to the fact that Suspension_Object provides so
much less capability than entries. In particular, there is no notion of
protected actions, nor expressive entry barriers for condition
synchronization, nor parameters to pass data while synchronized. Most
importantly, there is no caller queue, so at most one caller can be
waiting at a time on any given Suspension_Object variable. You'll
get Program_Error if you try. Protected entries should be your
first design choice. Note that the Ravenscar restrictions can make use
of Suspension_Object much more likely.

Final Points

As you can see, the semantics of protected objects are a good fit for
interrupt handling. However, other forms of handlers are allowed to be
supported. For example, the compiler and RTL for a specific target may
include support for interrupts generated by a device known to be
available with that target. For illustration, let's imagine the target
always has a serial port backed by a UART. In addition to handlers as
protected procedure without parameters, perhaps the compiler and RTL
support interrupt handlers with a single parameter of type Unsigned_8
(or larger) as supported by the UART.

Overall, the interrupt model defined and supported by Ada is quite close
to the canonical model presented by most programming languages, in part
because it matches the model presented by typical hardware.

Footnotes

[#1]
https://en.wikipedia.org/wiki/I%C2%B2C

[#2]
https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter

[#3]
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

[#4]
https://en.wikipedia.org/wiki/Direct_memory_access

[#5]
https://en.wikipedia.org/wiki/Instruction_set_architecture

[#6]
https://www.st.com/en/mems-and-sensors/l3gd20.html

Conclusion

In the introduction to this course, we defined an "embedded system" as a
computer that is part of a larger system, in which the capability to
compute is not the larger system's primary function. These computers are
said to be "embedded" in the larger system. That, in itself, sets this kind
of programming apart from the more typical host-oriented programming. But
the context also implies fewer resources are available, especially memory
and electrical power, as well as processor power. Add to those limitations
a frequent reliability requirement and you have a demanding context for
development.

Using Ada can help you in this context, and for less cost than other
languages, if you use it well. Many industrial organizations developing
critical embedded software use Ada for that reason. Our goal in this course
was to get you started in using it well.

To that end, we spent a lot of time talking about how to use Ada to do low
level programming, such as how to specify the layout of types, how to map
variables of those types to specific addresses, when and how to do
unchecked programming (and how not to), and how to determine the validity
of incoming data. Ada has a lot of support for this activity so there was
much to explore.

Likewise, we examined development using Ada in combination with other
languages, a not uncommon approach. Specifically, we saw how
to interface with code and data written in other languages, and how (and
why) to work with assembly language. Development in just one language is
becoming less common over time so these were important aspects to know.

One of the more distinctive activities of embedded programming involves
interacting with the outside world via embedded devices, such as A/D
converters, timers, actuators, sensors, and so forth. (This can be one
of the more entertaining activities as well.) We covered how to
interact with these memory-mapped devices using representation
specifications, data structures that simplified the functional code, and
time-honored aspects of software engineering, including abstract data types.

Finally, we explored how to handle interrupts in Ada, another
distinctive part of embedded systems programming. As we saw, Ada has
extensive support for handling interrupts, using the same building
blocks — protected objects — used in concurrent programming.
These constructs provide a way to handle interrupts that is as portable
as possible, in what is otherwise a very hardware-specific
endeavor.

In the course, we mentioned a library of freely-available
device drivers in Ada known as the Ada Driver Library (ADL). The ADL is
a good resource for learning how Ada can be used to develop software for
embedded systems using real-world devices and processors. Becoming
familiar with it would be a good place to go next. Contributing to it
would be even better! The ADL is available on GitHub for both
non-proprietary and commercial use here:
https://github.com/AdaCore/Ada_Drivers_Library.

Footnotes

What's New in Ada 2022

Release 2024-03

Mar 30, 2024

Copyright © 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This course presents an overview of the new features of the latest Ada 2022
standard.

This document was written by Maxim Reznik and reviewed by Richard Kenner.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

Contents:

	Introduction
	References

	'Image attribute for any type
	'Image attribute for a value

	'Image attribute for any type

	References

	Redefining the 'Image attribute
	What's the Root_Buffer_Type?

	Outdated draft implementation

	References

	User-Defined Literals
	Turn Ada into JavaScript

	References

	Advanced Array Aggregates
	Square brackets

	Iterated Component Association

	References

	Container Aggregates
	References

	Delta Aggregates
	Delta aggregate for records

	Delta aggregate for arrays

	References

	Target Name Symbol (@)
	Alternatives

	References

	Enumeration representation
	Literal positions

	Representation values

	Before Ada 2022

	References

	Big Numbers
	Big Integers

	Tiny RSA implementation

	Big Reals

	References

	Interfacing C variadic functions
	References

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Introduction

This is a collection of short code examples demonstrating new
features of the Ada 2022 Standard[#1] as they are implemented
in GNAT Ada compiler.

To use some of these features, you may need to use a compiler command
line switch or pragma. Compilers starting with GNAT Community Edition
2021[#2] or GCC 11[#3] use pragma Ada_2022; or the -gnat2022
switch. Older compilers use pragma Ada_2020; or
-gnat2020. To use the square brackets syntax or 'Reduce
expressions, you need pragma Extensions_Allowed (On); or the
-gnatX switch.

References

	Draft Ada 2022 Standard[#4]

	Ada 202x support in GNAT[#5] blog post

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-TTL.html

[#2]
https://blog.adacore.com/gnat-community-2021-is-here

[#3]
https://gcc.gnu.org/gcc-11/

[#4]
http://www.ada-auth.org/standards/22aarm/html/AA-TTL.html

[#5]
https://blog.adacore.com/ada-202x-support-in-gnat

'Image attribute for any type

Note

Attribute 'Image for any type is supported by

	GNAT Community Edition 2020 and latter

	GCC 11

'Image attribute for a value

Since the publication of the Technical Corrigendum 1[#1] in February
2016, the 'Image attribute can now be applied to a value. So
instead of My_Type'Image (Value), you can just write
Value'Image, as long as the Value is a name[#2]. These two
statements are equivalent:

Ada.Text_IO.Put_Line (Ada.Text_IO.Page_Length'Image);

Ada.Text_IO.Put_Line
 (Ada.Text_IO.Count'Image (Ada.Text_IO.Page_Length));

'Image attribute for any type

In Ada 2022, you can apply the 'Image attribute to any type,
including records, arrays, access types, and private types. Let's see how
this works. We'll define array, record, and access types and corresponding
objects and then convert these objects to strings and print them:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO;
 4
 5procedure Main is
 6 type Vector is array (Positive range <>) of Integer;
 7
 8 V1 : aliased Vector := [1, 2, 3];
 9
10 type Text_Position is record
11 Line, Column : Positive;
12 end record;
13
14 Pos : constant Text_Position := (Line => 10, Column => 3);
15
16 type Vector_Access is access all Vector;
17
18 V1_Ptr : constant Vector_Access := V1'Access;
19
20begin
21 Ada.Text_IO.Put_Line (V1'Image);
22 Ada.Text_IO.Put_Line (Pos'Image);
23 Ada.Text_IO.New_Line;
24 Ada.Text_IO.Put_Line (V1_Ptr'Image);
25end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Image_Attribute
MD5: 47945f0f8a4ba37b838f87b7e5acaa49

Runtime output

[1, 2, 3]

(LINE => 10,
 COLUMN => 3)

(access 7ffd3b418af8)

$ gprbuild -q -P main.gpr
 Build completed successfully.
$./main
 [1, 2, 3]
 (LINE => 10,
 COLUMN => 3)
 (access 7fff64b23988)

Note the square brackets in the array image output. In Ada 2022, array
aggregates could be written this way!

References

	ARM 4.10 Image Attributes[#3]

	AI12-0020-1[#4]

Footnotes

[#1]
https://reznikmm.github.io/ada-auth/rm-4-NC/RM-0-1.html

[#2]
https://reznikmm.github.io/ada-auth/rm-4-NC/RM-4-1.html#S0091

[#3]
http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html

[#4]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0020-1.txt

Redefining the 'Image attribute

In Ada 2022, you can redefine 'Image attribute for your type,
though the syntax to do this has been changed several times. Let's see
how it works in GNAT Community 2021.

Note

Redefining attribute 'Image is supported by

	GNAT Community Edition 2021 (using Text_Buffers)

	GNAT Community Edition 2020 (using Text_Output.Utils)

	GCC 11 (using Text_Output.Utils)

In our example, let's redefine the 'Image attribute for a
location in source code. To do this, we provide a new Put_Image
aspect for the type:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO;
 4with Ada.Strings.Text_Buffers;
 5
 6procedure Main is
 7
 8 type Source_Location is record
 9 Line : Positive;
10 Column : Positive;
11 end record
12 with Put_Image => My_Put_Image;
13
14 procedure My_Put_Image
15 (Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
16 Value : Source_Location);
17
18 procedure My_Put_Image
19 (Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
20 Value : Source_Location)
21 is
22 Line : constant String := Value.Line'Image;
23 Column : constant String := Value.Column'Image;
24 Result : constant String :=
25 Line (2 .. Line'Last) & ':' & Column (2 .. Column'Last);
26 begin
27 Output.Put (Result);
28 end My_Put_Image;
29
30 Line_10 : constant Source_Location := (Line => 10, Column => 1);
31
32begin
33 Ada.Text_IO.Put_Line (Line_10'Image);
34end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Image_Redefine
MD5: a4a6df87eea66d0a2bcaac9c4cccbe4a

Runtime output

10:1

What's the Root_Buffer_Type?

Let's see how it's defined in the Ada.Strings.Text_Buffers package.

type Root_Buffer_Type is abstract tagged limited private;

procedure Put
 (Buffer : in out Root_Buffer_Type;
 Item : in String) is abstract;

In addition to Put, there are also Wide_Put,
Wide_Wide_Put, Put_UTF_8, Wide_Put_UTF_16. And
also New_Line, Increase_Indent, Decrease_Indent.

Outdated draft implementation

GNAT Community Edition 2020 and GCC 11 both provide a draft
implementation that's incompatible with the Ada 2022 specification.
For those versions, My_Put_Image looks like:

procedure My_Put_Image
 (Sink : in out Ada.Strings.Text_Output.Sink'Class;
 Value : Source_Location)
is
 Line : constant String := Value.Line'Image;
 Column : constant String := Value.Column'Image;
 Result : constant String :=
 Line (2 .. Line'Last) & ':' & Column (2 .. Column'Last);
begin
 Ada.Strings.Text_Output.Utils.Put_UTF_8 (Sink, Result);
end My_Put_Image;

References

	ARM 4.10 Image Attributes[#1]

	AI12-0020-1[#2]

	AI12-0384-2[#3]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0020-1.TXT

[#3]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/AI12-0384-2.TXT

User-Defined Literals

Note

User-defined literals are supported by

	GNAT Community Edition 2020

	GCC 11

In Ada 2022, you can define string, integer, or real literals for your
types. The compiler will convert such literals to your type at run
time using a function you provide. To do so, specify one or more new
aspects:

	Integer_Literal

	Real_Literal

	String_Literal

For our example, let's define all three for a simple type and see how
they work. For simplicity, we use a Wide_Wide_String component
for the internal representation:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Wide_Wide_Text_IO;
 4with Ada.Characters.Conversions;
 5
 6procedure Main is
 7
 8 type My_Type (Length : Natural) is record
 9 Value : Wide_Wide_String (1 .. Length);
10 end record
11 with String_Literal => From_String,
12 Real_Literal => From_Real,
13 Integer_Literal => From_Integer;
14
15 function From_String (Value : Wide_Wide_String) return My_Type is
16 ((Length => Value'Length, Value => Value));
17
18 function From_Real (Value : String) return My_Type is
19 ((Length => Value'Length,
20 Value => Ada.Characters.Conversions.To_Wide_Wide_String (Value)));
21
22 function From_Integer (Value : String) return My_Type renames From_Real;
23
24 procedure Print (Self : My_Type) is
25 begin
26 Ada.Wide_Wide_Text_IO.Put_Line (Self.Value);
27 end Print;
28
29begin
30 Print ("Test ""string""");
31 Print (123);
32 Print (16#DEAD_BEEF#);
33 Print (2.99_792_458e+8);
34end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.User_Defined_Literals
MD5: 3a4a12aa148b6845a1130e818e16c405

Runtime output

Test "string"
123
16#DEAD_BEEF#
2.99_792_458e+8

As you see, real and integer literals are converted to strings while
preserving the formatting in the source code, while string literals
are decoded: From_String is passed the specified string value.
In all cases, the compiler translates these literals into function
calls.

Turn Ada into JavaScript

Do you know that '5'+3 in JavaScript is 53?

> '5'+3
'53'

Now we can get the same result in Ada! But before we do, we need to
define a custom + operator:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Wide_Wide_Text_IO;
 4with Ada.Characters.Conversions;
 5
 6procedure Main is
 7
 8 type My_Type (Length : Natural) is record
 9 Value : Wide_Wide_String (1 .. Length);
10 end record
11 with String_Literal => From_String,
12 Real_Literal => From_Real,
13 Integer_Literal => From_Integer;
14
15 function "+" (Left, Right : My_Type) return My_Type is
16 (Left.Length + Right.Length, Left.Value & Right.Value);
17
18 function From_String (Value : Wide_Wide_String) return My_Type is
19 ((Length => Value'Length, Value => Value));
20
21 function From_Real (Value : String) return My_Type is
22 ((Length => Value'Length,
23 Value => Ada.Characters.Conversions.To_Wide_Wide_String (Value)));
24
25 function From_Integer (Value : String) return My_Type renames From_Real;
26
27 procedure Print (Self : My_Type) is
28 begin
29 Ada.Wide_Wide_Text_IO.Put_Line (Self.Value);
30 end Print;
31
32begin
33 Print ("5" + 3);
34end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.User_Defined_Literals_JS
MD5: 9f41f61b1f4bc03cbe245cd8e0288e4f

Runtime output

53

Jokes aside, this feature is very useful. For example it allows a
"native-looking API" for big integers.

References

	ARM 4.2.1 User-Defined Literals[#1]

	AI12-0249-1[#2]

	AI12-0342-1[#3]

Footnotes

[#1]
http://www.ada-auth.org/standards/22rm/html/RM-4-2-1.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0249-1.TXT

[#3]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0342-1.TXT

Advanced Array Aggregates

Note

These array aggregates are supported by

	GNAT Community Edition 2020

	GCC 11

Square brackets

In Ada 2022, you can use square brackets in array aggregates. Using
square brackets simplifies writing both empty aggregates and
single-element aggregates. Consider this:

show_square_brackets.ads

 1pragma Ada_2022;
 2pragma Extensions_Allowed (On);
 3
 4package Show_Square_Brackets is
 5
 6 type Integer_Array is array (Positive range <>) of Integer;
 7
 8 Old_Style_Empty : Integer_Array := (1 .. 0 => <>);
 9 New_Style_Empty : Integer_Array := [];
10
11 Old_Style_One_Item : Integer_Array := (1 => 5);
12 New_Style_One_Item : Integer_Array := [5];
13
14end Show_Square_Brackets;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Square_Brackets
MD5: fb4638717d4a12c1dae8e646705ddf17

Short summary for parentheses and brackets

	Record aggregates use parentheses

	Container aggregates use square brackets

	Array aggregates can use both square brackets and parentheses, but
parentheses usage is obsolescent

Iterated Component Association

There is a new kind of component association:

Vector : Integer_Array := [for J in 1 .. 5 => J * 2];

This association starts with for keyword, just like a quantified
expression. It declares an index parameter that you can use in the
computation of a component.

Iterated component associations can nest and can be nested in another
association (iterated or not). Here we use this to define a square matrix:

Matrix : array (1 .. 3, 1 .. 3) of Positive :=
 [for J in 1 .. 3 =>
 [for K in 1 .. 3 => J * 10 + K]];

Iterated component associations in this form provide both element indices
and values, just like named component associations:

Data : Integer_Array (1 .. 5) :=
 [for J in 2 .. 3 => J, 5 => 5, others => 0];

Here Data contains (0, 2, 3, 0, 5), not (2, 3, 5, 0, 0).

Another form of iterated component association corresponds to a positional
component association and provides just values, but no element indices:

Vector_2 : Integer_Array := [for X of Vector => X / 2];

You cannot mix these forms in a single aggregate.

It's interesting that such aggregates were originally proposed more than 25
years ago!

Complete code snippet:

show_iterated_component_association.adb

 1pragma Ada_2022;
 2pragma Extensions_Allowed (On); -- for square brackets
 3
 4with Ada.Text_IO;
 5
 6procedure Show_Iterated_Component_Association is
 7
 8 type Integer_Array is array (Positive range <>) of Integer;
 9
10 Old_Style_Empty : Integer_Array := (1 .. 0 => <>);
11 New_Style_Empty : Integer_Array := [];
12
13 Old_Style_One_Item : Integer_Array := (1 => 5);
14 New_Style_One_Item : Integer_Array := [5];
15
16 Vector : constant Integer_Array := [for J in 1 .. 5 => J * 2];
17
18 Matrix : constant array (1 .. 3, 1 .. 3) of Positive :=
19 [for J in 1 .. 3 =>
20 [for K in 1 .. 3 => J * 10 + K]];
21
22 Data : constant Integer_Array (1 .. 5) :=
23 [for J in 2 .. 3 => J, 5 => 5, others => 0];
24
25 Vector_2 : constant Integer_Array := [for X of Vector => X / 2];
26begin
27 Ada.Text_IO.Put_Line (Vector'Image);
28 Ada.Text_IO.Put_Line (Matrix'Image);
29 Ada.Text_IO.Put_Line (Data'Image);
30 Ada.Text_IO.Put_Line (Vector_2'Image);
31end Show_Iterated_Component_Association;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Iterated_Component_Association
MD5: 05f7fc94e3f4d79b7ca25de4d7dedf4f

Runtime output

[2, 4, 6, 8, 10]

[
 [11, 12, 13],

 [21, 22, 23],

 [31, 32, 33]]

[0, 2, 3, 0, 5]

[1, 2, 3, 4, 5]

References

	ARM 4.3.3 Array Aggregates[#1]

	AI12-0212-1[#2]

	AI12-0306-1[#3]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-4-3-3.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0212-1.TXT

[#3]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0306-1.TXT

Container Aggregates

Note

Container aggregates are supported by

	GNAT Community Edition 2021

	GCC 11

Ada 2022 introduces container aggregates, which can be used to easily create
values for vectors, lists, maps, and other aggregates. For containers such
as maps, the aggregate must use named assоciations to provide keys and values.
For other containers it uses positional assоciations. Only square brackets
are allowed. Here's an example:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO;
 4with Ada.Containers.Vectors;
 5with Ada.Containers.Ordered_Maps;
 6
 7procedure Main is
 8
 9 package Int_Vectors is new Ada.Containers.Vectors
10 (Positive, Integer);
11
12 X : constant Int_Vectors.Vector := [1, 2, 3];
13
14 package Float_Maps is new Ada.Containers.Ordered_Maps
15 (Integer, Float);
16
17 Y : constant Float_Maps.Map := [-10 => 1.0, 0 => 2.5, 10 => 5.51];
18begin
19 Ada.Text_IO.Put_Line (X'Image);
20 Ada.Text_IO.Put_Line (Y'Image);
21end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Container_Aggregates_1
MD5: dd1dd78890d4bf6c78b79d56abba332d

Runtime output

[1, 2, 3]

[-10 => 1.00000E+00, 0 => 2.50000E+00, 10 => 5.51000E+00]

At run time, the compiler creates an empty container and populates it with
elements one by one. If you define a new container type, you can specify a
new Aggregate aspect to enable container aggregates for your
container and let the compiler know what subprograms to use to construct the
aggregate:

main.adb

 1pragma Ada_2022;
 2
 3procedure Main is
 4
 5 package JSON is
 6 type JSON_Value is private
 7 with Integer_Literal => To_JSON_Value;
 8
 9 function To_JSON_Value (Text : String) return JSON_Value;
10
11 type JSON_Array is private
12 with Aggregate => (Empty => New_JSON_Array,
13 Add_Unnamed => Append);
14
15 function New_JSON_Array return JSON_Array;
16
17 procedure Append
18 (Self : in out JSON_Array;
19 Value : JSON_Value) is null;
20
21 private
22 type JSON_Value is null record;
23 type JSON_Array is null record;
24
25 function To_JSON_Value (Text : String) return JSON_Value
26 is (null record);
27
28 function New_JSON_Array return JSON_Array is (null record);
29 end JSON;
30
31 List : JSON.JSON_Array := [1, 2, 3];
32 ------------------------------------
33begin
34 -- Equivalent old initialization code
35 List := JSON.New_JSON_Array;
36 JSON.Append (List, 1);
37 JSON.Append (List, 2);
38 JSON.Append (List, 3);
39end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Container_Aggregates_2
MD5: 9cf1fefa4a725083c50794146d5cbde7

The equivalent for maps is:

main.adb

 1pragma Ada_2022;
 2
 3procedure Main is
 4
 5 package JSON is
 6 type JSON_Value is private
 7 with Integer_Literal => To_JSON_Value;
 8
 9 function To_JSON_Value (Text : String) return JSON_Value;
10
11 type JSON_Object is private
12 with Aggregate => (Empty => New_JSON_Object,
13 Add_Named => Insert);
14
15 function New_JSON_Object return JSON_Object;
16
17 procedure Insert
18 (Self : in out JSON_Object;
19 Key : Wide_Wide_String;
20 Value : JSON_Value) is null;
21
22 private
23 type JSON_Value is null record;
24 type JSON_Object is null record;
25
26 function To_JSON_Value (Text : String) return JSON_Value
27 is (null record);
28
29 function New_JSON_Object return JSON_Object is (null record);
30 end JSON;
31
32 Object : JSON.JSON_Object := ["a" => 1, "b" => 2, "c" => 3];
33 --
34begin
35 -- Equivalent old initialization code
36 Object := JSON.New_JSON_Object;
37 JSON.Insert (Object, "a", 1);
38 JSON.Insert (Object, "b", 2);
39 JSON.Insert (Object, "c", 3);
40end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Container_Aggregates_3
MD5: 758ced718aa9a4eefa32325543eb3b1e

You can't specify both Add_Named and Add_Unnamed subprograms
for the same type. This prevents you from defining JSON_Value with
both array and object aggregates present. But we can define conversion
functions for array and object and get code almost as dense as the same
code in native JSON. For example:

main.adb

 1pragma Ada_2022;
 2
 3procedure Main is
 4
 5 package JSON is
 6 type JSON_Value is private
 7 with Integer_Literal => To_Value, String_Literal => To_Value;
 8
 9 function To_Value (Text : String) return JSON_Value;
10 function To_Value (Text : Wide_Wide_String) return JSON_Value;
11
12 type JSON_Object is private
13 with Aggregate => (Empty => New_JSON_Object,
14 Add_Named => Insert);
15
16 function New_JSON_Object return JSON_Object;
17
18 procedure Insert
19 (Self : in out JSON_Object;
20 Key : Wide_Wide_String;
21 Value : JSON_Value) is null;
22
23 function From_Object (Self : JSON_Object) return JSON_Value;
24
25 type JSON_Array is private
26 with Aggregate => (Empty => New_JSON_Array,
27 Add_Unnamed => Append);
28
29 function New_JSON_Array return JSON_Array;
30
31 procedure Append
32 (Self : in out JSON_Array;
33 Value : JSON_Value) is null;
34
35 function From_Array (Self : JSON_Array) return JSON_Value;
36
37 private
38 type JSON_Value is null record;
39 type JSON_Object is null record;
40 type JSON_Array is null record;
41
42 function To_Value (Text : String) return JSON_Value is
43 (null record);
44 function To_Value (Text : Wide_Wide_String) return JSON_Value is
45 (null record);
46 function New_JSON_Object return JSON_Object is
47 (null record);
48 function New_JSON_Array return JSON_Array is
49 (null record);
50 function From_Object (Self : JSON_Object) return JSON_Value is
51 (null record);
52 function From_Array (Self : JSON_Array) return JSON_Value is
53 (null record);
54 end JSON;
55
56 function "+" (X : JSON.JSON_Object) return JSON.JSON_Value
57 renames JSON.From_Object;
58 function "-" (X : JSON.JSON_Array) return JSON.JSON_Value
59 renames JSON.From_Array;
60
61 Offices : JSON.JSON_Array :=
62 [+["name" => "North American Office",
63 "phones" => -[1_877_787_4628,
64 1_866_787_4232,
65 1_212_620_7300],
66 "email" => "info@adacore.com"],
67 +["name" => "European Office",
68 "phones" => -[33_1_49_70_67_16,
69 33_1_49_70_05_52],
70 "email" => "info@adacore.com"]];
71 ---
72begin
73 -- Equivalent old initialization code is too long to print it here
74 null;
75end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Container_Aggregates_4
MD5: 3e8d96bbcf77e2c63fb87dcf313b98f1

The Offices variable is supposed to contain this value:

[{"name" : "North American Office",
 "phones": [18777874628,
 18667874232,
 12126207300],
 "email" : "info@adacore.com"},
 {"name" : "European Office",
 "phones": [33149706716,
 33149700552],
 "email" : "info@adacore.com"}]

References

	ARM 4.3.5 Container Aggregates[#1]

	AI12-0212-1[#2]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-4-3-5.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0212-1.TXT

Delta Aggregates

Note

Delta aggregates are supported by

	GNAT Community Edition 2019

	GCC 9

Sometimes you need to create a copy of an object, but with a few
modifications. Before Ada 2022, doing this involves a dummy object
declaration or an aggregate with associations for each property. The dummy
object approach doesn't work in contract aspects or when there are limited
components. On the other hand, re-listing properties in an large aggregate
can be very tedious and error-prone. So, in Ada 2022, you can use a delta
aggregate instead.

Delta aggregate for records

The delta aggregate for a record type looks like this:

type Vector is record
 X, Y, Z : Float;
end record;

Point_1 : constant Vector := (X => 1.0, Y => 2.0, Z => 3.0);

Projection_1 : constant Vector := (Point_1 with delta Z => 0.0);

The more components you have, the more you will like the delta
aggregate.

Delta aggregate for arrays

You can also use delta aggregates for arrays to change elements, but not
bounds. Moreover, it only works for one-dimensional arrays of non-limited
components.

type Vector_3D is array (1 .. 3) of Float;

Point_2 : constant Vector_3D := [1.0, 2.0, 3.0];
Projection_2 : constant Vector_3D := [Point_2 with delta 3 => 0.0];

You can use parentheses for array aggregates, but you can't use square
brackets for record aggregates.

Here is the complete code snippet:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO;
 4
 5procedure Main is
 6
 7 type Vector is record
 8 X, Y, Z : Float;
 9 end record;
10
11 Point_1 : constant Vector := (X => 1.0, Y => 2.0, Z => 3.0);
12 Projection_1 : constant Vector := (Point_1 with delta Z => 0.0);
13
14 type Vector_3D is array (1 .. 3) of Float;
15
16 Point_2 : constant Vector_3D := [1.0, 2.0, 3.0];
17 Projection_2 : constant Vector_3D := [Point_2 with delta 3 => 0.0];
18begin
19 Ada.Text_IO.Put (Float'Image (Projection_1.X));
20 Ada.Text_IO.Put (Float'Image (Projection_1.Y));
21 Ada.Text_IO.Put (Float'Image (Projection_1.Z));
22 Ada.Text_IO.New_Line;
23 Ada.Text_IO.Put (Float'Image (Projection_2 (1)));
24 Ada.Text_IO.Put (Float'Image (Projection_2 (2)));
25 Ada.Text_IO.Put (Float'Image (Projection_2 (3)));
26 Ada.Text_IO.New_Line;
27end Main;

References

	ARM 4.3.4 Delta Aggregates[#1]

	AI12-0127-1[#2]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-4-3-4.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0127-1.TXT

Target Name Symbol (@)

Note

Target name symbol is supported by

	GNAT Community Edition 2019

	GCC 9

Ada 2022 introduces a new symbol, @, which can only appear on the
right hand side of an assignment statement. This symbol acts as the
equivalent of the name on the left hand side of that assignment statement.
It was introduced to avoid code duplication: instead of retyping a
(potentially long) name, you can use @. This symbol denotes a
constant, so you can't pass it into [in] out arguments of a
subprogram.

As an example, let's calculate some statistics for My_Data array:

statistics.ads

 1pragma Ada_2022;
 2
 3package Statistics is
 4
 5 type Statistic is record
 6 Count : Natural := 0;
 7 Total : Float := 0.0;
 8 end record;
 9
10 My_Data : array (1 .. 5) of Float := [for J in 1 .. 5 => Float (J)];
11
12 Statistic_For_My_Data : Statistic;
13
14end Statistics;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Assignment_Tagged_Intro
MD5: 5cc813a4a22d3acc8418b0c1c6df3877

To do this, we loop over My_Data elements:

main.adb

 1pragma Ada_2022;
 2with Ada.Text_IO;
 3
 4procedure Main is
 5
 6 type Statistic is record
 7 Count : Natural := 0;
 8 Total : Float := 0.0;
 9 end record;
10
11 My_Data : constant array (1 .. 5) of Float :=
12 [for J in 1 .. 5 => Float (J)];
13
14 Statistic_For_My_Data : Statistic;
15
16begin
17 for Data of My_Data loop
18 Statistic_For_My_Data.Count := @ + 1;
19 Statistic_For_My_Data.Total := @ + Data;
20 end loop;
21
22 Ada.Text_IO.Put_Line (Statistic_For_My_Data'Image);
23end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Assignment_Tagged_2
MD5: 10dd019f4c09bc950895a93b3a88b778

Runtime output

(COUNT => 5,
 TOTAL => 1.50000E+01)

Each right hand side is evaluated only once, no matter how many @
symbols it contains. Let's verify this by introducing a function call that
prints a line each time it's called:

main.adb

 1pragma Ada_2022;
 2with Ada.Text_IO;
 3
 4procedure Main is
 5
 6 My_Data : array (1 .. 5) of Float := [for J in 1 .. 5 => Float (J)];
 7
 8 function To_Index (Value : Positive) return Positive is
 9 begin
10 Ada.Text_IO.Put_Line ("To_Index is called.");
11 return Value;
12 end To_Index;
13
14begin
15 My_Data (To_Index (1)) := @ ** 2 - 3.0 * @;
16 Ada.Text_IO.Put_Line (My_Data'Image);
17end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Assignment_Tagged_3
MD5: 98d6afbaea5c0f6cd2bebe6b39962ad3

Runtime output

To_Index is called.

[-2.00000E+00, 2.00000E+00, 3.00000E+00, 4.00000E+00, 5.00000E+00]

This use of @ may look a bit cryptic, but it's the best solution
that was found. Unlike other languages (e.g., sum += x; in C), this
approach lets you use @ an arbitrary number of times within the
right hand side of an assignment statement.

Alternatives

In C++, the previous statement could be written with a reference
type (one line longer!):

auto& a = my_data[to_index(1)];
a = a * a - 3.0 * a;

In Ada 2022, you can use a similar renaming:

declare
 A renames My_Data (To_Index (1));
begin
 A := A ** 2 - 3.0 * A;
end;

Here we use a new short form of the rename declaration, but this still looks
too heavy, and even worse, it can't be used for discriminant-dependent
components.

References

	ARM 5.2.1 Target Name Symbols[#1]

	AI12-0125-3[#2]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-5-2-1.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0125-3.TXT

Enumeration representation

Note

Enumeration representation attributes are supported by

	GNAT Community Edition 2019

	GCC 9

Enumeration types in Ada are represented as integers at the machine
level. But there are actually two mappings from enumeration to
integer: a literal position and a representation value.

Literal positions

Each enumeration literal has a corresponding position in the type
declaration. We can easily obtain it from the Type'Pos (Enum)
attribute.

main.adb

 1with Ada.Text_IO;
 2with Ada.Integer_Text_IO;
 3
 4procedure Main is
 5begin
 6 Ada.Text_IO.Put ("Pos(False) =");
 7 Ada.Integer_Text_IO.Put (Boolean'Pos (False));
 8 Ada.Text_IO.New_Line;
 9 Ada.Text_IO.Put ("Pos(True) =");
10 Ada.Integer_Text_IO.Put (Boolean'Pos (True));
11end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Enum_Val.Pos
MD5: de7c39f83f7df231dd648606579996a8

Runtime output

Pos(False) = 0
Pos(True) = 1

For the reverse mapping, we use Type'Val (Int):

main.adb

1with Ada.Text_IO;
2
3procedure Main is
4begin
5 Ada.Text_IO.Put_Line (Boolean'Val (0)'Image);
6 Ada.Text_IO.Put_Line (Boolean'Val (1)'Image);
7end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Enum_Val.Val
MD5: 43f712d25552970bccc4c0c84089d927

Runtime output

FALSE
TRUE

Representation values

The representation value defines the internal code, used to store
enumeration values in memory or CPU registers. By default, enumeration
representation values are the same as the corresponding literal
positions, but you can redefine them. Here, we created a copy of
Boolean type and assigned it a custom representation.

In Ada 2022, we can get an integer value of the representation with
Type'Enum_Rep(Enum) attribute:

main.adb

 1with Ada.Text_IO;
 2with Ada.Integer_Text_IO;
 3
 4procedure Main is
 5 type My_Boolean is new Boolean;
 6 for My_Boolean use (False => 3, True => 6);
 7begin
 8 Ada.Text_IO.Put ("Enum_Rep(False) =");
 9 Ada.Integer_Text_IO.Put (My_Boolean'Enum_Rep (False));
10 Ada.Text_IO.New_Line;
11 Ada.Text_IO.Put ("Enum_Rep(True) =");
12 Ada.Integer_Text_IO.Put (My_Boolean'Enum_Rep (True));
13end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Enum_Val.Enum_Rep
MD5: 384ad9de7124c8131aa83ab71da58964

Runtime output

Enum_Rep(False) = 3
Enum_Rep(True) = 6

And, for the reverse mapping, we can use Type'Enum_Val (Int):

main.adb

 1with Ada.Text_IO;
 2with Ada.Integer_Text_IO;
 3
 4procedure Main is
 5 type My_Boolean is new Boolean;
 6 for My_Boolean use (False => 3, True => 6);
 7begin
 8 Ada.Text_IO.Put_Line (My_Boolean'Enum_Val (3)'Image);
 9 Ada.Text_IO.Put_Line (My_Boolean'Enum_Val (6)'Image);
10
11 Ada.Text_IO.Put ("Pos(False) =");
12 Ada.Integer_Text_IO.Put (My_Boolean'Pos (False));
13 Ada.Text_IO.New_Line;
14 Ada.Text_IO.Put ("Pos(True) =");
15 Ada.Integer_Text_IO.Put (My_Boolean'Pos (True));
16end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Enum_Val.Enum_Val
MD5: 6e06202472d4cf0ea7c68461ac7afcb1

Runtime output

FALSE
TRUE
Pos(False) = 0
Pos(True) = 1

Note that the 'Val(X)/'Pos(X) behaviour still is the same.

Custom representations can be useful for integration with a low level
protocol or hardware.

Before Ada 2022

This doesn't initially look like an important feature, but let's see
how we'd do the equivalent with Ada 2012 and earlier versions. First,
we need an integer type of matching size, then we instantiate
Ada.Unchecked_Conversion. Next, we call To_Int/From_Int
to work with representation values. And finally an extra type
conversion is needed:

main.adb

 1with Ada.Text_IO;
 2with Ada.Integer_Text_IO;
 3with Ada.Unchecked_Conversion;
 4
 5procedure Main is
 6
 7 type My_Boolean is new Boolean;
 8 for My_Boolean use (False => 3, True => 6);
 9 type My_Boolean_Int is range 3 .. 6;
10 for My_Boolean_Int'Size use My_Boolean'Size;
11
12 function To_Int is new Ada.Unchecked_Conversion
13 (My_Boolean, My_Boolean_Int);
14
15 function From_Int is new Ada.Unchecked_Conversion
16 (My_Boolean_Int, My_Boolean);
17
18begin
19 Ada.Text_IO.Put ("To_Int(False) =");
20 Ada.Integer_Text_IO.Put (Integer (To_Int (False)));
21 Ada.Text_IO.New_Line;
22 Ada.Text_IO.Put ("To_Int(True) =");
23 Ada.Integer_Text_IO.Put (Integer (To_Int (True)));
24 Ada.Text_IO.New_Line;
25 Ada.Text_IO.Put ("From_Int (3) =");
26 Ada.Text_IO.Put_Line (From_Int (3)'Image);
27 Ada.Text_IO.New_Line;
28 Ada.Text_IO.Put ("From_Int (6) =");
29 Ada.Text_IO.Put_Line (From_Int (6)'Image);
30end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Enum_Val.Conv
MD5: 7c7624ed024b26036389f77dbd6cb109

Runtime output

To_Int(False) = 3
To_Int(True) = 6
From_Int (3) =TRUE

From_Int (6) =TRUE

Even with all that, this solution doesn't work for generic formal type
(because T'Size must be a static value)!

We should note that these new attributes may already be familiar to GNAT
users because they've been in the GNAT compiler for many years.

References

	ARM 13.4 Enumeration Representation Clauses[#1]

	AI12-0237-1[#2]

Footnotes

[#1]
http://www.ada-auth.org/standards/22aarm/html/AA-13-4.html

[#2]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0237-1.TXT

Big Numbers

Note

Big numbers are supported by

	GNAT Community Edition 2020

	GCC 11

	GCC 10 (draft, no user defined literals)

Ada 2022 introduces big integers and big real types.

Big Integers

The package Ada.Numerics.Big_Numbers.Big_Integers contains
a type Big_Integer and corresponding operations such as comparison
(=, <, >, <=, >=), arithmetic
(+, -, *, /, rem, mod,
abs, **), Min, Max and
Greatest_Common_Divisor. The type also has Integer_Literal
and Put_Image aspects redefined, so you can use it in a natural
manner.

Ada.Text_IO.Put_Line (Big_Integer'Image(2 ** 256));

115792089237316195423570985008687907853269984665640564039457584007913129639936

Tiny RSA implementation

Note

Note that you shouldn't use Big_Numbers for cryptography because it's
vulnerable to timing side-channels attacks.

We can implement the
RSA algorithm[#1] in a few lines of
code. The main operation of RSA is (md) mod n. But you can't just
write m ** d, because these are really big numbers and the result
won't fit into memory. However, if you keep intermediate result mod
n during the md calculation, it will work. Let's write this operation
as a function:

power_mod.ads

1pragma Ada_2022;
2
3with Ada.Numerics.Big_Numbers.Big_Integers;
4use Ada.Numerics.Big_Numbers.Big_Integers;
5
6-- Calculate M ** D mod N
7
8function Power_Mod (M, D, N : Big_Integer) return Big_Integer;

power_mod.adb

 1function Power_Mod (M, D, N : Big_Integer) return Big_Integer is
 2
 3 function Is_Odd (X : Big_Integer) return Boolean is
 4 (X mod 2 /= 0);
 5
 6 Result : Big_Integer := 1;
 7 Exp : Big_Integer := D;
 8 Mult : Big_Integer := M mod N;
 9begin
10 while Exp /= 0 loop
11 -- Loop invariant is Power_Mod'Result = Result * Mult**Exp mod N
12 if Is_Odd (Exp) then
13 Result := (Result * Mult) mod N;
14 end if;
15
16 Mult := Mult ** 2 mod N;
17 Exp := Exp / 2;
18 end loop;
19
20 return Result;
21end Power_Mod;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Big_Integers
MD5: 217c2aa3535952b68e2f088d262e6f60

Let's check this with the example from
Wikipedia[#2].
In that example, the public key is (n = 3233, e = 17) and the message
is m = 65. The encrypted message is
me mod n = 6517 mod 3233 = 2790 = c.

Ada.Text_IO.Put_Line (Power_Mod (M => 65, D => 17, N => 3233)'Image);

2790

To decrypt it with the public key (n = 3233, d = 413), we need to
calculate cd mod n = 2790413 mod 3233:

Ada.Text_IO.Put_Line (Power_Mod (M => 2790, D => 413, N => 3233)'Image);

65

So 65 is the original message m. Easy!

Here is the complete code snippet:

main.adb

 1pragma Ada_2022;
 2
 3with Ada.Text_IO;
 4with Ada.Numerics.Big_Numbers.Big_Integers;
 5use Ada.Numerics.Big_Numbers.Big_Integers;
 6
 7procedure Main is
 8
 9 -- Calculate M ** D mod N
10
11 function Power_Mod (M, D, N : Big_Integer) return Big_Integer is
12
13 function Is_Odd (X : Big_Integer) return Boolean is
14 (X mod 2 /= 0);
15
16 Result : Big_Integer := 1;
17 Exp : Big_Integer := D;
18 Mult : Big_Integer := M mod N;
19 begin
20 while Exp /= 0 loop
21 -- Loop invariant is Power_Mod'Result = Result * Mult**Exp mod N
22 if Is_Odd (Exp) then
23 Result := (Result * Mult) mod N;
24 end if;
25
26 Mult := Mult ** 2 mod N;
27 Exp := Exp / 2;
28 end loop;
29
30 return Result;
31 end Power_Mod;
32
33begin
34 Ada.Text_IO.Put_Line (Big_Integer'Image (2 ** 256));
35 -- Encrypt:
36 Ada.Text_IO.Put_Line (Power_Mod (M => 65, D => 17, N => 3233)'Image);
37 -- Decrypt:
38 Ada.Text_IO.Put_Line (Power_Mod (M => 2790, D => 413, N => 3233)'Image);
39end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Big_Numbers_Tiny_RSA
MD5: 6178da9d6998db6d51f31fd5c7cc5391

Runtime output

 115792089237316195423570985008687907853269984665640564039457584007913129639936
 2790
 65

Big Reals

In addition to Big_Integer, Ada 2022 provides
Big Reals[#3].

References

	ARM A.5.6 Big Integers[#4]

	ARM A.5.7 Big Reals[#5]

	AI12-0208-1[#6]

Footnotes

[#1]
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

[#2]
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

[#3]
http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html

[#4]
http://www.ada-auth.org/standards/22aarm/html/AA-A-5-6.html

[#5]
http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html

[#6]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0208-1.TXT

Interfacing C variadic functions

Note

Variadic convention is supported by

	GNAT Community Edition 2020

	GCC 11

In C, variadic functions[#1] take a variable number of arguments and an
ellipsis as the last parameter of the declaration. A typical and well-known
example is:

int printf (const char* format, ...);

Usually, in Ada, we bind such a function with just the parameters we want
to use:

procedure printf_double
 (format : Interfaces.C.char_array;
 value : Interfaces.C.double)
 with Import,
 Convention => C,
 External_Name => "printf";

Then we call it as a normal Ada function:

printf_double (Interfaces.C.To_C ("Pi=%f"), Ada.Numerics.π);

Unfortunately, doing it this way doesn't always work because some
ABI[#2]s use different calling
conventions for variadic functions. For
example, the AMD64 ABI[#3] specifies:

	%rax — with variable arguments passes information about the number
of vector registers used;

	%xmm0–%xmm1 — used to pass and return floating point arguments.

This means, if we write (in C):

printf("%d", 5);

The compiler will place 0 into %rax, because we don't pass any float
argument. But in Ada, if we write:

procedure printf_int
 (format : Interfaces.C.char_array;
 value : Interfaces.C.int)
 with Import,
 Convention => C,
 External_Name => "printf";

printf_int (Interfaces.C.To_C ("d=%d"), 5);

the compiler won't use the %rax register at all. (You can't include
any float argument because there's no float parameter in the Ada
wrapper function declaration.) As result, you will get a crash, stack
corruption, or other undefined behavior.

To fix this, Ada 2022 provides a new family of calling convention
names — C_Variadic_N:

The convention C_Variadic_n is the calling convention for a variadic
C function taking n fixed parameters and then a variable number of
additional parameters.

Therefore, the correct way to bind the printf function is:

procedure printf_int
 (format : Interfaces.C.char_array;
 value : Interfaces.C.int)
 with Import,
 Convention => C_Variadic_1,
 External_Name => "printf";

And the following call won't crash on any supported platform:

printf_int (Interfaces.C.To_C ("d=%d"), 5);

Without this convention, problems cause by this mismatch can be very hard
to debug. So, this is a very useful extension to the Ada-to-C interfacing
facility.

Here is the complete code snippet:

main.adb

 1with Interfaces.C;
 2
 3procedure Main is
 4
 5 procedure printf_int
 6 (format : Interfaces.C.char_array;
 7 value : Interfaces.C.int)
 8 with Import,
 9 Convention => C_Variadic_1,
10 External_Name => "printf";
11
12begin
13 printf_int (Interfaces.C.To_C ("d=%d"), 5);
14end Main;

Code block metadata

Project: Courses.Ada_2022_Whats_New.Variadic_Import
MD5: 94515f55a93f27e4f4ecec31256645d9

References

	ARM B.3 Interfacing with C and C++[#4]

	AI12-0028-1[#5]

Footnotes

[#1]
https://en.cppreference.com/w/c/variadic

[#2]
https://en.wikipedia.org/wiki/Application_binary_interface

[#3]
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

[#4]
http://www.ada-auth.org/standards/22aarm/html/AA-B-3.html

[#5]
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0028-1.TXT

Ada for the C++ or Java Developer

Release 2024-03

Mar 30, 2024

Copyright © 2013 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This document will present the Ada language using terminology and examples
that are familiar to developers that understand the C++ or Java languages.

This document was prepared by Quentin Ochem, with contributions and review
from Richard Kenner, Albert Lee, and Ben Brosgol.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

Contents:

	Preface

	Basics

	Compilation Unit Structure

	Statements, Declarations, and Control Structures
	Statements and Declarations

	Conditions

	Loops

	Type System
	Strong Typing

	Language-Defined Types

	Application-Defined Types

	Type Ranges

	Generalized Type Contracts: Subtype Predicates

	Attributes

	Arrays and Strings

	Heterogeneous Data Structures

	Pointers

	Functions and Procedures
	General Form

	Overloading

	Subprogram Contracts

	Packages
	Declaration Protection

	Hierarchical Packages

	Using Entities from Packages

	Classes and Object Oriented Programming
	Primitive Subprograms

	Derivation and Dynamic Dispatch

	Constructors and Destructors

	Encapsulation

	Abstract Types and Interfaces

	Invariants

	Generics
	Generic Subprograms

	Generic Packages

	Generic Parameters

	Exceptions
	Standard Exceptions

	Custom Exceptions

	Concurrency
	Tasks

	Rendezvous

	Selective Rendezvous

	Protected Objects

	Low Level Programming
	Representation Clauses

	Embedded Assembly Code

	Interfacing with C

	Conclusion

	References

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Preface

Nowadays it seems like talking about programming languages is a bit passé. The technical wars of the past decade have subsided and today we see a variety of high-level and well-established languages offering functionality that can meet the needs of any programmer.

Python, Java, C++, C#, and Visual Basic are recent examples. Indeed, these languages make it easier to write code very quickly, are very flexible, offer features with highly dynamic behavior, and some even allow compilers to deduce the developer's probable intent.

Why, then, talk about yet another language? Well, by addressing the general programming market, the aforementioned languages have become poorly suited for working within the domain of high-integrity systems. In highly reliable, secure and safe applications such as those found in and around airplanes, rockets, satellites, trains, and in any device whose failure could jeopardize human life or critical assets, the programming languages used must support the high standard of software engineering necessary to maintain the integrity of the system.

The concept of verification — the practice of showing that the system behaves and performs as intended — is key in such environments. Verification can be accomplished by some combination of review, testing, static analysis, and formal proof techniques. The increasing reliance on software and increasing complexity of today's systems has made this task more difficult. Technologies and practices that might have been perfectly acceptable ten or fifteen years ago are insufficient today. Thankfully, the state of the art in analysis and proof tools and techniques has also advanced.

The latest revisions of the Ada language, Ada 2005 and Ada 2012, make enhanced software integrity possible. From its inception in the 1980s, Ada was designed to meet the requirements of high-integrity systems, and continues to be well-suited for the implementation of critical embedded or native applications. And it has been receiving increased attention recently. Every language revision has enhanced expressiveness in many areas. Ada 2012, in particular, has introduced new features for contract-based programming that are valuable to any project where verification is part of the engineering lifecycle. Along with these language enhancements, Ada compiler and tool technology has also kept pace with general computing developments over the past few years. Ada development environments are available on a wide range of platforms and are being used for the most demanding applications.

It is no secret that we at AdaCore are very enthusiastic about Ada, but we will not claim that Ada is always the solution; Ada is no more a silver bullet than any other language. In some domains other languages make sense because of the availability of particular libraries or development frameworks. For example, C++ and Java are considered good choices for desktop programs or applications where a shortened time to market is a major objective. Other areas, such as website programming or system administration, tend to rely on different formalisms such as scripting and interpreted languages. The key is to select the proper technical approach, in terms of the language and tools, to meet the requirements. Ada's strength is in areas where reliability is paramount.

Learning a new language shouldn't be complicated. Programming paradigms have not evolved much since object oriented programming gained a foothold, and the same paradigms are present one way or another in many widely used languages. This document will thus give you an overview of the Ada language using analogies to C++ and Java — these are the languages you're already likely to know. No prior knowledge of Ada is assumed. If you are working on an Ada project now and need more background, if you are interested in learning to program in Ada, or if you need to perform an assessment of possible languages to be used for a new development, this guide is for you.

Footnotes

Basics

Ada implements the vast majority of programming concepts that you're accustomed to in C++ and Java: classes, inheritance, templates (generics), etc. Its syntax might seem peculiar, though. It's not derived from the popular C style of notation with its ample use of brackets; rather, it uses a more expository syntax coming from Pascal. In many ways, Ada is a simpler language — its syntax favors making it easier to conceptualize and read program code, rather than making it faster to write in a cleverly condensed manner. For example, full words like begin and end are used in place of curly braces. Conditions are written using if, then, elsif, else, and end if. Ada's assignment operator does not double as an expression, smoothly eliminating any frustration that could be caused by = being used where == should be.

All languages provide one or more ways to express comments. In Ada, two consecutive hyphens -- mark the start of a comment that continues to the end of the line. This is exactly the same as using // for comments in C++ and Java. There is no equivalent of /* ... /* block comments in Ada; use multiple -- lines instead.

Ada compilers are stricter with type and range checking than most C++ and Java programmers are used to. Most beginning Ada programmers encounter a variety of warnings and error messages when coding more creatively, but this helps detect problems and vulnerabilities at compile time — early on in the development cycle. In addition, dynamic checks (such as array bounds checks) provide verification that could not be done at compile time. Dynamic checks are performed at run time, similar to what is done in Java.

Ada identifiers and reserved words are case insensitive. The identifiers VAR, var and VaR are treated as the same; likewise begin, BEGIN, Begin, etc. Language-specific characters, such as accents, Greek or Russian letters, and Asian alphabets, are acceptable to use. Identifiers may include letters, digits, and underscores, but must always start with a letter. There are 73 reserved keywords in Ada that may not be used as identifiers, and these are:

	abort

	else

	null

	select

	abs

	elsif

	of

	separate

	abstract

	end

	or

	some

	accept

	entry

	others

	subtype

	access

	exception

	out

	synchronized

	aliased

	exit

	overriding

	tagged

	all

	for

	package

	task

	and

	function

	pragma

	terminate

	array

	generic

	private

	then

	at

	goto

	procedure

	type

	begin

	if

	protected

	until

	body

	in

	raise

	use

	case

	interface

	range

	when

	constant

	is

	record

	while

	declare

	limited

	rem

	with

	delay

	loop

	renames

	xor

	delta

	mod

	requeue

	

	digits

	new

	return

	

	do

	not

	reverse

	

Ada is designed to be portable. Ada compilers must follow a precisely defined international (ISO) standard language specification with clearly documented areas of vendor freedom where the behavior depends on the implementation. It's possible, then, to write an implementation-independent application in Ada and to make sure it will have the same effect across platforms and compilers.

Ada is truly a general purpose, multiple paradigm language that allows the programmer to employ or avoid features like run-time contract checking, tasking, object oriented programming, and generics. Efficiently programmed Ada is employed in device drivers, interrupt handlers, and other low-level functions. It may be found today in devices with tight limits on processing speed, memory, and power consumption. But the language is also used for programming larger interconnected systems running on workstations, servers, and supercomputers.

Footnotes

Compilation Unit Structure

C++ programming style usually promotes the use of two distinct files: header files used to define specifications (.h*, .hxx, .hpp), and implementation files which contain the executable code (.c, .cxx, .cpp). However, the distinction between specification and implementation is not enforced by the compiler and may need to be worked around in order to implement, for example, inlining or templates.

Java compilers expect both the implementation and specification to be in the same .java file. (Yes, design patterns allow using interfaces to separate specification from implementation to a certain extent, but this is outside of the scope of this description.)

Ada is superficially similar to the C++ case: Ada compilation units are generally split into two parts, the specification and the body. However, what goes into those files is more predictable for both the compiler and for the programmer. With GNAT, compilation units are stored in files with a .ads extension for specifications and with a .adb extension for implementations.

Without further ado, we present the famous "Hello World" in three languages:

[Ada]

with Ada.Text_IO;
use Ada.Text_IO;

procedure Main is
begin
 Put_Line ("Hello World");
end Main;

[C++]

#include <iostream>
using namespace std;

int main(int argc, const char* argv[]) {
 cout << "Hello World" << endl;
}

[Java]

public class Main {
 public static void main(String [] argv) {
 System.out.println ("Hello World");
 }
}

The first line of Ada we see is the with clause, declaring that the unit (in this case, the Main subprogram) will require the services of the package Ada.Text_IO. This is different from how #include works in C++ in that it does not, in a logical sense, copy/paste the code of Ada.Text_IO into Main. The with clause directs the compiler to make the public interface of the Ada.Text_IO package visible to code in the unit (here Main) containing the with clause. Note that this construct does not have a direct analog in Java, where the entire CLASSPATH is always accessible. Also, the name Main for the main subprogram was chosen for consistency with C++ and Java style but in Ada the name can be whatever the programmer chooses.

The use clause is the equivalent of using namespace in C++, or import in Java (though it wasn't necessary to use import in the Java example above). It allows you to omit the full package name when referring to with'ed units. Without the use clause, any reference to Ada.Text_IO items would have had to be fully qualified with the package name. The Put_Line line would then have read:

Ada.Text_IO.Put_Line ("Hello World");

The word "package" has different meanings in Ada and Java. In Java, a package is used as a namespace for classes. In Ada, it's often a compilation unit. As a result Ada tends to have many more packages than Java. Ada package specifications ("package specs" for short) have the following structure:

package Package_Name is

 -- public declarations

private

 -- private declarations

end Package_Name;

The implementation in a package body (written in a .adb file) has the structure:

package body Package_Name is

 -- implementation

end Package_Name;

The private reserved word is used to mark the start of the private portion of a package spec. By splitting the package spec into private and public parts, it is possible to make an entity available for use while hiding its implementation. For instance, a common use is declaring a record (Ada's struct) whose fields are only visible to its package and not to the caller. This allows the caller to refer to objects of that type, but not to change any of its contents directly.

The package body contains implementation code, and is only accessible to outside code through declarations in the package spec.

An entity declared in the private part of a package in Ada is roughly equivalent to a protected member of a C++ or Java class. An entity declared in the body of an Ada package is roughly equivalent to a private member of a C++ or Java class.

Footnotes

Statements, Declarations, and Control Structures

Statements and Declarations

The following code samples are all equivalent, and illustrate the use of comments and working with integer variables:

[Ada]

--
-- Ada program to declare and modify Integers
--
procedure Main is
 -- Variable declarations
 A, B : Integer := 0;
 C : Integer := 100;
 D : Integer;
begin
 -- Ada uses a regular assignment statement for incrementation.
 A := A + 1;

 -- Regular addition
 D := A + B + C;
end Main;

[C++]

/*
 * C++ program to declare and modify ints
 */
int main(int argc, const char* argv[]) {
 // Variable declarations
 int a = 0, b = 0, c = 100, d;

 // C++ shorthand for incrementation
 a++;

 // Regular addition
 d = a + b + c;
}

[Java]

/*
 * Java program to declare and modify ints
 */
public class Main {
 public static void main(String [] argv) {
 // Variable declarations
 int a = 0, b = 0, c = 100, d;

 // Java shorthand for incrementation
 a++;

 // Regular addition
 d = a + b + c;
 }
}

Statements are terminated by semicolons in all three languages. In Ada, blocks of code are surrounded by the reserved words begin and end rather than by curly braces. We can use both multi-line and single-line comment styles in the C++ and Java code, and only single-line comments in the Ada code.

Ada requires variable declarations to be made in a specific area called the declarative part, seen here before the begin keyword. Variable declarations start with the identifier in Ada, as opposed to starting with the type as in C++ and Java (also note Ada's use of the : separator). Specifying initializers is different as well: in Ada an initialization expression can apply to multiple variables (but will be evaluated separately for each), whereas in C++ and Java each variable is initialized individually. In all three languages, if you use a function as an initializer and that function returns different values on every invocation, each variable will get initialized to a different value.

Let's move on to the imperative statements. Ada does not provide ++ or -- shorthand expressions for increment/decrement operations; it is necessary to use a full assignment statement. The := symbol is used in Ada to perform value assignment. Unlike C++'s and Java's = symbol, := can not be used as part of an expression. So, a statement like A := B := C; doesn't make sense to an Ada compiler, and neither does a clause like if A := B then Both are compile-time errors.

You can nest a block of code within an outer block if you want to create an inner scope:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
begin
 Put_Line ("Before the inner block");

 declare
 Alpha : Integer := 0;
 begin
 Alpha := Alpha + 1;
 Put_Line ("Now inside the inner block");
 end;

 Put_Line ("After the inner block");
end Main;

It is OK to have an empty declarative part or to omit the declarative part entirely — just start the inner block with begin if you have no declarations to make. However it is not OK to have an empty sequence of statements. You must at least provide a null; statement, which does nothing and indicates that the omission of statements is intentional.

Conditions

The use of the if statement:

[Ada]

if Variable > 0 then
 Put_Line (" > 0 ");
elsif Variable < 0 then
 Put_Line (" < 0 ");
else
 Put_Line (" = 0 ");
end if;

[C++]

if (Variable > 0)
 cout << " > 0 " << endl;
else if (Variable < 0)
 cout << " < 0 " << endl;
else
 cout << " = 0 " << endl;

[Java]

if (Variable > 0)
 System.out.println (" > 0 ");
else if (Variable < 0)
 System.out.println (" < 0 ");
else
 System.out.println (" = 0 ");

In Ada, everything that appears between the if and then keywords is the conditional expression — no parentheses required. Comparison operators are the same, except for equality (=) and inequality (/=). The English words not, and, and or replace the symbols !, &, and |, respectively, for performing boolean operations.

It's more customary to use && and || in C++ and Java than & and | when writing boolean expressions. The difference is that && and || are short-circuit operators, which evaluate terms only as necessary, and & and | will unconditionally evaluate all terms. In Ada, and and or will evaluate all terms; and then and or else direct the compiler to employ short circuit evaluation.

Here are what switch/case statements look like:

[Ada]

case Variable is
 when 0 =>
 Put_Line ("Zero");
 when 1 .. 9 =>
 Put_Line ("Positive Digit");
 when 10 | 12 | 14 | 16 | 18 =>
 Put_Line ("Even Number between 10 and 18");
 when others =>
 Put_Line ("Something else");
end case;

[C++]

switch (Variable) {
 case 0:
 cout << "Zero" << endl;
 break;
 case 1: case 2: case 3: case 4: case 5:
 case 6: case 7: case 8: case 9:
 cout << "Positive Digit" << endl;
 break;
 case 10: case 12: case 14: case 16: case 18:
 cout << "Even Number between 10 and 18" << endl;
 break;
 default:
 cout << "Something else";
}

[Java]

switch (Variable) {
 case 0:
 System.out.println ("Zero");
 break;
 case 1: case 2: case 3: case 4: case 5:
 case 6: case 7: case 8: case 9:
 System.out.println ("Positive Digit");
 break;
 case 10: case 12: case 14: case 16: case 18:
 System.out.println ("Even Number between 10 and 18");
 break;
 default:
 System.out.println ("Something else");
}

In Ada, the case and end case lines surround the whole case statement, and each case starts with when. So, when programming in Ada, replace switch with case, and replace case with when.

Case statements in Ada require the use of discrete types (integers or enumeration types), and require all possible cases to be covered by when statements. If not all the cases are handled, or if duplicate cases exist, the program will not compile. The default case, default: in C++ and Java, can be specified using when others => in Ada.

In Ada, the break instruction is implicit and program execution will never fall through to subsequent cases. In order to combine cases, you can specify ranges using .. and enumerate disjoint values using | which neatly replaces the multiple case statements seen in the C++ and Java versions.

Loops

In Ada, loops always start with the loop reserved word and end with end loop. To leave the loop, use exit — the C++ and Java equivalent being break. This statement can specify a terminating condition using the exit when syntax. The loop opening the block can be preceded by a while or a for.

The while loop is the simplest one, and is very similar across all three languages:

[Ada]

while Variable < 10_000 loop
 Variable := Variable * 2;
end loop;

[C++]

while (Variable < 10000) {
 Variable = Variable * 2;
}

[Java]

while (Variable < 10000) {
 Variable = Variable * 2;
}

Ada's for loop, however, is quite different from that in C++ and Java. It always increments or decrements a loop index within a discrete range. The loop index (or "loop parameter" in Ada parlance) is local to the scope of the loop and is implicitly incremented or decremented at each iteration of the loop statements; the program cannot directly modify its value. The type of the loop parameter is derived from the range. The range is always given in ascending order even if the loop iterates in descending order. If the starting bound is greater than the ending bound, the interval is considered to be empty and the loop contents will not be executed. To specify a loop iteration in decreasing order, use the reverse reserved word. Here are examples of loops going in both directions:

[Ada]

-- Outputs 0, 1, 2, ..., 9
for Variable in 0 .. 9 loop
 Put_Line (Integer'Image (Variable));
end loop;

-- Outputs 9, 8, 7, ..., 0
for Variable in reverse 0 .. 9 loop
 Put_Line (Integer'Image (Variable));
end loop;

[C++]

// Outputs 0, 1, 2, ..., 9
for (int Variable = 0; Variable <= 9; Variable++) {
 cout << Variable << endl;
}

// Outputs 9, 8, 7, ..., 0
for (int Variable = 9; Variable >=0; Variable--) {
 cout << Variable << endl;
}

[Java]

// Outputs 0, 1, 2, ..., 9
for (int Variable = 0; Variable <= 9; Variable++) {
 System.out.println (Variable);
}

// Outputs 9, 8, 7, ..., 0
for (int Variable = 9; Variable >= 0; Variable--) {
 System.out.println (Variable);
}

Ada uses the Integer type's 'Image attribute to convert a numerical value to a String. There is no implicit conversion between Integer and String as there is in C++ and Java. We'll have a more in-depth look at such attributes later on.

It's easy to express iteration over the contents of a container (for instance, an array, a list, or a map) in Ada and Java. For example, assuming that Int_List is defined as an array of Integer values, you can use:

[Ada]

for I of Int_List loop
 Put_Line (Integer'Image (I));
end loop;

[Java]

for (int i : Int_List) {
 System.out.println (i);
}

Footnotes

Type System

Strong Typing

One of the main characteristics of Ada is its strong typing (i.e., relative absence of implicit type conversions). This may take some getting used to. For example, you can't divide an integer by a float. You need to perform the division operation using values of the same type, so one value must be explicitly converted to match the type of the other (in this case the more likely conversion is from integer to float). Ada is designed to guarantee that what's done by the program is what's meant by the programmer, leaving as little room for compiler interpretation as possible. Let's have a look at the following example:

[Ada]

procedure Strong_Typing is
 Alpha : Integer := 1;
 Beta : Integer := 10;
 Result : Float;
begin
 Result := Float (Alpha) / Float (Beta);
end Strong_Typing;

[C++]

void weakTyping () {
 int alpha = 1;
 int beta = 10;
 float result;

 result = alpha / beta;
}

[Java]

void weakTyping () {
 int alpha = 1;
 int beta = 10;
 float result;

 result = alpha / beta;
}

Are the three programs above equivalent? It may seem like Ada is just adding extra complexity by forcing you to make the conversion from Integer to Float explicit. In fact it significantly changes the behavior of the computation. While the Ada code performs a floating point operation 1.0 / 10.0 and stores 0.1 in Result, the C++ and Java versions instead store 0.0 in result. This is because the C++ and Java versions perform an integer operation between two integer variables: 1 / 10 is 0. The result of the integer division is then converted to a float and stored. Errors of this sort can be very hard to locate in complex pieces of code, and systematic specification of how the operation should be interpreted helps to avoid this class of errors. If an integer division was actually intended in the Ada case, it is still necessary to explicitly convert the final result to Float:

-- Perform an Integer division then convert to Float
Result := Float (Alpha / Beta);

In Ada, a floating point literal must be written with both an integral and decimal part. 10 is not a valid literal for a floating point value, while 10.0 is.

Language-Defined Types

The principal scalar types predefined by Ada are Integer, Float, Boolean, and Character. These correspond to int, float, bool/boolean, and char, respectively. The names for these types are not reserved words; they are regular identifiers.

Application-Defined Types

Ada's type system encourages programmers to think about data at a high level of abstraction. The compiler will at times output a simple efficient machine instruction for a full line of source code (and some instructions can be eliminated entirely). The careful programmer's concern that the operation really makes sense in the real world would be satisfied, and so would the programmer's concern about performance.

The next example below defines two different metrics: area and distance. Mixing these two metrics must be done with great care, as certain operations do not make sense, like adding an area to a distance. Others require knowledge of the expected semantics; for example, multiplying two distances. To help avoid errors, Ada requires that each of the binary operators +, -, *, and / for integer and floating-point types take operands of the same type and return a value of that type.

procedure Main is
 type Distance is new Float;
 type Area is new Float;

 D1 : Distance := 2.0;
 D2 : Distance := 3.0;
 A : Area;
begin
 D1 := D1 + D2; -- OK
 D1 := D1 + A; -- NOT OK: incompatible types for "+" operator
 A := D1 * D2; -- NOT OK: incompatible types for ":=" assignment
 A := Area (D1 * D2); -- OK
end Main;

Even though the Distance and Area types above are just Floats, the compiler does not allow arbitrary mixing of values of these different types. An explicit conversion (which does not necessarily mean any additional object code) is necessary.

The predefined Ada rules are not perfect; they admit some problematic cases (for example multiplying two Distances yields a Distance) and prohibit some useful cases (for example multiplying two Distances should deliver an Area). These situations can be handled through other mechanisms. A predefined operation can be identified as abstract to make it unavailable; overloading can be used to give new interpretations to existing operator symbols, for example allowing an operator to return a value from a type different from its operands; and more generally, GNAT has introduced a facility that helps perform dimensionality checking.

Ada enumerations work similarly to C++ and Java's enums.

[Ada]

type Day is
 (Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday);

[C++]

enum Day {
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday};

[Java]

enum Day {
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday}

But even though such enumerations may be implemented using a machine word, at the language level Ada will not confuse the fact that Monday is a Day and is not an Integer. You can compare a Day with another Day, though. To specify implementation details like the numeric values that correspond with enumeration values in C++ you include them in the original enum statement:

[C++]

enum Day {
 Monday = 10,
 Tuesday = 11,
 Wednesday = 12,
 Thursday = 13,
 Friday = 14,
 Saturday = 15,
 Sunday = 16};

But in Ada you must use both a type definition for Day as well as a separate representation clause for it like:

[Ada]

for Day use
 (Monday => 10,
 Tuesday => 11,
 Wednesday => 12,
 Thursday => 13,
 Friday => 14,
 Saturday => 15,
 Sunday => 16);

Type Ranges

Contracts can be associated with types and variables, to refine values and define what are considered valid values. The most common kind of contract is a range constraint introduced with the range reserved word, for example:

procedure Main is
 type Grade is range 0 .. 100;

 G1, G2 : Grade;
 N : Integer;
begin
 ... -- Initialization of N
 G1 := 80; -- OK
 G1 := N; -- Illegal (type mismatch)
 G1 := Grade (N); -- Legal, run-time range check
 G2 := G1 + 10; -- Legal, run-time range check
 G1 := (G1 + G2)/2; -- Legal, run-time range check
end Main;

In the above example, Grade is a new integer type associated with a range check. Range checks are dynamic and are meant to enforce the property that no object of the given type can have a value outside the specified range. In this example, the first assignment to G1 is correct and will not raise a run-time exceprion. Assigning N to G1 is illegal since Grade is a different type than Integer. Converting N to Grade makes the assignment legal, and a range check on the conversion confirms that the value is within 0 .. 100. Assigning G1+10 to G2 is legal since + for Grade returns a Grade (note that the literal 10 is interpreted as a Grade value in this context), and again there is a range check.

The final assignment illustrates an interesting but subtle point. The subexpression G1 + G2 may be outside the range of Grade, but the final result will be in range. Nevertheless, depending on the representation chosen for Grade, the addition may overflow. If the compiler represents Grade values as signed 8-bit integers (i.e., machine numbers in the range -128 .. 127) then the sum G1+G2 may exceed 127, resulting in an integer overflow. To prevent this, you can use explicit conversions and perform the computation in a sufficiently large integer type, for example:

G1 := Grade ((Integer (G1) + Integer (G2)) / 2);

Range checks are useful for detecting errors as early as possible. However, there may be some impact on performance. Modern compilers do know how to remove redundant checks, and you can deactivate these checks altogether if you have sufficient confidence that your code will function correctly.

Types can be derived from the representation of any other type. The new derived type can be associated with new constraints and operations. Going back to the Day example, one can write:

type Business_Day is new Day range Monday .. Friday;
type Weekend_Day is new Day range Saturday .. Sunday;

Since these are new types, implicit conversions are not allowed. In this case, it's more natural to create a new set of constraints for the same type, instead of making completely new ones. This is the idea behind subtypes in Ada. A subtype is a type with optional additional constraints. For example:

subtype Business_Day is Day range Monday .. Friday;
subtype Weekend_Day is Day range Saturday .. Sunday;
subtype Dice_Throw is Integer range 1 .. 6;

These declarations don't create new types, just new names for constrained ranges of their base types.

Generalized Type Contracts: Subtype Predicates

Range checks are a special form of type contracts; a more general method is provided by Ada subtype predicates, introduced in Ada 2012. A subtype predicate is a boolean expression defining conditions that are required for a given type or subtype. For example, the Dice_Throw subtype shown above can be defined in the following way:

subtype Dice_Throw is Integer
 with Dynamic_Predicate => Dice_Throw in 1 .. 6;

The clause beginning with with introduces an Ada aspect, which is additional information provided for declared entities such as types and subtypes. The Dynamic_Predicate aspect is the most general form. Within the predicate expression, the name of the (sub)type refers to the current value of the (sub)type. The predicate is checked on assignment, parameter passing, and in several other contexts. There is a Static_Predicate form which introduce some optimization and constrains on the form of these predicates, outside of the scope of this document.

Of course, predicates are useful beyond just expressing ranges. They can be used to represent types with arbitrary constraints, in particular types with discontinuities, for example:

type Not_Null is new Integer
 with Dynamic_Predicate => Not_Null /= 0;

type Even is new Integer
 with Dynamic_Predicate => Even mod 2 = 0;

Attributes

Attributes start with a single apostrophe ("tick"), and they allow you to query properties of, and perform certain actions on, declared entities such as types, objects, and subprograms. For example, you can determine the first and last bounds of scalar types, get the sizes of objects and types, and convert values to and from strings. This section provides an overview of how attributes work. For more information on the many attributes defined by the language, you can refer directly to the Ada Language Reference Manual.

The 'Image and 'Value attributes allow you to transform a scalar value into a String and vice-versa. For example:

declare
 A : Integer := 99;
begin
 Put_Line (Integer'Image (A));
 A := Integer'Value ("99");
end;

Certain attributes are provided only for certain kinds of types. For example, the 'Val and 'Pos attributes for an enumeration type associates a discrete value with its position among its peers. One circuitous way of moving to the next character of the ASCII table is:

[Ada]

declare
 C : Character := 'a';
begin
 C := Character'Val (Character'Pos (C) + 1);
end;

A more concise way to get the next value in Ada is to use the 'Succ attribute:

declare
 C : Character := 'a';
begin
 C := Character'Succ (C);
end;

You can get the previous value using the 'Pred attribute. Here is the equivalent in C++ and Java:

[C++]

char c = 'a';
c++;

[Java]

char c = 'a';
c++;

Other interesting examples are the 'First and 'Last attributes which, respectively, return the first and last values of a scalar type. Using 32-bit integers, for instance, Integer'First returns -231 and Integer'Last returns 231 - 1.

Arrays and Strings

C++ arrays are pointers with offsets, but the same is not the case for Ada and Java. Arrays in the latter two languages are not interchangable with operations on pointers, and array types are considered first-class citizens. Arrays in Ada have dedicated semantics such as the availability of the array's boundaries at run-time. Therefore, unhandled array overflows are impossible unless checks are suppressed. Any discrete type can serve as an array index, and you can specify both the starting and ending bounds — the lower bound doesn't necessarily have to be 0. Most of the time, array types need to be explicitly declared prior to the declaration of an object of that array type.

Here's an example of declaring an array of 26 characters, initializing the values from 'a' to 'z':

[Ada]

declare
 type Arr_Type is array (Integer range <>) of Character;
 Arr : Arr_Type (1 .. 26);
 C : Character := 'a';
begin
 for I in Arr'Range loop
 Arr (I) := C;
 C := Character'Succ (C);
 end loop;
end;

[C++]

char Arr [26];
char C = 'a';

for (int I = 0; I < 26; ++I) {
 Arr [I] = C;
 C = C + 1;
}

[Java]

char [] Arr = new char [26];
char C = 'a';

for (int I = 0; I < Arr.length; ++I) {
 Arr [I] = C;
 C = C + 1;
}

In C++ and Java, only the size of the array is given during declaration. In Ada, array index ranges are specified using two values of a discrete type. In this example, the array type declaration specifies the use of Integer as the index type, but does not provide any constraints (use <>, pronounced box, to specify "no constraints"). The constraints are defined in the object declaration to be 1 to 26, inclusive. Arrays have an attribute called 'Range. In our example, Arr'Range can also be expressed as Arr'First .. Arr'Last; both expressions will resolve to 1 .. 26. So the 'Range attribute supplies the bounds for our for loop. There is no risk of stating either of the bounds incorrectly, as one might do in C++ where I <= 26 may be specified as the end-of-loop condition.

As in C++, Ada Strings are arrays of Characters. The C++ or Java String class is the equivalent of the Ada type Ada.Strings.Unbounded_String which offers additional capabilities in exchange for some overhead. Ada strings, importantly, are not delimited with the special character '\0' like they are in C++. It is not necessary because Ada uses the array's bounds to determine where the string starts and stops.

Ada's predefined String type is very straighforward to use:

My_String : String (1 .. 26);

Unlike C++ and Java, Ada does not offer escape sequences such as '\n'. Instead, explicit values from the ASCII package must be concatenated (via the concatenation operator, &). Here for example, is how to initialize a line of text ending with a new line:

My_String : String := "This is a line with a end of line" & ASCII.LF;

You see here that no constraints are necessary for this variable definition. The initial value given allows the automatic determination of My_String's bounds.

Ada offers high-level operations for copying, slicing, and assigning values to arrays. We'll start with assignment. In C++ or Java, the assignment operator doesn't make a copy of the value of an array, but only copies the address or reference to the target variable. In Ada, the actual array contents are duplicated. To get the above behavior, actual pointer types would have to be defined and used.

[Ada]

declare
 type Arr_Type is array (Integer range <>) of Integer;
 A1 : Arr_Type (1 .. 2);
 A2 : Arr_Type (1 .. 2);
begin
 A1 (1) := 0;
 A1 (2) := 1;

 A2 := A1;
end;

[C++]

int A1 [2];
int A2 [2];

A1 [0] = 0;
A1 [1] = 1;

for (int i = 0; i < 2; ++i) {
 A2 [i] = A1 [i];
}

[Java]

int [] A1 = new int [2];
int [] A2 = new int [2];

A1 [0] = 0;
A1 [1] = 1;

A2 = Arrays.copyOf(A1, A1.length);

In all of the examples above, the source and destination arrays must have precisely the same number of elements. Ada allows you to easily specify a portion, or slice, of an array. So you can write the following:

[Ada]

declare
 type Arr_Type is array (Integer range <>) of Integer;
 A1 : Arr_Type (1 .. 10);
 A2 : Arr_Type (1 .. 5);
begin
 A2 (1 .. 3) := A1 (4 .. 6);
end;

This assigns the 4th, 5th, and 6th elements of A1 into the 1st, 2nd, and 3rd elements of A2. Note that only the length matters here: the values of the indexes don't have to be equal; they slide automatically.

Ada also offers high level comparison operations which compare the contents of arrays as opposed to their addresses:

[Ada]

declare
 type Arr_Type is array (Integer range <>) of Integer;
 A1 : Arr_Type (1 .. 2);
 A2 : Arr_Type (1 .. 2);
begin
 if A1 = A2 then

[C++]

int A1 [2];
int A2 [2];

bool eq = true;

for (int i = 0; i < 2; ++i) {
 if (A1 [i] != A2 [i]) {
 eq = false;
 }
}

if (eq) {

[Java]

int [] A1 = new int [2];
int [] A2 = new int [2];

if (Arrays.equals (A1, A2)) {

You can assign to all the elements of an array in each language in different ways. In Ada, the number of elements to assign can be determined by looking at the right-hand side, the left-hand side, or both sides of the assignment. When bounds are known on the left-hand side, it's possible to use the others expression to define a default value for all the unspecified array elements. Therefore, you can write:

declare
 type Arr_Type is array (Integer range <>) of Integer;
 A1 : Arr_Type := (1, 2, 3, 4, 5, 6, 7, 8, 9);
 A2 : Arr_Type (-2 .. 42) := (others => 0);
begin
 A1 := (1, 2, 3, others => 10);

 -- use a slice to assign A2 elements 11 .. 19 to 1
 A2 (11 .. 19) := (others => 1);
end;

Heterogeneous Data Structures

In Ada, there's no distinction between struct and class as there is in C++. All heterogeneous data structures are records. Here are some simple records:

[Ada]

declare
 type R is record
 A, B : Integer;
 C : Float;
 end record;

 V : R;
begin
 V.A := 0;
end;

[C++]

struct R {
 int A, B;
 float C;
};

R V;
V.A = 0;

[Java]

class R {
 public int A, B;
 public float C;
}

R V = new R ();
V.A = 0;

Ada allows specification of default values for fields just like C++ and Java. The values specified can take the form of an ordered list of values, a named list of values, or an incomplete list followed by others => <> to specify that fields not listed will take their default values. For example:

type R is record
 A, B : Integer := 0;
 C : Float := 0.0;
end record;

V1 : R := (1, 2, 1.0);
V2 : R := (A => 1, B => 2, C => 1.0);
V3 : R := (C => 1.0, A => 1, B => 2);
V4 : R := (C => 1.0, others => <>);

Pointers

Pointers, references, and access types differ in significant ways across the languages that we are examining. In C++, pointers are integral to a basic understanding of the language, from array manipulation to proper declaration and use of function parameters. In Java, direct pointer manipulation is abstracted by the Java runtime. And in Ada, direct pointer manipulation is possible, but unlike C++, they are not required for basic usage with arrays and parameter passing.

We'll continue this section by explaining the difference between objects allocated on the stack and objects allocated on the heap using the following example:

[Ada]

declare
 type R is record
 A, B : Integer;
 end record;

 V1, V2 : R;
begin
 V1.A := 0;
 V2 := V1;
 V2.A := 1;
end;

[C++]

struct R {
 int A, B;
};

R V1, V2;
V1.A = 0;
V2 = V1;
V2.A = 1;

[Java]

public class R {
 public int A, B;
}

R V1, V2;
V1 = new R ();
V1.A = 0;
V2 = V1;
V2.A = 1;

There's a fundamental difference between the Ada and C++ semantics above and the semantics for Java. In Ada and C++, objects are allocated on the stack and are directly accessed. V1 and V2 are two different objects and the assignment statement copies the value of V1 into V2. In Java, V1 and V2 are two references to objects of class R. Note that when V1 and V2 are declared, no actual object of class R yet exists in memory: it has to be allocated later with the new allocator operator. After the assignment V2 = V1, there's only one R object in memory: the assignment is a reference assignment, not a value assignment. At the end of the Java code, V1 and V2 are two references to the same objects and the V2.A = 1 statement changes the field of that one object, while in the Ada and the C++ case V1 and V2 are two distinct objects.

To obtain similar behavior in Ada, you can use pointers. It can be done through Ada's access type:

[Ada]

declare
 type R is record
 A, B : Integer;
 end record;
 type R_Access is access R;

 V1 : R_Access;
 V2 : R_Access;
begin
 V1 := new R;
 V1.A := 0;
 V2 := V1;
 V2.A := 1;
end;

[C++]

struct R {
 int A, B;
};

R * V1, * V2;
V1 = new R ();
V1->A = 0;
V2 = V1;
V2->A = 0;

For those coming from the Java world: there's no garbage collector in Ada, so objects allocated by the new operator need to be expressly freed.

Dereferencing is performed automatically in certain situations, for instance when it is clear that the type required is the dereferenced object rather than the pointer itself, or when accessing record members via a pointer. To explicitly dereference an access variable, append .all. The equivalent of V1->A in C++ can be written either as V1.A or V1.all.A.

Pointers to scalar objects in Ada and C++ look like:

[Ada]

procedure Main is
 type A_Int is access Integer;
 Var : A_Int := new Integer;
begin
 Var.all := 0;
end Main;

[C++]

int main (int argc, char *argv[]) {
 int * Var = new int;
 *Var = 0;
}

An initializer can be specified with the allocation by appending '(value):

Var : A_Int := new Integer'(0);

When using Ada pointers to reference objects on the stack, the referenced objects must be declared as being aliased. This directs the compiler to implement the object using a memory region, rather than using registers or eliminating it entirely via optimization. The access type needs to be declared as either access all (if the referenced object needs to be assigned to) or access constant (if the referenced object is a constant). The 'Access attribute works like the C++ & operator to get a pointer to the object, but with a "scope accessibility" check to prevent references to objects that have gone out of scope. For example:

[Ada]

type A_Int is access all Integer;
Var : aliased Integer;
Ptr : A_Int := Var'Access;

[C++]

int Var;
int * Ptr = &Var;

To deallocate objects from the heap in Ada, it is necessary to use a deallocation subprogram that accepts a specific access type. A generic procedure is provided that can be customized to fit your needs — it's called Ada.Unchecked_Deallocation. To create your customized deallocator (that is, to instantiate this generic), you must provide the object type as well as the access type as follows:

[Ada]

with Ada.Unchecked_Deallocation;
procedure Main is
 type Integer_Access is access all Integer;
 procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access);
 My_Pointer : Integer_Access := new Integer;
begin
 Free (My_Pointer);
end Main;

[C++]

int main (int argc, char *argv[]) {
 int * my_pointer = new int;
 delete my_pointer;
}

Footnotes

Functions and Procedures

General Form

Subroutines in C++ and Java are always expressed as functions (methods) which may or may not return a value. Ada explicitly differentiates between functions and procedures. Functions must return a value and procedures must not. Ada uses the more general term "subprogram" to refer to both functions and procedures.

Parameters can be passed in three distinct modes: in, which is the default, is for input parameters, whose value is provided by the caller and cannot be changed by the subprogram. out is for output parameters, with no initial value, to be assigned by the subprogram and returned to the caller. in out is a parameter with an initial value provided by the caller, which can be modified by the subprogram and returned to the caller (more or less the equivalent of a non-constant reference in C++). Ada also provides access parameters, in effect an explicit pass-by-reference indicator.

In Ada the programmer specifies how the parameter will be used and in general the compiler decides how it will be passed (i.e., by copy or by reference). (There are some exceptions to the "in general". For example, parameters of scalar types are always passed by copy, for all three modes.) C++ has the programmer specify how to pass the parameter, and Java forces primitive type parameters to be passed by copy and all other parameters to be passed by reference. For this reason, a 1:1 mapping between Ada and Java isn't obvious but here's an attempt to show these differences:

[Ada]

procedure Proc
 (Var1 : Integer;
 Var2 : out Integer;
 Var3 : in out Integer);

function Func (Var : Integer) return Integer;

procedure Proc
 (Var1 : Integer;
 Var2 : out Integer;
 Var3 : in out Integer)
is
begin
 Var2 := Func (Var1);
 Var3 := Var3 + 1;
end Proc;

function Func (Var : Integer) return Integer
is
begin
 return Var + 1;
end Func;

[C++]

void Proc
 (int Var1,
 int & Var2,
 int & Var3);

int Func (int Var);

void Proc
 (int Var1,
 int & Var2,
 int & Var3) {

 Var2 = Func (Var1);
 Var3 = Var3 + 1;
}

int Func (int Var) {
 return Var + 1;
}

[Java]

public class ProcData {
 public int Var2;
 public int Var3;

 public void Proc (int Var1) {
 Var2 = Func (Var1);
 Var3 = Var3 + 1;
 }

 public static int Func (int Var) {
 return Var + 1;
 }
}

The first two declarations for Proc and Func are specifications of the subprograms which are being provided later. Although optional here, it's still considered good practice to separately define specifications and implementations in order to make it easier to read the program. In Ada and C++, a function that has not yet been seen cannot be used. Here, Proc can call Func because its specification has been declared. In Java, it's fine to have the declaration of the subprogram later .

Parameters in Ada subprogram declarations are separated with semicolons, because commas are reserved for listing multiple parameters of the same type. Parameter declaration syntax is the same as variable declaration syntax, including default values for parameters. If there are no parameters, the parentheses must be omitted entirely from both the declaration and invocation of the subprogram.

Overloading

Different subprograms may share the same name; this is called "overloading." As long as the subprogram signatures (subprogram name, parameter types, and return types) are different, the compiler will be able to resolve the calls to the proper destinations. For example:

function Value (Str : String) return Integer;
function Value (Str : String) return Float;

V : Integer := Value ("8");

The Ada compiler knows that an assignment to V requires an Integer. So, it chooses the Value function that returns an Integer to satisfy this requirement.

Operators in Ada can be treated as functions too. This allows you to define local operators that override operators defined at an outer scope, and provide overloaded operators that operate on and compare different types. To express an operator as a function, enclose it in quotes:

[Ada]

function "=" (Left : Day; Right : Integer) return Boolean;

[C++]

bool operator = (Day Left, int Right);

Subprogram Contracts

You can express the expected inputs and outputs of subprograms by specifying subprogram contracts. The compiler can then check for valid conditions to exist when a subprogram is called and can check that the return value makes sense. Ada allows defining contracts in the form of Pre and Post conditions; this facility was introduced in Ada 2012. They look like:

function Divide (Left, Right : Float) return Float
 with Pre => Right /= 0.0,
 Post => Divide'Result * Right < Left + 0.0001
 and then Divide'Result * Right > Left - 0.0001;

The above example adds a Pre condition, stating that Right cannot be equal to 0.0. While the IEEE floating point standard permits divide-by-zero, you may have determined that use of the result could still lead to issues in a particular application. Writing a contract helps to detect this as early as possible. This declaration also provides a Post condition on the result.

Postconditions can also be expressed relative to the value of the input:

procedure Increment (V : in out Integer)
 with Pre => V < Integer'Last,
 Post => V = V'Old + 1;

V'Old in the postcondition represents the value that V had before entering Increment.

Footnotes

Packages

Declaration Protection

The package is the basic modularization unit of the Ada language, as is the class for Java and the header and implementation pair for C++. An Ada package contains three parts that, for GNAT, are separated into two files: .ads files contain public and private Ada specifications, and .adb files contain the implementation, or Ada bodies.

Java doesn't provide any means to cleanly separate the specification of methods from their implementation: they all appear in the same file. You can use interfaces to emulate having separate specifications, but this requires the use of OOP techniques which is not always practical.

Ada and C++ do offer separation between specifications and implementations out of the box, independent of OOP.

package Package_Name is
 -- public specifications
private
 -- private specifications
end Package_Name;

package body Package_Name is
 -- implementation
end Package_Name;

Private types are useful for preventing the users of a package's types from depending on the types' implementation details. The private keyword splits the package spec into "public" and "private" parts. That is somewhat analogous to C++'s partitioning of the class construct into different sections with different visibility properties. In Java, the encapsulation has to be done field by field, but in Ada the entire definition of a type can be hidden. For example:

package Types is
 type Type_1 is private;
 type Type_2 is private;
 type Type_3 is private;
 procedure P (X : Type_1);
 ...
private
 procedure Q (Y : Type_1);
 type Type_1 is new Integer range 1 .. 1000;
 type Type_2 is array (Integer range 1 .. 1000) of Integer;
 type Type_3 is record
 A, B : Integer;
 end record;
end Types;

Subprograms declared above the private separator (such as P) will be visible to the package user, and the ones below (such as Q) will not. The body of the package, the implementation, has access to both parts.

Hierarchical Packages

Ada packages can be organized into hierarchies. A child unit can be declared in the following way:

-- root-child.ads

package Root.Child is
 -- package spec goes here
end Root.Child;

-- root-child.adb

package body Root.Child is
 -- package body goes here
end Root.Child;

Here, Root.Child is a child package of Root. The public part of Root.Child has access to the public part of Root. The private part of Child has access to the private part of Root, which is one of the main advantages of child packages. However, there is no visibility relationship between the two bodies. One common way to use this capability is to define subsystems around a hierarchical naming scheme.

Using Entities from Packages

Entities declared in the visible part of a package specification can be made accessible using a with clause that references the package, which is similar to the C++ #include directive. Visibility is implicit in Java: you can always access all classes located in your CLASSPATH. After a with clause, entities needs to be prefixed by the name of their package, like a C++ namespace or a Java package. This prefix can be omitted if a use clause is employed, similar to a C++ using namespace or a Java import.

[Ada]

-- pck.ads

package Pck is
 My_Glob : Integer;
end Pck;

-- main.adb

with Pck;

procedure Main is
begin
 Pck.My_Glob := 0;
end Main;

[C++]

// pck.h

namespace pck {
 extern int myGlob;
}

// pck.cpp

namespace pck {
 int myGlob;
}

// main.cpp

#include "pck.h"

int main (int argc, char ** argv) {
 pck::myGlob = 0;
}

[Java]

// Globals.java

package pck;

public class Globals {
 public static int myGlob;
}

// Main.java

public class Main {
 public static void main (String [] argv) {
 pck.Globals.myGlob = 0;
 }
}

Footnotes

Classes and Object Oriented Programming

Primitive Subprograms

Primitive subprograms in Ada are basically the subprograms that are eligible for inheritance / derivation. They are the equivalent of C++ member functions and Java instance methods. While in C++ and Java these subprograms are located within the nested scope of the type, in Ada they are simply declared in the same scope as the type. There's no syntactic indication that a subprogram is a primitive of a type.

The way to determine whether P is a primitive of a type T is if

	it is declared in the same scope as T, and

	it contains at least one parameter of type T, or returns a result of type T.

In C++ or Java, the self reference this is implicitly declared. It may need to be explicitly stated in certain situations, but usually it's omitted. In Ada the self-reference, called the controlling parameter, must be explicitly specified in the subprogram parameter list. While it can be any parameter in the profile with any name, we'll focus on the typical case where the first parameter is used as the self parameter. Having the controlling parameter listed first also enables the use of OOP prefix notation which is convenient.

A class in C++ or Java corresponds to a tagged type in Ada. Here's an example of the declaration of an Ada tagged type with two parameters and some dispatching and non-dispatching primitives, with equivalent examples in C++ and Java:

[Ada]

type T is tagged record
 V, W : Integer;
end record;

type T_Access is access all T;

function F (V : T) return Integer;

procedure P1 (V : access T);

procedure P2 (V : T_Access);

[C++]

class T {
 public:
 int V, W;

 int F ();

 void P1 ();
};

void P2 (T * v);

[Java]

public class T {
 public int V, W;

 public int F () {};

 public void P1 () {};

 public static void P2 (T v) {};
}

Note that P2 is not a primitive of T — it does not have any parameters of type T. Its parameter is of type T_Access, which is a different type.

Once declared, primitives can be called like any subprogram with every necessary parameter specified, or called using prefix notation. For example:

[Ada]

declare
 V : T;
begin
 V.P1;
end;

[C++]

{
 T v;
 v.P1 ();
}

[Java]

{
 T v = new T ();
 v.P1 ();
}

Derivation and Dynamic Dispatch

Despite the syntactic differences, derivation in Ada is similar to derivation (inheritance) in C++ or Java. For example, here is a type hierarchy where a child class overrides a method and adds a new method:

[Ada]

type Root is tagged record
 F1 : Integer;
end record;

procedure Method_1 (Self : Root);

type Child is new Root with record
 F2 : Integer;
end record;

overriding
procedure Method_1 (Self : Child);

procedure Method_2 (Self : Child);

[C++]

class Root {
 public:
 int f1;
 virtual void method1 ();
};

class Child : public Root {
 public:
 int f2;
 virtual void method1 ();
 virtual void method2 ();
};

[Java]

public class Root {
 public int f1;
 public void method1 ();
}

public class Child extends Root {
 public int f2;
 @Override
 public void method1 ();
 public void method2 ();
}

Like Java, Ada primitives on tagged types are always subject to dispatching; there is no need to mark them virtual. Also like Java, there's an optional keyword overriding to ensure that a method is indeed overriding something from the parent type.

Unlike many other OOP languages, Ada differentiates between a reference to a specific tagged type, and a reference to an entire tagged type hierarchy. While Root is used to mean a specific type, Root'Class — a class-wide type — refers to either that type or any of its descendants. A method using a parameter of such a type cannot be overridden, and must be passed a parameter whose type is of any of Root's descendants (including Root itself).

Next, we'll take a look at how each language finds the appropriate method to call within an OO class hierarchy; that is, their dispatching rules. In Java, calls to non-private instance methods are always dispatching. The only case where static selection of an instance method is possible is when calling from a method to the super version.

In C++, by default, calls to virtual methods are always dispatching. One common mistake is to use a by-copy parameter hoping that dispatching will reach the real object. For example:

void proc (Root p) {
 p.method1 ();
}

Root * v = new Child ();

proc (*v);

In the above code, p.method1() will not dispatch. The call to proc makes a copy of the Root part of v, so inside proc, p.method1() refers to the method1() of the root object. The intended behavior may be specified by using a reference instead of a copy:

void proc (Root & p) {
 p.method1 ();
}

Root * v = new Child ();

proc (*v);

In Ada, tagged types are always passed by reference but dispatching only occurs on class-wide types. The following Ada code is equivalent to the latter C++ example:

declare
 procedure Proc (P : Root'Class) is
 begin
 P.Method_1;
 end;

 type Root_Access is access all Root'Class;
 V : Root_Access := new Child;
begin
 Proc (V.all);
end;

Dispatching from within primitives can get tricky. Let's consider a call to Method_1 in the implementation of Method_2. The first implementation that might come to mind is:

procedure Method_2 (P : Root) is
begin
 P.Method_1;
end;

However, Method_2 is called with a parameter that is of the definite type Root. More precisely, it is a definite view of a child. So, this call is not dispatching; it will always call Method_1 of Root even if the object passed is a child of Root. To fix this, a view conversion is necessary:

procedure Method_2 (P : Root) is
begin
 Root'Class (P).Method_1;
end;

This is called "redispatching." Be careful, because this is the most common mistake made in Ada when using OOP. In addition, it's possible to convert from a class wide view to a definite view, and to select a given primitive, like in C++:

[Ada]

procedure Proc (P : Root'Class) is
begin
 Root (P).Method_1;
end;

[C++]

void proc (Root & p) {
 p.Root::method1 ();
}

Constructors and Destructors

Ada does not have constructors and destructors in quite the same way as C++ and Java, but there is analagous functionality in Ada in the form of default initialization and finalization.

Default initialization may be specified for a record component and will occur if a variable of the record type is not assigned a value at initialization. For example:

type T is tagged record
 F : Integer := Compute_Default_F;
end record;

function Compute_Default_F return Integer is
begin
 Put_Line ("Compute");
 return 0;
end Compute_Default_F;

V1 : T;
V2 : T := (F => 0);

In the declaration of V1, T.F receives a value computed by the subprogram Compute_Default_F. This is part of the default initialization. V2 is initialized manually and thus will not use the default initialization.

For additional expressive power, Ada provides a type called Ada.Finalization.Controlled from which you can derive your own type. Then, by overriding the Initialize procedure you can create a constructor for the type:

type T is new Ada.Finalization.Controlled with record
 F : Integer;
end record;

procedure Initialize (Self : in out T) is
begin
 Put_Line ("Compute");
 Self.F := 0;
end Initialize;

V1 : T;
V2 : T := (F => 0);

Again, this default initialization subprogram is only called for V1; V2 is initialized manually. Furthermore, unlike a C++ or Java constructor, Initialize is a normal subprogram and does not perform any additional initialization such as calling the parent's initialization routines.

When deriving from Controlled, it's also possible to override the subprogram Finalize, which is like a destructor and is called for object finalization. Like Initialize, this is a regular subprogram. Do not expect any other finalizers to be automatically invoked for you.

Controlled types also provide functionality that essentially allows overriding the meaning of the assignment operation, and are useful for defining types that manage their own storage reclamation (for example, implementing a reference count reclamation strategy).

Encapsulation

While done at the class level for C++ and Java, Ada encapsulation occurs at the package level and targets all entities of the language, as opposed to only methods and attributes. For example:

[Ada]

package Pck is
 type T is tagged private;
 procedure Method1 (V : T);
private
 type T is tagged record
 F1, F2 : Integer;
 end record;
 procedure Method2 (V : T);
end Pck;

[C++]

class T {
 public:
 virtual void method1 ();
 protected:
 int f1, f2;
 virtual void method2 ();
};

[Java]

public class T {
 public void method1 ();
 protected int f1, f2;
 protected void method2 ();
}

The C++ and Java code's use of protected and the Ada code's use of private here demonstrates how to map these concepts between languages. Indeed, the private part of an Ada child package would have visibility of the private part of its parents, mimicking the notion of protected. Only entities declared in the package body are completely isolated from access.

Abstract Types and Interfaces

Ada, C++ and Java all offer similar functionality in terms of abstract classes, or pure virtual classes. It is necessary in Ada and Java to explicitly specify whether a tagged type or class is abstract, whereas in C++ the presence of a pure virtual function implicitly makes the class an abstract base class. For example:

[Ada]

package P is

 type T is abstract tagged private;

 procedure Method (Self : T) is abstract;
 private
 type T is abstract tagged record
 F1, F2 : Integer;
 end record;

 end P;

[C++]

class T {
 public:
 virtual void method () = 0;
 protected:
 int f1, f2;
};

[Java]

public abstract class T {
 public abstract void method1 ();
 protected int f1, f2;
};

All abstract methods must be implemented when implementing a concrete type based on an abstract type.

Ada doesn't offer multiple inheritance the way C++ does, but it does support a Java-like notion of interfaces. An interface is like a C++ pure virtual class with no attributes and only abstract members. While an Ada tagged type can inherit from at most one tagged type, it may implement multiple interfaces. For example:

[Ada]

type Root is tagged record
 F1 : Integer;
end record;
procedure M1 (Self : Root);

type I1 is interface;
procedure M2 (Self : I1) is abstract;

type I2 is interface;
procedure M3 (Self : I2) is abstract;

type Child is new Root and I1 and I2 with record
 F2 : Integer;
end record;

-- M1 implicitly inherited by Child
procedure M2 (Self : Child);
procedure M3 (Self : Child);

[C++]

class Root {
 public:
 virtual void M1();
 int f1;
};

class I1 {
 public:
 virtual void M2 () = 0;
};

class I2 {
 public:
 virtual void M3 () = 0;
};

class Child : public Root, I1, I2 {
 public:
 int f2;
 virtual void M2 ();
 virtual void M3 ();
};

[Java]

public class Root {
 public void M1();
 public int f1;
}

public interface I1 {
 public void M2 ();
}

public interface I2 {
 public void M3 ();
}

public class Child extends Root implements I1, I2 {
 public int f2;
 public void M2 ();
 public void M3 ();
}

Invariants

Any private type in Ada may be associated with a Type_Invariant contract. An invariant is a property of a type that must always be true after the return from of any of its primitive subprograms. (The invariant might not be maintained during the execution of the primitive subprograms, but will be true after the return.) Let's take the following example:

package Int_List_Pkg is

 type Int_List (Max_Length : Natural) is private
 with Type_Invariant => Is_Sorted (Int_List);

 function Is_Sorted (List : Int_List) return Boolean;

 type Int_Array is array (Positive range <>) of Integer;

 function To_Int_List (Ints : Int_Array) return Int_List;

 function To_Int_Array (List : Int_List) return Int_Array;

 function "&" (Left, Right : Int_List) return Int_List;

 ... -- Other subprograms
private

 type Int_List (Max_Length : Natural) is record
 Length : Natural;
 Data : Int_Array (1..Max_Length);
 end record;

 function Is_Sorted (List : Int_List) return Boolean is
 (for all I in List.Data'First .. List.Length-1 =>
 List.Data (I) <= List.Data (I+1));

end Int_List_Pkg;

package body Int_List_Pkg is

 procedure Sort (Ints : in out Int_Array) is
 begin
 ... Your favorite sorting algorithm
 end Sort;

 function To_Int_List (Ints : Int_Array) return Int_List is
 List : Int_List :=
 (Max_Length => Ints'Length,
 Length => Ints'Length,
 Data => Ints);
 begin
 Sort (List.Data);
 return List;
 end To_Int_List;

 function To_Int_Array (List : Int_List) return Int_Array is
 begin
 return List.Data;
 end To_Int_Array;

 function "&" (Left, Right : Int_List) return Int_List is
 Ints : Int_Array := Left.Data & Right.Data;
 begin
 Sort (Ints);
 return To_Int_List (Ints);
 end "&";

 ... -- Other subprograms
end Int_List_Pkg;

The Is_Sorted function checks that the type stays consistent. It will be called at the exit of every primitive above. It is permissible if the conditions of the invariant aren't met during execution of the primitive. In To_Int_List for example, if the source array is not in sorted order, the invariant will not be satisfied at the "begin", but it will be checked at the end.

Footnotes

Generics

Ada, C++, and Java all have support for generics or templates, but on different sets of language entities. A C++ template can be applied to a class or a function. So can a Java generic. An Ada generic can be either a package or a subprogram.

Generic Subprograms

In this example, we will swap two generic objects. This is possible in Ada and C++ using a temporary variable. In Java, parameters are a copy of a reference value that is passed into the function, so modifying those references in the function scope has no effect from the caller's context. A generic swap method, like the below Ada or C++ examples is not possible in Java, so we will skip the Java version of this example.

[Ada]

generic
 type A_Type is private;
procedure Swap (Left, Right : in out A_Type) is
 Temp : A_Type := Left;
begin
 Left := Right;
 Right := Temp;
end Swap;

[C++]

template <class AType>
AType swap (AType & left, AType & right) {
 AType temp = left;
 left = right;
 right = temp;
}

And examples of using these:

[Ada]

declare
 type R is record
 F1, F2 : Integer;
 end record;

 procedure Swap_R is new Swap (R);
 A, B : R;
begin
 ...
 Swap_R (A, B);
end;

[C++]

class R {
 public:
 int f1, f2;
};

R a, b;
...
swap (a, b);

The C++ template becomes usable once defined. The Ada generic needs to be explicitly instantiated using a local name and the generic's parameters.

Generic Packages

Next, we're going to create a generic unit containing data and subprograms. In Java or C++, this is done through a class, while in Ada, it's a generic package. The Ada and C++ model is fundamentally different from the Java model. Indeed, upon instantiation, Ada and C++ generic data are duplicated; that is, if they contain global variables (Ada) or static attributes (C++), each instance will have its own copy of the variable, properly typed and independent from the others. In Java, generics are only a mechanism to have the compiler do consistency checks, but all instances are actually sharing the same data where the generic parameters are replaced by java.lang.Object. Let's look at the following example:

[Ada]

generic
 type T is private;
package Gen is
 type C is tagged record
 V : T;
 end record;

 G : Integer;
end Gen;

[C++]

template <class T>
class C{
 public:
 T v;
 static int G;
};

[Java]

public class C <T> {
 public T v;
 public static int G;
}

In all three cases, there's an instance variable (v) and a static variable (G). Let's now look at the behavior (and syntax) of these three instantiations:

[Ada]

declare
 package I1 is new Gen (Integer);
 package I2 is new Gen (Integer);
 subtype Str10 is String (1..10);
 package I3 is new Gen (Str10);
begin
 I1.G := 0;
 I2.G := 1;
 I3.G := 2;
end;

[C++]

C <int>::G = 0;
C <int>::G = 1;
C <char *>::G = 2;

[Java]

C.G = 0;
C.G = 1;
C.G = 2;

In the Java case, we access the generic entity directly without using a parametric type. This is because there's really only one instance of C, with each instance sharing the same global variable G. In C++, the instances are implicit, so it's not possible to create two different instances with the same parameters. The first two assignments are manipulating the same global while the third one is manipulating a different instance. In the Ada case, the three instances are explicitly created, named, and referenced individually.

Generic Parameters

Ada offers a wide variety of generic parameters which is difficult to translate into other languages. The parameters used during instantiation — and as a consequence those on which the generic unit may rely on — may be variables, types, or subprograms with certain properties. For example, the following provides a sort algorithm for any kind of array:

generic
 type Component is private;
 type Index is (<>);
 with function "<" (Left, Right : Component) return Boolean;
 type Array_Type is array (Index range <>) of Component;
procedure Sort (A : in out Array_Type);

The above declaration states that we need a type (Component), a discrete type (Index), a comparison subprogram ("<"), and an array definition (Array_Type). Given these, it's possible to write an algorithm that can sort any Array_Type. Note the usage of the with reserved word in front of the function name, to differentiate between the generic parameter and the beginning of the generic subprogram.

Here is a non-exhaustive overview of the kind of constraints that can be put on types:

type T is private; -- T is a constrained type, such as Integer
type T (<>) is private; -- T can be an unconstrained type, such as String
type T is tagged private; -- T is a tagged type
type T is new T2 with private; -- T is an extension of T2
type T is (<>); -- T is a discrete type
type T is range <>; -- T is an integer type
type T is digits <>; -- T is a floating point type
type T is access T2; -- T is an access type, T2 is its designated type

Footnotes

Exceptions

Exceptions are a mechanism for dealing with run-time occurrences that are rare, that usually correspond to errors (such as improperly formed input data), and whose occurrence causes an unconditional transfer of control.

Standard Exceptions

Compared with Java and C++, the notion of an Ada exception is very simple. An exception in Ada is an object whose "type" is exception, as opposed to classes in Java or any type in C++. The only piece of user data that can be associated with an Ada exception is a String. Basically, an exception in Ada can be raised, and it can be handled; information associated with an occurrence of an exception can be interrogated by a handler.

Ada makes heavy use of exceptions especially for data consistency check failures at run time. These include, but are not limited to, checking against type ranges and array boundaries, null pointers, various kind of concurrency properties, and functions not returning a value. For example, the following piece of code will raise the exception Constraint_Error:

procedure P is
 V : Positive;
begin
 V := -1;
end P;

In the above code, we're trying to assign a negative value to a variable that's declared to be positive. The range check takes place during the assignment operation, and the failure raises the Constraint_Error exception at that point. (Note that the compiler may give a warning that the value is out of range, but the error is manifest as a run-time exception.) Since there is no local handler, the exception is propagated to the caller; if P is the main procedure, then the program will be terminated.

Java and C++ can throw and catch exceptions when trying code. All Ada code is already implicitly within try blocks, and exceptions are raised and handled.

[Ada]

begin
 Some_Call;
exception
 when Exception_1 =>
 Put_Line ("Error 1");
 when Exception_2 =>
 Put_Line ("Error 2");
 when others =>
 Put_Line ("Unknown error");
end;

[C++]

try {
 someCall ();
} catch (Exception1) {
 cout << "Error 1" << endl;
} catch (Exception2) {
 cout << "Error 2" << endl;
} catch (...) {
 cout << "Unknown error" << endl;
}

[Java]

try {
 someCall ();
} catch (Exception1 e1) {
 System.out.println ("Error 1");
} catch (Exception2 e2) {
 System.out.println ("Error 2");
} catch (Throwable e3) {
 System.out.println ("Unknown error");
}

Raising and throwing exceptions is permissible in all three languages.

Custom Exceptions

Custom exception declarations resemble object declarations, and they can be created in Ada using the exception keyword:

My_Exception : exception;

Your exceptions can then be raised using a raise statement, optionally accompanied by a message following the with reserved word:

[Ada]

raise My_Exception with "Some message";

[C++]

throw My_Exception ("Some message");

[Java]

throw new My_Exception ("Some message");

Language defined exceptions can also be raised in the same manner:

raise Constraint_Error;

Footnotes

Concurrency

Tasks

Java and Ada both provide support for concurrency in the language. The C++ language has added a concurrency facility in its most recent revision, C++11, but we are assuming that most C++ programmers are not (yet) familiar with these new features. We thus provide the following mock API for C++ which is similar to the Java Thread class:

class Thread {
 public:
 virtual void run (); // code to execute
 void start (); // starts a thread and then call run ()
 void join (); // waits until the thread is finished
};

Each of the following examples will display the 26 letters of the alphabet twice, using two concurrent threads/tasks. Since there is no synchronization between the two threads of control in any of the examples, the output may be interspersed.

[Ada]

procedure Main is -- implicitly called by the environment task
 task My_Task;

 task body My_Task is
 begin
 for I in 'A' .. 'Z' loop
 Put_Line (I);
 end loop;
 end My_Task;
begin
 for I in 'A' .. 'Z' loop
 Put_Line (I);
 end loop;
end Main;

[C++]

class MyThread : public Thread {
 public:

 void run () {
 for (char i = 'A'; i <= 'Z'; ++i) {
 cout << i << endl;
 }
 }
};

int main (int argc, char ** argv) {
 MyThread myTask;
 myTask.start ();

 for (char i = 'A'; i <= 'Z'; ++i) {
 cout << i << endl;
 }

 myTask.join ();

 return 0;
}

[Java]

public class Main {
 static class MyThread extends Thread {
 public void run () {
 for (char i = 'A'; i <= 'Z'; ++i) {
 System.out.println (i);
 }
 }
 }

 public static void main (String args) {
 MyThread myTask = new MyThread ();
 myTask.start ();

 for (char i = 'A'; i <= 'Z'; ++i) {
 System.out.println (i);
 }
 myTask.join ();
 }
}

Any number of Ada tasks may be declared in any declarative region. A task declaration is very similar to a procedure or package declaration. They all start automatically when control reaches the begin. A block will not exit until all sequences of statements defined within that scope, including those in tasks, have been completed.

A task type is a generalization of a task object; each object of a task type has the same behavior. A declared object of a task type is started within the scope where it is declared, and control does not leave that scope until the task has terminated.

An Ada task type is somewhat analogous to a Java Thread subclass, but in Java the instances of such a subclass are always dynamically allocated. In Ada an instance of a task type may either be declared or dynamically allocated.

Task types can be parametrized; the parameter serves the same purpose as an argument to a constructor in Java. The following example creates 10 tasks, each of which displays a subset of the alphabet contained between the parameter and the 'Z' Character. As with the earlier example, since there is no synchronization among the tasks, the output may be interspersed depending on the implementation's task scheduling algorithm.

[Ada]

task type My_Task (First : Character);

task body My_Task is
begin
 for I in First .. 'Z' loop
 Put_Line (I);
 end loop;
end My_Task;

procedure Main is
 Tab : array (0 .. 9) of My_Task ('G');
begin
 null;
end Main;

[C++]

class MyThread : public Thread {
 public:

 char first;

 void run () {
 for (char i = first; i <= 'Z'; ++i) {
 cout << i << endl;
 }
 }
};

int main (int argc, char ** argv) {
 MyThread tab [10];

 for (int i = 0; i < 9; ++i) {
 tab [i].first = 'G';
 tab [i].start ();
 }

 for (int i = 0; i < 9; ++i) {
 tab [i].join ();
 }

 return 0;
}

[Java]

public class MyThread extends Thread {
 public char first;

 public MyThread (char first){
 this.first = first;
 }

 public void run () {
 for (char i = first; i <= 'Z'; ++i) {
 cout << i << endl;
 }
 }
}

public class Main {
 public static void main (String args) {
 MyThread [] tab = new MyThread [10];

 for (int i = 0; i < 9; ++i) {
 tab [i] = new MyThread ('G');
 tab [i].start ();
 }

 for (int i = 0; i < 9; ++i) {
 tab [i].join ();
 }
 }
}

In Ada a task may be allocated on the heap as opposed to the stack. The task will then start as soon as it has been allocated, and terminates when its work is completed. This model is probably the one that's the most similar to Java:

[Ada]

type Ptr_Task is access My_Task;

procedure Main is
 T : Ptr_Task;
begin
 T := new My_Task ('G');
end Main;

[C++]

int main (int argc, char ** argv) {
 MyThread * t = new MyThread ();
 t->first = 'G';
 t->start ();
 return 0;
}

[Java]

public class Main {
 public static void main (String args) {
 MyThread t = new MyThread ('G');

 t.start ();
 }
}

Rendezvous

A rendezvous is a synchronization between two tasks, allowing them to exchange data and coordinate execution. Ada's rendezvous facility cannot be modeled with C++ or Java without complex machinery. Therefore, this section will just show examples written in Ada.

Let's consider the following example:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is

 task After is
 entry Go;
 end After ;

 task body After is
 begin
 accept Go;
 Put_Line ("After");
 end After;

begin
 Put_Line ("Before");
 After.Go;
end;

The Go entry declared in After is the external interface to the task. In the task body, the accept statement causes the task to wait for a call on the entry. This particular entry and accept pair doesn't do much more than cause the task to wait until Main calls After.Go. So, even though the two tasks start simultaneously and execute independently, they can coordinate via Go. Then, they both continue execution independently after the rendezvous.

The entry/accept pair can take/pass parameters, and the accept statement can contain a sequence of statements; while these statements are executed, the caller is blocked.

Let's look at a more ambitious example. The rendezvous below accepts parameters and executes some code:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is

 task After is
 entry Go (Text : String);
 end After ;

 task body After is
 begin
 accept Go (Text : String) do
 Put_Line ("After: " & Text);
 end Go;
 end After;

begin
 Put_Line ("Before");
 After.Go ("Main");
end;

In the above example, the Put_Line is placed in the accept statement. Here's a possible execution trace, assuming a uniprocessor:

	At the begin of Main, task After is started and the main procedure is suspended.

	After reaches the accept statement and is suspended, since there is no pending call on the Go entry.

	The main procedure is awakened and executes the Put_Line invocation, displaying the string "Before".

	The main procedure calls the Go entry. Since After is suspended on its accept statement for this entry, the call succeeds.

	The main procedure is suspended, and the task After is awakened to execute the body of the accept statement. The actual parameter "Main" is passed to the accept statement, and the Put_Line invocation is executed. As a result, the string "After: Main" is displayed.

	When the accept statement is completed, both the After task and the main procedure are ready to run. Suppose that the Main procedure is given the processor. It reaches its end, but the local task After has not yet terminated. The main procedure is suspended.

	The After task continues, and terminates since it is at its end. The main procedure is resumed, and it too can terminate since its dependent task has terminated.

The above description is a conceptual model; in practice the implementation can perform various optimizations to avoid unnecessary context switches.

Selective Rendezvous

The accept statement by itself can only wait for a single event (call) at a time. The select statement allows a task to listen for multiple events simultaneously, and then to deal with the first event to occur. This feature is illustrated by the task below, which maintains an integer value that is modified by other tasks that call Increment, Decrement, and Get:

task Counter is
 entry Get (Result : out Integer);
 entry Increment;
 entry Decrement;
end Counter;

task body Counter is
 Value : Integer := 0;
begin
 loop
 select
 accept Increment do
 Value := Value + 1;
 end Increment;
 or
 accept Decrement do
 Value := Value - 1;
 end Decrement;
 or
 accept Get (Result : out Integer) do
 Result := Value;
 end Get;
 or
 delay 60.0; -- delay 1 minute
 exit;
 end select;
 end loop;
end Counter;

When the task's statement flow reaches the select, it will wait for all four events — three entries and a delay — in parallel. If the delay of one minute is exceeded, the task will execute the statements following the delay statement (and in this case will exit the loop, in effect terminating the task). The accept bodies for the Increment, Decrement, or Get entries will be otherwise executed as they're called. These four sections of the select statement are mutually exclusive: at each iteration of the loop, only one will be invoked. This is a critical point; if the task had been written as a package, with procedures for the various operations, then a "race condition" could occur where multiple tasks simultaneously calling, say, Increment, cause the value to only get incremented once. In the tasking version, if multiple tasks simultaneously call Increment then only one at a time will be accepted, and the value will be incremented by each of the tasks when it is accepted.

More specifically, each entry has an associated queue of pending callers. If a task calls one of the entries and Counter is not ready to accept the call (i.e., if Counter is not suspended at the select statement) then the calling task is suspended, and placed in the queue of the entry that it is calling. From the perspective of the Counter task, at any iteration of the loop there are several possibilities:

	There is no call pending on any of the entries. In this case Counter is suspended. It will be awakened by the first of two events: a call on one of its entries (which will then be immediately accepted), or the expiration of the one minute delay (whose effect was noted above).

	There is a call pending on exactly one of the entries. In this case control passes to the select branch with an accept statement for that entry. The choice of which caller to accept, if more than one, depends on the queuing policy, which can be specified via a pragma defined in the Real-Time Systems Annex of the Ada standard; the default is First-In First-Out.

	There are calls pending on more than one entry. In this case one of the entries with pending callers is chosen, and then one of the callers is chosen to be de-queued (the choices depend on the queueing policy).

Protected Objects

Although the rendezvous may be used to implement mutually exclusive access to a shared data object, an alternative (and generally preferable) style is through a protected object, an efficiently implementable mechanism that makes the effect more explicit. A protected object has a public interface (its protected operations) for accessing and manipulating the object's components (its private part). Mutual exclusion is enforced through a conceptual lock on the object, and encapsulation ensures that the only external access to the components are through the protected operations.

Two kinds of operations can be performed on such objects: read-write operations by procedures or entries, and read-only operations by functions. The lock mechanism is implemented so that it's possible to perform concurrent read operations but not concurrent write or read/write operations.

Let's reimplement our earlier tasking example with a protected object called Counter:

protected Counter is
 function Get return Integer;
 procedure Increment;
 procedure Decrement;
private
 Value : Integer := 0;
end Counter;

protected body Counter is
 function Get return Integer is
 begin
 return Value;
 end Get;

 procedure Increment is
 begin
 Value := Value + 1;
 end Increment;

 procedure Decrement is
 begin
 Value := Value - 1;
 end Decrement;
end Counter;

Having two completely different ways to implement the same paradigm might seem complicated. However, in practice the actual problem to solve usually drives the choice between an active structure (a task) or a passive structure (a protected object).

A protected object can be accessed through prefix notation:

Counter.Increment;
Counter.Decrement;
Put_Line (Integer'Image (Counter.Get));

A protected object may look like a package syntactically, since it contains declarations that can be accessed externally using prefix notation. However, the declaration of a protected object is extremely restricted; for example, no public data is allowed, no types can be declared inside, etc. And besides the syntactic differences, there is a critical semantic distinction: a protected object has a conceptual lock that guarantees mutual exclusion; there is no such lock for a package.

Like tasks, it's possible to declare protected types that can be instantiated several times:

declare
 protected type Counter is
 -- as above
 end Counter;

 protected body Counter is
 -- as above
 end Counter;

 C1 : Counter;
 C2 : Counter;
begin
 C1.Increment;
 C2.Decrement;
 ...
end;

Protected objects and types can declare a procedure-like operation known as an "entry". An entry is somewhat similar to a procedure but includes a so-called barrier condition that must be true in order for the entry invocation to succeed. Calling a protected entry is thus a two step process: first, acquire the lock on the object, and then evaluate the barrier condition. If the condition is true then the caller will execute the entry body. If the condition is false, then the caller is placed in the queue for the entry, and relinquishes the lock. Barrier conditions (for entries with non-empty queues) are reevaluated upon completion of protected procedures and protected entries.

Here's an example illustrating protected entries: a protected type that models a binary semaphore / persistent signal.

protected type Binary_Semaphore is
 entry Wait;
 procedure Signal;
private
 Signaled : Boolean := False;
end Binary_Semaphore;

protected body Binary_Semaphore is
 entry Wait when Signaled is
 begin
 Signaled := False;
 end Wait;

 procedure Signal is
 begin
 Signaled := True;
 end Signal;
end Binary_Semaphore;

Ada concurrency features provide much further generality than what's been presented here. For additional information please consult one of the works cited in the References section.

Footnotes

Low Level Programming

Representation Clauses

We've seen in the previous chapters how Ada can be used to describe high level semantics and architecture. The beauty of the language, however, is that it can be used all the way down to the lowest levels of the development, including embedded assembly code or bit-level data management.

One very interesting feature of the language is that, unlike C, for example, there are no data representation constraints unless specified by the developer. This means that the compiler is free to choose the best trade-off in terms of representation vs. performance. Let's start with the following example:

[Ada]

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record
with Pack;

[C++]

struct R {
 unsigned int v:8;
 bool b1;
 bool b2;
};

[Java]

public class R {
 public byte v;
 public boolean b1;
 public boolean b2;
}

The Ada and the C++ code above both represent efforts to create an object that's as small as possible. Controlling data size is not possible in Java, but the language does specify the size of values for the primitive types.

Although the C++ and Ada code are equivalent in this particular example, there's an interesting semantic difference. In C++, the number of bits required by each field needs to be specified. Here, we're stating that v is only 8 bits, effectively representing values from 0 to 255. In Ada, it's the other way around: the developer specifies the range of values required and the compiler decides how to represent things, optimizing for speed or size. The Pack aspect declared at the end of the record specifies that the compiler should optimize for size even at the expense of decreased speed in accessing record components.

Other representation clauses can be specified as well, along with compile-time consistency checks between requirements in terms of available values and specified sizes. This is particularly useful when a specific layout is necessary; for example when interfacing with hardware, a driver, or a communication protocol. Here's how to specify a specific data layout based on the previous example:

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record;

for R use record
 -- Occupy the first bit of the first byte.
 B1 at 0 range 0 .. 0;

 -- Occupy the last 7 bits of the first byte,
 -- as well as the first bit of the second byte.
 V at 0 range 1 .. 8;

 -- Occupy the second bit of the second byte.
 B2 at 1 range 1 .. 1;
end record;

We omit the with Pack directive and instead use a record representation clause following the record declaration. The compiler is directed to spread objects of type R across two bytes. The layout we're specifying here is fairly inefficient to work with on any machine, but you can have the compiler construct the most efficient methods for access, rather than coding your own machine-dependent bit-level methods manually.

Embedded Assembly Code

When performing low-level development, such as at the kernel or hardware driver level, there can be times when it is necessary to implement functionality with assembly code.

Every Ada compiler has its own conventions for embedding assembly code, based on the hardware platform and the supported assembler(s). Our examples here will work with GNAT and GCC on the x86 architecture.

All x86 processors since the Intel Pentium offer the rdtsc instruction, which tells us the number of cycles since the last processor reset. It takes no inputs and places an unsigned 64 bit value split between the edx and eax registers.

GNAT provides a subprogram called System.Machine_Code.Asm that can be used for assembly code insertion. You can specify a string to pass to the assembler as well as source-level variables to be used for input and output:

with System.Machine_Code; use System.Machine_Code;
with Interfaces; use Interfaces;

function Get_Processor_Cycles return Unsigned_64 is
 Low, High : Unsigned_32;
 Counter : Unsigned_64;
begin
 Asm ("rdtsc",
 Outputs =>
 (Unsigned_32'Asm_Output ("=a", Low),
 Unsigned_32'Asm_Output ("=d", High)),
 Volatile => True);

 Counter :=
 Unsigned_64 (High) * 2 ** 32 +
 Unsigned_64 (Low);

 return Counter;
end Get_Processor_Cycles;

The Unsigned_32'Asm_Output clauses above provide associations between machine registers and source-level variables to be updated. "=a" and "=d" refer to the eax and edx machine registers, respectively. The use of the Unsigned_32 and Unsigned_64 types from package Interfaces ensures correct representation of the data. We assemble the two 32-bit values to form a single 64 bit value.

We set the Volatile parameter to True to tell the compiler that invoking this instruction multiple times with the same inputs can result in different outputs. This eliminates the possibility that the compiler will optimize multiple invocations into a single call.

With optimization turned on, the GNAT compiler is smart enough to use the eax and edx registers to implement the High and Low variables, resulting in zero overhead for the assembly interface.

The machine code insertion interface provides many features beyond what was shown here. More information can be found in the GNAT User's Guide, and the GNAT Reference manual.

Interfacing with C

Much effort was spent making Ada easy to interface with other languages. The Interfaces package hierarchy and the pragmas Convention, Import, and Export allow you to make inter-language calls while observing proper data representation for each language.

Let's start with the following C code:

struct my_struct {
 int A, B;
};

void call (my_struct * p) {
 printf ("%d", p->A);
}

To call that function from Ada, the Ada compiler requires a description of the data structure to pass as well as a description of the function itself. To capture how the C struct my_struct is represented, we can use the following record along with a pragma Convention. The pragma directs the compiler to lay out the data in memory the way a C compiler would.

type my_struct is record
 A : Interfaces.C.int;
 B : Interfaces.C.int;
end record;
pragma Convention (C, my_struct);

Describing a foreign subprogram call to Ada code is called "binding" and it is performed in two stages. First, an Ada subprogram specification equivalent to the C function is coded. A C function returning a value maps to an Ada function, and a void function maps to an Ada procedure. Then, rather than implementing the subprogram using Ada code, we use a pragma Import:

procedure Call (V : my_struct);
pragma Import (C, Call, "call"); -- Third argument optional

The Import pragma specifies that whenever Call is invoked by Ada code, it should invoke the call function with the C calling convention.

And that's all that's necessary. Here's an example of a call to Call:

declare
 V : my_struct := (A => 1, B => 2);
begin
 Call (V);
end;

You can also make Ada subprograms available to C code, and examples of this can be found in the GNAT User's Guide. Interfacing with C++ and Java use implementation-dependent features that are also available with GNAT.

Footnotes

Conclusion

All the usual paradigms of imperative programming can be found in all three languages that we surveyed in this document. However, Ada is different from the rest in that it's more explicit when expressing properties and expectations. This is a good thing: being more formal affords better communication among programmers on a team and between programmers and machines. You also get more assurance of the coherence of a program at many levels. Ada can help reduce the cost of software maintenance by shifting the effort to creating a sound system the first time, rather than working harder, more often, and at greater expense, to fix bugs found later in systems already in production. Applications that have reliability needs, long term maintenance requirements, or safety/security concerns are those for which Ada has a proven track record.

It's becoming increasingly common to find systems implemented in multiple languages, and Ada has standard interfacing facilities to allow Ada code to invoke subprograms and/or reference data structures from other language environments, or vice versa. Use of Ada thus allows easy interfacing between different technologies, using each for what it's best at.

We hope this guide has provided some insight into the Ada software engineer's world and has made Ada more accessible to programmers already familiar with programming in other languages.

Footnotes

References

The Ada Information Clearinghouse website http://www.adaic.org/learn/materials/, maintained by the Ada Resource Association, contains links to a variety of training materials (books, articles, etc.) that can help in learning Ada. The Development Center page http://www.adacore.com/knowledge on AdaCore's website also contains links to useful information including vides and tutorials on Ada.

The most comprehensive textbook is John Barnes' Programming in Ada 2012, which is oriented towards professional software developers.

Footnotes

Ada for the Embedded C Developer

Release 2024-03

Mar 30, 2024

Copyright © 2020 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This course introduces you to the Ada language by comparing it to C. It
assumes that you have good knowledge of the C language. It also assumes
that the choice of learning Ada is guided by considerations linked to
reliability, safety or security. In that sense, it teaches you Ada
paradigms that should be applied in replacement of those usually applied
in C.

This course also introduces you to the SPARK subset of the Ada programming
language, which removes a few features of the language with undefined
behavior, so that the code is fit for sound static analysis techniques.

This course was written by Quentin Ochem, Robert Tice, Gustavo A. Hoffmann,
and Patrick Rogers and reviewed by Patrick Rogers, Filip Gajowniczek, and
Tucker Taft.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

	Introduction
	So, what is this Ada thing anyway?

	Ada — The Technical Details

	The C Developer's Perspective
	What we mean by Embedded Software

	The GNAT Toolchain

	The GNAT Toolchain for Embedded Targets

	Hello World in Ada

	The Ada Syntax

	Compilation Unit Structure

	Packages
	Declaration Protection

	Hierarchical Packages

	Using Entities from Packages

	Statements and Declarations

	Conditions

	Loops

	Type System
	Strong Typing

	Language-Defined Types

	Application-Defined Types

	Type Ranges

	Unsigned And Modular Types

	Attributes

	Arrays and Strings

	Heterogeneous Data Structures

	Pointers

	Functions and Procedures
	General Form

	Overloading

	Aspects

	Concurrency and Real-Time
	Understanding the various options

	Tasks

	Rendezvous

	Selective Rendezvous

	Protected Objects

	Ravenscar

	Writing Ada on Embedded Systems
	Understanding the Ada Run-Time

	Low Level Programming
	Representation Clauses

	Embedded Assembly Code

	Interrupt Handling

	Dealing with Absence of FPU with Fixed Point

	Volatile and Atomic data
	Volatile

	Atomic

	Interfacing with Devices
	Size aspect and attribute

	Register overlays

	Data streams

	ARM and svd2ada

	Enhancing Verification with SPARK and Ada
	Understanding Exceptions and Dynamic Checks

	Understanding Dynamic Checks versus Formal Proof

	Initialization and Correct Data Flow

	Contract-Based Programming

	Replacing Defensive Code

	Proving Absence of Run-Time Errors

	Proving Abstract Properties

	Final Comments

	C to Ada Translation Patterns
	Naming conventions and casing considerations

	Manually interfacing C and Ada

	Building and Debugging mixed language code

	Automatic interfacing

	Using Arrays in C interfaces

	By-value vs. by-reference types

	Naming and prefixes

	Pointers

	Bitwise Operations

	Mapping Structures to Bit-Fields
	Overlays vs. Unchecked Conversions

	Handling Variability and Re-usability
	Understanding static and dynamic variability

	Handling variability & reusability statically
	Genericity

	Simple derivation

	Configuration pragma files

	Configuration packages

	Handling variability & reusability dynamically
	Records with discriminants

	Variant records
	Variant records and unions

	Optional components

	Optional output information

	Object orientation
	Type extension

	Overriding subprograms

	Comparing untagged and tagged types

	Dispatching calls

	Interfaces

	Deriving from multiple interfaces

	Abstract tagged types

	From simple derivation to OOP

	Further resources

	Pointer to subprograms

	Design by components using dynamic libraries

	Performance Considerations
	Overall expectations

	Switches and optimizations
	Optimizations levels

	Inlining

	Checks and assertions
	Checks

	Assertions

	Dynamic vs. static structures

	Pointers vs. data copies
	Function returns

	Argumentation and Business Perspectives
	What's the expected ROI of a C to Ada transition?

	Who is using Ada today?

	What is the future of the Ada technology?

	Is the Ada toolset complete?

	Where can I find Ada or SPARK developers?

	How to introduce Ada and SPARK in an existing code base?

	Conclusion

	Hands-On: Object-Oriented Programming
	System Overview

	Non Object-Oriented Approach
	Starting point in C

	Initial translation to Ada

	Improved Ada implementation

	First Object-Oriented Approach
	Interfaces

	Base type

	Derived types

	Subprograms from parent

	Type AB

	Updated source-code

	Further Improvements
	Dispatching calls

	Dynamic allocation

	Limited controlled types

	Updated source-code

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Introduction

So, what is this Ada thing anyway?

To answer this question let's introduce Ada as it compares to C for an embedded
application. C developers are used to a certain coding semantic and style of
programming. Especially in the embedded domain, developers are used to working
at a very low level near the hardware to directly manipulate memory and
registers. Normal operations involve mathematical operations on pointers,
complex bit shifts, and logical bitwise operations. C is well designed for such
operations as it is a low level language that was designed to replace assembly
language for faster, more efficient programming. Because of this minimal
abstraction, the programmer has to model the data that represents the problem
they are trying to solve using the language of the physical hardware.

Let's look at an example of this problem in action by comparing the same
program in Ada and C:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#define DEGREES_MAX (360)
 5typedef unsigned int degrees;
 6
 7#define MOD_DEGREES(x) (x % DEGREES_MAX)
 8
 9degrees add_angles(degrees* list, int length)
10{
11 degrees sum = 0;
12 for(int i = 0; i < length; ++i) {
13 sum += list[i];
14 }
15
16 return sum;
17}
18
19int main(int argc, char** argv)
20{
21 degrees list[argc - 1];
22
23 for(int i = 1; i < argc; ++i) {
24 list[i - 1] = MOD_DEGREES(atoi(argv[i]));
25 }
26
27 printf("Sum: %d\n", add_angles(list, argc - 1));
28
29 return 0;
30}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Introduction.Add_Angles_C
MD5: a6d184caaec372c538634c578b5e144b

Runtime output

Sum: 0

[Ada]

sum_angles.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Sum_Angles is
 5
 6 DEGREES_MAX : constant := 360;
 7 type Degrees is mod DEGREES_MAX;
 8
 9 type Degrees_List is array (Natural range <>) of Degrees;
10
11 function Add_Angles (List : Degrees_List) return Degrees
12 is
13 Sum : Degrees := 0;
14 begin
15 for I in List'Range loop
16 Sum := Sum + List (I);
17 end loop;
18
19 return Sum;
20 end Add_Angles;
21
22 List : Degrees_List (1 .. Argument_Count);
23begin
24 for I in List'Range loop
25 List (I) := Degrees (Integer'Value (Argument (I)));
26 end loop;
27
28 Put_Line ("Sum:" & Add_Angles (List)'Img);
29end Sum_Angles;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Introduction.Add_Angles_Ada
MD5: b5a446e5c27aa18c917ae8c2cc6c1605

Runtime output

Sum: 0

Here we have a piece of code in C and in Ada that takes some numbers from the
command line and stores them in an array. We then sum all of the values in the
array and print the result. The tricky part here is that we are working with
values that model an angle in degrees. We know that angles are modular types,
meaning that angles greater than 360° can also be represented as Angle
mod 360. So if we have an angle of 400°, this is equivalent to 40°. In order
to model this behavior in C we had to create the MOD_DEGREES macro, which
performs the modulus operation. As we read values from the command line, we
convert them to integers and perform the modulus before storing them into the
array. We then call add_angles which returns the sum of the values in the
array. Can you spot the problem with the C code?

Try running the Ada and C examples using the input sequence 340 2 50 70.
What does the C program output? What does the Ada program output? Why are they
different?

The problem with the C code is that we forgot to call MOD_DEGREES in the
for loop of add_angles. This means that it is possible for add_angles to return
values greater than DEGREES_MAX. Let's look at the equivalent Ada code now
to see how Ada handles the situation. The first thing we do in the Ada code is
to create the type Degrees which is a modular type. This means that the
compiler is going to handle performing the modulus operation for us. If we use
the same for loop in the Add_Angles function, we can see that we aren't
doing anything special to make sure that our resulting value is within the 360°
range we need it to be in.

The takeaway from this example is that Ada tries to abstract some concepts from
the developer so that the developer can focus on solving the problem at hand
using a data model that models the real world rather than using data types
prescribed by the hardware. The main benefit of this is that the compiler takes
some responsibility from the developer for generating correct code. In this
example we forgot to put in a check in the C code. The compiler inserted the
check for us in the Ada code because we told the compiler what we were trying
to accomplish by defining strong types.

Ideally, we want all the power that the C programming language can give us to
manipulate the hardware we are working on while also allowing us the ability to
more accurately model data in a safe way. So, we have a dilemma; what can give
us the power of operations like the C language, but also provide us with
features that can minimize the potential for developer error? Since this course
is about Ada, it's a good bet we're about to introduce the Ada language as the
answer to this question…

Unlike C, the Ada language was designed as a higher level language from its
conception; giving more responsibility to the compiler to generate correct
code. As mentioned above, with C, developers are constantly shifting, masking,
and accessing bits directly on memory pointers. In Ada, all of these operations
are possible, but in most cases, there is a better way to perform these
operations using higher level constructs that are less prone to mistakes, like
off-by-one or unintentional buffer overflows. If we were to compare the same
application written using C and with Ada using high level constructs, we would
see similar performance in terms of speed and memory efficiency. If we compare
the object code generated by both compilers, it's possible that they even look
identical!

Ada — The Technical Details

Like C, Ada is a compiled language. This means that the compiler will parse the
source code and emit machine code native to the target hardware. The Ada
compiler we will be discussing in this course is the GNAT compiler. This
compiler is based on the GCC technology like many C and C++ compilers
available. When the GNAT compiler is invoked on Ada code, the GNAT front-end
expands and translates the Ada code into an intermediate language which is
passed to GCC where the code is optimized and translated to machine code. A C
compiler based on GCC performs the same steps and uses the same intermediate
GCC representation. This means that the optimizations we are used to seeing
with a GCC based C compiler can also be applied to Ada code. The main
difference between the two compilers is that the Ada compiler is expanding high
level constructs into intermediate code. After expansion, the Ada code will be
very similar to the equivalent C code.

It is possible to do a line-by-line translation of C code to Ada. This feels
like a natural step for a developer used to C paradigms. However, there may be
very little benefit to doing so. For the purpose of this course, we're going to
assume that the choice of Ada over C is guided by considerations linked to
reliability, safety or security. In order to improve upon the reliability,
safety and security of our application, Ada paradigms should be applied in
replacement of those usually applied in C. Constructs such as pointers,
preprocessor macros, bitwise operations and defensive code typically get
expressed in Ada in very different ways, improving the overall reliability and
readability of the applications. Learning these new ways of coding, often,
requires effort by the developer at first, but proves more efficient once the
paradigms are understood.

In this course we will also introduce the SPARK subset of the Ada programming
language. The SPARK subset removes a few features of the language, i.e., those
that make proof difficult, such as pointer aliasing. By removing these features
we can write code that is fit for sound static analysis techniques. This means
that we can run mathematical provers on the SPARK code to prove certain safety
or security properties about the code.

Footnotes

The C Developer's Perspective on Ada

What we mean by Embedded Software

The Ada programming language is a general programming language, which means it
can be used for many different types of applications. One type of application
where it particularly shines is reliable and safety-critical embedded software;
meaning, a platform with a microprocessor such as ARM, PowerPC, x86, or RISC-V.
The application may be running on top of an embedded operating system, such as
an embedded Linux, or directly on bare metal. And the application domain can
range from small entities such as firmware or device controllers to flight
management systems, communication based train control systems, or advanced
driver assistance systems.

The GNAT Toolchain

The toolchain used throughout this course is called GNAT, which is a suite of
tools with a compiler based on the GCC environment. It can be obtained from
AdaCore, either as part of a commercial contract with
GNAT Pro[#1] or at no charge with the
GNAT Community edition[#2]. The information
in this course will be relevant no matter which edition you're using. Most
examples will be runnable on the native Linux or Windows version for
convenience. Some will only be relevant in the context of a cross toolchain, in
which case we'll be using the embedded ARM bare metal toolchain.

As for any Ada compiler, GNAT takes advantage of implementation permissions and
offers a project management system. Because we're talking about embedded
platforms, there are a lot of topics that we'll go over which will be specific
to GNAT, and sometimes to specific platforms supported by GNAT. We'll try to
make the distinction between what is GNAT-specific and Ada generic as much as
possible throughout this course.

For an introduction to the GNAT Toolchain for the GNAT Community edition, you
may refer to the
Introduction to GNAT Toolchain
course.

The GNAT Toolchain for Embedded Targets

When we're discussing embedded programming, our target device is often
different from the host, which is the device we're using to actually write and
build an application. In this case, we're talking about cross compilation
platforms (concisely referred to as cross platforms).

The GNAT toolchain supports cross platform compilation for various
target devices. This section provides a short introduction to the topic. For
more details, please refer to the
GNAT User’s Guide Supplement for Cross Platforms[#3]

GNAT supports two types of cross platforms:

	cross targets, where the target device has an embedded operating system.

	ARM-Linux, which is commonly found in a Raspberry-Pi, is a prominent
example.

	bareboard targets, where the run-times do not depend on an operating
system.

	In this case, the application has direct access to the system hardware.

For each platform, a set of run-time libraries is available. Run-time libraries
implement a subset of the Ada language for different use cases, and they're
different for each target platform. They may be selected via an attribute in
the project's GPR project file or as a command-line switch to
GPRbuild. Although the run-time libraries may vary from target to
target, the user interface stays the same, providing portability for the
application.

Run-time libraries consists of:

	Files that are dependent on the target board.

	These files are responsible for configuring and interacting with the
hardware.

	They are known as a Board Support Package — commonly referred to by
their abbrevation BSP.

	Code that is target-independent.

	This code implements language-defined functionality.

The bareboard run-time libraries are provided as customized run-times that are
configured to target a very specific micro-controller or processor. Therefore,
for different micro-controllers and processors, the run-time libraries need to
be ported to the specific target. These are some examples of what needs to be
ported:

	startup code / scripts;

	clock frequency initializations;

	memory mapping / allocation;

	interrupts and interrupt priorities;

	register descriptions.

For more details on the topic, please refer to the following chapters of the
GNAT User’s Guide Supplement for Cross Platforms[#4]:

	Bareboard Topics[#5]

	Customized Run-Time Libraries[#6]

Hello World in Ada

The first piece of code to translate from C to Ada is the usual Hello World
program:

[C]

main.c

1#include <stdio.h>
2
3int main(int argc, const char * argv[])
4{
5 printf("Hello World\n");
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Hello_World_C
MD5: 59685c72296a032893cda71dade24196

Runtime output

Hello World

[Ada]

hello_world.adb

1with Ada.Text_IO;
2
3procedure Hello_World
4is
5begin
6 Ada.Text_IO.Put_Line ("Hello World");
7end Hello_World;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Hello_World_Ada
MD5: f1a7c6a4fd679c4caea7ee31d14aab2e

Runtime output

Hello World

The resulting program will print Hello World on the screen. Let's now
dissect the Ada version to describe what is going on:

The first line of the Ada code is giving us access to the Ada.Text_IO
library which contains the Put_Line function we will use to print the
text to the console. This is similar to C's #include <stdio.h>. We then
create a procedure which executes Put_Line which prints to the console.
This is similar to C's printf function. For now, we can assume these Ada
and C features have similar functionality. In reality, they are very different.
We will explore that more as we delve further into the Ada language.

You may have noticed that the Ada syntax is more verbose than C. Instead of
using braces {} to declare scope, Ada uses keywords. is opens a
declarative scope — which is empty here as there's no variable to
declare. begin opens a sequence of statements. Within this sequence,
we're calling the function Put_Line, prefixing explicitly with the name
of the library unit where it's declared, Ada.Text_IO. The absence of the
end of line \n can also be noted, as Put_Line always terminates by
an end of line.

The Ada Syntax

Ada syntax might seem peculiar at first glance. Unlike many other languages,
it's not derived from the popular C style of notation with its ample use of
brackets; rather, it uses a more expository syntax coming from Pascal. In many
ways, Ada is a more explicit language — its syntax was designed to
increase readability and maintainability, rather than making it faster to write
in a condensed manner. For example:

	full words like begin and end are used in place of curly
braces.

	Conditions are written using if, then, elsif,
else, and end if.

	Ada's assignment operator does not double as an expression, eliminating
potential mistakes that could be caused by = being used where ==
should be.

All languages provide one or more ways to express comments. In Ada, two
consecutive hyphens -- mark the start of a comment that continues to the
end of the line. This is exactly the same as using // for comments in C.
Multi line comments like C's /* */ do not exist in Ada.

Ada compilers are stricter with type and range checking than most C programmers
are used to. Most beginning Ada programmers encounter a variety of warnings and
error messages when coding, but this helps detect problems and vulnerabilities
at compile time — early on in the development cycle. In addition, checks
(such as array bounds checks) provide verification that could not be done at
compile time but can be performed either at run-time, or through formal proof
(with the SPARK tooling).

Ada identifiers and reserved words are case insensitive. The identifiers
VAR, var and VaR are treated as the same identifier;
likewise begin, BEGIN, Begin, etc. Identifiers may include
letters, digits, and underscores, but must always start with a letter. There
are 73 reserved keywords in Ada that may not be used as identifiers, and these
are:

	abort

	else

	null

	select

	abs

	elsif

	of

	separate

	abstract

	end

	or

	some

	accept

	entry

	others

	subtype

	access

	exception

	out

	synchronized

	aliased

	exit

	overriding

	tagged

	all

	for

	package

	task

	and

	function

	pragma

	terminate

	array

	generic

	private

	then

	at

	goto

	procedure

	type

	begin

	if

	protected

	until

	body

	in

	raise

	use

	case

	interface

	range

	when

	constant

	is

	record

	while

	declare

	limited

	rem

	with

	delay

	loop

	renames

	xor

	delta

	mod

	requeue

	

	digits

	new

	return

	

	do

	not

	reverse

	

Compilation Unit Structure

Both C and Ada were designed with the idea that the code specification and code
implementation could be separated into two files. In C, the specification
typically lives in the .h, or header file, and the implementation lives in the
.c file. Ada is superficially similar to C. With the GNAT toolchain,
compilation units are stored in files with an .ads extension for specifications
and with an .adb extension for implementations.

One main difference between the C and Ada compilation structure is that Ada
compilation units are structured into something called packages.

Packages

The package is the basic modularization unit of the Ada language, as is the
class for Java and the header and implementation pair for C.
A specification defines a package and the implementation implements the package.
We saw this in an earlier example when we included the Ada.Text_IO
package into our application. The package specification has the structure:

[Ada]

-- my_package.ads
package My_Package is

 -- public declarations

private

 -- private declarations

end My_Package;

The package implementation, or body, has the structure:

-- my_package.adb
package body My_Package is

 -- implementation

end My_Package;

Declaration Protection

An Ada package contains three parts that, for GNAT, are separated into two files:
.ads files contain public and private Ada specifications, and
.adb files contain the implementation, or Ada bodies.

[Ada]

package Package_Name is
 -- public specifications
private
 -- private specifications
end Package_Name;

package body Package_Name is
 -- implementation
end Package_Name;

Private types are useful for preventing the users of a package's types from
depending on the types' implementation details. Another use-case is the prevention
of package users from accessing package state/data arbitrarily. The private
reserved word splits the package spec into public and private parts.
For example:

[Ada]

types.ads

 1package Types is
 2 type Type_1 is private;
 3 type Type_2 is private;
 4 type Type_3 is private;
 5 procedure P (X : Type_1);
 6 -- ...
 7private
 8 procedure Q (Y : Type_1);
 9 type Type_1 is new Integer range 1 .. 1000;
10 type Type_2 is array (Integer range 1 .. 1000) of Integer;
11 type Type_3 is record
12 A, B : Integer;
13 end record;
14end Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Private_Types
MD5: ae4a9e4d10b55e7efd92d7952ba22f4f

Subprograms declared above the private separator (such as P) will
be visible to the package user, and the ones below (such as Q) will not.
The body of the package, the implementation, has access to both parts.
A package specification does not require a private section.

Hierarchical Packages

Ada packages can be organized into hierarchies. A child unit can be declared in
the following way:

[Ada]

-- root-child.ads

package Root.Child is
 -- package spec goes here
end Root.Child;

-- root-child.adb

package body Root.Child is
 -- package body goes here
end Root.Child;

Here, Root.Child is a child package of Root. The public part of
Root.Child has access to the public part of Root. The private
part of Child has access to the private part of Root, which is
one of the main advantages of child packages. However, there is no visibility
relationship between the two bodies. One common way to use this capability is
to define subsystems around a hierarchical naming scheme.

Using Entities from Packages

Entities declared in the visible part of a package specification can be made
accessible using a with clause that references the package, which is
similar to the C #include directive. After a with clause makes a
package available, references to the package contents require the name of the
package as a prefix, with a dot after the package name.
This prefix can be omitted if a use clause is employed.

[Ada]

pck.ads

1-- pck.ads
2
3package Pck is
4 My_Glob : Integer;
5end Pck;

main.adb

1-- main.adb
2
3with Pck;
4
5procedure Main is
6begin
7 Pck.My_Glob := 0;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Using_Pkg_Entities
MD5: 4215ba710eb54478538dc001bb74ce09

In contrast to C, the Ada with clause is a semantic inclusion
mechanism rather than a text inclusion mechanism; for more information on
this difference please refer to
Packages.

Statements and Declarations

The following code samples are all equivalent, and illustrate the use of
comments and working with integer variables:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // variable declarations
 6 int a = 0, b = 0, c = 100, d;
 7
 8 // c shorthand for increment
 9 a++;
10
11 // regular addition
12 d = a + b + c;
13
14 // printing the result
15 printf("d = %d\n", d);
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_C
MD5: ba258dac5c052a97da475239e2f2ce96

Runtime output

d = 101

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- variable declaration
 6 A, B : Integer := 0;
 7 C : Integer := 100;
 8 D : Integer;
 9begin
10 -- Ada does not have a shortcut format for increment like in C
11 A := A + 1;
12
13 -- regular addition
14 D := A + B + C;
15
16 -- printing the result
17 Ada.Text_IO.Put_Line ("D =" & D'Img);
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Ada
MD5: eaff76f36d5f938bd806d29048df7865

Runtime output

D = 101

You'll notice that, in both languages, statements are terminated with a
semicolon. This means that you can have multi-line statements.

The shortcuts of incrementing and decrementing

You may have noticed that Ada does not have something similar to the
a++ or a-- operators. Instead you must use the full assignment
A := A + 1 or A := A - 1.

In the Ada example above, there are two distinct sections to the
procedure Main. This first section is delimited by the is keyword
and the begin keyword. This section is called the declarative block of
the subprogram. The declarative block is where you will define all the local
variables which will be used in the subprogram. C89 had something similar,
where developers were required to declare their variables at the top of the
scope block. Most C developers may have run into this before when trying to
write a for loop:

[C]

main.c

 1/* The C89 version */
 2
 3#include <stdio.h>
 4
 5int average(int* list, int length)
 6{
 7 int i;
 8 int sum = 0;
 9
10 for(i = 0; i < length; ++i) {
11 sum += list[i];
12 }
13 return (sum / length);
14}
15
16int main(int argc, const char * argv[])
17{
18 int vals[] = { 2, 2, 4, 4 };
19
20 printf("Average: %d\n", average(vals, 4));
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_C89
MD5: 5c89aa28cba0bae4d963b235c53aedf2

Runtime output

Average: 3

[C]

main.c

 1// The modern C way
 2
 3#include <stdio.h>
 4
 5int average(int* list, int length)
 6{
 7 int sum = 0;
 8
 9 for(int i = 0; i < length; ++i) {
10 sum += list[i];
11 }
12
13 return (sum / length);
14}
15
16int main(int argc, const char * argv[])
17{
18 int vals[] = { 2, 2, 4, 4 };
19
20 printf("Average: %d\n", average(vals, 4));
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_C_Modern
MD5: 6354863137d78adb974743915d1d4530

Runtime output

Average: 3

For the fun of it, let's also see the Ada way to do this:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Int_Array is array (Natural range <>) of Integer;
 5
 6 function Average (List : Int_Array) return Integer
 7 is
 8 Sum : Integer := 0;
 9 begin
10 for I in List'Range loop
11 Sum := Sum + List (I);
12 end loop;
13
14 return (Sum / List'Length);
15 end Average;
16
17 Vals : constant Int_Array (1 .. 4) := (2, 2, 4, 4);
18begin
19 Ada.Text_IO.Put_Line ("Average: " & Integer'Image (Average (Vals)));
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Average_Ada
MD5: 52abb574d7a8b3bdb56715735dcd1d54

Runtime output

Average: 3

We will explore more about the syntax of loops in Ada in a future section of
this course; but for now, notice that the I variable used as the loop
index is not declared in the declarative section!

Declaration Flippy Floppy

Something peculiar that you may have noticed about declarations in Ada is
that they are backwards from the way C does declarations. The C language
expects the type followed by the variable name. Ada expects the variable
name followed by a colon and then the type.

The next block in the Ada example is between the begin and end
keywords. This is where your statements will live. You can create new scopes by
using the declare keyword:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- variable declaration
 6 A, B : Integer := 0;
 7 C : Integer := 100;
 8 D : Integer;
 9begin
10 -- Ada does not have a shortcut format for increment like in C
11 A := A + 1;
12
13 -- regular addition
14 D := A + B + C;
15
16 -- printing the result
17 Ada.Text_IO.Put_Line ("D =" & D'Img);
18
19 declare
20 E : constant Integer := D * 100;
21 begin
22 -- printing the result
23 Ada.Text_IO.Put_Line ("E =" & E'Img);
24 end;
25
26end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Block_Ada
MD5: 9239b993a7eadb13a27bd3618a03431f

Runtime output

D = 101
E = 10100

Notice that we declared a new variable E whose scope only exists in our
newly defined block. The equivalent C code is:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // variable declarations
 6 int a = 0, b = 0, c = 100, d;
 7
 8 // c shorthand for increment
 9 a++;
10
11 // regular addition
12 d = a + b + c;
13
14 // printing the result
15 printf("d = %d\n", d);
16
17 {
18 const int e = d * 100;
19 printf("e = %d\n", e);
20 }
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Var_Decl_Block_C
MD5: 1a837795575ddc026738d92c8655ab6c

Runtime output

d = 101
e = 10100

Fun Fact about the C language assignment operator =: Did you know that
an assignment in C can be used in an expression? Let's look at an example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 0;
 6
 7 if (a = 10)
 8 printf("True\n");
 9 else
10 printf("False\n");
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Equal_C
MD5: 2d00ddf7e154cb888082c86b8fd36c58

Runtime output

True

Run the above code example. What does it output? Is that what you were
expecting?

The author of the above code example probably meant to test if a == 10 in
the if statement but accidentally typed = instead of ==. Because C
treats assignment as an expression, it was able to evaluate a = 10.

Let's look at the equivalent Ada code:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 A : Integer := 0;
 6begin
 7
 8 if A := 10 then
 9 Put_Line ("True");
10 else
11 Put_Line ("False");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Equal_Ada
MD5: 1500b264531dfcc7a62eeed2f22f511b

The above code will not compile. This is because Ada does no allow assignment
as an expression.

The "use" clause

You'll notice in the above code example, after with Ada.Text_IO;
there is a new statement we haven't seen before —
use Ada.Text_IO;. You may also notice that we are not using the
Ada.Text_IO prefix before the Put_Line statements. When we
add the use clause it tells the compiler that we won't be using the prefix
in the call to subprograms of that package. The use clause is something to
use with caution. For example: if we use the Ada.Text_IO package and
we also have a Put_Line subprogram in our current compilation unit
with the same signature, we have a (potential) collision!

Conditions

The syntax of an if statement:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // try changing the initial value to change the
 6 // output of the program
 7 int v = 0;
 8
 9 if (v > 0) {
10 printf("Positive\n");
11 }
12 else if (v < 0) {
13 printf("Negative\n");
14 }
15 else {
16 printf("Zero\n");
17 }
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Condition_C
MD5: 69203e679085e73394d3620a5954262a

Runtime output

Zero

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- try changing the initial value to change the
 6 -- output of the program
 7 V : constant Integer := 0;
 8begin
 9 if V > 0 then
10 Put_Line ("Positive");
11 elsif V < 0 then
12 Put_Line ("Negative");
13 else
14 Put_Line ("Zero");
15 end if;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Condition_Ada
MD5: 417e557708472f9022db7d8c1ed6aa33

Runtime output

Zero

In Ada, everything that appears between the if and then keywords
is the conditional expression, no parentheses are required. Comparison operators
are the same except for:

	Operator

	C

	Ada

	Equality

	==

	=

	Inequality

	!=

	/=

	Not

	!

	not

	And

	&&

	and

	Or

	||

	or

The syntax of a switch/case statement:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 // try changing the initial value to change the
 6 // output of the program
 7 int v = 0;
 8
 9 switch(v) {
10 case 0:
11 printf("Zero\n");
12 break;
13 case 1: case 2: case 3: case 4: case 5:
14 case 6: case 7: case 8: case 9:
15 printf("Positive\n");
16 break;
17 case 10: case 12: case 14: case 16: case 18:
18 printf("Even number between 10 and 18\n");
19 break;
20 default:
21 printf("Something else\n");
22 break;
23 }
24
25 return 0;
26}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_C
MD5: 1bdb3d0c151d71280ef9039841f7ee58

Runtime output

Zero

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 -- try changing the initial value to change the
 6 -- output of the program
 7 V : constant Integer := 0;
 8begin
 9 case V is
10 when 0 =>
11 Put_Line ("Zero");
12 when 1 .. 9 =>
13 Put_Line ("Positive");
14 when 10 | 12 | 14 | 16 | 18 =>
15 Put_Line ("Even number between 10 and 18");
16 when others =>
17 Put_Line ("Something else");
18 end case;
19end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_Ada
MD5: 09e2318b56069281c95f23310dc121d1

Runtime output

Zero

Switch or Case?

A switch statement in C is the same as a case statement in Ada. This may be
a little strange because C uses both keywords in the statement syntax.
Let's make an analogy between C and Ada: C's switch is to Ada's
case as C's case is to Ada's when.

Notice that in Ada, the case statement does not use the break keyword. In
C, we use break to stop the execution of a case branch from falling
through to the next branch. Here is an example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v = 0;
 6
 7 switch(v) {
 8 case 0:
 9 printf("Zero\n");
10 case 1:
11 printf("One\n");
12 default:
13 printf("Other\n");
14 }
15
16 return 0;
17}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Switch_Case_Break_C
MD5: fd0389205476f161655caf32244d9054

Runtime output

Zero
One
Other

Run the above code with v = 0. What prints? What prints when we change the
assignment to v = 1?

When v = 0 the program outputs the strings Zero then One then
Other. This is called fall through. If you add the break statements
back into the switch you can stop this fall through behavior from
happening. The reason why fall through is allowed in C is to allow the behavior
from the previous example where we want a specific branch to execute for
multiple inputs. Ada solves this a different way because it is possible, or
even probable, that the developer might forget a break statement
accidentally. So Ada does not allow fall through. Instead, you can use Ada's
syntax to identify when a specific branch can be executed by more than one
input. If you want a range of values for a specific branch you can use the
First .. Last notation. If you want a few non-consecutive values you can
use the Value1 | Value2 | Value3 notation.

Instead of using the word default to denote the catch-all case, Ada uses
the others keyword.

Loops

Let's start with some syntax:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v;
 6
 7 // this is a while loop
 8 v = 1;
 9 while(v < 100) {
10 v *= 2;
11 }
12 printf("v = %d\n", v);
13
14 // this is a do while loop
15 v = 1;
16 do {
17 v *= 2;
18 } while(v < 200);
19 printf("v = %d\n", v);
20
21 // this is a for loop
22 v = 0;
23 for(int i = 0; i < 5; ++i) {
24 v += (i * i);
25 }
26 printf("v = %d\n", v);
27
28 // this is a forever loop with a conditional exit
29 v = 0;
30 while(1) {
31 // do stuff here
32 v += 1;
33 if(v == 10)
34 break;
35 }
36 printf("v = %d\n", v);
37
38 // this is a loop over an array
39 {
40 #define ARR_SIZE (10)
41 const int arr[ARR_SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
42 int sum = 0;
43
44 for(int i = 0; i < ARR_SIZE; ++i) {
45 sum += arr[i];
46 }
47 printf("sum = %d\n", sum);
48 }
49
50 return 0;
51}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loops_C
MD5: bcd8963884e2b2a5e364219f9b6b8fbc

Runtime output

v = 128
v = 256
v = 30
v = 10
sum = 55

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 V : Integer;
 5begin
 6 -- this is a while loop
 7 V := 1;
 8 while V < 100 loop
 9 V := V * 2;
10 end loop;
11 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
12
13 -- Ada doesn't have an explicit do while loop
14 -- instead you can use the loop and exit keywords
15 V := 1;
16 loop
17 V := V * 2;
18 exit when V >= 200;
19 end loop;
20 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
21
22 -- this is a for loop
23 V := 0;
24 for I in 0 .. 4 loop
25 V := V + (I * I);
26 end loop;
27 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
28
29 -- this is a forever loop with a conditional exit
30 V := 0;
31 loop
32 -- do stuff here
33 V := V + 1;
34 exit when V = 10;
35 end loop;
36 Ada.Text_IO.Put_Line ("V = " & Integer'Image (V));
37
38 -- this is a loop over an array
39 declare
40 type Int_Array is array (Natural range 1 .. 10) of Integer;
41
42 Arr : constant Int_Array := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
43 Sum : Integer := 0;
44 begin
45 for I in Arr'Range loop
46 Sum := Sum + Arr (I);
47 end loop;
48 Ada.Text_IO.Put_Line ("Sum = " & Integer'Image (Sum));
49 end;
50end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loops_Ada
MD5: c09a092f8d2f682ce758d4bf059b954a

Runtime output

V = 128
V = 256
V = 30
V = 10
Sum = 55

The loop syntax in Ada is pretty straightforward. The loop and end
loop keywords are used to open and close the loop scope. Instead of using the
break keyword to exit the loop, Ada has the exit statement. The
exit statement can be combined with a logic expression using the
exit when syntax.

The major deviation in loop syntax is regarding for loops. You'll notice, in C,
that you sometimes declare, and at least initialize a loop counter variable,
specify a loop predicate, or an expression that indicates when the loop should
continue executing or complete, and last you specify an expression to update
the loop counter.

[C]

for (initialization expression; loop predicate; update expression) {
 // some statements
}

In Ada, you don't declare or initialize a loop counter or specify an update
expression. You only name the loop counter and give it a range to loop over.
The loop counter is read-only! You cannot modify the loop counter inside
the loop like you can in C. And the loop counter will increment consecutively
along the specified range. But what if you want to loop over the range in
reverse order?

[C]

main.c

 1#include <stdio.h>
 2
 3#define MY_RANGE (10)
 4
 5int main(int argc, const char * argv[])
 6{
 7
 8 for (int i = MY_RANGE; i >= 0; --i) {
 9 printf("%d\n", i);
10 }
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Counter_C
MD5: 4e70078ae51d113b8fa02340258c5ed5

Runtime output

10
9
8
7
6
5
4
3
2
1
0

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 My_Range : constant := 10;
 6begin
 7 for I in reverse 0 .. My_Range loop
 8 Put_Line (I'Img);
 9 end loop;
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Counter_Ada
MD5: f25ed1a91c82620f16cd3084a6a0f475

Runtime output

 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

Tick Image

Strangely enough, Ada people call the single apostrophe symbol, ',
"tick". This "tick" says the we are accessing an attribute of the variable.
When we do 'Img on a variable of a numerical type, we are going to
return the string version of that numerical type. So in the for loop above,
I'Img, or "I tick image" will return the string representation of
the numerical value stored in I. We have to do this because Put_Line is
expecting a string as an input parameter.

We'll discuss attributes in more details
later in this chapter.

In the above example, we are traversing over the range in reverse order. In
Ada, we use the reverse keyword to accomplish this.

In many cases, when we are writing a for loop, it has something to do with
traversing an array. In C, this is a classic location for off-by-one errors.
Let's see an example in action:

[C]

main.c

 1#include <stdio.h>
 2
 3#define LIST_LENGTH (100)
 4
 5int main(int argc, const char * argv[])
 6{
 7 int list[LIST_LENGTH];
 8
 9 for(int i = LIST_LENGTH; i > 0; --i) {
10 list[i] = LIST_LENGTH - i;
11 }
12
13 for (int i = 0; i < LIST_LENGTH; ++i)
14 {
15 printf("%d ", list[i]);
16
17 if (i % 10 == 0) {
18 printf("\n");
19 }
20 }
21
22 return 0;
23}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_C
MD5: 710ce30066551d1aada8d4e98a6004b1

Runtime output

791621423
99 98 97 96 95 94 93 92 91 90
89 88 87 86 85 84 83 82 81 80
79 78 77 76 75 74 73 72 71 70
69 68 67 66 65 64 63 62 61 60
59 58 57 56 55 54 53 52 51 50
49 48 47 46 45 44 43 42 41 40
39 38 37 36 35 34 33 32 31 30
29 28 27 26 25 24 23 22 21 20
19 18 17 16 15 14 13 12 11 10
9 8 7 6 5 4 3 2 1

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Int_Array is array (Natural range 1 .. 100) of Integer;
 6
 7 List : Int_Array;
 8begin
 9
10 for I in reverse List'Range loop
11 List (I) := List'Last - I;
12 end loop;
13
14 for I in List'Range loop
15 Put (List (I)'Img & " ");
16
17 if I mod 10 = 0 then
18 New_Line;
19 end if;
20 end loop;
21
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_Ada
MD5: 340b935d42a80671bb050bdad1b032f7

Runtime output

 99 98 97 96 95 94 93 92 91 90
 89 88 87 86 85 84 83 82 81 80
 79 78 77 76 75 74 73 72 71 70
 69 68 67 66 65 64 63 62 61 60
 59 58 57 56 55 54 53 52 51 50
 49 48 47 46 45 44 43 42 41 40
 39 38 37 36 35 34 33 32 31 30
 29 28 27 26 25 24 23 22 21 20
 19 18 17 16 15 14 13 12 11 10
 9 8 7 6 5 4 3 2 1 0

The above Ada and C code should initialize an array using a for loop. The
initial values in the array should be contiguously decreasing from 99 to 0 as
we index from the first index to the last index. In other words, the first
index has a value of 99, the next has 98, the next 97 ... the last has a value
of 0.

If you run both the C and Ada code above you'll notice that the outputs of the
two programs are different. Can you spot why?

In the C code there are two problems:

	There's a buffer overflow in the first iteration of the loop. We would need
to modify the loop initialization to int i = LIST_LENGTH - 1;. The loop
predicate should be modified to i >= 0;

	The C code also has another off-by-one problem in the math to compute the
value stored in list[i]. The expression should be changed to be
list[i] = LIST_LENGTH - i - 1;.

These are typical off-by-one problems that plagues C programs. You'll notice
that we didn't have this problem with the Ada code because we aren't defining
the loop with arbitrary numeric literals. Instead we are accessing attributes
of the array we want to manipulate and are using a keyword to determine the
indexing direction.

We can actually simplify the Ada for loop a little further using iterators:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Int_Array is array (Natural range 1 .. 100) of Integer;
 6
 7 List : Int_Array;
 8begin
 9
10 for I in reverse List'Range loop
11 List (I) := List'Last - I;
12 end loop;
13
14 for I of List loop
15 Put (I'Img & " ");
16
17 if I mod 10 = 0 then
18 New_Line;
19 end if;
20 end loop;
21
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_Ada_Simplified
MD5: 612046826199b00ed61271d6215596fe

Runtime output

 99 98 97 96 95 94 93 92 91 90
 89 88 87 86 85 84 83 82 81 80
 79 78 77 76 75 74 73 72 71 70
 69 68 67 66 65 64 63 62 61 60
 59 58 57 56 55 54 53 52 51 50
 49 48 47 46 45 44 43 42 41 40
 39 38 37 36 35 34 33 32 31 30
 29 28 27 26 25 24 23 22 21 20
 19 18 17 16 15 14 13 12 11 10
 9 8 7 6 5 4 3 2 1 0

In the second for loop, we changed the syntax to for I of List. Instead
of I being the index counter, it is now an iterator that references the
underlying element. This example of Ada code is identical to the last bit of
Ada code. We just used a different method to index over the second for loop.
There is no C equivalent to this Ada feature, but it is similar to C++'s range
based for loop.

Type System

Strong Typing

Ada is considered a "strongly typed" language. This means that the language
does not define any implicit type conversions. C does define implicit type
conversions, sometimes referred to as integer promotion. The rules for
promotion are fairly straightforward in simple expressions but can get
confusing very quickly. Let's look at a typical place of confusion with
implicit type conversion:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 unsigned char a = 0xFF;
 6 char b = 0xFF;
 7
 8 printf("Does a == b?\n");
 9 if(a == b)
10 printf("Yes.\n");
11 else
12 printf("No.\n");
13
14 printf("a: 0x%08X, b: 0x%08X\n", a, b);
15
16 return 0;
17}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_C
MD5: cab1ac9e2c86076d8435d53904783ba0

Runtime output

Does a == b?
No.
a: 0x000000FF, b: 0xFFFFFFFF

Run the above code. You will notice that a != b! If we look at the output
of the last printf statement we will see the problem. a is an
unsigned number where b is a signed number. We stored a value of 0xFF
in both variables, but a treated this as the decimal number 255 while
b treated this as the decimal number -1. When we compare the two
variables, of course they aren't equal; but that's not very intuitive. Let's
look at the equivalent Ada example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main
 4is
 5 type Char is range 0 .. 255;
 6 type Unsigned_Char is mod 256;
 7
 8 A : Char := 16#FF#;
 9 B : Unsigned_Char := 16#FF#;
10begin
11
12 Put_Line ("Does A = B?");
13
14 if A = B then
15 Put_Line ("Yes");
16 else
17 Put_Line ("No");
18 end if;
19
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada
MD5: d6ef2668809159e9fb0d42f91e893222

Build output

main.adb:14:09: error: invalid operand types for operator "="
main.adb:14:09: error: left operand has type "Char" defined at line 5
main.adb:14:09: error: right operand has type "Unsigned_Char" defined at line 6
gprbuild: *** compilation phase failed

If you try to run this Ada example you will get a compilation error. This is
because the compiler is telling you that you cannot compare variables of two
different types. We would need to explicitly cast one side to make the
comparison against two variables of the same type. By enforcing the explicit
cast we can't accidentally end up in a situation where we assume something will
happen implicitly when, in fact, our assumption is incorrect.

Another example: you can't divide an integer by a float. You need to perform
the division operation using values of the same type, so one value must be
explicitly converted to match the type of the other (in this case the more
likely conversion is from integer to float). Ada is designed to guarantee that
what's done by the program is what's meant by the programmer, leaving as little
room for compiler interpretation as possible. Let's have a look at the
following example:

[Ada]

strong_typing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Strong_Typing is
 4 Alpha : constant Integer := 1;
 5 Beta : constant Integer := 10;
 6 Result : Float;
 7begin
 8 Result := Float (Alpha) / Float (Beta);
 9
10 Put_Line (Float'Image (Result));
11end Strong_Typing;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada_2
MD5: bf91f01b499bcd7da1df751a9f91a767

Runtime output

 1.00000E-01

[C]

main.c

 1#include <stdio.h>
 2
 3void weakTyping (void) {
 4 const int alpha = 1;
 5 const int beta = 10;
 6 float result;
 7
 8 result = alpha / beta;
 9
10 printf("%f\n", result);
11}
12
13int main(int argc, const char * argv[])
14{
15 weakTyping();
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_C_2
MD5: e4310900cd1195d6e3d349e0c4aa758a

Runtime output

0.000000

Are the three programs above equivalent? It may seem like Ada is just adding
extra complexity by forcing you to make the conversion from Integer to
Float explicit. In fact, it significantly changes the behavior of the
computation. While the Ada code performs a floating point operation 1.0 / 10.0
and stores 0.1 in Result, the C version instead store 0.0 in
result. This is because the C version perform an integer operation between
two integer variables: 1 / 10 is 0. The
result of the integer division is then converted to a float and stored.
Errors of this sort can be very hard to locate in complex pieces of code, and
systematic specification of how the operation should be interpreted helps to
avoid this class of errors. If an integer division was actually intended in the
Ada case, it is still necessary to explicitly convert the final result to
Float:

[Ada]

-- Perform an Integer division then convert to Float
Result := Float (Alpha / Beta);

The complete example would then be:

[Ada]

strong_typing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Strong_Typing is
 4 Alpha : constant Integer := 1;
 5 Beta : constant Integer := 10;
 6 Result : Float;
 7begin
 8 Result := Float (Alpha / Beta);
 9
10 Put_Line (Float'Image (Result));
11end Strong_Typing;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Strong_Typing_Ada_2
MD5: 50d6a6a3270b51880c43c07f077760b6

Runtime output

 0.00000E+00

Floating Point Literals

In Ada, a floating point literal must be written with both an integral and
decimal part. 10 is not a valid literal for a floating point value,
while 10.0 is.

Language-Defined Types

The principal scalar types predefined by Ada are Integer, Float,
Boolean, and Character. These correspond to int, float,
int (when used for Booleans), and char, respectively. The names for
these types are not reserved words; they are regular identifiers. There are
other language-defined integer and floating-point types as well. All have
implementation-defined ranges and precision.

Application-Defined Types

Ada's type system encourages programmers to think about data at a high level of
abstraction. The compiler will at times output a simple efficient machine
instruction for a full line of source code (and some instructions can be
eliminated entirely). The careful programmer's concern that the operation
really makes sense in the real world would be satisfied, and so would the
programmer's concern about performance.

The next example below defines two different metrics: area and distance. Mixing
these two metrics must be done with great care, as certain operations do not
make sense, like adding an area to a distance. Others require knowledge of the
expected semantics; for example, multiplying two distances. To help avoid
errors, Ada requires that each of the binary operators +, -, *, and
/ for integer and floating-point types take operands of the same type and
return a value of that type.

[Ada]

main.adb

 1procedure Main is
 2 type Distance is new Float;
 3 type Area is new Float;
 4
 5 D1 : Distance := 2.0;
 6 D2 : Distance := 3.0;
 7 A : Area;
 8begin
 9 D1 := D1 + D2; -- OK
10 D1 := D1 + A; -- NOT OK: incompatible types for "+"
11 A := D1 * D2; -- NOT OK: incompatible types for ":="
12 A := Area (D1 * D2); -- OK
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Application_Defined_Types
MD5: 6a21d6281cc529bbf8ce2216d7e4a770

Build output

main.adb:10:13: error: invalid operand types for operator "+"
main.adb:10:13: error: left operand has type "Distance" defined at line 2
main.adb:10:13: error: right operand has type "Area" defined at line 3
main.adb:11:13: error: expected type "Area" defined at line 3
main.adb:11:13: error: found type "Distance" defined at line 2
gprbuild: *** compilation phase failed

Even though the Distance and Area types above are just
Float, the compiler does not allow arbitrary mixing of values of these
different types. An explicit conversion (which does not necessarily mean any
additional object code) is necessary.

The predefined Ada rules are not perfect; they admit some problematic cases
(for example multiplying two Distance yields a Distance) and
prohibit some useful cases (for example multiplying two Distances should
deliver an Area). These situations can be handled through other
mechanisms. A predefined operation can be identified as abstract to make it
unavailable; overloading can be used to give new interpretations to existing
operator symbols, for example allowing an operator to return a value from a
type different from its operands; and more generally, GNAT has introduced a
facility that helps perform dimensionality checking.

Ada enumerations work similarly to C enum:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 D : Day := Monday;
12begin
13 null;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Ada
MD5: 51abd1863970e14ff86859c1aae11fe8

[C]

main.c

 1enum Day {
 2 Monday,
 3 Tuesday,
 4 Wednesday,
 5 Thursday,
 6 Friday,
 7 Saturday,
 8 Sunday
 9};
10
11int main(int argc, const char * argv[])
12{
13 enum Day d = Monday;
14
15 return 0;
16}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_C
MD5: d9f6724759375a126a6b5d8dceea3f24

But even though such enumerations may be implemented by the compiler as numeric
values, at the language level Ada will not confuse the fact that Monday
is a Day and is not an Integer. You can compare a Day with
another Day, though. To specify implementation details like the numeric
values that correspond with enumeration values in C you include them in the
original enum declaration:

[C]

main.c

 1#include <stdio.h>
 2
 3enum Day {
 4 Monday = 10,
 5 Tuesday = 11,
 6 Wednesday = 12,
 7 Thursday = 13,
 8 Friday = 14,
 9 Saturday = 15,
10 Sunday = 16
11};
12
13int main(int argc, const char * argv[])
14{
15 enum Day d = Monday;
16
17 printf("d = %d\n", d);
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Values_C
MD5: 48ae1c84dafabde7a16de5305e106a80

Runtime output

d = 10

But in Ada you must use both a type definition for Day as well as a
separate representation clause for it like:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Day is
 5 (Monday,
 6 Tuesday,
 7 Wednesday,
 8 Thursday,
 9 Friday,
10 Saturday,
11 Sunday);
12
13 -- Representation clause for Day type:
14 for Day use
15 (Monday => 10,
16 Tuesday => 11,
17 Wednesday => 12,
18 Thursday => 13,
19 Friday => 14,
20 Saturday => 15,
21 Sunday => 16);
22
23 D : Day := Monday;
24 V : Integer;
25begin
26 V := Day'Enum_Rep (D);
27 Ada.Text_IO.Put_Line (Integer'Image (V));
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enumeration_Values
MD5: 9a4fa1a899cb8c240105bf8ad6dbfde3

Runtime output

 10

Note that however, unlike C, values for enumerations in Ada have to be unique.

Type Ranges

Contracts can be associated with types and variables, to refine values and
define what are considered valid values. The most common kind of contract is a
range constraint introduced with the range reserved word, for example:

[Ada]

main.adb

 1procedure Main is
 2 type Grade is range 0 .. 100;
 3
 4 G1, G2 : Grade;
 5 N : Integer;
 6begin
 7 -- ... -- Initialization of N
 8 G1 := 80; -- OK
 9 G1 := N; -- Illegal (type mismatch)
10 G1 := Grade (N); -- Legal, run-time range check
11 G2 := G1 + 10; -- Legal, run-time range check
12 G1 := (G1 + G2) / 2; -- Legal, run-time range check
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Range_Check
MD5: 0f249b06e373497ae94b6055a37187c8

Build output

main.adb:9:10: error: expected type "Grade" defined at line 2
main.adb:9:10: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

In the above example, Grade is a new integer type associated with a
range check. Range checks are dynamic and are meant to enforce the property
that no object of the given type can have a value outside the specified range.
In this example, the first assignment to G1 is correct and will not
raise a run-time exception. Assigning N to G1 is illegal since
Grade is a different type than Integer. Converting N to
Grade makes the assignment legal, and a range check on the conversion
confirms that the value is within 0 .. 100. Assigning G1 + 10 to
G2 is legal since + for Grade returns a Grade (note
that the literal 10 is interpreted as a Grade value in this
context), and again there is a range check.

The final assignment illustrates an interesting but subtle point. The
subexpression G1 + G2 may be outside the range of Grade, but the
final result will be in range. Nevertheless, depending on the representation
chosen for Grade, the addition may overflow. If the compiler represents
Grade values as signed 8-bit integers (i.e., machine numbers in the
range -128 .. 127) then the sum G1 + G2 may exceed 127, resulting
in an integer overflow. To prevent this, you can use explicit conversions and
perform the computation in a sufficiently large integer type, for example:

[Ada]

main.adb

 1with Ada.Text_IO;
 2
 3procedure Main is
 4 type Grade is range 0 .. 100;
 5
 6 G1, G2 : Grade := 99;
 7begin
 8 G1 := Grade ((Integer (G1) + Integer (G2)) / 2);
 9 Ada.Text_IO.Put_Line (Grade'Image (G1));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Range_And_Explicit_Conversion
MD5: d317fd95099e49017c4a4c1c52b7f8be

Runtime output

 99

Range checks are useful for detecting errors as early as possible. However,
there may be some impact on performance. Modern compilers do know how to remove
redundant checks, and you can deactivate these checks altogether if you have
sufficient confidence that your code will function correctly.

Types can be derived from the representation of any other type. The new derived
type can be associated with new constraints and operations. Going back to the
Day example, one can write:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 type Business_Day is new Day range Monday .. Friday;
12 type Weekend_Day is new Day range Saturday .. Sunday;
13begin
14 null;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enum_Ranges_1
MD5: fd775ad4990d5636607d3a0d9b00044d

Since these are new types, implicit conversions are not allowed. In this case,
it's more natural to create a new set of constraints for the same type, instead
of making completely new ones. This is the idea behind subtypes in Ada. A
subtype is a type with optional additional constraints. For example:

[Ada]

main.adb

 1procedure Main is
 2 type Day is
 3 (Monday,
 4 Tuesday,
 5 Wednesday,
 6 Thursday,
 7 Friday,
 8 Saturday,
 9 Sunday);
10
11 subtype Business_Day is Day range Monday .. Friday;
12 subtype Weekend_Day is Day range Saturday .. Sunday;
13 subtype Dice_Throw is Integer range 1 .. 6;
14begin
15 null;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Enum_Ranges_2
MD5: 5bcbde5b9f1aea57ff172fcfc89e1c41

These declarations don't create new types, just new names for constrained
ranges of their base types.

The purpose of numeric ranges is to express some application-specific
constraint that we want the compiler to help us enforce. More importantly,
we want the compiler to tell us when that constraint cannot be met — when
the underlying hardware cannot support the range given. There are two things to
consider:

	just a range constraint, such as A : Integer range 0 .. 10;, or

	a type declaration, such as type Result is range 0 .. 1_000_000_000;.

Both represent some sort of application-specific constraint, but in addition,
the type declaration promotes portability because it won't compile on targets
that do not have a sufficiently large hardware numeric type. That's a
definition of portability that is preferable to having something compile
anywhere but not run correctly, as in C.

Unsigned And Modular Types

Unsigned integer numbers are quite common in embedded applications. In C, you
can use them by declaring unsigned int variables. In Ada, you have two
options:

	declare custom unsigned range types;

	In addition, you can declare custom range subtypes or use existing
subtypes such as Natural.

	declare custom modular types.

The following table presents the main features of each type. We discuss these
types right after.

	Feature

	[C] unsigned int

	[Ada] Unsigned range

	[Ada] Modular

	Excludes negative
value

	✓

	✓

	✓

	Wraparound

	✓

	
	✓

When declaring custom range types in Ada, you may use the full range in the
same way as in C. For example, this is the declaration of a 32-bit unsigned
integer type and the X variable in Ada:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 type Unsigned_Int_32 is range 0 .. 2 ** 32 - 1;
5
6 X : Unsigned_Int_32 := 42;
7begin
8 Put_Line ("X = " & Unsigned_Int_32'Image (X));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_32_Ada
MD5: 0a179ce327c022468f66b6814a981b62

Runtime output

X = 42

In C, when unsigned int has a size of 32 bits, this corresponds to the
following declaration:

[C]

main.c

 1#include <stdio.h>
 2#include <limits.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 unsigned int x = 42;
 7 printf("x = %u\n", x);
 8
 9 return 0;
10}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_32_C
MD5: 546068de216de96282490e81a0f7df26

Runtime output

x = 42

Another strategy is to declare subtypes for existing signed types and specify
just the range that excludes negative numbers. For example, let's declare a
custom 32-bit signed type and its unsigned subtype:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Signed_Int_32 is range -2 ** 31 .. 2 ** 31 - 1;
 5
 6 subtype Unsigned_Int_31 is Signed_Int_32 range 0 .. Signed_Int_32'Last;
 7 -- Equivalent to:
 8 -- subtype Unsigned_Int_31 is Signed_Int_32 range 0 .. 2 ** 31 - 1;
 9
10 X : Unsigned_Int_31 := 42;
11begin
12 Put_Line ("X = " & Unsigned_Int_31'Image (X));
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unsigned_31_Ada
MD5: 2ef2b5bfd54821ceb35faa222e649156

Runtime output

X = 42

In this case, we're just skipping the sign bit of the Signed_Int_32
type. In other words, while Signed_Int_32 has a size of 32 bits,
Unsigned_Int_31 has a range of 31 bits, even if the base type has
32 bits.

Note that the declaration above is actually similar to the existing
Natural subtype. Ada provides the following standard subtypes:

subtype Natural is Integer range 0..Integer'Last;
subtype Positive is Integer range 1..Integer'Last;

Since they're standard subtypes, you can declare variables of those subtypes
directly in your implementation, in the same way as you can declare
Integer variables.

As indicated in the table above, however, there is a difference in behavior for
the variables we just declared, which occurs in case of overflow. Let's
consider this C example:

[C]

main.c

 1#include <stdio.h>
 2#include <limits.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 unsigned int x = UINT_MAX + 1;
 7 /* Now: x == 0 */
 8
 9 printf("x = %u\n", x);
10
11 return 0;
12}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_C
MD5: 7d5dcf65471304ff8f303195359b4790

Runtime output

x = 0

The corresponding code in Ada raises an exception:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Unsigned_Int_32 is range 0 .. 2 ** 32 - 1;
 5
 6 X : Unsigned_Int_32 := Unsigned_Int_32'Last + 1;
 7 -- Overflow: exception is raised!
 8begin
 9 Put_Line ("X = " & Unsigned_Int_32'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_Ada
MD5: ee4c3e905c59f5c8d87311e13d079836

Build output

main.adb:6:48: warning: value not in range of type "Unsigned_Int_32" defined at line 4 [enabled by default]
main.adb:6:48: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : main.adb:6 range check failed

While the C uses modulo arithmetic for unsigned integer, Ada doesn't use it for
the Unsigned_Int_32 type. Ada does, however, support modular types
via type definitions using the mod keyword. In this example, we declare
a 32-bit modular type:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Unsigned_32 is mod 2**32;
 5
 6 X : Unsigned_32 := Unsigned_32'Last + 1;
 7 -- Now: X = 0
 8begin
 9 Put_Line ("X = " & Unsigned_32'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overflow_Wraparound_Ada
MD5: 4ed963ab372cafc8e7a19d9c3107276b

Runtime output

X = 0

In this case, the behavior is the same as in the C declaration above.

Modular types, unlike Ada's signed integers, also provide bit-wise operations,
a typical application for unsigned integers in C. In Ada, you can use operators
such as and, or, xor and not. You can also use
typical bit-shifting operations, such as Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right.

Attributes

Attributes start with a single apostrophe ("tick"), and they allow you to query
properties of, and perform certain actions on, declared entities such as types,
objects, and subprograms. For example, you can determine the first and last
bounds of scalar types, get the sizes of objects and types, and convert values
to and from strings. This section provides an overview of how attributes work.
For more information on the many attributes defined by the language, you can
refer directly to the Ada Language Reference Manual.

The 'Image and 'Value attributes allow you to transform a scalar
value into a String and vice-versa. For example:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 A : Integer := 10;
5begin
6 Put_Line (Integer'Image (A));
7 A := Integer'Value ("99");
8 Put_Line (Integer'Image (A));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Image_Attribute
MD5: 1fcfc79ec599a26e21aef7eacffcf96e

Runtime output

 10
 99

Important

Semantically, attributes are equivalent to subprograms. For example,
Integer'Image is defined as follows:

function Integer'Image(Arg : Integer'Base) return String;

Certain attributes are provided only for certain kinds of types. For example,
the 'Val and 'Pos attributes for an enumeration type associates a
discrete value with its position among its peers. One circuitous way of moving
to the next character of the ASCII table is:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 C : Character := 'a';
5begin
6 Put (C);
7 C := Character'Val (Character'Pos (C) + 1);
8 Put (C);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Character_1
MD5: 742bbaeb74e5dd9fa73089c0d1aa0fde

Runtime output

ab

A more concise way to get the next value in Ada is to use the 'Succ
attribute:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 C : Character := 'a';
5begin
6 Put (C);
7 C := Character'Succ (C);
8 Put (C);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Character_1
MD5: 842eeff2b82dcdb8c73547a33d03995b

Runtime output

ab

You can get the previous value using the 'Pred attribute. Here is the
equivalent in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 char c = 'a';
 6 printf("%c", c);
 7 c++;
 8 printf("%c", c);
 9
10 return 0;
11}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Loop_Reverse_C
MD5: 40bfbd6a672bc3fdb7e8f2f2d7101b19

Runtime output

ab

Other interesting examples are the 'First and 'Last attributes
which, respectively, return the first and last values of a scalar type. Using
32-bit integers, for instance, Integer'First returns -231 and
Integer'Last returns 231 - 1.

Arrays and Strings

C arrays are pointers with offsets, but the same is not the case for Ada.
Arrays in Ada are not interchangeable with operations on pointers, and array
types are considered first-class citizens. They have dedicated semantics such
as the availability of the array's boundaries at run-time. Therefore, unhandled
array overflows are impossible unless checks are suppressed. Any discrete type
can serve as an array index, and you can specify both the starting and ending
bounds — the lower bound doesn't necessarily have to be 0. Most of the
time, array types need to be explicitly declared prior to the declaration of an
object of that array type.

Here's an example of declaring an array of 26 characters, initializing the
values from 'a' to 'z':

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Character;
 5 Arr : Arr_Type (1 .. 26);
 6 C : Character := 'a';
 7begin
 8 for I in Arr'Range loop
 9 Arr (I) := C;
10 C := Character'Succ (C);
11
12 Put (Arr (I) & " ");
13
14 if I mod 7 = 0 then
15 New_Line;
16 end if;
17 end loop;
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Range_Ada
MD5: 8e0597f6c040c740b35c79bc4706829b

Runtime output

a b c d e f g
h i j k l m n
o p q r s t u
v w x y z

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 char Arr [26];
 6 char C = 'a';
 7
 8 for (int I = 0; I < 26; ++I) {
 9 Arr [I] = C++;
10 printf ("%c ", Arr [I]);
11
12 if ((I + 1) % 7 == 0) {
13 printf ("\n");
14 }
15 }
16
17 return 0;
18}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Range_C
MD5: 1182155f46a0b69f73cd5937c23ed67d

Runtime output

a b c d e f g
h i j k l m n
o p q r s t u
v w x y z

In C, only the size of the array is given during declaration. In Ada, array
index ranges are specified using two values of a discrete type. In this
example, the array type declaration specifies the use of Integer as the
index type, but does not provide any constraints (use <>, pronounced
box, to specify "no constraints"). The constraints are defined in the object
declaration to be 1 to 26, inclusive. Arrays have an attribute called
'Range. In our example, Arr'Range can also be expressed as
Arr'First .. Arr'Last; both expressions will resolve to 1 .. 26.
So the 'Range attribute supplies the bounds for our for loop.
There is no risk of stating either of the bounds incorrectly, as one might do
in C where I <= 26 may be specified as the end-of-loop condition.

As in C, Ada String is an array of Character. Ada strings,
importantly, are not delimited with the special character '0' like they
are in C. It is not necessary because Ada uses the array's bounds to determine
where the string starts and stops.

Ada's predefined String type is very straightforward to use:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 My_String : String (1 .. 19) := "This is an example!";
5begin
6 Put_Line (My_String);
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Constrained_String
MD5: da2e88900c670f80b7380f87f2b89ec2

Runtime output

This is an example!

Unlike C, Ada does not offer escape sequences such as 'n'. Instead,
explicit values from the ASCII package must be concatenated (via the
concatenation operator, &). Here for example, is how to initialize a
line of text ending with a new line:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4 My_String : String := "This is a line" & ASCII.LF;
5begin
6 Put (My_String);
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Constrained_String
MD5: 684bbbdf99d48ed6fd5c257183a6609f

Runtime output

This is a line

You see here that no constraints are necessary for this variable definition.
The initial value given allows the automatic determination of
My_String's bounds.

Ada offers high-level operations for copying, slicing, and assigning values to
arrays. We'll start with assignment. In C, the assignment operator doesn't make
a copy of the value of an array, but only copies the address or reference to
the target variable. In Ada, the actual array contents are duplicated. To get
the above behavior, actual pointer types would have to be defined and used.

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 2);
 6 A2 : Arr_Type (1 .. 2);
 7begin
 8 A1 (1) := 0;
 9 A1 (2) := 1;
10
11 A2 := A1;
12
13 for I in A2'Range loop
14 Put_Line (Integer'Image (A2 (I)));
15 end loop;
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Copy_Ada
MD5: 4d4e9aa063c1f488e7cefa90083d06c2

Runtime output

 0
 1

[C]

main.c

 1#include <stdio.h>
 2#include <string.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6 int A1 [2];
 7 int A2 [2];
 8
 9 A1 [0] = 0;
10 A1 [1] = 1;
11
12 memcpy (A2, A1, sizeof (int) * 2);
13
14 for (int i = 0; i < 2; i++) {
15 printf("%d\n", A2[i]);
16 }
17
18 return 0;
19}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Copy_C
MD5: 0dade800452673b7a82afe1c656f07e6

Runtime output

0
1

In all of the examples above, the source and destination arrays must have
precisely the same number of elements. Ada allows you to easily specify a
portion, or slice, of an array. So you can write the following:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 10) := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 6 A2 : Arr_Type (1 .. 5) := (1, 2, 3, 4, 5);
 7begin
 8 A2 (1 .. 3) := A1 (4 .. 6);
 9
10 for I in A2'Range loop
11 Put_Line (Integer'Image (A2 (I)));
12 end loop;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Slice
MD5: cb2a7de2cff8ea19025363886f8821e4

Runtime output

 4
 5
 6
 4
 5

This assigns the 4th, 5th, and 6th elements of A1 into the 1st, 2nd, and
3rd elements of A2. Note that only the length matters here: the values
of the indexes don't have to be equal; they slide automatically.

Ada also offers high level comparison operations which compare the contents of
arrays as opposed to their addresses:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (1 .. 2) := (10, 20);
 6 A2 : Arr_Type (1 .. 2) := (10, 20);
 7begin
 8 if A1 = A2 then
 9 Put_Line ("A1 = A2");
10 else
11 Put_Line ("A1 /= A2");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Equal_Ada
MD5: 650a734875a02b2fb3678bbc3f8dd82a

Runtime output

A1 = A2

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int A1 [2] = { 10, 20 };
 6 int A2 [2] = { 10, 20 };
 7
 8 int eq = 1;
 9
10 for (int i = 0; i < 2; ++i) {
11 if (A1 [i] != A2 [i]) {
12 eq = 0;
13 break;
14 }
15 }
16
17 if (eq) {
18 printf("A1 == A2\n");
19 }
20 else {
21 printf("A1 != A2\n");
22 }
23
24 return 0;
25}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Equal_C
MD5: efe8717d931324bcbe8b70b03693c92e

Runtime output

A1 == A2

You can assign to all the elements of an array in each language in different
ways. In Ada, the number of elements to assign can be determined by looking at
the right-hand side, the left-hand side, or both sides of the assignment. When
bounds are known on the left-hand side, it's possible to use the others
expression to define a default value for all the unspecified array elements.
Therefore, you can write:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type (-2 .. 42) := (others => 0);
 6begin
 7 -- use a slice to assign A1 elements 11 .. 19 to 1
 8 A1 (11 .. 19) := (others => 1);
 9
10 Put_Line ("---- A1 ----");
11 for I in A1'Range loop
12 Put_Line (Integer'Image (I) & " => " &
13 Integer'Image (A1 (I)));
14 end loop;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Assignment_Ada
MD5: 673d31f633a32b6bb1cce238150cfc80

Runtime output

---- A1 ----
-2 => 0
-1 => 0
 0 => 0
 1 => 0
 2 => 0
 3 => 0
 4 => 0
 5 => 0
 6 => 0
 7 => 0
 8 => 0
 9 => 0
 10 => 0
 11 => 1
 12 => 1
 13 => 1
 14 => 1
 15 => 1
 16 => 1
 17 => 1
 18 => 1
 19 => 1
 20 => 0
 21 => 0
 22 => 0
 23 => 0
 24 => 0
 25 => 0
 26 => 0
 27 => 0
 28 => 0
 29 => 0
 30 => 0
 31 => 0
 32 => 0
 33 => 0
 34 => 0
 35 => 0
 36 => 0
 37 => 0
 38 => 0
 39 => 0
 40 => 0
 41 => 0
 42 => 0

In this example, we're specifying that A1 has a range between -2 and 42.
We use (others => 0) to initialize all array elements with zero. In the
next example, the number of elements is determined by looking at the right-hand
side:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr_Type is array (Integer range <>) of Integer;
 5 A1 : Arr_Type := (1, 2, 3, 4, 5, 6, 7, 8, 9);
 6begin
 7 A1 := (1, 2, 3, others => 10);
 8
 9 Put_Line ("---- A1 ----");
10 for I in A1'Range loop
11 Put_Line (Integer'Image (I) & " => " &
12 Integer'Image (A1 (I)));
13 end loop;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Array_Assignment_Ada
MD5: 3e3d69815373d1c61208df265903e89d

Runtime output

---- A1 ----
-2147483648 => 1
-2147483647 => 2
-2147483646 => 3
-2147483645 => 10
-2147483644 => 10
-2147483643 => 10
-2147483642 => 10
-2147483641 => 10
-2147483640 => 10

Since A1 is initialized with an aggregate of 9 elements, A1
automatically has 9 elements. Also, we're not specifying any range in the
declaration of A1. Therefore, the compiler uses the default range of the
underlying array type Arr_Type, which has an unconstrained range based
on the Integer type. The compiler selects the first element of that type
(Integer'First) as the start index of A1. If you replaced
Integer range <> in the declaration of the Arr_Type by
Positive range <>, then A1's start index would be
Positive'First — which corresponds to one.

Heterogeneous Data Structures

The structure corresponding to a C struct is an Ada record. Here
are some simple records:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 C : Float;
 7 end record;
 8
 9 V : R;
10begin
11 V.A := 0;
12 Put_Line ("V.A = " & Integer'Image (V.A));
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_Ada
MD5: 013f27dfc827355f32bea37fb267df9b

Runtime output

V.A = 0

[C]

main.c

 1#include <stdio.h>
 2
 3struct R {
 4 int A, B;
 5 float C;
 6};
 7
 8int main(int argc, const char * argv[])
 9{
10 struct R V;
11 V.A = 0;
12 printf("V.A = %d\n", V.A);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_C
MD5: 653b65bbb6ea02a512e439d912e11d7f

Runtime output

V.A = 0

Ada allows specification of default values for fields just like C. The values
specified can take the form of an ordered list of values, a named list of
values, or an incomplete list followed by others => <> to specify that
fields not listed will take their default values. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type R is record
 6 A, B : Integer := 0;
 7 C : Float := 0.0;
 8 end record;
 9
10 procedure Put_R (V : R; Name : String) is
11 begin
12 Put_Line (Name & " = ("
13 & Integer'Image (V.A) & ", "
14 & Integer'Image (V.B) & ", "
15 & Float'Image (V.C) & ")");
16 end Put_R;
17
18 V1 : constant R := (1, 2, 1.0);
19 V2 : constant R := (A => 1, B => 2, C => 1.0);
20 V3 : constant R := (C => 1.0, A => 1, B => 2);
21 V4 : constant R := (C => 1.0, others => <>);
22
23begin
24 Put_R (V1, "V1");
25 Put_R (V2, "V2");
26 Put_R (V3, "V3");
27 Put_R (V4, "V4");
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Struct_Default_Ada
MD5: d0a9713e3bd9804c00ebf68cc7c196b7

Runtime output

V1 = (1, 2, 1.00000E+00)
V2 = (1, 2, 1.00000E+00)
V3 = (1, 2, 1.00000E+00)
V4 = (0, 0, 1.00000E+00)

Pointers

As a foreword to the topic of pointers, it's important to keep in mind the fact
that most situations that would require a pointer in C do not in Ada. In the
vast majority of cases, indirect memory management can be hidden from the
developer and thus saves from many potential errors. However, there are
situation that do require the use of pointers, or said differently that require
to make memory indirection explicit. This section will present Ada access
types, the equivalent of C pointers. A further section will provide more
details as to how situations that require pointers in C can be done without
access types in Ada.

We'll continue this section by explaining the difference between objects
allocated on the stack and objects allocated on the heap using the following
example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 end record;
 7
 8 procedure Put_R (V : R; Name : String) is
 9 begin
10 Put_Line (Name & " = ("
11 & Integer'Image (V.A) & ", "
12 & Integer'Image (V.B) & ")");
13 end Put_R;
14
15 V1, V2 : R;
16
17begin
18 V1.A := 0;
19 V2 := V1;
20 V2.A := 1;
21
22 Put_R (V1, "V1");
23 Put_R (V2, "V2");
24end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_Ada
MD5: dd1367d57574a46df830884b2a7be930

Runtime output

V1 = (0, 0)
V2 = (1, 0)

[C]

main.c

 1#include <stdio.h>
 2
 3struct R {
 4 int A, B;
 5};
 6
 7void print_r(const struct R *v,
 8 const char *name)
 9{
10 printf("%s = (%d, %d)\n", name, v->A, v->B);
11}
12
13int main(int argc, const char * argv[])
14{
15 struct R V1, V2;
16 V1.A = 0;
17 V2 = V1;
18 V2.A = 1;
19
20 print_r(&V1, "V1");
21 print_r(&V2, "V2");
22
23 return 0;
24}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_C
MD5: 4b4b79789444339b504bddc01d2d43da

Runtime output

V1 = (0, 0)
V2 = (1, 0)

There are many commonalities between the Ada and C semantics above. In Ada and
C, objects are allocated on the stack and are directly accessed. V1 and
V2 are two different objects and the assignment statement copies the
value of V1 into V2. V1 and V2 are two distinct
objects.

Here's now a similar example, but using heap allocation instead:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type R is record
 5 A, B : Integer;
 6 end record;
 7
 8 type R_Access is access R;
 9
10 procedure Put_R (V : R; Name : String) is
11 begin
12 Put_Line (Name & " = ("
13 & Integer'Image (V.A) & ", "
14 & Integer'Image (V.B) & ")");
15 end Put_R;
16
17 V1 : R_Access;
18 V2 : R_Access;
19begin
20 V1 := new R;
21 V1.A := 0;
22 V2 := V1;
23 V2.A := 1;
24
25 Put_R (V1.all, "V1");
26 Put_R (V2.all, "V2");
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Heap_Alloc_Ada
MD5: 963b48bb0a8585a9941d8fb2d0eda390

Runtime output

V1 = (1, 0)
V2 = (1, 0)

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4struct R {
 5 int A, B;
 6};
 7
 8void print_r(const struct R *v,
 9 const char *name)
10{
11 printf("%s = (%d, %d)\n", name, v->A, v->B);
12}
13
14int main(int argc, const char * argv[])
15{
16 struct R * V1, * V2;
17 V1 = malloc(sizeof(struct R));
18 V1->A = 0;
19 V2 = V1;
20 V2->A = 1;
21
22 print_r(V1, "V1");
23 print_r(V2, "V2");
24
25 return 0;
26}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Heap_Alloc_C
MD5: 5c832377403dfa8f00d70ef92bfeff65

Runtime output

V1 = (1, 0)
V2 = (1, 0)

In this example, an object of type R is allocated on the heap. The same
object is then referred to through V1 and V2. As in C, there's
no garbage collector in Ada, so objects allocated by the new operator need to
be expressly freed (which is not the case here).

Dereferencing is performed automatically in certain situations, for instance
when it is clear that the type required is the dereferenced object rather than
the pointer itself, or when accessing record members via a pointer. To
explicitly dereference an access variable, append .all. The equivalent
of V1->A in C can be written either as V1.A or V1.all.A.

Pointers to scalar objects in Ada and C look like:

[Ada]

main.adb

1procedure Main is
2 type A_Int is access Integer;
3 Var : A_Int := new Integer;
4begin
5 Var.all := 0;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_To_Scalars
MD5: 2e2bf53a9b5dc1098921d811be73a7f0

[C]

main.c

1#include <stdlib.h>
2
3int main(int argc, const char * argv[])
4{
5 int * Var = malloc (sizeof(int));
6 *Var = 0;
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Pointers_To_Scalars
MD5: f22d7b6f8170587009b0f6bb1299c0a0

In Ada, an initializer can be specified with the allocation by appending
'(value):

[Ada]

main.adb

1procedure Main is
2 type A_Int is access Integer;
3
4 Var : A_Int := new Integer'(0);
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_Initialization
MD5: 5789253068f77100eec34919b8de66ec

When using Ada pointers to reference objects on the stack, the referenced
objects must be declared as being aliased. This directs the compiler to
implement the object using a memory region, rather than using registers or
eliminating it entirely via optimization. The access type needs to be declared
as either access all (if the referenced object needs to be assigned to)
or access constant (if the referenced object is a constant). The
'Access attribute works like the C & operator to get a pointer to
the object, but with a scope accessibility check to prevent references to
objects that have gone out of scope. For example:

[Ada]

main.adb

1procedure Main is
2 type A_Int is access all Integer;
3 Var : aliased Integer;
4 Ptr : A_Int := Var'Access;
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_All
MD5: 520df34083e3517876e10710530380be

[C]

main.c

1int main(int argc, const char * argv[])
2{
3 int Var;
4 int * Ptr = &Var;
5
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Access_All_C
MD5: a592fcf09dabe15f2aaf12fba047d74f

To deallocate objects from the heap in Ada, it is necessary to use a
deallocation subprogram that accepts a specific access type. A generic
procedure is provided that can be customized to fit your needs, it's called
Ada.Unchecked_Deallocation. To create your customized deallocator (that
is, to instantiate this generic), you must provide the object type as well as
the access type as follows:

[Ada]

main.adb

1with Ada.Unchecked_Deallocation;
2
3procedure Main is
4 type Integer_Access is access all Integer;
5 procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access);
6 My_Pointer : Integer_Access := new Integer;
7begin
8 Free (My_Pointer);
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Unchecked_Deallocation
MD5: ef6ee170fea1f6c6c01037a09809916f

[C]

main.c

1#include <stdlib.h>
2
3int main(int argc, const char * argv[])
4{
5 int * my_pointer = malloc (sizeof(int));
6 free (my_pointer);
7
8 return 0;
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Free
MD5: 066046816dd1c4f9106b5e822cfe5e44

We'll discuss generics later in this section.

Functions and Procedures

General Form

Subroutines in C are always expressed as functions which may or may not return a
value. Ada explicitly differentiates between functions and procedures.
Functions must return a value and procedures must not. Ada uses the more
general term subprogram to refer to both functions and procedures.

Parameters can be passed in three distinct modes:

	in, which is the default, is for input parameters, whose value is
provided by the caller and cannot be changed by the subprogram.

	out is for output parameters, with no initial value, to be assigned by
the subprogram and returned to the caller.

	in out is a parameter with an initial value provided by the caller,
which can be modified by the subprogram and returned to the caller (more or
less the equivalent of a non-constant pointer in C).

Ada also provides access and aliased parameters, which are in
effect explicit pass-by-reference indicators.

In Ada, the programmer specifies how the parameter will be used and in general
the compiler decides how it will be passed (i.e., by copy or by reference). C
has the programmer specify how to pass the parameter.

Important

There are some exceptions to the "general" rule in Ada. For example,
parameters of scalar types are always passed by copy, for all three modes.

Here's a first example:

[Ada]

proc.ads

1procedure Proc
2 (Var1 : Integer;
3 Var2 : out Integer;
4 Var3 : in out Integer);

func.ads

1function Func (Var : Integer) return Integer;

proc.adb

 1with Func;
 2
 3procedure Proc
 4 (Var1 : Integer;
 5 Var2 : out Integer;
 6 Var3 : in out Integer)
 7is
 8begin
 9 Var2 := Func (Var1);
10 Var3 := Var3 + 1;
11end Proc;

func.adb

1function Func (Var : Integer) return Integer
2is
3begin
4 return Var + 1;
5end Func;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Proc;
 3
 4procedure Main is
 5 V1, V2 : Integer;
 6begin
 7 V2 := 2;
 8 Proc (5, V1, V2);
 9
10 Put_Line ("V1: " & Integer'Image (V1));
11 Put_Line ("V2: " & Integer'Image (V2));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Subroutines_Ada
MD5: a35fb6ae1b37325c3f39b3316e4246a8

Runtime output

V1: 6
V2: 3

[C]

proc.h

1void Proc
2 (int Var1,
3 int * Var2,
4 int * Var3);

func.h

1int Func (int Var);

proc.c

 1#include "func.h"
 2
 3void Proc
 4 (int Var1,
 5 int * Var2,
 6 int * Var3)
 7{
 8 *Var2 = Func (Var1);
 9 *Var3 += 1;
10}

func.c

1int Func (int Var)
2{
3 return Var + 1;
4}

main.c

 1#include <stdio.h>
 2#include "proc.h"
 3
 4int main(int argc, const char * argv[])
 5{
 6 int v1, v2;
 7
 8 v2 = 2;
 9 Proc (5, &v1, &v2);
10
11 printf("v1: %d\n", v1);
12 printf("v2: %d\n", v2);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Subroutines_C
MD5: dd5645c832ef00b94061f204852084a3

Runtime output

v1: 6
v2: 3

The first two declarations for Proc and Func are specifications
of the subprograms which are being provided later. Although optional here, it's
still considered good practice to separately define specifications and
implementations in order to make it easier to read the program. In Ada and C, a
function that has not yet been seen cannot be used. Here, Proc can call
Func because its specification has been declared.

Parameters in Ada subprogram declarations are separated with semicolons,
because commas are reserved for listing multiple parameters of the same type.
Parameter declaration syntax is the same as variable declaration syntax (except
for the modes), including default values for parameters. If there are no
parameters, the parentheses must be omitted entirely from both the declaration
and invocation of the subprogram.

In Ada 202X

Ada 202X allows for using static expression functions, which are evaluated
at compile time. To achieve this, we can use an aspect — we'll
discuss aspects later in this chapter.

An expression function is static when the Static
aspect is specified. For example:

procedure Main is

 X1 : constant := (if True then 37 else 42);

 function If_Then_Else (Flag : Boolean; X, Y : Integer)
 return Integer is
 (if Flag then X else Y) with Static;

 X2 : constant := If_Then_Else (True, 37, 42);

begin
 null;
end Main;

In this example, we declare X1 using an expression. In the
declaration of X2, we call the static expression function
If_Then_Else. Both X1 and X2 have the same constant
value.

Overloading

In C, function names must be unique. Ada allows overloading, in which multiple
subprograms can share the same name as long as the subprogram signatures
(the parameter types, and function return types) are different. The compiler
will be able to resolve the calls to the proper routines or it will reject the
calls. For example:

[Ada]

machine.ads

1package Machine is
2 type Status is (Off, On);
3 type Code is new Integer range 0 .. 3;
4 type Threshold is new Float range 0.0 .. 10.0;
5
6 function Get (S : Status) return Code;
7 function Get (S : Status) return Threshold;
8
9end Machine;

machine.adb

 1package body Machine is
 2
 3 function Get (S : Status) return Code is
 4 begin
 5 case S is
 6 when Off => return 1;
 7 when On => return 3;
 8 end case;
 9 end Get;
10
11 function Get (S : Status) return Threshold is
12 begin
13 case S is
14 when Off => return 2.0;
15 when On => return 10.0;
16 end case;
17 end Get;
18
19end Machine;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine; use Machine;
 3
 4procedure Main is
 5 S : Status;
 6 C : Code;
 7 T : Threshold;
 8begin
 9 S := On;
10 C := Get (S);
11 T := Get (S);
12
13 Put_Line ("S: " & Status'Image (S));
14 Put_Line ("C: " & Code'Image (C));
15 Put_Line ("T: " & Threshold'Image (T));
16end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overloading_Ada
MD5: 909cdf00b629917f7131489702cc26f1

Runtime output

S: ON
C: 3
T: 1.00000E+01

The Ada compiler knows that an assignment to C requires a
Code value. So, it chooses the Get function that returns a
Code to satisfy this requirement.

Operators in Ada are functions too. This allows you to define
local operators that override operators defined at an outer scope, and provide
overloaded operators that operate on and compare different types. To declare an
operator as a function, enclose its "name" in quotes:

[Ada]

machine_2.ads

1package Machine_2 is
2 type Status is (Off, Waiting, On);
3 type Input is new Float range 0.0 .. 10.0;
4
5 function Get (I : Input) return Status;
6
7 function "=" (Left : Input; Right : Status) return Boolean;
8
9end Machine_2;

machine_2.adb

 1package body Machine_2 is
 2
 3 function Get (I : Input) return Status is
 4 begin
 5 if I >= 0.0 and I < 3.0 then
 6 return Off;
 7 elsif I >= 3.0 and I < 6.5 then
 8 return Waiting;
 9 else
10 return On;
11 end if;
12 end Get;
13
14 function "=" (Left : Input; Right : Status) return Boolean is
15 begin
16 return Get (Left) = Right;
17 end "=";
18
19end Machine_2;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_2; use Machine_2;
 3
 4procedure Main is
 5 I : Input;
 6begin
 7 I := 3.0;
 8 if I = Off then
 9 Put_Line ("Machine is off.");
10 else
11 Put_Line ("Machine is not off.");
12 end if;
13end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Overloading_Eq
MD5: c5580f15c1b93f73fff3afc147cd15a1

Runtime output

Machine is not off.

Aspects

Aspect specifications allow you to define certain characteristics of a
declaration using the with keyword after the declaration:

procedure Some_Procedure is <procedure_definition>
 with Some_Aspect => <aspect_specification>;

function Some_Function is <function_definition>
 with Some_Aspect => <aspect_specification>;

type Some_Type is <type_definition>
 with Some_Aspect => <aspect_specification>;

Obj : Some_Type with Some_Aspect => <aspect_specification>;

For example, you can inline a subprogram by specifying the Inline
aspect:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float
6 with Inline;
7
8end Float_Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Inline_Aspect
MD5: 6e25e81e4015d907d50aa9cf4a0a3fab

We'll discuss inlining later in this course.

Aspect specifications were introduced in Ada 2012. In previous versions of Ada,
you had to use a pragma instead. The previous example would be written
as follows:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float;
6
7 pragma Inline (Average);
8
9end Float_Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Inline_Aspect
MD5: bd5df14dce9577a054f0ec612d5bbe40

Aspects and attributes might refer to the same kind of information. For
example, we can use the Size aspect to define the expected minimum size
of objects of a certain type:

[Ada]

my_device_types.ads

1package My_Device_Types is
2
3 type UInt10 is mod 2 ** 10
4 with Size => 10;
5
6end My_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 049be992b876dba42cf091afc256db35

In the same way, we can use the size attribute to retrieve the size of a type
or of an object:

[Ada]

show_device_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with My_Device_Types; use My_Device_Types;
 4
 5procedure Show_Device_Types is
 6 UInt10_Obj : constant UInt10 := 0;
 7begin
 8 Put_Line ("Size of UInt10 type: " & Positive'Image (UInt10'Size));
 9 Put_Line ("Size of UInt10 object: " & Positive'Image (UInt10_Obj'Size));
10end Show_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 4e46ad9cf54276b381b960672daa03b9

Runtime output

Size of UInt10 type: 10
Size of UInt10 object: 16

We'll explain both Size aspect and Size attribute
later in this course.

Footnotes

[#1]
https://www.adacore.com/gnatpro

[#2]
https://www.adacore.com/community

[#3]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx.html

[#4]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx.html

[#5]
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/bareboard_topics.html

[#6]
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/customized_run-time_libraries.html

Concurrency and Real-Time

Understanding the various options

Concurrent and real-time programming are standard parts of the Ada
language. As such, they have the same semantics, whether executing on a
native target with an OS such as Linux, on a real-time operating system
(RTOS) such as VxWorks, or on a bare metal target with no OS or RTOS at
all.

For resource-constrained systems, two subsets of the Ada concurrency
facilities are defined, known as the Ravenscar and Jorvik profiles.
Though restricted, these subsets have highly desirable properties,
including: efficiency, predictability, analyzability, absence of
deadlock, bounded blocking, absence of priority inversion, a real-time
scheduler, and a small memory footprint. On bare metal systems, this
means in effect that Ada comes with its own real-time kernel.

For further information

We'll discuss the Ravenscar profile
later in this chapter. Details about the Jorvik profile
can be found elsewhere [Jorvik].

[Jorvik]
A New Ravenscar-Based Profile by P. Rogers, J. Ruiz, T. Gingold
and P. Bernardi, in Reliable Software Technologies — Ada
Europe 2017, Springer-Verlag Lecture Notes in Computer Science,
Number 10300.

Enhanced portability and expressive power are the primary advantages of
using the standard concurrency facilities, potentially resulting in
considerable cost savings. For example, with little effort, it is
possible to migrate from Windows to Linux to a bare machine without
requiring any changes to the code. Thread management and synchronization
is all done by the implementation, transparently. However, in some
situations, it’s critical to be able to access directly the services
provided by the platform. In this case, it’s always possible to make
direct system calls from Ada code. Several targets of the GNAT compiler
provide this sort of API by default, for example win32ada for Windows
and Florist for POSIX systems.

On native and RTOS-based platforms GNAT typically provides the full
concurrency facilities. In contrast, on bare metal platforms GNAT typically
provides the two standard subsets: Ravenscar and Jorvik.

Tasks

Ada offers a high level construct called a task which is an
independent thread of execution. In GNAT, tasks are either mapped to the
underlying OS threads, or use a dedicated kernel when not available.

The following example will display the 26 letters of the alphabet twice, using
two concurrent tasks. Since there is no synchronization between the two threads
of control in any of the examples, the output may be interspersed.

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is -- implicitly called by the environment task
 4 subtype A_To_Z is Character range 'A' .. 'Z';
 5
 6 task My_Task;
 7
 8 task body My_Task is
 9 begin
10 for I in A_To_Z'Range loop
11 Put (I);
12 end loop;
13 New_Line;
14 end My_Task;
15begin
16 for I in A_To_Z'Range loop
17 Put (I);
18 end loop;
19 New_Line;
20end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task
MD5: 154702197f0c02f5750838e51a99f548

Runtime output

ABCDABCDEFGHIJKLMNOPQRSTUVWXYZ
EFGHIJKLMNOPQRSTUVWXYZ

Any number of Ada tasks may be declared in any declarative region. A task
declaration is very similar to a procedure or package declaration. They all
start automatically when control reaches the begin. A block will not exit until
all sequences of statements defined within that scope, including those in
tasks, have been completed.

A task type is a generalization of a task object; each object of a task type
has the same behavior. A declared object of a task type is started within the
scope where it is declared, and control does not leave that scope until the
task has terminated.

Task types can be parameterized; the parameter serves the same purpose as an
argument to a constructor in Java. The following example creates 10 tasks, each
of which displays a subset of the alphabet contained between the parameter and
the 'Z' Character. As with the earlier example, since there is no
synchronization among the tasks, the output may be interspersed depending on
the underlying implementation of the task scheduling algorithm.

[Ada]

my_tasks.ads

1package My_Tasks is
2
3 task type My_Task (First : Character);
4
5end My_Tasks;

my_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Tasks is
 4
 5 task body My_Task is
 6 begin
 7 for I in First .. 'Z' loop
 8 Put (I);
 9 end loop;
10 New_Line;
11 end My_Task;
12
13end My_Tasks;

main.adb

1with My_Tasks; use My_Tasks;
2
3procedure Main is
4 Dummy_Tab : array (0 .. 3) of My_Task ('W');
5begin
6 null;
7end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task_Type
MD5: 81d88397b0548fdcc1ba31549a8de4fd

Runtime output

WXYZ
WXYZ
WXYZ
WXYZ

In Ada, a task may be dynamically allocated rather than declared
statically. The task will then start as soon as it has been allocated,
and terminates when its work is completed.

[Ada]

main.adb

1with My_Tasks; use My_Tasks;
2
3procedure Main is
4 type Ptr_Task is access My_Task;
5
6 T : Ptr_Task;
7begin
8 T := new My_Task ('W');
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.My_Task_Type
MD5: d88a96eecf50ebbcdfe9cb870f232a09

Runtime output

WXYZ

Rendezvous

A rendezvous is a synchronization between two tasks, allowing them to exchange
data and coordinate execution. Let's consider the following example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 task After is
 6 entry Go;
 7 end After;
 8
 9 task body After is
10 begin
11 accept Go;
12 Put_Line ("After");
13 end After;
14
15begin
16 Put_Line ("Before");
17 After.Go;
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Rendezvous
MD5: b0a595b1eecac793e40b6d1d41171766

Runtime output

Before
After

The Go entry declared in After is the client interface to the
task. In the task body, the accept statement causes the task to wait for
a call on the entry. This particular entry and accept pair
simply causes the task to wait until Main calls
After.Go. So, even though the two tasks start simultaneously and execute
independently, they can coordinate via Go. Then, they both continue
execution independently after the rendezvous.

The entry/accept pair can take/pass parameters, and the
accept statement can contain a sequence of statements; while these
statements are executed, the caller is blocked.

Let's look at a more ambitious example. The rendezvous below accepts parameters
and executes some code:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 task After is
 6 entry Go (Text : String);
 7 end After;
 8
 9 task body After is
10 begin
11 accept Go (Text : String) do
12 Put_Line ("After: " & Text);
13 end Go;
14 end After;
15
16begin
17 Put_Line ("Before");
18 After.Go ("Main");
19end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Rendezvous_Params
MD5: 6430e88f5ae349128bb1f1d53f36251e

Runtime output

Before
After: Main

In the above example, the Put_Line is placed in the accept statement.
Here's a possible execution trace, assuming a uniprocessor:

	At the begin of Main, task After is started and the main
procedure is suspended.

	After reaches the accept statement and is suspended, since
there is no pending call on the Go entry.

	The main procedure is awakened and executes the Put_Line invocation,
displaying the string "Before".

	The main procedure calls the Go entry. Since After is
suspended on its accept statement for this entry, the call succeeds.

	The main procedure is suspended, and the task After is awakened to
execute the body of the accept statement. The actual parameter
"Main" is passed to the accept statement, and the
Put_Line invocation is executed. As a result, the string
"After: Main" is displayed.

	When the accept statement is completed, both the After task
and the main procedure are ready to run. Suppose that the Main
procedure is given the processor. It reaches its end, but the local task
After has not yet terminated. The main procedure is suspended.

	The After task continues, and terminates since it is at its end. The
main procedure is resumed, and it too can terminate since its dependent task
has terminated.

The above description is a conceptual model; in practice the implementation can
perform various optimizations to avoid unnecessary context switches.

Selective Rendezvous

The accept statement by itself can only wait for a single event (call)
at a time. The select statement allows a task to listen for multiple
events simultaneously, and then to deal with the first event to occur. This
feature is illustrated by the task below, which maintains an integer value that
is modified by other tasks that call Increment, Decrement, and
Get:

[Ada]

counters.ads

1package Counters is
2
3 task Counter is
4 entry Get (Result : out Integer);
5 entry Increment;
6 entry Decrement;
7 end Counter;
8
9end Counters;

counters.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Counters is
 4
 5 task body Counter is
 6 Value : Integer := 0;
 7 begin
 8 loop
 9 select
10 accept Increment do
11 Value := Value + 1;
12 end Increment;
13 or
14 accept Decrement do
15 Value := Value - 1;
16 end Decrement;
17 or
18 accept Get (Result : out Integer) do
19 Result := Value;
20 end Get;
21 or
22 delay 5.0;
23 Put_Line ("Exiting Counter task...");
24 exit;
25 end select;
26 end loop;
27 end Counter;
28
29end Counters;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Counters; use Counters;
 3
 4procedure Main is
 5 V : Integer;
 6begin
 7 Put_Line ("Main started.");
 8
 9 Counter.Get (V);
10 Put_Line ("Got value. Value = " & Integer'Image (V));
11
12 Counter.Increment;
13 Put_Line ("Incremented value.");
14
15 Counter.Increment;
16 Put_Line ("Incremented value.");
17
18 Counter.Get (V);
19 Put_Line ("Got value. Value = " & Integer'Image (V));
20
21 Counter.Decrement;
22 Put_Line ("Decremented value.");
23
24 Counter.Get (V);
25 Put_Line ("Got value. Value = " & Integer'Image (V));
26
27 Put_Line ("Main finished.");
28end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Selective_Rendezvous
MD5: 619d009bcfcd8053bc132b2e32a29249

Runtime output

Main started.
Got value. Value = 0
Incremented value.
Incremented value.
Got value. Value = 2
Decremented value.
Got value. Value = 1
Main finished.
Exiting Counter task...

When the task's statement flow reaches the select, it will wait for all four
events — three entries and a delay — in parallel. If the delay of
five seconds is exceeded, the task will execute the statements following the
delay statement (and in this case will exit the loop, in effect
terminating the task). The accept bodies for the Increment,
Decrement, or Get entries will be otherwise executed as they're
called. These four sections of the select statement are mutually exclusive: at
each iteration of the loop, only one will be invoked. This is a critical point;
if the task had been written as a package, with procedures for the various
operations, then a race condition could occur where multiple tasks
simultaneously calling, say, Increment, cause the value to only get
incremented once. In the tasking version, if multiple tasks simultaneously call
Increment then only one at a time will be accepted, and the value will
be incremented by each of the tasks when it is accepted.

More specifically, each entry has an associated queue of pending callers. If a
task calls one of the entries and Counter is not ready to accept the call
(i.e., if Counter is not suspended at the select statement) then
the calling task is suspended, and placed in the queue of the entry that it is
calling. From the perspective of the Counter task, at any iteration of
the loop there are several possibilities:

	There is no call pending on any of the entries. In this case Counter
is suspended. It will be awakened by the first of two events: a call on one
of its entries (which will then be immediately accepted), or the expiration
of the five second delay (whose effect was noted above).

	There is a call pending on exactly one of the entries. In this case control
passes to the select branch with an accept statement for that
entry.

	There are calls pending on more than one entry. In this case one of the
entries with pending callers is chosen, and then one of the callers is chosen
to be de-queued. The choice of which caller to accept depends on
the queuing policy, which can be specified via a pragma defined in the
Real-Time Systems Annex of the Ada standard; the default is
First-In First-Out.

Protected Objects

Although the rendezvous may be used to implement mutually exclusive access to a
shared data object, an alternative (and generally preferable) style is through
a protected object, an efficiently implementable mechanism that makes the
effect more explicit. A protected object has a public interface (its protected
operations) for accessing and manipulating the object's components (its private
part). Mutual exclusion is enforced through a conceptual lock on the object,
and encapsulation ensures that the only external access to the components are
through the protected operations.

Two kinds of operations can be performed on such objects: read-write operations
by procedures or entries, and read-only operations by functions. The lock
mechanism is implemented so that it's possible to perform concurrent read
operations but not concurrent write or read/write operations.

Let's reimplement our earlier tasking example with a protected object called
Counter:

[Ada]

counters.ads

 1package Counters is
 2
 3 protected Counter is
 4 function Get return Integer;
 5 procedure Increment;
 6 procedure Decrement;
 7 private
 8 Value : Integer := 0;
 9 end Counter;
10
11end Counters;

counters.adb

 1package body Counters is
 2
 3 protected body Counter is
 4 function Get return Integer is
 5 begin
 6 return Value;
 7 end Get;
 8
 9 procedure Increment is
10 begin
11 Value := Value + 1;
12 end Increment;
13
14 procedure Decrement is
15 begin
16 Value := Value - 1;
17 end Decrement;
18 end Counter;
19
20end Counters;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Counter
MD5: f29f21621dfcf092580f6a130101788e

Having two completely different ways to implement the same paradigm might seem
complicated. However, in practice the actual problem to solve usually drives
the choice between an active structure (a task) or a passive structure (a
protected object).

A protected object can be accessed through prefix notation:

[Ada]

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Counters; use Counters;
3
4procedure Main is
5begin
6 Counter.Increment;
7 Counter.Decrement;
8 Put_Line (Integer'Image (Counter.Get));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Counter
MD5: 704e3a382fe38caa11ecd3d46fcd2beb

Runtime output

 0

A protected object may look like a package syntactically, since it contains
declarations that can be accessed externally using prefix notation. However,
the declaration of a protected object is extremely restricted; for example, no
public data is allowed, no types can be declared inside, etc. And besides the
syntactic differences, there is a critical semantic distinction: a protected
object has a conceptual lock that guarantees mutual exclusion; there is no such
lock for a package.

Like tasks, it's possible to declare protected types that can be instantiated
several times:

declare
 protected type Counter is
 -- as above
 end Counter;

 protected body Counter is
 -- as above
 end Counter;

 C1 : Counter;
 C2 : Counter;
begin
 C1.Increment;
 C2.Decrement;
 .. .
end;

Protected objects and types can declare a procedure-like operation known as an
entry. An entry is somewhat similar to a procedure but includes a so-called
barrier condition that must be true in order for the entry invocation to
succeed. Calling a protected entry is thus a two step process: first, acquire
the lock on the object, and then evaluate the barrier condition. If the
condition is true then the caller will execute the entry body. If the
condition is false, then the caller is placed in the queue for the entry, and
relinquishes the lock. Barrier conditions (for entries with non-empty queues)
are reevaluated upon completion of protected procedures and protected entries.

Here's an example illustrating protected entries: a protected type that models
a binary semaphore / persistent signal.

[Ada]

binary_semaphores.ads

 1package Binary_Semaphores is
 2
 3 protected type Binary_Semaphore is
 4 entry Wait;
 5 procedure Signal;
 6 private
 7 Signaled : Boolean := False;
 8 end Binary_Semaphore;
 9
10end Binary_Semaphores;

binary_semaphores.adb

 1package body Binary_Semaphores is
 2
 3 protected body Binary_Semaphore is
 4 entry Wait when Signaled is
 5 begin
 6 Signaled := False;
 7 end Wait;
 8
 9 procedure Signal is
10 begin
11 Signaled := True;
12 end Signal;
13 end Binary_Semaphore;
14
15end Binary_Semaphores;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Binary_Semaphores; use Binary_Semaphores;
 3
 4procedure Main is
 5 B : Binary_Semaphore;
 6
 7 task T1;
 8 task T2;
 9
10 task body T1 is
11 begin
12 Put_Line ("Task T1 waiting...");
13 B.Wait;
14
15 Put_Line ("Task T1.");
16 delay 1.0;
17
18 Put_Line ("Task T1 will signal...");
19 B.Signal;
20
21 Put_Line ("Task T1 finished.");
22 end T1;
23
24 task body T2 is
25 begin
26 Put_Line ("Task T2 waiting...");
27 B.Wait;
28
29 Put_Line ("Task T2");
30 delay 1.0;
31
32 Put_Line ("Task T2 will signal...");
33 B.Signal;
34
35 Put_Line ("Task T2 finished.");
36 end T2;
37
38begin
39 Put_Line ("Main started.");
40 B.Signal;
41 Put_Line ("Main finished.");
42end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Protected_Binary_Semaphore
MD5: aa064a9ec056d44c4217e64cd05726a4

Runtime output

Task T1 waiting...
Task T2 waiting...
Main started.
Main finished.
Task T1.
Task T1 will signal...
Task T1 finished.
Task T2
Task T2 will signal...
Task T2 finished.

Ada concurrency features provide much further generality than what's been
presented here. For additional information please consult one of the works
cited in the References section.

Ravenscar

The Ravenscar profile is a subset of the Ada concurrency facilities that
supports determinism, schedulability analysis, constrained memory utilization,
and certification to the highest integrity levels. Four distinct application
domains are intended:

	hard real-time applications requiring predictability,

	safety-critical systems requiring formal, stringent certification,

	high-integrity applications requiring formal static analysis and
verification,

	embedded applications requiring both a small memory footprint and low
execution overhead.

Tasking constructs that preclude analysis, either technically or economically,
are disallowed. You can use the pragma Profile (Ravenscar) to indicate
that the Ravenscar restrictions must be observed in your program.

Some of the examples we've seen above will be rejected by the compiler when
using the Ravenscar profile. For example:

[Ada]

my_tasks.ads

1package My_Tasks is
2
3 task type My_Task (First : Character);
4
5end My_Tasks;

my_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Tasks is
 4
 5 task body My_Task is
 6 begin
 7 for C in First .. 'Z' loop
 8 Put (C);
 9 end loop;
10 New_Line;
11 end My_Task;
12
13end My_Tasks;

main.adb

1pragma Profile (Ravenscar);
2
3with My_Tasks; use My_Tasks;
4
5procedure Main is
6 Tab : array (0 .. 3) of My_Task ('W');
7begin
8 null;
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Ravenscar
MD5: b7518a039c2b4cecece1de63eeaa208f

Build output

main.adb:6:04: error: violation of restriction "No_Task_Hierarchy"
main.adb:6:04: error: from profile "Ravenscar" at line 1
gprbuild: *** compilation phase failed

This code violates the No_Task_Hierarchy restriction of the Ravenscar
profile. This is due to the declaration of Tab in the Main
procedure. Ravenscar requires task declarations to be done at the library level.
Therefore, a simple solution is to create a separate package and reference it
in the main application:

[Ada]

my_task_inst.ads

1with My_Tasks; use My_Tasks;
2
3package My_Task_Inst is
4
5 Tab : array (0 .. 3) of My_Task ('W');
6
7end My_Task_Inst;

main.adb

1pragma Profile (Ravenscar);
2
3with My_Task_Inst;
4
5procedure Main is
6begin
7 null;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Concurrency.Ravenscar
MD5: b38943dc1c962b5e691f2b6d9933a3ec

Runtime output

WXYZ
WXYZ
WXYZ
WXYZ

Also, Ravenscar prohibits entries for tasks. For example, we're not allowed to
write this declaration:

task type My_Task (First : Character) is
 entry Start;
end My_Task;

You can use, however, one entry per protected object. As an example, the
declaration of the Binary_Semaphore type that we've discussed before
compiles fine with Ravenscar:

protected type Binary_Semaphore is
 entry Wait;
 procedure Signal;
private
 Signaled : Boolean := False;
end Binary_Semaphore;

We could add more procedures and functions to the declaration of
Binary_Semaphore, but we wouldn't be able to add another entry when
using Ravenscar.

Similar to the previous example with the task array declaration, objects of
Binary_Semaphore cannot be declared in the main application:

procedure Main is
 B : Binary_Semaphore;
begin
 null;
end Main;

This violates the No_Local_Protected_Objects restriction. Again, Ravenscar
expects this declaration to be done on a library level, so a solution to make
this code compile is to have this declaration in a separate package and
reference it in the Main procedure.

Ravenscar offers many additional restrictions. Covering those would exceed
the scope of this chapter. You can find more examples using the Ravenscar
profile on
this blog post[#1].

Footnotes

[#1]
https://blog.adacore.com/theres-a-mini-rtos-in-my-language

Writing Ada on Embedded Systems

Understanding the Ada Run-Time

Ada supports a high level of abstractness and expressiveness. In some cases,
the compiler translates those constructs directly into machine code. However,
there are many high-level constructs for which a direct compilation would be
difficult. In those cases, the compiler links to a library containing an
implementation of those high-level constructs: this is the so-called run-time
library.

One typical example of high-level constructs that can be cumbersome for direct
machine code generation is Ada source-code using tasking. In this case, linking
to a low-level implementation of multithreading support — for example, an
implementation using POSIX threads — is more straightforward than trying
to make the compiler generate all the machine code.

In the case of GNAT, the run-time library is implemented using both C and Ada
source-code. Also, depending on the operating system, the library will
interface with low-level functionality from the target operating system.

There are basically two types of run-time libraries:

	the standard run-time library: in many cases, this is the run-time
library available on desktop operating systems or on some embedded
platforms (such as ARM-Linux on a Raspberry-Pi).

	the configurable run-time library: this is a capability that is used to
create custom run-time libraries for specific target devices.

Configurable run-time libraries are usually used for constrained target
devices where support for the full library would be difficult or even
impossible. In this case, configurable run-time libraries may support just a
subset of the full Ada language. There are many reasons that speak for this
approach:

	Some aspects of the Ada language may not translate well to limited operating
systems.

	Memory constraints may require reducing the size of the run-time library, so
that developers may need to replace or even remove parts of the library.

	When certification is required, those parts of the library that would require
too much certification effort can be removed.

When using a configurable run-time library, the compiler checks whether the
library supports certain features of the language. If a feature isn't
supported, the compiler will give an error message.

You can find further information about the run-time library on
this chapter of the GNAT User's Guide Supplement for Cross Platforms[#1]

Low Level Programming

Representation Clauses

We've seen in the previous chapters how Ada can be used to describe high level
semantics and architecture. The beauty of the language, however, is that it can
be used all the way down to the lowest levels of the development, including
embedded assembly code or bit-level data management.

One very interesting feature of the language is that, unlike C, for example,
there are no data representation constraints unless specified by the developer.
This means that the compiler is free to choose the best trade-off in terms of
representation vs. performance. Let's start with the following example:

[Ada]

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record
 with Pack;

[C]

struct R {
 unsigned int v:8;
 bool b1;
 bool b2;
};

The Ada and the C code above both represent efforts to create an object
that's as small as possible. Controlling data size is not possible in Java, but
the language does specify the size of values for the primitive types.

Although the C and Ada code are equivalent in this particular example,
there's an interesting semantic difference. In C, the number of bits required
by each field needs to be specified. Here, we're stating that v is only
8 bits, effectively representing values from 0 to 255. In Ada, it's the other
way around: the developer specifies the range of values required and the
compiler decides how to represent things, optimizing for speed or size. The
Pack aspect declared at the end of the record specifies that the
compiler should optimize for size even at the expense of decreased speed in
accessing record components. We'll see more details about the Pack
aspect in the sections about bitwise operations and
mapping structures to bit-fields in
chapter 6.

Other representation clauses can be specified as well, along with compile-time
consistency checks between requirements in terms of available values and
specified sizes. This is particularly useful when a specific layout is
necessary; for example when interfacing with hardware, a driver, or a
communication protocol. Here's how to specify a specific data layout based on
the previous example:

[Ada]

type R is record
 V : Integer range 0 .. 255;
 B1 : Boolean;
 B2 : Boolean;
end record;

for R use record
 -- Occupy the first bit of the first byte.
 B1 at 0 range 0 .. 0;

 -- Occupy the last 7 bits of the first byte,
 -- as well as the first bit of the second byte.
 V at 0 range 1 .. 8;

 -- Occupy the second bit of the second byte.
 B2 at 1 range 1 .. 1;
end record;

We omit the with Pack directive and instead use a record representation
clause following the record declaration. The compiler is directed to spread
objects of type R across two bytes. The layout we're specifying here is
fairly inefficient to work with on any machine, but you can have the compiler
construct the most efficient methods for access, rather than coding your own
machine-dependent bit-level methods manually.

Embedded Assembly Code

When performing low-level development, such as at the kernel or hardware driver
level, there can be times when it is necessary to implement functionality with
assembly code.

Every Ada compiler has its own conventions for embedding assembly code, based
on the hardware platform and the supported assembler(s). Our examples here will
work with GNAT and GCC on the x86 architecture.

All x86 processors since the Intel Pentium offer the rdtsc instruction,
which tells us the number of cycles since the last processor reset. It takes no
inputs and places an unsigned 64-bit value split between the edx and
eax registers.

GNAT provides a subprogram called System.Machine_Code.Asm that can be
used for assembly code insertion. You can specify a string to pass to the
assembler as well as source-level variables to be used for input and output:

[Ada]

get_processor_cycles.adb

 1with System.Machine_Code; use System.Machine_Code;
 2with Interfaces; use Interfaces;
 3
 4function Get_Processor_Cycles return Unsigned_64 is
 5 Low, High : Unsigned_32;
 6 Counter : Unsigned_64;
 7begin
 8 Asm ("rdtsc",
 9 Outputs =>
10 (Unsigned_32'Asm_Output ("=a", High),
11 Unsigned_32'Asm_Output ("=d", Low)),
12 Volatile => True);
13
14 Counter :=
15 Unsigned_64 (High) * 2 ** 32 +
16 Unsigned_64 (Low);
17
18 return Counter;
19end Get_Processor_Cycles;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Assembly_Code
MD5: 092be19e223946ebb9fb9f4786003b94

The Unsigned_32'Asm_Output clauses above provide associations between
machine registers and source-level variables to be updated. =a and
=d refer to the eax and edx machine registers, respectively. The
use of the Unsigned_32 and Unsigned_64 types from package
Interfaces ensures correct representation of the data. We assemble the
two 32-bit values to form a single 64-bit value.

We set the Volatile parameter to True to tell the compiler that
invoking this instruction multiple times with the same inputs can result in
different outputs. This eliminates the possibility that the compiler will
optimize multiple invocations into a single call.

With optimization turned on, the GNAT compiler is smart enough to use the
eax and edx registers to implement the High and Low
variables, resulting in zero overhead for the assembly interface.

The machine code insertion interface provides many features beyond what was
shown here. More information can be found in the GNAT User's Guide, and the
GNAT Reference manual.

Interrupt Handling

Handling interrupts is an important aspect when programming embedded devices.
Interrupts are used, for example, to indicate that a hardware or software
event has happened. Therefore, by handling interrupts, an application can react
to external events.

Ada provides built-in support for handling interrupts. We can process
interrupts by attaching a handler — which must be a protected procedure
— to it. In the declaration of the protected procedure, we use the
Attach_Handler aspect and indicate which interrupt we want to handle.

Let's look into a code example that traps the quit interrupt (SIGQUIT)
on Linux:

[Ada]

signal_handlers.ads

 1with System.OS_Interface;
 2
 3package Signal_Handlers is
 4
 5 protected type Quit_Handler is
 6 function Requested return Boolean;
 7 private
 8 Quit_Request : Boolean := False;
 9
10 --
11 -- Declaration of an interrupt handler for the "quit" interrupt:
12 --
13 procedure Handle_Quit_Signal
14 with Attach_Handler => System.OS_Interface.SIGQUIT;
15 end Quit_Handler;
16
17end Signal_Handlers;

signal_handlers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Signal_Handlers is
 4
 5 protected body Quit_Handler is
 6
 7 function Requested return Boolean is
 8 (Quit_Request);
 9
10 procedure Handle_Quit_Signal is
11 begin
12 Put_Line ("Quit request detected!");
13 Quit_Request := True;
14 end Handle_Quit_Signal;
15
16 end Quit_Handler;
17
18end Signal_Handlers;

test_quit_handler.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Signal_Handlers;
 3
 4procedure Test_Quit_Handler is
 5 Quit : Signal_Handlers.Quit_Handler;
 6
 7begin
 8 while True loop
 9 delay 1.0;
10 exit when Quit.Requested;
11 end loop;
12
13 Put_Line ("Exiting application...");
14end Test_Quit_Handler;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Quit_Handler
MD5: d272c5bc59576444e09007a04a615ccf

The specification of the Signal_Handlers package from this example
contains the declaration of Quit_Handler, which is a protected type.
In the private part of this protected type, we declare the
Handle_Quit_Signal procedure. By using the Attach_Handler
aspect in the declaration of Handle_Quit_Signal and indicating the
quit interrupt (System.OS_Interface.SIGQUIT), we're instructing the
operating system to call this procedure for any quit request. So when the user
presses CTRL+\ on their keyboard, for example, the application will behave
as follows:

	the operating system calls the Handle_Quit_Signal procedure , which
displays a message to the user ("Quit request detected!") and sets a Boolean
variable — Quit_Request, which is declared in the
Quit_Handler type;

	the main application checks the status of the quit handler by calling the
Requested function as part of the while True loop;

	This call is in the exit when Quit.Requested line.

	The Requested function returns True in this case because
the Quit_Request flag was set by the Handle_Quit_Signal
procedure.

	the main applications exits the loop, displays a message and finishes.

Note that the code example above isn't portable because it makes use of
interrupts from the Linux operating system. When programming embedded devices,
we would use instead the interrupts available on those specific devices.

Also note that, in the example above, we're declaring a static handler at
compilation time. If you need to make use of dynamic handlers, which can be
configured at runtime, you can use the subprograms from the
Ada.Interrupts package. This package includes not only a version of
Attach_Handler as a procedure, but also other procedures such as:

	Exchange_Handler, which lets us exchange, at runtime, the current
handler associated with a specific interrupt by a different handler;

	Detach_Handler, which we can use to remove the handler currently
associated with a given interrupt.

Details about the Ada.Interrupts package are out of scope for this
course. We'll discuss them in a separate, more advanced course in the future.
You can find some information about it in the
Interrupts appendix of the Ada Reference Manual[#2].

Dealing with Absence of FPU with Fixed Point

Many numerical applications typically use floating-point types to compute
values. However, in some platforms, a floating-point unit may not be available.
Other platforms may have a floating-point unit, but using it in certain
numerical algorithms can be prohibitive in terms of performance. For those
cases, fixed-point arithmetic can be a good alternative.

The difference between fixed-point and floating-point types might not be so
obvious when looking at this code snippet:

[Ada]

fixed_definitions.ads

1package Fixed_Definitions is
2
3 D : constant := 2.0 ** (-31);
4
5 type Fixed is delta D range -1.0 .. 1.0 - D;
6
7end Fixed_Definitions;

show_float_and_fixed_point.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Fixed_Definitions; use Fixed_Definitions;
 4
 5procedure Show_Float_And_Fixed_Point is
 6 Float_Value : Float := 0.25;
 7 Fixed_Value : Fixed := 0.25;
 8begin
 9
10 Float_Value := Float_Value + 0.25;
11 Fixed_Value := Fixed_Value + 0.25;
12
13 Put_Line ("Float_Value = " & Float'Image (Float_Value));
14 Put_Line ("Fixed_Value = " & Fixed'Image (Fixed_Value));
15end Show_Float_And_Fixed_Point;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point
MD5: 881817bb310304bc285f01454ab446f7

Runtime output

Float_Value = 5.00000E-01
Fixed_Value = 0.5000000000

In this example, the application will show the value 0.5 for both
Float_Value and Fixed_Value.

The major difference between floating-point and fixed-point types is in the way
the values are stored. Values of ordinary fixed-point types are, in effect,
scaled integers. The scaling used for ordinary fixed-point types is defined by
the type's small, which is derived from the specified delta and,
by default, is a power of two. Therefore, ordinary fixed-point types are
sometimes called binary fixed-point types. In that sense, ordinary fixed-point
types can be thought of being close to the actual representation on the
machine. In fact, ordinary fixed-point types make use of the available integer
shift instructions, for example.

Another difference between floating-point and fixed-point types is that Ada
doesn't provide standard fixed-point types — except for the
Duration type, which is used to represent an interval of time in
seconds. While the Ada standard specifies floating-point types such as
Float and Long_Float, we have to declare our own fixed-point
types. Note that, in the previous example, we have used a fixed-point type
named Fixed: this type isn't part of the standard, but must be declared
somewhere in the source-code of our application.

The syntax for an ordinary fixed-point type is

type <type_name> is delta <delta_value> range <lower_bound> .. <upper_bound>;

By default, the compiler will choose a scale factor, or small, that is a
power of 2 no greater than <delta_value>.

For example, we may define a normalized range between -1.0 and 1.0 as
following:

[Ada]

normalized_fixed_point_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Normalized_Fixed_Point_Type is
 4 D : constant := 2.0 ** (-31);
 5 type TQ31 is delta D range -1.0 .. 1.0 - D;
 6begin
 7 Put_Line ("TQ31 requires " & Integer'Image (TQ31'Size) & " bits");
 8 Put_Line ("The delta value of TQ31 is " & TQ31'Image (TQ31'Delta));
 9 Put_Line ("The minimum value of TQ31 is " & TQ31'Image (TQ31'First));
10 Put_Line ("The maximum value of TQ31 is " & TQ31'Image (TQ31'Last));
11end Normalized_Fixed_Point_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Normalized_Fixed_Point_Type
MD5: 2fe6e9f9bd20d2cfab959d1c0273280b

Runtime output

TQ31 requires 32 bits
The delta value of TQ31 is 0.0000000005
The minimum value of TQ31 is -1.0000000000
The maximum value of TQ31 is 0.9999999995

In this example, we are defining a 32-bit fixed-point data type for our
normalized range. When running the application, we notice that the upper
bound is close to one, but not exactly one. This is a typical effect of
fixed-point data types — you can find more details in this discussion
about the Q format[#3].
We may also rewrite this code with an exact type definition:

[Ada]

normalized_adapted_fixed_point_type.ads

1package Normalized_Adapted_Fixed_Point_Type is
2
3 type TQ31 is delta 2.0 ** (-31) range -1.0 .. 1.0 - 2.0 ** (-31);
4
5end Normalized_Adapted_Fixed_Point_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Normalized_Adapted_Fixed_Point_Type
MD5: abe5f4e029c7c3c7a069890882b17f50

We may also use any other range. For example:

[Ada]

custom_fixed_point_range.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics; use Ada.Numerics;
 3
 4procedure Custom_Fixed_Point_Range is
 5 type Inv_Trig is delta 2.0 ** (-15) * Pi range -Pi / 2.0 .. Pi / 2.0;
 6begin
 7 Put_Line ("Inv_Trig requires " & Integer'Image (Inv_Trig'Size)
 8 & " bits");
 9 Put_Line ("The delta value of Inv_Trig is "
10 & Inv_Trig'Image (Inv_Trig'Delta));
11 Put_Line ("The minimum value of Inv_Trig is "
12 & Inv_Trig'Image (Inv_Trig'First));
13 Put_Line ("The maximum value of Inv_Trig is "
14 & Inv_Trig'Image (Inv_Trig'Last));
15end Custom_Fixed_Point_Range;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Custom_Fixed_Point_Range
MD5: 0d9a4bc96191d1341bbb1c081555b613

Runtime output

Inv_Trig requires 16 bits
The delta value of Inv_Trig is 0.00006
The minimum value of Inv_Trig is -1.57080
The maximum value of Inv_Trig is 1.57080

In this example, we are defining a 16-bit type called Inv_Trig,
which has a range from -π/2 to π/2.

All standard operations are available for fixed-point types. For example:

[Ada]

fixed_point_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Fixed_Point_Op is
 4 type TQ31 is delta 2.0 ** (-31) range -1.0 .. 1.0 - 2.0 ** (-31);
 5
 6 A, B, R : TQ31;
 7begin
 8 A := 0.25;
 9 B := 0.50;
10 R := A + B;
11 Put_Line ("R is " & TQ31'Image (R));
12end Fixed_Point_Op;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point_Op
MD5: 78bafd93b25da898c00cc38c9d518e2a

Runtime output

R is 0.7500000000

As expected, R contains 0.75 after the addition of A and B.

In the case of C, since the language doesn't support fixed-point arithmetic, we
need to emulate it using integer types and custom operations via functions.
Let's look at this very rudimentary example:

[C]

main.c

 1#include <stdio.h>
 2#include <math.h>
 3
 4#define SHIFT_FACTOR 32
 5
 6#define TO_FIXED(x) ((int) ((x) * pow (2.0, SHIFT_FACTOR - 1)))
 7#define TO_FLOAT(x) ((float) ((double)(x) * (double)pow (2.0, -(SHIFT_FACTOR - 1))))
 8
 9typedef int fixed;
10
11fixed add (fixed a, fixed b)
12{
13 return a + b;
14}
15
16fixed mult (fixed a, fixed b)
17{
18 return (fixed)(((long)a * (long)b) >> (SHIFT_FACTOR - 1));
19}
20
21void display_fixed (fixed x)
22{
23 printf("value (integer) = %d\n", x);
24 printf("value (float) = %3.5f\n\n", TO_FLOAT (x));
25}
26
27int main(int argc, const char * argv[])
28{
29 int fixed_value = TO_FIXED(0.25);
30
31 printf("Original value\n");
32 display_fixed(fixed_value);
33
34 printf("... + 0.25\n");
35 fixed_value = add(fixed_value, TO_FIXED(0.25));
36 display_fixed(fixed_value);
37
38 printf("... * 0.5\n");
39 fixed_value = mult(fixed_value, TO_FIXED(0.5));
40 display_fixed(fixed_value);
41
42 return 0;
43}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Fixed_Point_C
MD5: 61016e8fc0dbc4d0eefd2c86915489e5

Runtime output

Original value
value (integer) = 536870912
value (float) = 0.25000

... + 0.25
value (integer) = 1073741824
value (float) = 0.50000

... * 0.5
value (integer) = 536870912
value (float) = 0.25000

Here, we declare the fixed-point type fixed based on int and two
operations for it: addition (via the add function) and multiplication
(via the mult function). Note that, while fixed-point addition is quite
straightforward, multiplication requires right-shifting to match the correct
internal representation. In Ada, since fixed-point operations are part of the
language specification, they don't need to be emulated. Therefore, no extra
effort is required from the programmer.

Also note that the example above is very rudimentary, so it doesn't take some
of the side-effects of fixed-point arithmetic into account. In C, you have to
manually take all side-effects deriving from fixed-point arithmetic into
account, while in Ada, the compiler takes care of selecting the right
operations for you.

Volatile and Atomic data

Ada has built-in support for handling both volatile and atomic data. Let's
start by discussing volatile objects.

Volatile

A volatile[#4]
object can be described as an object in memory whose value may change between
two consecutive memory accesses of a process A — even if process A itself
hasn't changed the value. This situation may arise when an object in memory is
being shared by multiple threads. For example, a thread B may modify the
value of that object between two read accesses of a thread A. Another typical
example is the one of
memory-mapped I/O[#5], where
the hardware might be constantly changing the value of an object in memory.

Because the value of a volatile object may be constantly changing, a compiler
cannot generate code that stores the value of that object into a register and
use the value from the register in subsequent operations. Storing into a
register is avoided because, if the value is stored there, it would be outdated
if another process had changed the volatile object in the meantime. Instead,
the compiler generates code in such a way that the process must read the value
of the volatile object from memory for each access.

Let's look at a simple example of a volatile variable in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 volatile double val = 0.0;
 6 int i;
 7
 8 for (i = 0; i < 1000; i++)
 9 {
10 val += i * 2.0;
11 }
12 printf ("val: %5.3f\n", val);
13
14 return 0;
15}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Object_C
MD5: 863c7dda4acb3286976a1edab29bab08

Runtime output

val: 999000.000

In this example, val has the modifier volatile, which indicates that
the compiler must handle val as a volatile object. Therefore, each read
and write access in the loop is performed by accessing the value of val in
then memory.

This is the corresponding implementation in Ada:

[Ada]

show_volatile_object.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Object is
 4 Val : Long_Float with Volatile;
 5begin
 6 Val := 0.0;
 7 for I in 0 .. 999 loop
 8 Val := Val + 2.0 * Long_Float (I);
 9 end loop;
10
11 Put_Line ("Val: " & Long_Float'Image (Val));
12end Show_Volatile_Object;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Object_Ada
MD5: aa1e276e64e69813bfc3e3ef39f3dd47

Runtime output

Val: 9.99000000000000E+05

In this example, Val has the Volatile aspect, which makes the
object volatile. We can also use the Volatile aspect in type
declarations. For example:

[Ada]

show_volatile_type.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Type is
 4 type Volatile_Long_Float is new Long_Float with Volatile;
 5
 6 Val : Volatile_Long_Float;
 7begin
 8 Val := 0.0;
 9 for I in 0 .. 999 loop
10 Val := Val + 2.0 * Volatile_Long_Float (I);
11 end loop;
12
13 Put_Line ("Val: " & Volatile_Long_Float'Image (Val));
14end Show_Volatile_Type;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Type
MD5: 41ecf028803a58ce244c421eaeb118e4

Runtime output

Val: 9.99000000000000E+05

Here, we're declaring a new type Volatile_Long_Float based on the
Long_Float type and using the Volatile aspect. Any object of this
type is automatically volatile.

In addition to that, we can declare components of an array to be volatile. In
this case, we can use the Volatile_Components aspect in the array
declaration. For example:

[Ada]

show_volatile_array_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Array_Components is
 4 Arr : array (1 .. 2) of Long_Float with Volatile_Components;
 5begin
 6 Arr := (others => 0.0);
 7
 8 for I in 0 .. 999 loop
 9 Arr (1) := Arr (1) + 2.0 * Long_Float (I);
10 Arr (2) := Arr (2) + 10.0 * Long_Float (I);
11 end loop;
12
13 Put_Line ("Arr (1): " & Long_Float'Image (Arr (1)));
14 Put_Line ("Arr (2): " & Long_Float'Image (Arr (2)));
15end Show_Volatile_Array_Components;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Volatile_Array_Components
MD5: 601d61dd01888c60ae1a51ec513138d5

Runtime output

Arr (1): 9.99000000000000E+05
Arr (2): 4.99500000000000E+06

Note that it's possible to use the Volatile aspect for the array
declaration as well:

[Ada]

Arr : array (1 .. 2) of Long_Float with Volatile;

Atomic

An atomic object is an object that only accepts atomic reads and updates. The
Ada standard specifies that "for an atomic object (including an atomic
component), all reads and updates of the object as a whole are indivisible."
In this case, the compiler must generate Assembly code in such a way that reads
and updates of an atomic object must be done in a single instruction, so that
no other instruction could execute on that same object before the read or
update completes.

In other contexts

Generally, we can say that operations are said to be atomic when they can
be completed without interruptions. This is an important requirement when
we're performing operations on objects in memory that are shared between
multiple processes.

This definition of atomicity above is used, for example, when implementing
databases. However, for this section, we're using the term "atomic"
differently. Here, it really means that reads and updates must be performed
with a single Assembly instruction.

For example, if we have a 32-bit object composed of four 8-bit bytes, the
compiler cannot generate code to read or update the object using four 8-bit
store / load instructions, or even two 16-bit store / load instructions.
In this case, in order to maintain atomicity, the compiler must generate
code using one 32-bit store / load instruction.

Because of this strict definition, we might have objects for which the
Atomic aspect cannot be specified. Lots of machines support integer
types that are larger than the native word-sized integer. For example, a
16-bit machine probably supports both 16-bit and 32-bit integers, but only
16-bit integer objects can be marked as atomic — or, more generally,
only objects that fit into at most 16 bits.

Atomicity may be important, for example, when dealing with shared hardware
registers. In fact, for certain architectures, the hardware may require that
memory-mapped registers are handled atomically. In Ada, we can use the
Atomic aspect to indicate that an object is atomic. This is how we can
use the aspect to declare a shared hardware register:

[Ada]

show_shared_hw_register.adb

1with System;
2
3procedure Show_Shared_HW_Register is
4 R : Integer
5 with Atomic, Address => System'To_Address (16#FFFF00A0#);
6begin
7 null;
8end Show_Shared_HW_Register;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Atomic_Object
MD5: 7ef148adf393819fc3fbc25eb45afe46

Note that the Address aspect allows for assigning a variable to a
specific location in the memory. In this example, we're using this aspect to
specify the address of the memory-mapped register. We'll discuss more about the
Address aspect later in the section about
mapping structures to bit-fields (in
chapter 6).

In addition to atomic objects, we can declare atomic types and atomic array
components — similarly to what we've seen before for volatile objects.
For example:

[Ada]

show_shared_hw_register.adb

 1with System;
 2
 3procedure Show_Shared_HW_Register is
 4 type Atomic_Integer is new Integer with Atomic;
 5
 6 R : Atomic_Integer with Address => System'To_Address (16#FFFF00A0#);
 7
 8 Arr : array (1 .. 2) of Integer with Atomic_Components;
 9begin
10 null;
11end Show_Shared_HW_Register;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Atomic_Types_Arrays
MD5: 11475b5152087eff7f36abfe2c5ae9a1

In this example, we're declaring the Atomic_Integer type, which is an
atomic type. Objects of this type — such as R in this example
— are automatically atomic. This example also includes the declaration
of the Arr array, which has atomic components.

Interfacing with Devices

Previously, we've seen that we can use
representation clauses to specify a particular
layout for a record type. As mentioned before, this is useful when interfacing
with hardware, drivers, or communication protocols. In this section, we'll
extend this concept for two specific use-cases: register overlays and data
streams. Before we discuss those use-cases, though, we'll first explain the
Size aspect and the Size attribute.

Size aspect and attribute

The Size aspect indicates the minimum number of bits required to
represent an object. When applied to a type, the Size aspect is telling
the compiler to not make record or array components of a type T any
smaller than X bits. Therefore, a common usage for this aspect is to
just confirm expectations: developers specify 'Size to tell the compiler
that T should fit X bits, and the compiler will tell them if they
are right (or wrong).

When the specified size value is larger than necessary, it can cause objects to
be bigger in memory than they would be otherwise. For example, for some
enumeration types, we could say for type Enum'Size use 32; when the
number of literals would otherwise have required only a byte. That's useful for
unchecked conversions because the sizes of the two types need to be the same.
Likewise, it's useful for interfacing with C, where enum types are just
mapped to the int type, and thus larger than Ada might otherwise
require. We'll discuss unchecked conversions
later in the course.

Let's look at an example from an earlier chapter:

[Ada]

my_device_types.ads

1package My_Device_Types is
2
3 type UInt10 is mod 2 ** 10
4 with Size => 10;
5
6end My_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 049be992b876dba42cf091afc256db35

Here, we're saying that objects of type UInt10 must have at least 10
bits. In this case, if the code compiles, it is a confirmation that such values
can be represented in 10 bits when packed into an enclosing record or array
type.

If the size specified was larger than what the compiler would use by default,
then it could affect the size of objects. For example, for UInt10,
anything up to and including 16 would make no difference on a typical machine.
However, anything over 16 would then push the compiler to use a larger object
representation. That would be important for unchecked conversions, for example.

The Size attribute indicates the number of bits required to represent a
type or an object. We can use the size attribute to retrieve the size of a type
or of an object:

[Ada]

show_device_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with My_Device_Types; use My_Device_Types;
 4
 5procedure Show_Device_Types is
 6 UInt10_Obj : constant UInt10 := 0;
 7begin
 8 Put_Line ("Size of UInt10 type: " & Positive'Image (UInt10'Size));
 9 Put_Line ("Size of UInt10 object: " & Positive'Image (UInt10_Obj'Size));
10end Show_Device_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Perspective.Size_Aspect
MD5: 4e46ad9cf54276b381b960672daa03b9

Runtime output

Size of UInt10 type: 10
Size of UInt10 object: 16

Here, we're retrieving the actual sizes of the UInt10 type and an
object of that type. Note that the sizes don't necessarily need to match. For
example, although the size of UInt10 type is expected to be 10 bits, the
size of UInt10_Obj may be 16 bits, depending on the platform. Also,
components of this type within composite types (arrays, records) will probably
be 16 bits as well unless they are packed.

Register overlays

Register overlays make use of representation clauses to create a structure that
facilitates manipulating bits from registers. Let's look at a simplified
example of a power management controller containing registers such as a system
clock enable register. Note that this example is based on an actual
architecture:

[Ada]

registers.ads

 1with System;
 2
 3package Registers is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7 type UInt5 is mod 2 ** 5
 8 with Size => 5;
 9 type UInt10 is mod 2 ** 10
10 with Size => 10;
11
12 subtype USB_Clock_Enable is Bit;
13
14 -- System Clock Enable Register
15 type PMC_SCER_Register is record
16 -- Reserved bits
17 Reserved_0_4 : UInt5 := 16#0#;
18 -- Write-only. Enable USB FS Clock
19 USBCLK : USB_Clock_Enable := 16#0#;
20 -- Reserved bits
21 Reserved_6_15 : UInt10 := 16#0#;
22 end record
23 with
24 Volatile,
25 Size => 16,
26 Bit_Order => System.Low_Order_First;
27
28 for PMC_SCER_Register use record
29 Reserved_0_4 at 0 range 0 .. 4;
30 USBCLK at 0 range 5 .. 5;
31 Reserved_6_15 at 0 range 6 .. 15;
32 end record;
33
34 -- Power Management Controller
35 type PMC_Peripheral is record
36 -- System Clock Enable Register
37 PMC_SCER : aliased PMC_SCER_Register;
38 -- System Clock Disable Register
39 PMC_SCDR : aliased PMC_SCER_Register;
40 end record
41 with Volatile;
42
43 for PMC_Peripheral use record
44 -- 16-bit register at byte 0
45 PMC_SCER at 16#0# range 0 .. 15;
46 -- 16-bit register at byte 2
47 PMC_SCDR at 16#2# range 0 .. 15;
48 end record;
49
50 -- Power Management Controller
51 PMC_Periph : aliased PMC_Peripheral
52 with Import, Address => System'To_Address (16#400E0600#);
53
54end Registers;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.PMC_Peripheral
MD5: d6f37976ca653d65d71ee5ea463df81c

First, we declare the system clock enable register — this is
PMC_SCER_Register type in the code example. Most of the bits in that
register are reserved. However, we're interested in bit #5, which is used to
activate or deactivate the system clock. To achieve a correct representation of
this bit, we do the following:

	We declare the USBCLK component of this record using the
USB_Clock_Enable type, which has a size of one bit; and

	we use a representation clause to indicate that the USBCLK component
is specifically at bit #5 of byte #0.

After declaring the system clock enable register and specifying its individual
bits as components of a record type, we declare the power management controller
type — PMC_Peripheral record type in the code example. Here, we
declare two 16-bit registers as record components of PMC_Peripheral.
These registers are used to enable or disable the system clock. The strategy
we use in the declaration is similar to the one we've just seen above:

	We declare these registers as components of the PMC_Peripheral record
type;

	we use a representation clause to specify that the PMC_SCER register
is at byte #0 and the PMC_SCDR register is at byte #2.

	Since these registers have 16 bits, we use a range of bits from 0 to 15.

The actual power management controller becomes accessible by the declaration of
the PMC_Periph object of PMC_Peripheral type. Here, we specify
the actual address of the memory-mapped registers (400E0600 in hexadecimal)
using the Address aspect in the declaration. When we use the
Address aspect in an object declaration, we're indicating the address in
memory of that object.

Because we specify the address of the memory-mapped registers in the
declaration of PMC_Periph, this object is now an overlay for those
registers. This also means that any operation on this object corresponds to an
actual operation on the registers of the power management controller. We'll
discuss more details about overlays in the section about
mapping structures to bit-fields (in
chapter 6).

Finally, in a test application, we can access any bit of any register of the
power management controller with simple record component selection. For
example, we can set the USBCLK bit of the PMC_SCER register by
using PMC_Periph.PMC_SCER.USBCLK:

[Ada]

enable_usb_clock.adb

1with Registers;
2
3procedure Enable_USB_Clock is
4begin
5 Registers.PMC_Periph.PMC_SCER.USBCLK := 1;
6end Enable_USB_Clock;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.PMC_Peripheral
MD5: b8f35a80d5f04cd362e5309aef33a100

This code example makes use of many aspects and keywords of the Ada language.
One of them is the Volatile aspect, which we've discussed in the section
about volatile and atomic objects. Using the
Volatile aspect for the PMC_SCER_Register type ensures that
objects of this type won't be stored in a register.

In the declaration of the PMC_SCER_Register record type of the example,
we use the Bit_Order aspect to specify the bit ordering of the
record type. Here, we can select one of these options:

	High_Order_First: first bit of the record is the most significant bit;

	Low_Order_First: first bit of the record is the least significant bit.

The declarations from the Registers package also makes use of the
Import, which is sometimes necessary when creating overlays. When used
in the context of object declarations, it avoids default initialization (for
data types that have it.). Aspect Import will be discussed in the
section that explains how to
map structures to bit-fields in
chapter 6. Please refer to that chapter for more details.

Details about 'Size

In the example above, we're using the Size aspect in the declaration
of the PMC_SCER_Register type. In this case, the effect is that it
has the compiler confirm that the record type will fit into the expected
16 bits.

That's what the aspect does for type PMC_SCER_Register in the
example above, as well as for the types Bit, UInt5 and
UInt10. For example, we may declare a stand-alone object of type
Bit:

show_bit_declaration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Bit_Declaration is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7
 8 B : constant Bit := 0;
 9 -- ^ Although Bit'Size is 1, B'Size is almost certainly 8
10begin
11 Put_Line ("Bit'Size = " & Positive'Image (Bit'Size));
12 Put_Line ("B'Size = " & Positive'Image (B'Size));
13end Show_Bit_Declaration;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Bit_Declaration
MD5: 1778bb96b4bf77292885bdedfee7c596

Runtime output

Bit'Size = 1
B'Size = 8

In this case, B is almost certainly going to be 8-bits wide on a
typical machine, even though the language requires that Bit'Size is
1 by default.

In the declaration of the components of the PMC_Peripheral record type,
we use the aliased keyword to specify that those record components are
accessible via other paths besides the component name. Therefore, the compiler
won't store them in registers. This makes sense because we want to ensure
that we're accessing specific memory-mapped registers, and not registers
assigned by the compiler. Note that, for the same reason, we also use the
aliased keyword in the declaration of the PMC_Periph object.

Data streams

Creating data streams — in the context of interfacing with devices
— means the serialization of arbitrary information and its transmission
over a communication channel. For example, we might want to transmit the
content of memory-mapped registers as byte streams using a serial port. To do
this, we first need to get a serialized representation of those registers as an
array of bytes, which we can then transmit over the serial port.

Serialization of arbitrary record types — including register overlays
— can be achieved by declaring an array of bytes as an overlay. By doing
this, we're basically interpreting the information from those record types as
bytes while ignoring their actual structure — i.e. their components and
representation clause. We'll discuss details about overlays in the section
about
mapping structures to bit-fields (in
chapter 6).

Let's look at a simple example of serialization of an arbitrary record type:

[Ada]

arbitrary_types.ads

1package Arbitrary_Types is
2
3 type Arbitrary_Record is record
4 A : Integer;
5 B : Integer;
6 C : Integer;
7 end record;
8
9end Arbitrary_Types;

serialize_data.ads

1with Arbitrary_Types;
2
3procedure Serialize_Data (Some_Object : Arbitrary_Types.Arbitrary_Record);

serialize_data.adb

 1with Arbitrary_Types;
 2
 3procedure Serialize_Data (Some_Object : Arbitrary_Types.Arbitrary_Record) is
 4 type UByte is new Natural range 0 .. 255
 5 with Size => 8;
 6
 7 type UByte_Array is array (Positive range <>) of UByte;
 8
 9 --
10 -- We can access the serialized data in Raw_TX, which is our overlay
11 --
12 Raw_TX : UByte_Array (1 .. Some_Object'Size / 8)
13 with Address => Some_Object'Address;
14begin
15 null;
16 --
17 -- Now, we could stream the data from Some_Object.
18 --
19 -- For example, we could send the bytes (from Raw_TX) via the
20 -- serial port.
21 --
22end Serialize_Data;

data_stream_declaration.adb

1with Arbitrary_Types;
2with Serialize_Data;
3
4procedure Data_Stream_Declaration is
5 Dummy_Object : Arbitrary_Types.Arbitrary_Record;
6
7begin
8 Serialize_Data (Dummy_Object);
9end Data_Stream_Declaration;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Data_Stream_Declaration
MD5: 1de6f518520010c28fd8deb29a2bf209

The most important part of this example is the implementation of the
Serialize_Data procedure, where we declare Raw_TX as an overlay
for our arbitrary object (Some_Object of Arbitrary_Record type).
In simple terms, by writing with Address => Some_Object'Address; in the
declaration of Raw_TX, we're specifying that Raw_TX and
Some_Object have the same address in memory. Here, we are:

	taking the address of Some_Object — using the Address
attribute —, and then

	using it as the address of Raw_TX — which is specified with
the Address aspect.

By doing this, we're essentially saying that both Raw_TX and
Some_Object are different representations of the same object in memory.

Because the Raw_TX overlay is completely agnostic about the actual
structure of the record type, the Arbitrary_Record type could really be
anything. By declaring Raw_TX, we create an array of bytes that we can
use to stream the information from Some_Object.

We can use this approach and create a data stream for the register overlay
example that we've seen before. This is the corresponding implementation:

[Ada]

registers.ads

 1with System;
 2
 3package Registers is
 4
 5 type Bit is mod 2 ** 1
 6 with Size => 1;
 7 type UInt5 is mod 2 ** 5
 8 with Size => 5;
 9 type UInt10 is mod 2 ** 10
10 with Size => 10;
11
12 subtype USB_Clock_Enable is Bit;
13
14 -- System Clock Register
15 type PMC_SCER_Register is record
16 -- Reserved bits
17 Reserved_0_4 : UInt5 := 16#0#;
18 -- Write-only. Enable USB FS Clock
19 USBCLK : USB_Clock_Enable := 16#0#;
20 -- Reserved bits
21 Reserved_6_15 : UInt10 := 16#0#;
22 end record
23 with
24 Volatile,
25 Size => 16,
26 Bit_Order => System.Low_Order_First;
27
28 for PMC_SCER_Register use record
29 Reserved_0_4 at 0 range 0 .. 4;
30 USBCLK at 0 range 5 .. 5;
31 Reserved_6_15 at 0 range 6 .. 15;
32 end record;
33
34 -- Power Management Controller
35 type PMC_Peripheral is record
36 -- System Clock Enable Register
37 PMC_SCER : aliased PMC_SCER_Register;
38 -- System Clock Disable Register
39 PMC_SCDR : aliased PMC_SCER_Register;
40 end record
41 with Volatile;
42
43 for PMC_Peripheral use record
44 -- 16-bit register at byte 0
45 PMC_SCER at 16#0# range 0 .. 15;
46 -- 16-bit register at byte 2
47 PMC_SCDR at 16#2# range 0 .. 15;
48 end record;
49
50 -- Power Management Controller
51 PMC_Periph : aliased PMC_Peripheral;
52-- with Import, Address => System'To_Address (16#400E0600#);
53
54end Registers;

serial_ports.ads

 1package Serial_Ports is
 2
 3 type UByte is new Natural range 0 .. 255
 4 with Size => 8;
 5
 6 type UByte_Array is array (Positive range <>) of UByte;
 7
 8 type Serial_Port is null record;
 9
10 procedure Read (Port : in out Serial_Port;
11 Data : out UByte_Array);
12
13 procedure Write (Port : in out Serial_Port;
14 Data : UByte_Array);
15
16end Serial_Ports;

serial_ports.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serial_Ports is
 4
 5 procedure Display (Data : UByte_Array) is
 6 begin
 7 Put_Line ("---- Data ----");
 8 for E of Data loop
 9 Put_Line (UByte'Image (E));
10 end loop;
11 Put_Line ("--------------");
12 end Display;
13
14 procedure Read (Port : in out Serial_Port;
15 Data : out UByte_Array) is
16 pragma Unreferenced (Port);
17 begin
18 Put_Line ("Reading data...");
19 Data := (0, 0, 32, 0);
20 end Read;
21
22 procedure Write (Port : in out Serial_Port;
23 Data : UByte_Array) is
24 pragma Unreferenced (Port);
25 begin
26 Put_Line ("Writing data...");
27 Display (Data);
28 end Write;
29
30end Serial_Ports;

data_stream.ads

 1with Serial_Ports; use Serial_Ports;
 2with Registers; use Registers;
 3
 4package Data_Stream is
 5
 6 procedure Send (Port : in out Serial_Port;
 7 PMC : PMC_Peripheral);
 8
 9 procedure Receive (Port : in out Serial_Port;
10 PMC : out PMC_Peripheral);
11
12end Data_Stream;

data_stream.adb

 1package body Data_Stream is
 2
 3 procedure Send (Port : in out Serial_Port;
 4 PMC : PMC_Peripheral)
 5 is
 6 Raw_TX : UByte_Array (1 .. PMC'Size / 8)
 7 with Address => PMC'Address;
 8 begin
 9 Write (Port => Port,
10 Data => Raw_TX);
11 end Send;
12
13 procedure Receive (Port : in out Serial_Port;
14 PMC : out PMC_Peripheral)
15 is
16 Raw_TX : UByte_Array (1 .. PMC'Size / 8)
17 with Address => PMC'Address;
18 begin
19 Read (Port => Port,
20 Data => Raw_TX);
21 end Receive;
22
23end Data_Stream;

test_data_stream.adb

 1with Ada.Text_IO;
 2
 3with Registers;
 4with Data_Stream;
 5with Serial_Ports;
 6
 7procedure Test_Data_Stream is
 8
 9 procedure Display_Registers is
10 use Ada.Text_IO;
11 begin
12 Put_Line ("---- Registers ----");
13 Put_Line ("PMC_SCER.USBCLK: "
14 & Registers.PMC_Periph.PMC_SCER.USBCLK'Image);
15 Put_Line ("PMC_SCDR.USBCLK: "
16 & Registers.PMC_Periph.PMC_SCDR.USBCLK'Image);
17 Put_Line ("-------------- ----");
18 end Display_Registers;
19
20 Port : Serial_Ports.Serial_Port;
21begin
22 Registers.PMC_Periph.PMC_SCER.USBCLK := 1;
23 Registers.PMC_Periph.PMC_SCDR.USBCLK := 1;
24
25 Display_Registers;
26
27 Data_Stream.Send (Port => Port,
28 PMC => Registers.PMC_Periph);
29
30 Data_Stream.Receive (Port => Port,
31 PMC => Registers.PMC_Periph);
32
33 Display_Registers;
34end Test_Data_Stream;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Embedded.Data_Stream
MD5: 3f4e1a184e52a83b1b9de9e3d5cb43bf

Runtime output

---- Registers ----
PMC_SCER.USBCLK: 1
PMC_SCDR.USBCLK: 1
-------------- ----
Writing data...
---- Data ----
 32
 0
 32
 0

Reading data...
---- Registers ----
PMC_SCER.USBCLK: 0
PMC_SCDR.USBCLK: 1
-------------- ----

In this example, we can find the overlay in the implementation of the
Send and Receive procedures from the Data_Stream package.
Because the overlay doesn't need to know the internals of the
PMC_Peripheral type, we're declaring it in the same way as in the
previous example (where we created an overlay for Some_Object). In this
case, we're creating an overlay for the PMC parameter.

Note that, for this section, we're not really interested in the details about
the serial port. Thus, package Serial_Ports in this example is just a
stub. However, because the Serial_Port type in that package only sees
arrays of bytes, after implementing an actual serial port interface for a
specific device, we could create data streams for any type.

ARM and svd2ada

As we've seen in the previous section about
interfacing with devices, Ada offers powerful
features to describe low-level details about the hardware architecture without
giving up its strong typing capabilities. However, it can be cumbersome
to create a specification for all those low-level details when you have a
complex architecture. Fortunately, for ARM Cortex-M devices, the GNAT toolchain
offers an Ada binding generator called svd2ada, which takes
CMSIS-SVD descriptions for those devices and creates Ada specifications that
match the architecture. CMSIS-SVD description files are based on the Cortex
Microcontroller Software Interface Standard (CMSIS), which is a hardware
abstraction layer for ARM Cortex microcontrollers.

Please refer to the
svd2ada project page[#6] for details about
this tool.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugx-docs/html/gnat_ugx/gnat_ugx/the_gnat_configurable_run_time_facility.html

[#2]
http://www.ada-auth.org/standards/12aarm/html/AA-C-3-2.html

[#3]
https://en.wikipedia.org/wiki/Q_(number_format)

[#4]
https://en.wikipedia.org/wiki/Volatile_(computer_programming)

[#5]
https://en.wikipedia.org/wiki/Memory-mapped_I/O

[#6]
https://github.com/AdaCore/svd2ada

Enhancing Verification with SPARK and Ada

Understanding Exceptions and Dynamic Checks

In Ada, several common programming errors that are not already detected
at compile-time are detected instead at run-time, triggering
"exceptions" that interrupt the normal flow of execution. For example,
an exception is raised by an attempt to access an array component via an
index that is out of bounds. This simple check precludes exploits based
on buffer overflow. Several other cases also raise language-defined
exceptions, such as scalar range constraint violations and null pointer
dereferences. Developers may declare and raise their own
application-specific exceptions too. (Exceptions are software artifacts,
although an implementation may map hardware events to exceptions.)

Exceptions are raised during execution of what we will loosely define as
a "frame." A frame is a language construct that has a call stack entry
when called, for example a procedure or function body. There are a few
other constructs that are also pertinent but this definition will
suffice for now.

Frames have a sequence of statements implementing their functionality.
They can also have optional "exception handlers" that specify the
response when exceptions are "raised" by those statements. These
exceptions could be raised directly within the statements, or indirectly
via calls to other procedures and functions.

For example, the frame below is a procedure including three exceptions
handlers:

p.adb

 1procedure P is
 2begin
 3 Statements_That_Might_Raise_Exceptions;
 4exception
 5 when A =>
 6 Handle_A;
 7 when B =>
 8 Handle_B;
 9 when C =>
10 Handle_C;
11end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: bf7a8740dfca9f3da993f054e22ca97d

The three exception handlers each start with the word when (lines
5, 7, and 9). Next comes one or more exception identifiers, followed by
the so-called "arrow." In Ada, the arrow always associates something on
the left side with something on the right side. In this case, the left
side is the exception name and the right side is the handler's code for
that exception.

Each handler's code consists of an arbitrary sequence of statements, in
this case specific procedures called in response to those specific
exceptions. If exception A is raised we call procedure
Handle_A (line 6), dedicated to doing the actual work of handling
that exception. The other two exceptions are dealt with similarly, on
lines 8 and 10.

Structurally, the exception handlers are grouped together and textually
separated from the rest of the code in a frame. As a result, the
sequence of statements representing the normal flow of execution is
distinct from the section representing the error handling. The
reserved word exception separates these two sections (line 4
above). This separation helps simplify the overall flow, increasing
understandability. In particular, status result codes are not required
so there is no mixture of error checking and normal processing. If no
exception is raised the exception handler section is automatically
skipped when the frame exits.

Note how the syntactic structure of the exception handling section
resembles that of an Ada case statement. The resemblance is intentional,
to suggest similar behavior. When something in the statements of the
normal execution raises an exception, the corresponding exception
handler for that specific exception is executed. After that, the routine
completes. The handlers do not "fall through" to the handlers below. For
example, if exception B is raised, procedure Handle_B is
called but Handle_C is not called. There's no need for a
break statement, just as there is no need for it in a case
statement. (There's no break statement in Ada anyway.)

So far, we've seen a frame with three specific exceptions handled. What
happens if a frame has no handler for the actual exception raised? In
that case the run-time library code goes "looking" for one.

Specifically, the active exception is propagated up the dynamic call
chain. At each point in the chain, normal execution in that caller is
abandoned and the handlers are examined. If that caller has a handler
for the exception, the handler is executed. That caller then returns
normally to its caller and execution continues from there. Otherwise,
propagation goes up one level in the call chain and the process repeats.
The search continues until a matching handler is found or no callers
remain. If a handler is never found the application terminates
abnormally. If the search reaches the main procedure and it has a
matching handler it will execute the handler, but, as always, the
routine completes so once again the application terminates.

For a concrete example, consider the following:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: a2dfa05b56144e21d5796d39c88ceac2

arrays.adb

1package body Arrays is
2
3 function Value (A : List; X, Y : Integer) return Integer is
4 begin
5 return A (X + Y * 10);
6 end Value;
7
8end Arrays;

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("Constraint_Error caught in Some_Process");
11 Put_Line ("Some_Process completes normally");
12end Some_Process;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exceptions
MD5: 7733854601db37eb53f4c4094fe5ca0d

main.adb

1with Some_Process;
2with Ada.Text_IO; use Ada.Text_IO;
3
4procedure Main is
5begin
6 Some_Process;
7 Put_Line ("Main completes normally");
8end Main;

Procedure Main calls Some_Process, which in turn calls
function Value (line 7). Some_Process declares the array
object L of type List on line 5, with bounds 1 through
100. The call to Value has arguments, including variable
L, leading to an attempt to access an array component via an
out-of-bounds index (1 + 10 * 10 = 101, beyond the last index of
L). This attempt will trigger an exception in Value prior
to actually accessing the array object's memory. Function Value
doesn't have any exception handlers so the exception is propagated up to
the caller Some_Process. Procedure Some_Process has an
exception handler for Constraint_Error and it so happens that
Constraint_Error is the exception raised in this case. As a
result, the code for that handler will be executed, printing some
messages on the screen. Then procedure Some_Process will return
to Main normally. Main then continues to execute normally
after the call to Some_Process and prints its completion message.

If procedure Some_Process had also not had a handler for
Constraint_Error, that procedure call would also have returned
abnormally and the exception would have been propagated further up the
call chain to procedure Main. Normal execution in Main
would likewise be abandoned in search of a handler. But Main does
not have any handlers so Main would have completed abnormally,
immediately, without printing its closing message.

This semantic model is the same as with many other programming languages,
in which the execution of a frame's sequence of statements is
unavoidably abandoned when an exception becomes active. The model is a
direct reaction to the use of status codes returned from functions as in
C, where it is all too easy to forget (intentionally or otherwise) to
check the status values returned. With the exception model errors cannot
be ignored.

However, full exception propagation as described above is not the norm
for embedded applications when the highest levels of integrity are
required. The run-time library code implementing exception propagation
can be rather complex and expensive to certify. Those problems apply to
the application code too, because exception propagation is a form of
control flow without any explicit construct in the source. Instead of
the full exception model, designers of high-integrity applications often
take alternative approaches.

One alternative consists of deactivating exceptions altogether, or more
precisely, deactivating language-defined checks, which means that the
compiler will not generate code checking for conditions giving rise to
exceptions. Of course, this makes the code vulnerable to attacks, such
as buffer overflow, unless otherwise verified (e.g. through static
analysis). Deactivation can be applied at the unit level, through the
-gnatp compiler switch, or locally within a unit via the
pragma Suppress. (Refer to the
GNAT User’s Guide for Native Platforms[#1]
for more details about the switch.)

For example, we can write the following. Note the pragma on line 4 of
arrays.adb within function Value:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

1package body Arrays is
2
3 function Value (A : List; X, Y : Integer) return Integer is
4 pragma Suppress (All_Checks);
5 begin
6 return A (X + Y * 10);
7 end Value;
8
9end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Suppress
MD5: 62c37774cbcd5f167858d3b5268006aa

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

This placement of the pragma will only suppress checks in the function
body. However, that is where the exception would otherwise have been
raised, leading to incorrect and unpredictable execution. (Run the
program more than once. If it prints the right answer (42), or even the
same value each time, it's just a coincidence.) As you can see,
suppressing checks negates the guarantee of errors being detected and
addressed at run-time.

Another alternative is to leave checks enabled but not retain the
dynamic call-chain propagation. There are a couple of approaches
available in this alternative.

The first approach is for the run-time library to invoke a global "last
chance handler" (LCH) when any exception is raised. Instead of the
sequence of statements of an ordinary exception handler, the LCH is
actually a procedure intended to perform "last-wishes" before the
program terminates. No exception handlers are allowed. In this scheme
"propagation" is simply a direct call to the LCH procedure. The default LCH
implementation provided by GNAT does nothing other than loop infinitely.
Users may define their own replacement implementation.

The availability of this approach depends on the run-time library.
Typically, Zero Footprint and Ravenscar SFP run-times will provide
this mechanism because they are intended for certification.

A user-defined LCH handler can be provided either in C or in Ada, with
the following profiles:

[Ada]

procedure Last_Chance_Handler (Source_Location : System.Address; Line : Integer);
pragma Export (C,
 Last_Chance_Handler,
 "__gnat_last_chance_handler");

[C]

void __gnat_last_chance_handler (char *source_location,
 int line);

We'll go into the details of the pragma Export in a further
section on language interfacing. For now, just know that the symbol
__gnat_last_chance_handler is what the run-time uses to branch
immediately to the last-chance handler. Pragma Export associates
that symbol with this replacement procedure so it will be invoked
instead of the default routine. As a consequence, the actual procedure
name in Ada is immaterial.

Here is an example implementation that simply blinks an LED
forever on the target:

procedure Last_Chance_Handler (Msg : System.Address; Line : Integer) is
 pragma Unreferenced (Msg, Line);

 Next_Release : Time := Clock;
 Period : constant Time_Span := Milliseconds (500);
begin
 Initialize_LEDs;
 All_LEDs_Off;

 loop
 Toggle (LCH_LED);
 Next_Release := Next_Release + Period;
 delay until Next_Release;
 end loop;
end Last_Chance_Handler;

The LCH_LED is a constant referencing the LED used by the
last-chance handler, declared elsewhere. The infinite loop is necessary
because a last-chance handler must never return to the caller (hence the
term "last-chance"). The LED changes state every half-second.

Unlike the approach in which there is only the last-chance handler
routine, the other approach allows exception handlers, but in a
specific, restricted manner. Whenever an exception is raised, the only
handler that can apply is a matching handler located in the same frame
in which the exception is raised. Propagation in this context is simply
an immediate branch instruction issued by the compiler, going directly
to the matching handler's sequence of statements. If there is no
matching local handler the last chance handler is invoked. For example
consider the body of function Value in the body of package Arrays:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

 1package body Arrays is
 2
 3 function Value (A : List; X, Y : Integer) return Integer is
 4 begin
 5 return A (X + Y * 10);
 6 exception
 7 when Constraint_Error =>
 8 return 0;
 9 end Value;
10
11end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Return
MD5: 1f63b92739deb03529884ab0d25dadb8

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

In both procedure Some_Process and function Value we have
an exception handler for Constraint_Error. In this example the
exception is raised in Value because the index check fails there.
A local handler for that exception is present so the handler applies and
the function returns zero, normally. Because the call to the function
returns normally, the execution of Some_Process prints zero and
then completes normally.

Let's imagine, however, that function Value did not have a
handler for Constraint_Error. In the context of full exception
propagation, the function call would return to the caller, i.e.,
Some_Process, and would be handled in that procedure's handler.
But only local handlers are allowed under the second alternative so the
lack of a local handler in Value would result in the last-chance
handler being invoked. The handler for Constraint_Error in
Some_Process under this alternative approach.

So far we've only illustrated handling the Constraint_Error
exception. It's possible to handle other language-defined and
user-defined exceptions as well, of course. It is even possible to
define a single handler for all other exceptions that might be
encountered in the handled sequence of statements, beyond those
explicitly named. The "name" for this otherwise anonymous exception is
the Ada reserved word others. As in case statements, it covers
all other choices not explicitly mentioned, and so must come last. For
example:

arrays.ads

1package Arrays is
2
3 type List is array (Natural range <>) of Integer;
4
5 function Value (A : List; X, Y : Integer) return Integer;
6
7end Arrays;

arrays.adb

 1package body Arrays is
 2
 3 function Value (A : List; X, Y : Integer) return Integer is
 4 begin
 5 return A (X + Y * 10);
 6 exception
 7 when Constraint_Error =>
 8 return 0;
 9 when others =>
10 return -1;
11 end Value;
12
13end Arrays;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Exception_Return_Others
MD5: 7c2ed7efa23242f502a6cf4767da0192

some_process.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Arrays; use Arrays;
 3
 4procedure Some_Process is
 5 L : constant List (1 .. 100) := (others => 42);
 6begin
 7 Put_Line (Integer'Image (Value (L, 1, 10)));
 8exception
 9 when Constraint_Error =>
10 Put_Line ("FAILURE");
11end Some_Process;

In the code above, the Value function has a handler specifically
for Constraint_Error as before, but also now has a handler for
all other exceptions. For any exception other than Constraint_Error,
function Value returns -1. If you remove the function's handler
for Constraint_Error (lines 7 and 8) then the other "anonymous"
handler will catch the exception and -1 will be returned instead of zero.

There are additional capabilities for exceptions, but for now you have a good
basic understanding of how exceptions work, especially their dynamic
nature at run-time.

Understanding Dynamic Checks versus Formal Proof

So far, we have discussed language-defined checks inserted by the
compiler for verification at run-time, leading to exceptions being
raised. We saw that these dynamic checks verified semantic conditions
ensuring proper execution, such as preventing writing past the end of a
buffer, or exceeding an application-specific integer range constraint,
and so on. These checks are defined by the language because they apply
generally and can be expressed in language-defined terms.

Developers can also define dynamic checks. These checks specify
component-specific or application-specific conditions, expressed in
terms defined by the component or application. We will refer to these
checks as "user-defined" for convenience. (Be sure you understand that
we are not talking about user-defined exceptions here.)

Like the language-defined checks, user-defined checks must be
true at run-time. All checks consist of Boolean conditions, which is why
we can refer to them as assertions: their conditions are asserted to be
true by the compiler or developer.

Assertions come in several forms, some relatively low-level,
such as a simple pragma Assert, and some high-level, such as type
invariants and contracts. These forms will be presented in detail in a
later section, but we will illustrate some of them here.

User-defined checks can be enabled at run-time in GNAT with the -gnata
switch, as well as with pragma Assertion_Policy. The switch
enables all forms of these assertions, whereas the pragma can be used to
control specific forms. The switch is typically used but there are
reasonable use-cases in which some user-defined checks are enabled,
and others, although defined, are disabled.

By default in GNAT, language-defined checks are enabled but user-defined
checks are disabled. Here's an example of a simple program employing a
low-level assertion. We can use it to show the effects of the switches,
including the defaults:

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 X : Positive := 10;
 5begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Low_Level_Assertion
MD5: 2eb5e1879740cc3914acb8a362995b31

If we compiled this code we would get a warning about the assignment on
line 8 after the pragma Assert, but not one about the
Assert itself on line 7.

gprbuild -q -P main.gpr
main.adb:8:11: warning: value not in range of type "Standard.Positive"
main.adb:8:11: warning: "Constraint_Error" will be raised at run time

No code is generated for the user-defined check expressed via pragma
Assert but the language-defined check is emitted. In this case the range
constraint on X excludes zero and negative numbers, but X *
5 = 50, X - 99 = -49. As a result, the check for the last
assignment would fail, raising Constraint_Error when the program runs.
These results are the expected behavior for the default switch settings.

But now let's enable user-defined checks and build it. Different
compiler output will appear.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 X : Positive := 10;
 5begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Assert
MD5: 2eb5e1879740cc3914acb8a362995b31

Build output

main.adb:7:19: warning: assertion will fail at run time [-gnatw.a]
main.adb:8:11: warning: value not in range of type "Standard.Positive" [enabled by default]
main.adb:8:11: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : main.adb:7

Now we also get the compiler warning about the pragma Assert condition.
When run, the failure of pragma Assert on line 7 raises the exception
Ada.Assertions.Assertion_Error. According to the expression in the
assertion, X is expected (incorrectly) to be above 99 after the
multiplication. (The exception name in the error message,
SYSTEM.ASSERTIONS.ASSERT_FAILURE, is a GNAT-specific alias for
Ada.Assertions.Assertion_Error.)

It's interesting to see in the output that the compiler can detect some
violations at compile-time:

main.adb:7:19: warning: assertion will fail at run time
main.adb:7:21: warning: condition can only be True if invalid values present
main.adb:8:11: warning: value not in range of type "Standard.Positive"

Generally speaking, a complete analysis is beyond the scope of compilers
and they may not find all errors prior to execution, even those we
might detect ourselves by inspection. More errors can be found by tools
dedicated to that purpose, known as static analyzers. But even an
automated static analysis tool cannot guarantee it will find all
potential problems.

A much more powerful alternative is formal proof, a form of static analysis
that can (when possible) give strong guarantees about the checks, for
all possible conditions and all possible inputs. Proof can be
applied to both language-defined and user-defined checks.

Be sure you understand that formal proof, as a form of static analysis,
verifies conditions prior to execution, even prior to compilation. That
earliness provides significant cost benefits. Removing bugs earlier is
far less expensive than doing so later because the cost to fix bugs
increases exponentially over the phases of the project life cycle,
especially after deployment. Preventing bug introduction into the
deployed system is the least expensive approach of all. Furthermore,
cost savings during the initial development will be possible as well,
for reasons specific to proof. We will revisit this topic later in
this section.

Formal analysis for proof can be achieved through the SPARK subset of
the Ada language combined with the gnatprove verification
tool. SPARK is a subset encompassing most of the Ada language, except
for features that preclude proof. As a disclaimer, this course is not
aimed at providing a full introduction to proof and the SPARK language,
but rather to present in a few examples what it is about and what it can
do for us.

As it turns out, our procedure Main is already SPARK compliant so
we can start verifying it.

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 procedure Main is
 4 X : Positive := 10;
 5 begin
 6 X := X * 5;
 7 pragma Assert (X > 99);
 8 X := X - 99;
 9 Put_Line (Integer'Image (X));
10 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Assert
MD5: 98cad2c7e7b7a12740db013727f01d45

Build output

main.adb:7:20: warning: assertion will fail at run time [-gnatw.a]
main.adb:8:12: warning: value not in range of type "Standard.Positive" [enabled by default]
main.adb:8:12: warning: Constraint_Error will be raised at run time [enabled by default]

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
main.adb:7:20: medium: assertion might fail
gnatprove: unproved check messages considered as errors

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : main.adb:7

The "Prove" button invokes gnatprove on main.adb. You
can ignore the parameters to the invocation. For the purpose of this
demonstration, the interesting output is this message:

main.adb:7:19: medium: assertion might fail, cannot prove X > 99 (e.g. when X = 50)

gnatprove can tell that the assertion X > 99 may have
a problem. There's indeed a bug here, and gnatprove even
gives us the counterexample (when X is 50). As a result the code
is not proven and we know we have an error to correct.

Notice that the message says the assertion "might fail" even though
clearly gnatprove has an example for when failure is certain.
That wording is a reflection of the fact that SPARK gives strong
guarantees when the assertions are proven to hold, but does not
guarantee that flagged problems are indeed problems. In other words,
gnatprove does not give false positives but false negatives
are possible. The result is that if gnatprove does not
indicate a problem for the code under analysis we can be sure there is
no problem, but if gnatprove does indicate a problem the tool
may be wrong.

Initialization and Correct Data Flow

An immediate benefit from having our code compatible with the SPARK
subset is that we can ask gnatprove to verify initialization
and correct data flow, as indicated by the absence of messages during
SPARK "flow analysis." Flow analysis detects programming errors such as
reading uninitialized data, problematic aliasing between formal
parameters, and data races between concurrent tasks.

In addition, gnatprove checks unit specifications for the
actual data read or written, and the flow of information from inputs to
outputs. As you can imagine, this verification provides significant
benefits, and it can be reached with comparatively low cost.

For example, the following illustrates an initialization failure:

main.adb

1with Increment;
2with Ada.Text_IO; use Ada.Text_IO;
3
4procedure Main is
5 B : Integer;
6begin
7 Increment (B);
8 Put_Line (B'Image);
9end Main;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_0
MD5: 06d432a84d94635bb7bddafd9574a748

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
main.adb:7:15: warning: "B" may be referenced before it has a value [enabled by default]
main.adb:7:15: high: "B" is not initialized
gnatprove: unproved check messages considered as errors

Granted, Increment is a silly procedure as-is, but imagine it did
useful things, and, as part of that, incremented the argument.
gnatprove tells us that the caller has not assigned a value
to the argument passed to Increment.

Consider this next routine, which contains a serious coding error. Flow
analysis will find it for us.

compute_offset.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3procedure Compute_Offset (K : Float; Z : out Integer; Flag : out Boolean) is
 4 X : constant Float := Sin (K);
 5begin
 6 if X < 0.0 then
 7 Z := 0;
 8 Flag := True;
 9 elsif X > 0.0 then
10 Z := 1;
11 Flag := True;
12 else
13 Flag := False;
14 end if;
15end Compute_Offset;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_1
MD5: af7f16a9c83359c49fde44ed4796c8ec

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
compute_offset.adb:3:38: medium: "Z" might not be initialized in "Compute_Offset" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "Z" on all paths or make "Z" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

gnatprove tells us that Z might not be initialized
(assigned a value) in Compute_Offset, and indeed that is correct.
Z is a mode out parameter so the routine should assign a
value to it: Z is an output, after all. The fact that
Compute_Offset does not do so is a significant and nasty bug. Why is it
so nasty? In this case, formal parameter Z is of the scalar type
Integer, and scalar parameters are always passed by copy in Ada
and SPARK. That means that, when returning to the caller, an integer
value is copied to the caller's argument passed to Z. But this
procedure doesn't always assign the value to be copied back, and in that
case an arbitrary value — whatever is on the stack — is
copied to the caller's argument. The poor programmer must debug the code
to find the problem, yet the effect could appear well downstream from
the call to Compute_Offset. That's not only painful, it is expensive.
Better to find the problem before we even compile the code.

Contract-Based Programming

So far, we've seen assertions in a routine's sequence of statements,
either through implicit language-defined checks (is the index in the
right range?) or explicit user-defined checks. These checks are already
useful by themselves but they have an important limitation: the assertions
are in the implementation, hidden from the callers of the routine. For
example, a call's success or failure may depend upon certain input
values but the caller doesn't have that information.

Generally speaking, Ada and SPARK put a lot of emphasis on strong,
complete specifications for the sake of abstraction and analysis.
Callers need not examine the implementations to determine
whether the arguments passed to it are changed, for example. It is
possible to go beyond that, however, to specify implementation
constraints and functional requirements. We use contracts to do so.

At the language level, contracts are higher-level forms of assertions
associated with specifications and declarations rather than sequences
of statements. Like other assertions they can be activated or
deactivated at run-time, and can be statically proven. We'll concentrate
here on two kinds of contracts, both associated especially (but not
exclusively) with procedures and functions:

	Preconditions, those Boolean conditions required to be true prior to a
call of the corresponding subprogram

	Postconditions, those Boolean conditions required to be true after a
call, as a result of the corresponding subprogram's execution

In particular, preconditions specify the initial conditions, if any,
required for the called routine to correctly execute. Postconditions, on
the other hand, specify what the called routine's execution must have
done, at least, on normal completion. Therefore, preconditions are obligations
on callers (referred to as "clients") and postconditions are obligations
on implementers. By the same token, preconditions are guarantees to the
implementers, and postconditions are guarantees to clients.

Contract-based programming, then, is the specification and rigorous
enforcement of these obligations and guarantees. Enforcement is rigorous
because it is not manual, but tool-based: dynamically at run-time with
exceptions, or, with SPARK, statically, prior to build.

Preconditions are specified via the "Pre" aspect. Postconditions are
specified via the "Post" aspect. Usually subprograms have separate
declarations and these aspects appear with those declarations, even
though they are about the bodies. Placement on the declarations allows
the obligations and guarantees to be visible to all parties. For
example:

mid.ads

1function Mid (X, Y : Integer) return Integer with
2 Pre => X + Y /= 0,
3 Post => Mid'Result > X;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_2
MD5: 0fb78847a167d9318b00667c59a7038d

The precondition on line 2 specifies that, for any given call, the sum of the
values passed to parameters X and Y must not be zero.
(Perhaps we're dividing by X + Y in the body.) The declaration
also provides a guarantee about the function call's result, via the
postcondition on line 3: for any given call, the value returned will be greater
than the value passed to X.

Consider a client calling this function:

demo.adb

 1with Mid;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Demo is
 5 A, B, C : Integer;
 6begin
 7 A := Mid (1, 2);
 8 B := Mid (1, -1);
 9 C := Mid (A, B);
10 Put_Line (C'Image);
11end Demo;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_2
MD5: 3e0617d4b1c14b37a81377456bf73eb5

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
demo.adb:8:09: medium: precondition might fail
gnatprove: unproved check messages considered as errors

gnatprove indicates that the assignment to B (line 8) might
fail because of the precondition, i.e., the sum of the inputs shouldn't
be 0, yet -1 + 1 = 0. (We will address the other output message
elsewhere.)

Let's change the argument passed to Y in the second call (line 8).
Instead of -1 we will pass -2:

demo.adb

 1with Mid;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Demo is
 5 A, B, C : Integer;
 6begin
 7 A := Mid (1, 2);
 8 B := Mid (1, -2);
 9 C := Mid (A, B);
10 Put_Line (C'Image);
11end Demo;

mid.ads

1function Mid (X, Y : Integer) return Integer with
2 Pre => X + Y /= 0,
3 Post => Mid'Result > X;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_3
MD5: 496937d76e16ba524f98f5a94398e929

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
warning: no bodies have been analyzed by GNATprove
enable analysis of a non-generic body using SPARK_Mode

The second call will no longer be flagged for the precondition. In
addition, gnatprove will know from the postcondition that
A has to be greater than 1, as does B, because in both
calls 1 was passed to X. Therefore, gnatprove can
deduce that the precondition will hold for the third call C :=
Mid (A, B); because the sum of two numbers greater than 1 will
never be zero.

Postconditions can also compare the state prior to a call with the state
after a call, using the 'Old attribute. For example:

increment.ads

1procedure Increment (Value : in out Integer) with
2 Pre => Value < Integer'Last,
3 Post => Value = Value'Old + 1;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_4
MD5: b879dcff91cb4fbce5501474b7f2e732

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

The postcondition specifies that, on return, the argument passed to the
parameter Value will be one greater than it was immediately prior
to the call (Value'Old).

Replacing Defensive Code

One typical benefit of contract-based programming is the removal of
defensive code in subprogram implementations. For example, the Push
operation for a stack type would need to ensure that the given stack is
not already full. The body of the routine would first check that,
explicitly, and perhaps raise an exception or set a status code. With
preconditions we can make the requirement explicit and
gnatprove will verify that the requirement holds at all call
sites.

This reduction has a number of advantages:

	The implementation is simpler, removing validation code that is often
difficult to test, makes the code more complex and leads to behaviors that
are difficult to define.

	The precondition documents the conditions under which it's correct to
call the subprogram, moving from an implementer responsibility to mitigate
invalid input to a user responsibility to fulfill the expected interface.

	Provides the means to verify that this interface is properly respected,
through code review, dynamic checking at run-time, or formal static proof.

As an example, consider a procedure Read that returns a component
value from an array. Both the Data and Index are objects visible
to the procedure so they are not formal parameters.

p.ads

 1package P is
 2
 3 type List is array (Integer range <>) of Character;
 4
 5 Data : List (1 .. 100);
 6 Index : Integer := Data'First;
 7
 8 procedure Read (V : out Character);
 9
10end P;

p.adb

 1package body P is
 2
 3 procedure Read (V : out Character) is
 4 begin
 5 if Index not in Data'Range then
 6 V := Character'First;
 7 return;
 8 end if;
 9
10 V := Data (Index);
11 Index := Index + 1;
12 end Read;
13end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Defensive
MD5: 4b4767100079b228f4f3c630d267ec53

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

In addition to procedure Read we would also have a way to load
the array components in the first place, but we can ignore that for
the purpose of this discussion.

Procedure Read is responsible for reading an element of the array
and then incrementing the index. What should it do in case of an
invalid index? In this implementation there is defensive code that returns a
value arbitrarily chosen. We could also redesign the code to return a
status in this case, or — better — raise an exception.

An even more robust approach would be instead to ensure that this
subprogram is only called when Index is within the indexing
boundaries of Data. We can express that requirement with a
precondition (line 9).

p.ads

 1package P is
 2
 3 type List is array (Integer range <>) of Character;
 4
 5 Data : List (1 .. 100);
 6 Index : Integer := 1;
 7
 8 procedure Read (V : out Character)
 9 with Pre => Index in Data'Range;
10
11end P;

p.adb

1package body P is
2
3 procedure Read (V : out Character) is
4 begin
5 V := Data (Index);
6 Index := Index + 1;
7 end Read;
8
9end P;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Defensive
MD5: 9646614c34d191be51b4522c972538aa

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

Now we don't need the defensive code in the procedure body. That's safe
because SPARK will attempt to prove statically that the check will not
fail at the point of each call.

Assuming that procedure Read is intended to be the only way to
get values from the array, in a real application (where the principles
of software engineering apply) we would take advantage of the
compile-time visibility controls that packages offer. Specifically, we
would move all the variables' declarations to the private part of the
package, or even the package body, so that client code could not
possibly access the array directly. Only procedure Read would
remain visible to clients, thus remaining the only means of accessing
the array. However, that change would entail others, and in this chapter
we are only concerned with introducing the capabilities of SPARK.
Therefore, we keep the examples as simple as possible.

Proving Absence of Run-Time Errors

Earlier we said that gnatprove will verify both
language-defined and user-defined checks. Proving that the
language-defined checks will not raise exceptions at run-time is known
as proving "Absence of Run-Time Errors" or AoRTE for short. Successful
proof of these checks is highly significant in itself.

One of the major resulting benefits is that we can deploy the final
executable with checks disabled. That has obvious performance benefits,
but it is also a safety issue. If we disable the checks we also disable
the run-time library support for them, but in that case the language
does not define what happens if indeed an exception is raised. Formally
speaking, anything could happen. We must have good reason for thinking
that exceptions cannot be raised.

This is such an important issue that proof of AoRTE can be used to comply
with the objectives of certification standards in various high-integrity
domains (for example, DO-178B/C in avionics, EN 50128 in railway, IEC
61508 in many safety-related industries, ECSS-Q-ST-80C in space, IEC
60880 in nuclear, IEC 62304 in medical, and ISO 26262 in automotive).

As a result, the quality of the program can be guaranteed to
achieve higher levels of integrity than would be possible in other
programming languages.

However, successful proof of AoRTE may require additional assertions,
especially preconditions. We can see that with procedure Increment, the
procedure that takes an Integer argument and increments it by one. But
of course, if the incoming value of the argument is the largest possible
positive value, the attempt to increment it would overflow, raising
Constraint_Error. (As you have likely already concluded,
Constraint_Error is the most common exception you will have to
deal with.) We added a precondition to allow only the integer values up to,
but not including, the largest positive value:

increment.ads

1procedure Increment (Value : in out Integer) with
2 Pre => Value < Integer'Last,
3 Post => Value = Value'Old + 1;

increment.adb

1procedure Increment (Value : in out Integer) is
2begin
3 Value := Value + 1;
4end Increment;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.SPARK.Contracts_5
MD5: b879dcff91cb4fbce5501474b7f2e732

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

Prove it, then comment-out the precondition and try proving it again.
Not only will gnatprove tell us what is wrong, it will
suggest a solution as well.

Without the precondition the check it provides would have to be
implemented as defensive code in the body. One or the other is critical
here, but note that we should never need both.

Proving Abstract Properties

The postcondition on Increment expresses what is, in fact, a unit-level
requirement. Successfully proving such requirements is another
significant robustness and cost benefit. Together with the proofs for
initialization and AoRTE, these proofs ensure program integrity, that
is, the program executes within safe boundaries: the control flow of the
program is correctly programmed and cannot be circumvented through
run-time errors, and data cannot be corrupted.

We can go even further. We can use contracts to express arbitrary
abstract properties when such exist. Safety and security properties, for
instance, could be expressed as postconditions and then proven by
gnatprove.

For example, imagine we have a procedure to move a train to a new
position on the track, and we want to do so safely, without leading to a
collision with another train. Procedure Move, therefore, takes
two inputs: a train identifier specifying which train to move, and the
intended new position. The procedure's output is a value indicating a
motion command to be given to the train in order to go to that new
position. If the train cannot go to that new position safely the output
command is to stop the train. Otherwise the command is for the train to
continue at an indicated speed:

type Move_Result is (Full_Speed, Slow_Down, Keep_Going, Stop);

procedure Move
 (Train : in Train_Id;
 New_Position : in Train_Position;
 Result : out Move_Result)
with
 Pre => Valid_Id (Train) and
 Valid_Move (Trains (Train), New_Position) and
 At_Most_One_Train_Per_Track and
 Safe_Signaling,
 Post => At_Most_One_Train_Per_Track and
 Safe_Signaling;

function At_Most_One_Train_Per_Track return Boolean;

function Safe_Signaling return Boolean;

The preconditions specify that, given a safe initial state and a valid
move, the result of the call will also be a safe state: there will be at
most one train per track section and the track signaling system will not
allow any unsafe movements.

Final Comments

Make sure you understand that gnatprove does not attempt to
prove the program correct as a whole. It attempts to prove
language-defined and user-defined assertions about parts of the program,
especially individual routines and calls to those routines. Furthermore,
gnatprove proves the routines correct only to the extent that
the user-defined assertions correctly and sufficiently describe and
constrain the implementation of the corresponding routines.

Although we are not proving whole program correctness, as you will have
seen — and done — we can prove properties than make our
software far more robust and bug-free than is possible otherwise. But in
addition, consider what proving the unit-level requirements for your
procedures and functions would do for the cost of unit testing and
system integration. The tests would pass the first time.

However, within the scope of what SPARK can do, not everything can be
proven. In some cases that is because the software behavior is not
amenable to expression as boolean conditions (for example, a mouse
driver). In other cases the source code is beyond the capabilities of
the analyzers that actually do the mathematical proof. In these cases
the combination of proof and actual test is appropriate, and still less
expensive that testing alone.

There is, of course, much more to be said about what can be done with
SPARK and gnatprove. Those topics are reserved for the
Introduction to SPARK course.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html

C to Ada Translation Patterns

Naming conventions and casing considerations

One question that may arise relatively soon when converting from C to
Ada is the style of source code presentation. The Ada language doesn't
impose any particular style and for many reasons, it may seem attractive
to keep a C-like style — for example, camel casing — to the
Ada program.

However, the code in the Ada language standard, most third-party code,
and the libraries provided by GNAT follow a specific style for
identifiers and reserved words. Using a different style for the rest of
the program leads to inconsistencies, thereby decreasing readability and
confusing automatic style checkers. For those reasons, it's usually
advisable to adopt the Ada style — in which each identifier starts
with an upper case letter, followed by lower case letters (or digits),
with an underscore separating two "distinct" words within the
identifier. Acronyms within identifiers are in upper case. For example,
there is a language-defined package named Ada.Text_IO. Reserved words
are all lower case.

Following this scheme doesn't preclude adding additional,
project-specific rules.

Manually interfacing C and Ada

Before even considering translating code from C to Ada, it's worthwhile to
evaluate the possibility of keeping a portion of the C code intact, and only
translating selected modules to Ada. This is a necessary evil when introducing
Ada to an existing large C codebase, where re-writing the entire code upfront
is not practical nor cost-effective.

Fortunately, Ada has a dedicated set of features for interfacing with other
languages. The Interfaces package hierarchy and the pragmas
Convention, Import, and Export allow you to make
inter-language calls while observing proper data representation for each
language.

Let's start with the following C code:

[C]

call.c

1#include <stdio.h>
2
3struct my_struct {
4 int A, B;
5};
6
7void call (struct my_struct *p) {
8 printf ("%d", p->A);
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct_C
MD5: 67053ec329fa4dfcbd8d6125589b9fcb

To call that function from Ada, the Ada compiler requires a description of the
data structure to pass as well as a description of the function itself. To
capture how the C struct my_struct is represented, we can use the
following record along with a pragma Convention. The pragma directs the
compiler to lay out the data in memory the way a C compiler would.

[Ada]

use_my_struct.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Interfaces.C;
 3
 4procedure Use_My_Struct is
 5
 6 type my_struct is record
 7 A : Interfaces.C.int;
 8 B : Interfaces.C.int;
 9 end record;
10 pragma Convention (C, my_struct);
11
12 V : my_struct := (A => 1, B => 2);
13begin
14 Put_Line ("V = ("
15 & Interfaces.C.int'Image (V.A)
16 & Interfaces.C.int'Image (V.B)
17 & ")");
18end Use_My_Struct;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct_Ada
MD5: d19942018679df6fbab99f1c6bfdebc8

Runtime output

V = (1 2)

Describing a foreign subprogram call to Ada code is called binding and it is
performed in two stages. First, an Ada subprogram specification equivalent to
the C function is coded. A C function returning a value maps to an Ada
function, and a void function maps to an Ada procedure. Then, rather than
implementing the subprogram using Ada code, we use a pragma Import:

procedure Call (V : my_struct);
pragma Import (C, Call, "call"); -- Third argument optional

The Import pragma specifies that whenever Call is invoked by Ada
code, it should invoke the Call function with the C calling convention.

And that's all that's necessary. Here's an example of a call to Call:

[Ada]

use_my_struct.adb

 1with Interfaces.C;
 2
 3procedure Use_My_Struct is
 4
 5 type my_struct is record
 6 A : Interfaces.C.int;
 7 B : Interfaces.C.int;
 8 end record;
 9 pragma Convention (C, my_struct);
10
11 procedure Call (V : my_struct);
12 pragma Import (C, Call, "call"); -- Third argument optional
13
14 V : my_struct := (A => 1, B => 2);
15begin
16 Call (V);
17end Use_My_Struct;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.My_Struct
MD5: 9b54edadd406c7f5a2b9f8b8f82a4a88

Building and Debugging mixed language code

The easiest way to build an application using mixed C / Ada code is to create
a simple project file for gprbuild and specify C as an additional
language. By default, when using gprbuild we only compile Ada source
files. To compile C code files as well, we use the Languages attribute and
specify c as an option, as in the following example of a project file named
default.gpr:

project Default is

 for Languages use ("ada", "c");
 for Main use ("main.adb");

end Default;

Then, we use this project file to build the application by simply calling
gprbuild. Alternatively, we can specify the project file on the
command-line with the -P option — for example,
gprbuild -P default.gpr. In both cases, gprbuild compiles all C
source-code file found in the directory and links the corresponding object
files to build the executable.

In order to include debug information, you can use gprbuild -cargs -g. This
option adds debug information based on both C and Ada code to the executable.
Alternatively, you can specify a Builder package in the project file and
include global compilation switches for each language using the
Global_Compilation_Switches attribute. For example:

project Default is

 for Languages use ("ada", "c");
 for Main use ("main.adb");

 package Builder is
 for Global_Compilation_Switches ("Ada") use ("-g");
 for Global_Compilation_Switches ("C") use ("-g");
 end Builder;

end Default;

In this case, you can simply run gprbuild -P default.gpr to build the
executable.

To debug the executable, you can use programs such as gdb or
ddd, which are suitable for debugging both C and Ada source-code. If
you prefer a complete IDE, you may want to look into GNAT Studio,
which supports building and debugging an application within a single
environment, and remotely running applications loaded to various embedded
devices. You can find more information about gprbuild and
GNAT Studio in the
Introduction to GNAT Toolchain
course.

Automatic interfacing

It may be useful to start interfacing Ada and C by using automatic binding
generators. These can be done either by invoking gcc
-fdump-ada-spec option (to generate an Ada binding to a C header file) or
-gnatceg option (to generate a C binding to an Ada specification file). For
example:

gcc -c -fdump-ada-spec my_header.h
gcc -c -gnatceg spec.ads

The level of interfacing is very low level and typically requires either
massaging (changing the generated files) or wrapping (calling the generated
files from a higher level interface). For example, numbers bound from C to Ada
are only standard numbers where user-defined types may be desirable. C uses a
lot of by-pointer parameters which may be better replaced by other parameter
modes, etc.

However, the automatic binding generator helps having a starting point which
ensures compatibility of the Ada and the C code.

Using Arrays in C interfaces

It is relatively straightforward to pass an array from Ada to C. In particular,
with the GNAT compiler, passing an array is equivalent to passing a pointer to
its first element. Of course, as there's no notion of boundaries in C, the
length of the array needs to be passed explicitly. For example:

[C]

p.h

1void p (int * a, int length);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_1
MD5: 123353e301a3d43016d2799855e6732a

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 procedure P (V : Arr; Length : Integer);
 5 pragma Import (C, P);
 6
 7 X : Arr (5 .. 15);
 8begin
 9 P (X, X'Length);
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_1
MD5: 9bfbc0f31da4554a1e1dea1ba2b1d305

The other way around — that is, retrieving an array that has been
creating on the C side — is more difficult. Because C doesn't explicitly
carry boundaries, they need to be recreated in some way.

The first option is to actually create an Ada array without boundaries. This is
the most flexible, but also the least safe option. It involves creating an
array with indices over the full range of Integer without ever creating
it from Ada, but instead retrieving it as an access from C. For example:

[C]

f.h

1int * f ();

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_2
MD5: 19e33efb6d7d46778b88baa2709111e5

[Ada]

main.adb

1procedure Main is
2 type Arr is array (Integer) of Integer;
3 type Arr_A is access all Arr;
4
5 function F return Arr_A;
6 pragma Import (C, F);
7begin
8 null;
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_2
MD5: b52213bcdd8db5e8abfcb8effabb84df

Note that Arr is a constrained type (it doesn't have the range <>
notation for indices). For that reason, as it would be for C, it's possible to
iterate over the whole range of integer, beyond the memory actually allocated
for the array.

A somewhat safer way is to overlay an Ada array over the C one. This requires
having access to the length of the array. This time, let's consider two cases,
one with an array and its size accessible through functions, another one on
global variables. This time, as we're using an overlay, the function will be
directly mapped to an Ada function returning an address:

[C]

fg.h

1int * f_arr (void);
2int f_size (void);
3
4int * g_arr;
5int g_size;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_3
MD5: b315ec2e5d9fdd297ba295ccbae910bc

[Ada]

fg.ads

 1with System;
 2
 3package Fg is
 4
 5 type Arr is array (Integer range <>) of Integer;
 6
 7 function F_Arr return System.Address;
 8 pragma Import (C, F_Arr, "f_arr");
 9
10 function F_Size return Integer;
11 pragma Import (C, F_Size, "f_size");
12
13 F : Arr (0 .. F_Size - 1) with Address => F_Arr;
14
15 G_Size : Integer;
16 pragma Import (C, G_Size, "g_size");
17
18 G_Arr : Arr (0 .. G_Size - 1);
19 pragma Import (C, G_Arr, "g_arr");
20
21end Fg;

main.adb

1with Fg;
2
3procedure Main is
4begin
5 null;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Arr_3
MD5: 5c74f9bca93520ecf85a2010760cc2f8

With all solutions though, importing an array from C is a relatively unsafe
pattern, as there's only so much information on the array as there would be on
the C side in the first place. These are good places for careful peer reviews.

By-value vs. by-reference types

When interfacing Ada and C, the rules of parameter passing are a bit different
with regards to what's a reference and what's a copy. Scalar types and pointers
are passed by value, whereas record and arrays are (almost) always passed by
reference. However, there may be cases where the C interface also passes values
and not pointers to objects. Here's a slightly modified version of a previous
example to illustrate this point:

[C]

call.c

1#include <stdio.h>
2
3struct my_struct {
4 int A, B;
5};
6
7void call (struct my_struct p) {
8 printf ("%d", p.A);
9}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Param_By_Value_C
MD5: 42b6e329c5dbfcae368078ca7635341f

In Ada, a type can be modified so that parameters of this type can always be
passed by copy.

[Ada]

main.adb

 1with Interfaces.C;
 2
 3procedure Main is
 4 type my_struct is record
 5 A : Interfaces.C.int;
 6 B : Interfaces.C.int;
 7 end record
 8 with Convention => C_Pass_By_Copy;
 9
10 procedure Call (V : my_struct);
11 pragma Import (C, Call, "call");
12begin
13 null;
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Param_By_Value_Ada
MD5: 16e97033bdffb2bacc0cf3322c019a94

Note that this cannot be done at the subprogram declaration level, so if there
is a mix of by-copy and by-reference calls, two different types need to be
used on the Ada side.

Naming and prefixes

Because of the absence of namespaces, any global name in C tends to be very
long. And because of the absence of overloading, they can even encode type
names in their type.

In Ada, the package is a namespace — two entities declared in two
different packages are clearly identified and can always be specifically
designated. The C names are usually a good indication of the names of the
future packages and should be stripped — it is possible to use the
full name if useful. For example, here's how the following declaration and
call could be translated:

[C]

reg_interface.h

1void registerInterface_Initialize (int size);

reg_interface_test.c

1#include "reg_interface.h"
2
3int main(int argc, const char * argv[])
4{
5 registerInterface_Initialize(15);
6
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Namespaces
MD5: e8c25da648a2e8662d97a9a5b863a5bc

[Ada]

register_interface.ads

1package Register_Interface is
2 procedure Initialize (Size : Integer)
3 with Import => True,
4 Convention => C,
5 External_Name => "registerInterface_Initialize";
6
7end Register_Interface;

main.adb

1with Register_Interface;
2
3procedure Main is
4begin
5 Register_Interface.Initialize (15);
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Namespaces
MD5: 934edd7d3c74d058f862a786582a32c0

Note that in the above example, a use clause on
Register_Interface could allow us to omit the prefix.

Pointers

The first thing to ask when translating pointers from C to Ada is: are they
needed in the first place? In Ada, pointers (or access types) should only be
used with complex structures that cannot be allocated at run-time — think
of a linked list or a graph for example. There are many other situations that
would need a pointer in C, but do not in Ada, in particular:

	Arrays, even when dynamically allocated

	Results of functions

	Passing large structures as parameters

	Access to registers

	... others

This is not to say that pointers aren't used in these cases but, more often
than not, the pointer is hidden from the user and automatically handled by the
code generated by the compiler; thus avoiding possible mistakes from being
made. Generally speaking, when looking at C code, it's good practice to start
by analyzing how many pointers are used and to translate as many as possible
into pointerless Ada structures.

Here are a few examples of such patterns — additional examples can be
found throughout this document.

Dynamically allocated arrays can be directly allocated on the stack:

[C]

array_decl.c

1#include <stdlib.h>
2
3int main() {
4 int *a = malloc(sizeof(int) * 10);
5
6 return 0;
7}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_Stack_Alloc_C
MD5: a922c3e163494339d6773c6ab1256549

[Ada]

main.adb

1procedure Main is
2 type Arr is array (Integer range <>) of Integer;
3 A : Arr (0 .. 9);
4begin
5 null;
6end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_Stack_Alloc_Ada
MD5: 2e4196c2a2016244a48de153beaa2b49

Build output

main.adb:3:04: warning: variable "A" is never read and never assigned [-gnatwv]

It's even possible to create a such an array within a structure, provided that
the size of the array is known when instantiating this object, using a type
discriminant:

[C]

array_decl.c

 1#include <stdlib.h>
 2
 3typedef struct {
 4 int * a;
 5} S;
 6
 7int main(int argc, const char * argv[])
 8{
 9 S v;
10
11 v.a = malloc(sizeof(int) * 10);
12
13 return 0;
14}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Struct_Array_Stack_Alloc_C
MD5: f8e5a877977387986b3e2353834a2989

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Integer) is record
 5 A : Arr (0 .. Last);
 6 end record;
 7
 8 V : S (9);
 9begin
10 null;
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Struct_Array_Stack_Alloc_Ada
MD5: 955c704bdbe4b2b788e4a790ade12df7

Build output

main.adb:8:04: warning: variable "V" is never read and never assigned [-gnatwv]

With regards to parameter passing, usage mode (input / output) should be
preferred to implementation mode (by copy or by reference). The Ada compiler
will automatically pass a reference when needed. This works also for smaller
objects, so that the compiler will copy in an out when needed. One of the
advantages of this approach is that it clarifies the nature of the object: in
particular, it differentiates between arrays and scalars. For example:

[C]

p.h

1void p (int * a, int * b);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_In_Out_C
MD5: c2c936dd3afc4850c5869e4db73bb36b

[Ada]

array_types.ads

1package Array_Types is
2 type Arr is array (Integer range <>) of Integer;
3
4 procedure P (A : in out Integer; B : in out Arr);
5end Array_Types;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Array_In_Out_Ada
MD5: cf8e51391c9fd8608183c9dae2aa2802

Most of the time, access to registers end up in some specific structures
being mapped onto a specific location in memory. In Ada, this can be achieved
through an Address clause associated to a variable, for example:

[C]

test_c.c

1int main(int argc, const char * argv[])
2{
3 int * r = (int *)0xFFFF00A0;
4
5 return 0;
6}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Address_C
MD5: e810538d72d835a04736fcaf732f1930

[Ada]

test.adb

1with System;
2
3procedure Test is
4 R : Integer with Address => System'To_Address (16#FFFF00A0#);
5begin
6 null;
7end Test;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Address_Ada
MD5: 1263f7289cec6673f19d88bffbeead48

These are some of the most common misuse of pointers in Ada. Previous sections
of the document deal with specifically using access types if absolutely
necessary.

Bitwise Operations

Bitwise operations such as masks and shifts in Ada should be relatively rarely
needed, and, when translating C code, it's good practice to consider
alternatives. In a lot of cases, these operations are used to insert several
pieces of data into a larger structure. In Ada, this can be done by describing
the structure layout at the type level through representation clauses, and then
accessing this structure as any other.

Consider the case of using a C primitive type as a container for single bit
boolean flags. In C, this would be done through masks, e.g.:

[C]

flags.c

 1#define FLAG_1 0b0001
 2#define FLAG_2 0b0010
 3#define FLAG_3 0b0100
 4#define FLAG_4 0b1000
 5
 6int main(int argc, const char * argv[])
 7{
 8 int value = 0;
 9
10 value |= FLAG_2 | FLAG_4;
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Flags_C
MD5: cf903dee1fb1d78d74dc42b66adcdbd5

In Ada, the above can be represented through a Boolean array of enumerate
values:

[Ada]

main.adb

 1procedure Main is
 2 type Values is (Flag_1, Flag_2, Flag_3, Flag_4);
 3 type Value_Array is array (Values) of Boolean
 4 with Pack;
 5
 6 Value : Value_Array :=
 7 (Flag_2 => True,
 8 Flag_4 => True,
 9 others => False);
10begin
11 null;
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Flags_Ada
MD5: c92c8532763469f5e4d1027df2bd6a6b

Note the Pack directive for the array, which requests that the array
takes as little space as possible.

It is also possible to map records on memory when additional control over the
representation is needed or more complex data are used:

[C]

struct_map.c

1int main(int argc, const char * argv[])
2{
3 int value = 0;
4
5 value = (2 << 1) | 1;
6
7 return 0;
8}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Rec_Map_C
MD5: 16606f11ab3e9c86d3e1d88ac9c3f37f

[Ada]

main.adb

 1procedure Main is
 2 type Value_Rec is record
 3 V1 : Boolean;
 4 V2 : Integer range 0 .. 3;
 5 end record;
 6
 7 for Value_Rec use record
 8 V1 at 0 range 0 .. 0;
 9 V2 at 0 range 1 .. 2;
10 end record;
11
12 Value : Value_Rec := (V1 => True, V2 => 2);
13begin
14 null;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Rec_Map_Ada
MD5: 52078824814b0d83789dd837ac2e86bf

The benefit of using Ada structure instead of bitwise operations is threefold:

	The code is simpler to read / write and less error-prone

	Individual fields are named

	The compiler can run consistency checks (for example, check that the value
indeed fit in the expected size).

Note that, in cases where bitwise operators are needed, Ada provides modular
types with and, or and xor operators. Further shift
operators can also be provided upon request through a pragma. So the
above could also be literally translated to:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 procedure Main is
 4 type Value_Type is mod 2 ** 32;
 5 pragma Provide_Shift_Operators (Value_Type);
 6
 7 Value : Value_Type;
 8 begin
 9 Value := Shift_Left (2, 1) or 1;
10 Put_Line ("Value = " & Value_Type'Image (Value));
11 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitwise_Ops_Ada
MD5: 22cb824a0c99bd1a9092dc5f90e9d7fc

Runtime output

Value = 5

Mapping Structures to Bit-Fields

In the previous section, we've seen how to perform bitwise operations. In this
section, we look at how to interpret a data type as a bit-field and perform
low-level operations on it.

In general, you can create a bit-field from any arbitrary data type. First, we
declare a bit-field type like this:

[Ada]

type Bit_Field is array (Natural range <>) of Boolean with Pack;

As we've seen previously, the Pack aspect declared at the end of the
type declaration indicates that the compiler should optimize for size. We must
use this aspect to be able to interpret data types as a bit-field.

Then, we can use the Size and the Address attributes of an
object of any type to declare a bit-field for this object. We've discussed the
Size attribute earlier in this course.

The Address attribute indicates the address in memory of that object.
For example, assuming we've declare a variable V, we can declare an
actual bit-field object by referring to the Address attribute of
V and using it in the declaration of the bit-field, as shown here:

[Ada]

B : Bit_Field (0 .. V'Size - 1) with Address => V'Address;

Note that, in this declaration, we're using the Address attribute of
V for the Address aspect of B.

This technique is called overlays for serialization. Now, any operation that we
perform on B will have a direct impact on V, since both are using
the same memory location.

The approach that we use in this section relies on the Address aspect.
Another approach would be to use unchecked conversions, which we'll
discuss in the next section.

We should add the Volatile aspect to the declaration to cover the case
when both objects can still be changed independently — they need to be
volatile, otherwise one change might be missed. This is the updated
declaration:

[Ada]

B : Bit_Field (0 .. V'Size - 1) with Address => V'Address, Volatile;

Using the Volatile aspect is important at high level of optimizations.
You can find further details about this aspect in the section about the
Volatile and Atomic aspects.

Another important aspect that should be added is Import. When used in
the context of object declarations, it'll avoid default initialization which
could overwrite the existing content while creating the overlay — see an
example in the admonition below. The declaration now becomes:

B : Bit_Field (0 .. V'Size - 1)
 with
 Address => V'Address, Import, Volatile;

Let's look at a simple example:

[Ada]

simple_bitfield.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Bitfield is
 4 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 5
 6 V : Integer := 0;
 7 B : Bit_Field (0 .. V'Size - 1)
 8 with Address => V'Address, Import, Volatile;
 9begin
10 B (2) := True;
11 Put_Line ("V = " & Integer'Image (V));
12end Simple_Bitfield;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Ada
MD5: 193a2db91619426a145cd267f873145f

Runtime output

V = 4

In this example, we first initialize V with zero. Then, we use the
bit-field B and set the third element (B (2)) to True.
This automatically sets bit #3 of V to 1. Therefore, as expected,
the application displays the message V = 4, which corresponds to
22 = 4.

Note that, in the declaration of the bit-field type above, we could also have
used a positive range. For example:

type Bit_Field is array (Positive range <>) of Boolean with Pack;

B : Bit_Field (1 .. V'Size)
 with Address => V'Address, Import, Volatile;

The only difference in this case is that the first bit is B (1) instead
of B (0).

In C, we would rely on bit-shifting and masking to set that specific bit:

[C]

bitfield.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int v = 0;
 6
 7 v = v | (1 << 2);
 8
 9 printf("v = %d\n", v);
10
11 return 0;
12}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_C
MD5: 98557f80ea3bc1b081ae2688f844cbe1

Runtime output

v = 4

Important

Ada has the concept of default initialization. For example, you may set the
default value of record components:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Rec is record
 6 X : Integer := 10;
 7 Y : Integer := 11;
 8 end record;
 9
10 R : Rec;
11begin
12 Put_Line ("R.X = " & Integer'Image (R.X));
13 Put_Line ("R.Y = " & Integer'Image (R.Y));
14end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Default_Record_Type
MD5: 010877f4d20302a1abcb9562c9e36a38

Runtime output

R.X = 10
R.Y = 11

In the code above, we don't explicitly initialize the components of
R, so they still have the default values 10 and 11, which are
displayed by the application.

Likewise, the Default_Value aspect can be used to specify the
default value in other kinds of type declarations. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Percentage is range 0 .. 100
 6 with Default_Value => 10;
 7
 8 P : Percentage;
 9begin
10 Put_Line ("P = " & Percentage'Image (P));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Default_Value_Type
MD5: b3715f7cba0cbefa433bac529d95e395

Runtime output

P = 10

When declaring an object whose type has a default value, the object will
automatically be initialized with the default value. In the example above,
P is automatically initialized with 10, which is the default value
of the Percentage type.

Some types have an implicit default value. For example, access types have a
default value of null.

As we've just seen, when declaring objects for types with associated
default values, automatic initialization will happen. This can also happens
when creating an overlay with the Address aspect. The default value
is then used to overwrite the content at the memory location indicated by
the address. However, in most situations, this isn't the behavior we
expect, since overlays are usually created to analyze and manipulate
existing values. Let's look at an example where this happens:

[Ada]

p.ads

1package P is
2
3 type Unsigned_8 is mod 2 ** 8 with Default_Value => 0;
4
5 type Byte_Field is array (Natural range <>) of Unsigned_8;
6
7 procedure Display_Bytes_Increment (V : in out Integer);
8end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display_Bytes_Increment (V : in out Integer) is
 6 BF : Byte_Field (1 .. V'Size / 8)
 7 with Address => V'Address, Volatile;
 8 begin
 9 for B of BF loop
10 Put_Line ("Byte = " & Unsigned_8'Image (B));
11 end loop;
12 Put_Line ("Now incrementing...");
13 V := V + 1;
14 end Display_Bytes_Increment;
15
16end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Main is
 6 V : Integer := 10;
 7begin
 8 Put_Line ("V = " & Integer'Image (V));
 9 Display_Bytes_Increment (V);
10 Put_Line ("V = " & Integer'Image (V));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Overlay_Default_Init_Overwrite
MD5: 04994b2b4c98e9232a155515dc0c365a

Build output

p.adb:7:14: warning: default initialization of "Bf" may modify "V" [enabled by default]
p.adb:7:14: warning: use pragma Import for "Bf" to suppress initialization (RM B.1(24)) [enabled by default]

Runtime output

V = 10
Byte = 0
Byte = 0
Byte = 0
Byte = 0
Now incrementing...
V = 1

In this example, we expect Display_Bytes_Increment to display each
byte of the V parameter and then increment it by one. Initially,
V is set to 10, and the call to Display_Bytes_Increment
should change it to 11. However, due to the default value associated to the
Unsigned_8 type — which is set to 0 — the value of
V is overwritten in the declaration of BF (in
Display_Bytes_Increment). Therefore, the value of V is 1
after the call to Display_Bytes_Increment. Of course, this is not
the behavior that we originally intended.

Using the Import aspect solves this problem. This aspect tells the
compiler to not apply default initialization in the declaration because the
object is imported. Let's look at the corrected example:

[Ada]

p.ads

1package P is
2
3 type Unsigned_8 is mod 2 ** 8 with Default_Value => 0;
4
5 type Byte_Field is array (Natural range <>) of Unsigned_8;
6
7 procedure Display_Bytes_Increment (V : in out Integer);
8end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display_Bytes_Increment (V : in out Integer) is
 6 BF : Byte_Field (1 .. V'Size / 8)
 7 with Address => V'Address, Import, Volatile;
 8 begin
 9 for B of BF loop
10 Put_Line ("Byte = " & Unsigned_8'Image (B));
11 end loop;
12 Put_Line ("Now incrementing...");
13 V := V + 1;
14 end Display_Bytes_Increment;
15
16end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P; use P;
 4
 5procedure Main is
 6 V : Integer := 10;
 7begin
 8 Put_Line ("V = " & Integer'Image (V));
 9 Display_Bytes_Increment (V);
10 Put_Line ("V = " & Integer'Image (V));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Overlay_Default_Init_Import
MD5: e269d9d3c06c0f6c69ead16e7d2ba70b

Runtime output

V = 10
Byte = 10
Byte = 0
Byte = 0
Byte = 0
Now incrementing...
V = 11

This unwanted side-effect of the initialization by the Default_Value
aspect that we've just seen can also happen in these cases:

	when we set a default value for components of a record type declaration,

	when we use the Default_Component_Value aspect for array types, or

	when we set use the Initialize_Scalars pragma for a package.

Again, using the Import aspect when declaring the overlay eliminates
this side-effect.

We can use this pattern for objects of more complex data types like arrays or
records. For example:

[Ada]

int_array_bitfield.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Int_Array_Bitfield is
 4 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 5
 6 A : array (1 .. 2) of Integer := (others => 0);
 7 B : Bit_Field (0 .. A'Size - 1)
 8 with Address => A'Address, Import, Volatile;
 9begin
10 B (2) := True;
11 for I in A'Range loop
12 Put_Line ("A (" & Integer'Image (I)
13 & ")= " & Integer'Image (A (I)));
14 end loop;
15end Int_Array_Bitfield;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Int_Array_Ada
MD5: 478ba4ce4f5886566556bddb58245eb9

Runtime output

A (1)= 4
A (2)= 0

In the Ada example above, we're using the bit-field to set bit #3 of the first
element of the array (A (1)). We could set bit #4 of the second element
by using the size of the data type (in this case, Integer'Size):

[Ada]

B (Integer'Size + 3) := True;

In C, we would select the specific array position and, again, rely on
bit-shifting and masking to set that specific bit:

[C]

bitfield_int_array.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int i;
 6 int a[2] = {0, 0};
 7
 8 a[0] = a[0] | (1 << 2);
 9
10 for (i = 0; i < 2; i++)
11 {
12 printf("a[%d] = %d\n", i, a[i]);
13 }
14
15 return 0;
16}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Int_Array_C
MD5: 4dc3fe77e8260ff3b449c8779745a63c

Runtime output

a[0] = 4
a[1] = 0

Since we can use this pattern for any arbitrary data type, this allows us to
easily create a subprogram to serialize data types and, for example, transmit
complex data structures as a bitstream. For example:

[Ada]

serializer.ads

1package Serializer is
2
3 type Bit_Field is array (Natural range <>) of Boolean with Pack;
4
5 procedure Transmit (B : Bit_Field);
6
7end Serializer;

serializer.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serializer is
 4
 5 procedure Transmit (B : Bit_Field) is
 6
 7 procedure Show_Bit (V : Boolean) is
 8 begin
 9 case V is
10 when False => Put ("0");
11 when True => Put ("1");
12 end case;
13 end Show_Bit;
14
15 begin
16 Put ("Bits: ");
17 for E of B loop
18 Show_Bit (E);
19 end loop;
20 New_Line;
21 end Transmit;
22
23end Serializer;

my_recs.ads

1package My_Recs is
2
3 type Rec is record
4 V : Integer;
5 S : String (1 .. 3);
6 end record;
7
8end My_Recs;

main.adb

 1with Serializer; use Serializer;
 2with My_Recs; use My_Recs;
 3
 4procedure Main is
 5 R : Rec := (5, "abc");
 6 B : Bit_Field (0 .. R'Size - 1)
 7 with Address => R'Address, Import, Volatile;
 8begin
 9 Transmit (B);
10end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Serialization_ada
MD5: 5c9c2d18bab7c78456d1d795c6334cd9

Build output

main.adb:9:14: warning: volatile actual passed by copy (RM C.6(19)) [enabled by default]

Runtime output

Bits: 1010000000000000000000000000000010000110010001101100011000000000

In this example, the Transmit procedure from Serializer package
displays the individual bits of a bit-field. We could have used this strategy
to actually transmit the information as a bitstream. In the main application,
we call Transmit for the object R of record type Rec.
Since Transmit has the bit-field type as a parameter, we can use it
for any type, as long as we have a corresponding bit-field representation.

In C, we interpret the input pointer as an array of bytes, and then use
shifting and masking to access the bits of that byte. Here, we use the
char type because it has a size of one byte in most platforms.

[C]

my_recs.h

1typedef struct {
2 int v;
3 char s[4];
4} rec;

serializer.h

1void transmit (void *bits, int len);

serializer.c

 1#include "serializer.h"
 2
 3#include <stdio.h>
 4#include <assert.h>
 5
 6void transmit (void *bits, int len)
 7{
 8 int i, j;
 9 char *c = (char *)bits;
10
11 assert(sizeof(char) == 1);
12
13 printf("Bits: ");
14 for (i = 0; i < len / (sizeof(char) * 8); i++)
15 {
16 for (j = 0; j < sizeof(char) * 8; j++)
17 {
18 printf("%d", c[i] >> j & 1);
19 }
20 }
21 printf("\n");
22}

bitfield_serialization.c

 1#include <stdio.h>
 2
 3#include "my_recs.h"
 4#include "serializer.h"
 5
 6int main(int argc, const char * argv[])
 7{
 8 rec r = {5, "abc"};
 9
10 transmit(&r, sizeof(r) * 8);
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Serialization_C
MD5: 47f0a4efcbec9303f44d535064e5d6ce

Runtime output

Bits: 1010000000000000000000000000000010000110010001101100011000000000

Similarly, we can write a subprogram that converts a bit-field — which
may have been received as a bitstream — to a specific type. We can add a
To_Rec subprogram to the My_Recs package to convert a bit-field
to the Rec type. This can be used to convert a bitstream that we
received into the actual data type representation.

As you know, we may write the To_Rec subprogram as a procedure or as a
function. Since we need to use slightly different strategies for the
implementation, the following example has both versions of To_Rec.

This is the updated code for the My_Recs package and the Main
procedure:

[Ada]

serializer.ads

1package Serializer is
2
3 type Bit_Field is array (Natural range <>) of Boolean with Pack;
4
5 procedure Transmit (B : Bit_Field);
6
7end Serializer;

serializer.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Serializer is
 4
 5 procedure Transmit (B : Bit_Field) is
 6
 7 procedure Show_Bit (V : Boolean) is
 8 begin
 9 case V is
10 when False => Put ("0");
11 when True => Put ("1");
12 end case;
13 end Show_Bit;
14
15 begin
16 Put ("Bits: ");
17 for E of B loop
18 Show_Bit (E);
19 end loop;
20 New_Line;
21 end Transmit;
22
23end Serializer;

my_recs.ads

 1with Serializer; use Serializer;
 2
 3package My_Recs is
 4
 5 type Rec is record
 6 V : Integer;
 7 S : String (1 .. 3);
 8 end record;
 9
10 procedure To_Rec (B : Bit_Field;
11 R : out Rec);
12
13 function To_Rec (B : Bit_Field) return Rec;
14
15 procedure Display (R : Rec);
16
17end My_Recs;

my_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Recs is
 4
 5 procedure To_Rec (B : Bit_Field;
 6 R : out Rec) is
 7 B_R : Rec
 8 with Address => B'Address, Import, Volatile;
 9 begin
10 -- Assigning data from overlayed record B_R to output parameter R.
11 R := B_R;
12 end To_Rec;
13
14 function To_Rec (B : Bit_Field) return Rec is
15 R : Rec;
16 B_R : Rec
17 with Address => B'Address, Import, Volatile;
18 begin
19 -- Assigning data from overlayed record B_R to local record R.
20 R := B_R;
21
22 return R;
23 end To_Rec;
24
25 procedure Display (R : Rec) is
26 begin
27 Put ("(" & Integer'Image (R.V) & ", "
28 & (R.S) & ")");
29 end Display;
30
31end My_Recs;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Serializer; use Serializer;
 3with My_Recs; use My_Recs;
 4
 5procedure Main is
 6 R1 : Rec := (5, "abc");
 7 R2 : Rec := (0, "zzz");
 8
 9 B1 : Bit_Field (0 .. R1'Size - 1)
10 with Address => R1'Address, Import, Volatile;
11begin
12 Put ("R2 = ");
13 Display (R2);
14 New_Line;
15
16 -- Getting Rec type using data from B1, which is a bit-field
17 -- representation of R1.
18 To_Rec (B1, R2);
19
20 -- We could use the function version of To_Rec:
21 -- R2 := To_Rec (B1);
22
23 Put_Line ("New bitstream received!");
24 Put ("R2 = ");
25 Display (R2);
26 New_Line;
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Deserialization_Ada
MD5: bf5cb5ef048ed1f95dba8e85275f6e32

Build output

main.adb:18:12: warning: volatile actual passed by copy (RM C.6(19)) [enabled by default]

Runtime output

R2 = (0, zzz)
New bitstream received!
R2 = (5, abc)

In both versions of To_Rec, we declare the record object B_R as
an overlay of the input bit-field. In the procedure version of To_Rec,
we then simply copy the data from B_R to the output parameter R.
In the function version of To_Rec, however, we need to declare a local
record object R, which we return after the assignment.

In C, we can interpret the input pointer as an array of bytes, and copy the
individual bytes. For example:

[C]

my_recs.h

1typedef struct {
2 int v;
3 char s[3];
4} rec;
5
6void to_r (void *bits, int len, rec *r);
7
8void display_r (rec *r);

my_recs.c

 1#include "my_recs.h"
 2
 3#include <stdio.h>
 4#include <assert.h>
 5
 6void to_r (void *bits, int len, rec *r)
 7{
 8 int i;
 9 char *c1 = (char *)bits;
10 char *c2 = (char *)r;
11
12 assert(len == sizeof(rec) * 8);
13
14 for (i = 0; i < len / (sizeof(char) * 8); i++)
15 {
16 c2[i] = c1[i];
17 }
18}
19
20void display_r (rec *r)
21{
22 printf("{%d, %c%c%c}", r->v, r->s[0], r->s[1], r->s[2]);
23}

bitfield_serialization.c

 1#include <stdio.h>
 2#include "my_recs.h"
 3
 4int main(int argc, const char * argv[])
 5{
 6 rec r1 = {5, "abc"};
 7 rec r2 = {0, "zzz"};
 8
 9 printf("r2 = ");
10 display_r (&r2);
11 printf("\n");
12
13 to_r(&r1, sizeof(r1) * 8, &r2);
14
15 printf("New bitstream received!\n");
16 printf("r2 = ");
17 display_r (&r2);
18 printf("\n");
19
20 return 0;
21}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Deserialization_C
MD5: 1c0fda773b0b681d0a4e9a57cf67d997

Runtime output

r2 = {0, zzz}
New bitstream received!
r2 = {5, abc}

Here, to_r casts both pointer parameters to pointers to char to get
a byte-aligned pointer. Then, it simply copies the data byte-by-byte.

Overlays vs. Unchecked Conversions

Unchecked conversions are another way of converting between unrelated data
types. This conversion is done by instantiating the generic
Unchecked_Conversions function for the types you want to convert. Let's
look at a simple example:

[Ada]

simple_unchecked_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Simple_Unchecked_Conversion is
 5 type State is (Off, State_1, State_2)
 6 with Size => Integer'Size;
 7
 8 for State use (Off => 0, State_1 => 32, State_2 => 64);
 9
10 function As_Integer is new Ada.Unchecked_Conversion (Source => State,
11 Target => Integer);
12
13 I : Integer;
14begin
15 I := As_Integer (State_2);
16 Put_Line ("I = " & Integer'Image (I));
17end Simple_Unchecked_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Simple_Unchecked_Conversion
MD5: 1b6058ef1919879a7d2d86be41f3b269

Runtime output

I = 64

In this example, As_Integer is an instantiation of
Unchecked_Conversion to convert between the State enumeration and
the Integer type. Note that, in order to ensure safe conversion, we're
declaring State to have the same size as the Integer type we
want to convert to.

This is the corresponding implementation using overlays:

[Ada]

simple_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Overlay is
 4 type State is (Off, State_1, State_2)
 5 with Size => Integer'Size;
 6
 7 for State use (Off => 0, State_1 => 32, State_2 => 64);
 8
 9 S : State;
10 I : Integer
11 with Address => S'Address, Import, Volatile;
12begin
13 S := State_2;
14 Put_Line ("I = " & Integer'Image (I));
15end Simple_Overlay;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Simple_Overlay
MD5: 932135a47c36c406e70b22e075afeaf2

Runtime output

I = 64

Let's look at another example of converting between different numeric formats.
In this case, we want to convert between a 16-bit fixed-point and a 16-bit
integer data type. This is how we can do it using Unchecked_Conversion:

[Ada]

fixed_int_unchecked_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Fixed_Int_Unchecked_Conversion is
 5 Delta_16 : constant := 1.0 / 2.0 ** (16 - 1);
 6 Max_16 : constant := 2 ** 15;
 7
 8 type Fixed_16 is delta Delta_16 range -1.0 .. 1.0 - Delta_16
 9 with Size => 16;
10 type Int_16 is range -Max_16 .. Max_16 - 1
11 with Size => 16;
12
13 function As_Int_16 is new Ada.Unchecked_Conversion (Source => Fixed_16,
14 Target => Int_16);
15 function As_Fixed_16 is new Ada.Unchecked_Conversion (Source => Int_16,
16 Target => Fixed_16);
17
18 I : Int_16 := 0;
19 F : Fixed_16 := 0.0;
20begin
21 F := Fixed_16'Last;
22 I := As_Int_16 (F);
23
24 Put_Line ("F = " & Fixed_16'Image (F));
25 Put_Line ("I = " & Int_16'Image (I));
26end Fixed_Int_Unchecked_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Fixed_Int_Unchecked_Conversion
MD5: 53b59ca56a5c25408d8b6e5fcb06f37a

Runtime output

F = 0.99997
I = 32767

Here, we instantiate Unchecked_Conversion for the Int_16 and
Fixed_16 types, and we call the instantiated functions explicitly. In
this case, we call As_Int_16 to get the integer value corresponding to
Fixed_16'Last.

This is how we can rewrite the implementation above using overlays:

[Ada]

fixed_int_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Fixed_Int_Overlay is
 4 Delta_16 : constant := 1.0 / 2.0 ** (16 - 1);
 5 Max_16 : constant := 2 ** 15;
 6
 7 type Fixed_16 is delta Delta_16 range -1.0 .. 1.0 - Delta_16
 8 with Size => 16;
 9 type Int_16 is range -Max_16 .. Max_16 - 1
10 with Size => 16;
11
12 I : Int_16 := 0;
13 F : Fixed_16
14 with Address => I'Address, Import, Volatile;
15begin
16 F := Fixed_16'Last;
17
18 Put_Line ("F = " & Fixed_16'Image (F));
19 Put_Line ("I = " & Int_16'Image (I));
20end Fixed_Int_Overlay;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Fixed_Int_Overlay
MD5: ee86e3d10266f8c8c96311595b6624ec

Runtime output

F = 0.99997
I = 32767

Here, the conversion to the integer value is implicit, so we don't need to call
a conversion function.

Using Unchecked_Conversion has the advantage of making it clear that a
conversion is happening, since the conversion is written explicitly in the
code. With overlays, that conversion is automatic and therefore implicit. In
that sense, using an unchecked conversion is a cleaner and safer approach.
On the other hand, an unchecked conversion requires a copy, so it's less
efficient than overlays, where no copy is performed — because one change
in the source object is automatically reflected in the target object (and
vice-versa). In the end, the choice between unchecked conversions and overlays
depends on the level of performance that you want to achieve.

Also note that an unchecked conversion only has defined behavior
when instantiated for constrained types. For example, we shouldn't use this
kind of conversion:

Ada.Unchecked_Conversion (Source => String,
 Target => Integer);

Although this compiles, the behavior will only be well-defined in those cases
when Source'Size = Target'Size. Therefore, instead of using an
unconstrained type for Source, we should use a subtype that matches this
expectation:

subtype Integer_String is String (1 .. Integer'Size / Character'Size);

function As_Integer is new
 Ada.Unchecked_Conversion (Source => Integer_String,
 Target => Integer);

Similarly, in order to rewrite the examples using bit-fields that we've
seen in the previous section, we cannot simply instantiate
Unchecked_Conversion with the Target indicating the
unconstrained bit-field, such as:

Ada.Unchecked_Conversion (Source => Integer,
 Target => Bit_Field);

Instead, we have to declare a subtype for the specific range we're interested
in. This is how we can rewrite one of the previous examples:

[Ada]

simple_bitfield_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Simple_Bitfield_Conversion is
 5 type Bit_Field is array (Natural range <>) of Boolean with Pack;
 6
 7 V : Integer := 4;
 8
 9 -- Declaring subtype that takes the size of V into account.
10 --
11 subtype Integer_Bit_Field is Bit_Field (0 .. V'Size - 1);
12
13 -- NOTE: we could also use the Integer type in the declaration:
14 --
15 -- subtype Integer_Bit_Field is Bit_Field (0 .. Integer'Size - 1);
16 --
17
18 -- Using the Integer_Bit_Field subtype as the target
19 function As_Bit_Field is new
20 Ada.Unchecked_Conversion (Source => Integer,
21 Target => Integer_Bit_Field);
22
23 B : Integer_Bit_Field;
24begin
25 B := As_Bit_Field (V);
26
27 Put_Line ("V = " & Integer'Image (V));
28end Simple_Bitfield_Conversion;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Translation.Bitfield_Conversion
MD5: 46ead7e5f3da8f261770811d450453e7

Runtime output

V = 4

In this example, we first declare the subtype Integer_Bit_Field as a
bit-field with a length that fits the V variable we want to convert to.
Then, we can use that subtype in the instantiation of
Unchecked_Conversion.

Footnotes

Handling Variability and Re-usability

Understanding static and dynamic variability

It is common to see embedded software being used in a variety of configurations
that require small changes to the code for each instance. For example, the same
application may need to be portable between two different architectures (ARM
and x86), or two different platforms with different set of devices available.
Maybe the same application is used for two different generations of the
product, so it needs to account for absence or presence of new features, or
it's used for different projects which may select different components or
configurations. All these cases, and many others, require variability in the
software in order to ensure its reusability.

In C, variability is usually achieved through macros and function pointers, the
former being tied to static variability (variability in different
builds) the latter to dynamic variability (variability within the same build
decided at run-time).

Ada offers many alternatives for both techniques, which aim at structuring
possible variations of the software. When Ada isn't enough, the GNAT
compilation system also provides a layer of capabilities, in particular
selection of alternate bodies.

If you're familiar with object-oriented programming (OOP) — supported in
languages such as C++ and Java —, you might also be interested in knowing
that OOP is supported by Ada and can be used to implement variability. This
should, however, be used with care, as OOP brings its own set of problems, such
as loss of efficiency — dispatching calls can't be inlined and require
one level of indirection — or loss of analyzability — the target
of a dispatching call isn't known at run time. As a rule of thumb, OOP should
be considered only for cases of dynamic variability, where several versions of
the same object need to exist concurrently in the same application.

Handling variability & reusability statically

Genericity

One usage of C macros involves the creation of functions that works regardless
of the type they're being called upon. For example, a swap macro may look like:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#define SWAP(t, a, b) ({\
 5 t tmp = a; \
 6 a = b; \
 7 b = tmp; \
 8 })
 9
10int main()
11{
12 int a = 10;
13 int b = 42;
14
15 printf("a = %d, b = %d\n", a, b);
16
17 SWAP (int, a, b);
18
19 printf("a = %d, b = %d\n", a, b);
20
21 return 0;
22}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Swap_C
MD5: 96d0e8ce9ae985e4de9ed64a0f0961f5

Runtime output

a = 10, b = 42
a = 42, b = 10

Ada offers a way to declare this kind of functions as a generic, that is, a
function that is written after static arguments, such as a parameter:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 generic
 6 type A_Type is private;
 7 procedure Swap (Left, Right : in out A_Type);
 8
 9 procedure Swap (Left, Right : in out A_Type) is
10 Temp : constant A_Type := Left;
11 begin
12 Left := Right;
13 Right := Temp;
14 end Swap;
15
16 procedure Swap_I is new Swap (Integer);
17
18 A : Integer := 10;
19 B : Integer := 42;
20
21begin
22 Put_Line ("A = "
23 & Integer'Image (A)
24 & ", B = "
25 & Integer'Image (B));
26
27 Swap_I (A, B);
28
29 Put_Line ("A = "
30 & Integer'Image (A)
31 & ", B = "
32 & Integer'Image (B));
33end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Swap_Ada
MD5: 13f3527b4e3258ebd43be827ad0fcd14

Runtime output

A = 10, B = 42
A = 42, B = 10

There are a few key differences between the C and the Ada version here. In C,
the macro can be used directly and essentially get expanded by the preprocessor
without any kind of checks. In Ada, the generic will first be checked for
internal consistency. It then needs to be explicitly instantiated for a
concrete type. From there, it's exactly as if there was an actual version of
this Swap function, which is going to be called as any other function.
All rules for parameter modes and control will apply to this instance.

In many respects, an Ada generic is a way to provide a safe specification and
implementation of such macros, through both the validation of the generic
itself and its usage.

Subprograms aren't the only entities that can me made generic. As a matter of
fact, it's much more common to render an entire package generic. In this case
the instantiation creates a new version of all the entities present in the
generic, including global variables. For example:

[Ada]

gen.ads

1generic
2 type T is private;
3package Gen is
4 type C is tagged record
5 V : T;
6 end record;
7
8 G : Integer;
9end Gen;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_1
MD5: 721f9954561b7e0d2964ba0d226c748b

The above can be instantiated and used the following way:

main.adb

 1with Gen;
 2
 3procedure Main is
 4 package I1 is new Gen (Integer);
 5 package I2 is new Gen (Integer);
 6 subtype Str10 is String (1 .. 10);
 7 package I3 is new Gen (Str10);
 8begin
 9 I1.G := 0;
10 I2.G := 1;
11 I3.G := 2;
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_1
MD5: ab0e99dedf40fff1bced048a96a0fbb6

Here, I1.G, I2.G and I3.G are three distinct variables.

So far, we've only looked at generics with one kind of parameter: a so-called
private type. There's actually much more that can be described in this section,
such as variables, subprograms or package instantiations with certain
properties. For example, the following provides a sort algorithm for any kind
of structurally compatible array type:

[Ada]

sort.ads

1generic
2 type Component is private;
3 type Index is (<>);
4 with function "<" (Left, Right : Component) return Boolean;
5 type Array_Type is array (Index range <>) of Component;
6procedure Sort (A : in out Array_Type);

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Gen_Pkg_2
MD5: 5781f53f4fd4453ecc1313d05ab76f81

The declaration above states that we need a type (Component), a discrete
type (Index), a comparison subprogram ("<"), and an array
definition (Array_Type). Given these, it's possible to write an
algorithm that can sort any Array_Type. Note the usage of the with
reserved word in front of the function name: it exists to differentiate between
the generic parameter and the beginning of the generic subprogram.

Here is a non-exhaustive overview of the kind of constraints that can be put on
types:

type T is private; -- T is a constrained type, such as Integer
type T (<>) is private; -- T can be an unconstrained type e.g. String
type T is tagged private; -- T is a tagged type
type T is new T2 with private; -- T is an extension of T2
type T is (<>); -- T is a discrete type
type T is range <>; -- T is an integer type
type T is digits <>; -- T is a floating point type
type T is access T2; -- T is an access type to T2

For a more complete list please reference the Generic Formal Types in the
Appendix of the Introduction to Ada course.

Simple derivation

Let's take a case where a codebase needs to handle small variations of a given
device, or maybe different generations of a device, depending on the platform
it's running on. In this example, we're assuming that each platform will lead
to a different binary, so the code can statically resolve which set of services
are available. However, we want an easy way to implement a new device based on
a previous one, saying "this new device is the same as this previous device,
with these new services and these changes in existing services".

We can implement such patterns using Ada's simple derivation — as opposed
to tagged derivation, which is OOP-related and discussed in a later section.

Let's start from the following example:

[Ada]

drivers_1.ads

1package Drivers_1 is
2
3 type Device_1 is null record;
4 procedure Startup (Device : Device_1);
5 procedure Send (Device : Device_1; Data : Integer);
6 procedure Send_Fast (Device : Device_1; Data : Integer);
7 procedure Receive (Device : Device_1; Data : out Integer);
8
9end Drivers_1;

drivers_1.adb

 1package body Drivers_1 is
 2
 3 -- NOTE: unimplemented procedures: Startup, Send, Send_Fast
 4 -- mock-up implementation: Receive
 5
 6 procedure Startup (Device : Device_1) is null;
 7
 8 procedure Send (Device : Device_1; Data : Integer) is null;
 9
10 procedure Send_Fast (Device : Device_1; Data : Integer) is null;
11
12 procedure Receive (Device : Device_1; Data : out Integer) is
13 begin
14 Data := 42;
15 end Receive;
16
17end Drivers_1;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 4f9d7e29b64cda8664438a1d7eed9049

In the above example, Device_1 is an empty record type. It may also have
some fields if required, or be a different type such as a scalar. Then the four
procedures Startup, Send, Send_Fast and Receive are
primitives of this type. A primitive is essentially a subprogram that has a
parameter or return type directly referencing this type and declared in the
same scope. At this stage, there's nothing special with this type: we're using
it as we would use any other type. For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_1; use Drivers_1;
 3
 4procedure Main is
 5 D : Device_1;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 1b28f2c8ca92498cbcda582f092b9912

Runtime output

 42

Let's now assume that we need to implement a new generation of device,
Device_2. This new device works exactly like the first one, except for
the startup code that has to be done differently. We can create a new type that
operates exactly like the previous one, but modifies only the behavior of
Startup:

[Ada]

drivers_2.ads

 1with Drivers_1; use Drivers_1;
 2
 3package Drivers_2 is
 4
 5 type Device_2 is new Device_1;
 6
 7 overriding
 8 procedure Startup (Device : Device_2);
 9
10end Drivers_2;

drivers_2.adb

1package body Drivers_2 is
2
3 overriding
4 procedure Startup (Device : Device_2) is null;
5
6end Drivers_2;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 276c9da0b7c9ad61d679531e16fdd9cb

Here, Device_2 is derived from Device_1. It contains all the
exact same properties and primitives, in particular, Startup,
Send, Send_Fast and Receive. However, here, we decided to
change the Startup function and to provide a different implementation.
We override this function. The main subprogram doesn't change much, except for
the fact that it now relies on a different type:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_2; use Drivers_2;
 3
 4procedure Main is
 5 D : Device_2;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 31e7105a99771ce6c1602af117e2e8a6

Runtime output

 42

We can continue with this approach and introduce a new generation of devices.
This new device doesn't implement the Send_Fast service so we want
to remove it from the list of available services. Furthermore, for the purpose
of our example, let's assume that the hardware team went back to the
Device_1 way of implementing Startup. We can write this new
device the following way:

[Ada]

drivers_3.ads

 1with Drivers_1; use Drivers_1;
 2
 3package Drivers_3 is
 4
 5 type Device_3 is new Device_1;
 6
 7 overriding
 8 procedure Startup (Device : Device_3);
 9
10 procedure Send_Fast (Device : Device_3; Data : Integer)
11 is abstract;
12
13end Drivers_3;

drivers_3.adb

1package body Drivers_3 is
2
3 overriding
4 procedure Startup (Device : Device_3) is null;
5
6end Drivers_3;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 779579532c81b672d8a641c0b8594ed5

The is abstract definition makes illegal any call to a function, so
calls to Send_Fast on Device_3 will be flagged as being illegal.
To then implement Startup of Device_3 as being the same as the
Startup of Device_1, we can convert the type in the
implementation:

[Ada]

drivers_3.adb

1package body Drivers_3 is
2
3 overriding
4 procedure Startup (Device : Device_3) is
5 begin
6 Drivers_1.Startup (Device_1 (Device));
7 end Startup;
8
9end Drivers_3;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 5db9596c276a7a4521914f4108f61d28

Our Main now looks like:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers_3; use Drivers_3;
 3
 4procedure Main is
 5 D : Device_3;
 6 I : Integer;
 7begin
 8 Startup (D);
 9 Send_Fast (D, 999);
10 Receive (D, I);
11 Put_Line (Integer'Image (I));
12end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: 8b6af16d21c2f8a1f0e4866e6ddffd1f

Build output

main.adb:9:04: error: cannot call abstract operation "Send_Fast" declared at drivers_3.ads:10
gprbuild: *** compilation phase failed

Here, the call to Send_Fast will get flagged by the compiler.

Note that the fact that the code of Main has to be changed for every
implementation isn't necessarily satisfactory. We may want to go one step
further, and isolate the selection of the device kind to be used for the whole
application in one unique file. One way to do this is to use the same name for
all types, and use a renaming to select which package to use. Here's a
simplified example to illustrate that:

[Ada]

drivers_1.ads

1package Drivers_1 is
2
3 type Transceiver is null record;
4 procedure Send (Device : Transceiver; Data : Integer);
5 procedure Receive (Device : Transceiver; Data : out Integer);
6
7end Drivers_1;

drivers_1.adb

 1package body Drivers_1 is
 2
 3 procedure Send (Device : Transceiver; Data : Integer) is null;
 4
 5 procedure Receive (Device : Transceiver; Data : out Integer) is
 6 pragma Unreferenced (Device);
 7 begin
 8 Data := 42;
 9 end Receive;
10
11end Drivers_1;

drivers_2.ads

1with Drivers_1;
2
3package Drivers_2 is
4
5 type Transceiver is new Drivers_1.Transceiver;
6 procedure Send (Device : Transceiver; Data : Integer);
7 procedure Receive (Device : Transceiver; Data : out Integer);
8
9end Drivers_2;

drivers_2.adb

 1package body Drivers_2 is
 2
 3 procedure Send (Device : Transceiver; Data : Integer) is null;
 4
 5 procedure Receive (Device : Transceiver; Data : out Integer) is
 6 pragma Unreferenced (Device);
 7 begin
 8 Data := 42;
 9 end Receive;
10
11end Drivers_2;

drivers.ads

1with Drivers_1;
2
3package Drivers renames Drivers_1;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Drivers; use Drivers;
 3
 4procedure Main is
 5 D : Transceiver;
 6 I : Integer;
 7begin
 8 Send (D, 999);
 9 Receive (D, I);
10 Put_Line (Integer'Image (I));
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Derived_Drivers
MD5: e92590e4b91fef33f4fec23362a52873

Runtime output

 42

In the above example, the whole code can rely on drivers.ads, instead
of relying on the specific driver. Here, Drivers is another name for
Driver_1. In order to switch to Driver_2, the project only has to
replace that one drivers.ads file.

In the following section, we'll go one step further and demonstrate that this
selection can be done through a configuration switch selected at build time
instead of a manual code modification.

Configuration pragma files

Configuration pragmas are a set of pragmas that modify the compilation of
source-code files. You may use them to either relax or strengthen requirements.
For example:

pragma Suppress (Overflow_Check);

In this example, we're suppressing the overflow check, thereby relaxing a
requirement. Normally, the following program would raise a constraint error due
to a failed overflow check:

[Ada]

p.ads

1package P is
2 function Add_Max (A : Integer) return Integer;
3end P;

p.adb

1package body P is
2 function Add_Max (A : Integer) return Integer is
3 begin
4 return A + Integer'Last;
5 end Add_Max;
6end P;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with P; use P;
3
4procedure Main is
5 I : Integer := Integer'Last;
6begin
7 I := Add_Max (I);
8 Put_Line ("I = " & Integer'Image (I));
9end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Constraint_Error_Detection
MD5: d6960fe8ae2af1d66b617bb92d3d47b6

Runtime output

raised CONSTRAINT_ERROR : p.adb:4 overflow check failed

When suppressing the overflow check, however, the program doesn't raise an
exception, and the value that Add_Max returns is -2, which is a
wraparound of the sum of the maximum integer values
(Integer'Last + Integer'Last).

We could also strengthen requirements, as in this example:

pragma Restrictions (No_Floating_Point);

Here, the restriction forbids the use of floating-point types and objects. The
following program would violate this restriction, so the compiler isn't able to
compile the program when the restriction is used:

procedure Main is
 F : Float := 0.0;
 -- Declaration is not possible with No_Floating_Point restriction.
begin
 null;
end Main;

Restrictions are especially useful for high-integrity applications. In fact,
the Ada Reference Manual has a separate section for them[#1].

When creating a project, it is practical to list all configuration pragmas in a
separate file. This is called a configuration pragma file, and it usually has
an .adc file extension. If you use GPRbuild for building Ada
applications, you can specify the configuration pragma file in the
corresponding project file. For example, here we indicate that gnat.adc
is the configuration pragma file for our project:

project Default is

 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Main use ("main.adb");

 package Compiler is
 for Local_Configuration_Pragmas use "gnat.adc";
 end Compiler;

end Default;

Configuration packages

In C, preprocessing flags are used to create blocks of code that are only
compiled under certain circumstances. For example, we could have a block that
is only used for debugging:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4int func(int x)
 5{
 6 return x % 4;
 7}
 8
 9int main()
10{
11 int a, b;
12
13 a = 10;
14 b = func(a);
15
16#ifdef DEBUG
17 printf("func(%d) => %d\n", a, b);
18#endif
19
20 return 0;
21}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Debug_Code_C
MD5: 4daa8123f7112e7487ab54f16f80d34b

Here, the block indicated by the DEBUG flag is only included in the build
if we define this preprocessing flag, which is what we expect for a debug
version of the build. In the release version, however, we want to keep debug
information out of the build, so we don't use this flag during the build
process.

Ada doesn't define a preprocessor as part of the language. Some Ada toolchains
— like the GNAT toolchain — do have a preprocessor that could
create code similar to the one we've just seen. When programming in Ada,
however, the recommendation is to use configuration packages to select code
blocks that are meant to be included in the application.

When using a configuration package, the example above can be written as:

[Ada]

config.ads

1package Config is
2
3 Debug : constant Boolean := False;
4
5end Config;

func.ads

1function Func (X : Integer) return Integer;

func.adb

1function Func (X : Integer) return Integer is
2begin
3 return X mod 4;
4end Func;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Config;
 3with Func;
 4
 5procedure Main is
 6 A, B : Integer;
 7begin
 8 A := 10;
 9 B := Func (A);
10
11 if Config.Debug then
12 Put_Line ("Func(" & Integer'Image (A) & ") => "
13 & Integer'Image (B));
14 end if;
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Debug_Code_Ada
MD5: b643b683098fa7ad5568a69c9f2c000f

In this example, Config is a configuration package. The version of
Config we're seeing here is the release version. The debug version of
the Config package looks like this:

package Config is

 Debug : constant Boolean := True;

end Config;

The compiler makes sure to remove dead code. In the case of the release
version, since Config.Debug is constant and set to False, the
compiler is smart enough to remove the call to Put_Line from the build.

As you can see, both versions of Config are very similar to each other.
The general idea is to create packages that declare the same constants, but
using different values.

In C, we differentiate between the debug and release versions by selecting
the appropriate preprocessing flags, but in Ada, we select the appropriate
configuration package during the build process. Since the file name is usually
the same (config.ads for the example above), we may want to store them
in distinct directories. For the example above, we could have:

	src/debug/config.ads for the debug version, and

	src/release/config.ads for the release version.

Then, we simply select the appropriate configuration package for each version
of the build by indicating the correct path to it. When using
GPRbuild, we can select the appropriate directory where the
config.ads file is located. We can use scenario variables in our
project, which allow for creating different versions of a build. For example:

project Default is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external ("mode", "debug");

 for Source_Dirs use ("src", "src/" & Mode);
 for Object_Dir use "obj";
 for Main use ("main.adb");

end Default;

In this example, we're defining a scenario type called Mode_Type. Then,
we're declaring the scenario variable Mode and using it in the
Source_Dirs declaration to complete the path to the subdirectory
containing the config.ads file. The expression "src/" & Mode
concatenates the user-specified mode to select the appropriate subdirectory.

We can then set the mode on the command-line. For example:

gprbuild -P default.gpr -Xmode=release

In addition to selecting code blocks for the build, we could also specify
values that depend on the target build. For our example above, we may want to
create two versions of the application, each one having a different version of
a MOD_VALUE that is used in the implementation of func(). In C, we
can achieve this by using preprocessing flags and defining the corresponding
version in APP_VERSION. Then, depending on the value of APP_VERSION,
we define the corresponding value of MOD_VALUE.

[C]

defs.h

 1#ifndef APP_VERSION
 2#define APP_VERSION 1
 3#endif
 4
 5#if APP_VERSION == 1
 6#define MOD_VALUE 4
 7#endif
 8
 9#if APP_VERSION == 2
10#define MOD_VALUE 5
11#endif

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#include "defs.h"
 5
 6int func(int x)
 7{
 8 return x % MOD_VALUE;
 9}
10
11int main()
12{
13 int a, b;
14
15 a = 10;
16 b = func(a);
17
18 return 0;
19}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.App_Version_C
MD5: 9f204dcc65b70618324c48be0dbdffbe

If not defined outside, the code above will compile version #1 of the
application. We can change this by specifying a value for APP_VERSION
during the build (e.g. as a Makefile switch).

For the Ada version of this code, we can create two configuration packages for
each version of the application. For example:

[Ada]

app_defs.ads

1-- ./src/app_1/app_defs.ads
2
3package App_Defs is
4
5 Mod_Value : constant Integer := 4;
6
7end App_Defs;

func.ads

1function Func (X : Integer) return Integer;

func.adb

1with App_Defs;
2
3function Func (X : Integer) return Integer is
4begin
5 return X mod App_Defs.Mod_Value;
6end Func;

main.adb

1with Func;
2
3procedure Main is
4 A, B : Integer;
5begin
6 A := 10;
7 B := Func (A);
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.App_Version_Ada
MD5: 7c8e4280e74c04ab51073b25e8f53995

The code above shows the version #1 of the configuration package. The
corresponding implementation for version #2 looks like this:

-- ./src/app_2/app_defs.ads

package App_Defs is

 Mod_Value : constant Integer := 5;

end App_Defs;

Again, we just need to select the appropriate configuration package for each
version of the build, which we can easily do when using GPRbuild.

Handling variability & reusability dynamically

Records with discriminants

In basic terms, records with discriminants are records that include
"parameters" in their type definitions. This allows for adding more flexibility
to the type definition. In the section about pointers, we've
seen this example:

[Ada]

main.adb

 1procedure Main is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Positive) is record
 5 A : Arr (0 .. Last);
 6 end record;
 7
 8 V : S (9);
 9begin
10 null;
11end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_Ada
MD5: 02fa8fa7832a262b99aee139a1b5b7a6

Build output

main.adb:8:04: warning: variable "V" is never read and never assigned [-gnatwv]

Here, Last is the discriminant for type S. When declaring the
variable V as S (9), we specify the actual index of the last
position of the array component A by setting the Last
discriminant to 9.

We can create an equivalent implementation in C by declaring a struct
with a pointer to an array:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4typedef struct {
 5 int * a;
 6 const int last;
 7} S;
 8
 9S init_s (int last)
10{
11 S v = { malloc (sizeof(int) * last + 1), last };
12 return v;
13}
14
15int main(int argc, const char * argv[])
16{
17 S v = init_s (9);
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_C
MD5: 8f8b53c38c2ef8c1624208a2d8fd13ef

Here, we need to explicitly allocate the a array of the S struct
via a call to malloc(), which allocates memory space on the heap. In the
Ada version, in contrast, the array (V.A) is allocated on the stack and
we don't need to explicitly allocate it.

Note that the information that we provide as the discriminant to the record
type (in the Ada code) is constant, so we cannot assign a value to it. For
example, we cannot write:

[Ada]

V.Last := 10; -- COMPILATION ERROR!

In the C version, we declare the last field constant to get the same
behavior.

[C]

v.last = 10; // COMPILATION ERROR!

Note that the information provided as discriminants is visible. In the example
above, we could display Last by writing:

[Ada]

Put_Line ("Last : " & Integer'Image (V.Last));

Also note that, even if a type is private, we can still access the information
of the discriminants if they are visible in the public part of the type
declaration. Let's rewrite the example above:

[Ada]

array_definition.ads

 1package Array_Definition is
 2 type Arr is array (Integer range <>) of Integer;
 3
 4 type S (Last : Integer) is private;
 5
 6private
 7 type S (Last : Integer) is record
 8 A : Arr (0 .. Last);
 9 end record;
10
11end Array_Definition;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Array_Definition; use Array_Definition;
3
4procedure Main is
5 V : S (9);
6begin
7 Put_Line ("Last : " & Integer'Image (V.Last));
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Rec_Disc_Ada_Private
MD5: fa0158c3c61dd9ec7e4000416672f9e9

Build output

main.adb:5:04: warning: variable "V" is read but never assigned [-gnatwv]

Runtime output

Last : 9

Even though the S type is now private, we can still display Last
because this discriminant is visible in the non-private part of package
Array_Definition.

Variant records

In simple terms, a variant record is a record with discriminants that allows
for changing its structure. Basically, it's a record containing a case.
This is the general structure:

[Ada]

type Var_Rec (V : F) is record

 case V is
 when Opt_1 => F1 : Type_1;
 when Opt_2 => F2 : Type_2;
 end case;

end record;

Let's look at this example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Float_Int (Use_Float : Boolean) is record
 6 case Use_Float is
 7 when True => F : Float;
 8 when False => I : Integer;
 9 end case;
10 end record;
11
12 procedure Display (V : Float_Int) is
13 begin
14 if V.Use_Float then
15 Put_Line ("Float value: " & Float'Image (V.F));
16 else
17 Put_Line ("Integer value: " & Integer'Image (V.I));
18 end if;
19 end Display;
20
21 F : constant Float_Int := (Use_Float => True, F => 10.0);
22 I : constant Float_Int := (Use_Float => False, I => 9);
23
24begin
25 Display (F);
26 Display (I);
27end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_Ada
MD5: 72dd64c22d65fc527af0c3de73ff7966

Runtime output

Float value: 1.00000E+01
Integer value: 9

Here, we declare F containing a floating-point value, and I
containing an integer value. In the Display procedure, we present the
correct information to the user according to the Use_Float discriminant
of the Float_Int type.

We can implement this example in C by using unions:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4typedef struct {
 5 int use_float;
 6 union {
 7 float f;
 8 int i;
 9 };
10} float_int;
11
12float_int init_float (float f)
13{
14 float_int v;
15
16 v.use_float = 1;
17 v.f = f;
18 return v;
19}
20
21float_int init_int (int i)
22{
23 float_int v;
24
25 v.use_float = 0;
26 v.i = i;
27 return v;
28}
29
30void display (float_int v)
31{
32 if (v.use_float) {
33 printf("Float value : %f\n", v.f);
34 }
35 else {
36 printf("Integer value : %d\n", v.i);
37 }
38}
39
40int main(int argc, const char * argv[])
41{
42 float_int f = init_float (10.0);
43 float_int i = init_int (9);
44
45 display (f);
46 display (i);
47
48 return 0;
49}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_C
MD5: ac0ad1e6ff7f2154e9dbb6838999a62e

Runtime output

Float value : 10.000000
Integer value : 9

Similar to the Ada code, we declare f containing a floating-point value,
and i containing an integer value. One difference is that we use the
init_float() and init_int() functions to initialize the
float_int struct. These functions initialize the correct field of the
union and set the use_float field accordingly.

Variant records and unions

There is, however, a difference in accessibility between variant records in Ada
and unions in C. In C, we're allowed to access any field of the union
regardless of the initialization:

[C]

float_int v = init_float (10.0);

printf("Integer value : %d\n", v.i);

This feature is useful to create overlays. In this specific example, however,
the information displayed to the user doesn't make sense, since the union was
initialized with a floating-point value (v.f) and, by accessing the
integer field (v.i), we're displaying it as if it was an integer value.

In Ada, accessing the wrong component would raise an exception at run-time
("discriminant check failed"), since the component is checked before being
accessed:

[Ada]

 V : constant Float_Int := (Use_Float => True, F => 10.0);
begin
 Put_Line ("Integer value: " & Integer'Image (V.I));
 -- ^ Constraint_Error is raised!

Using this method prevents wrong information being used in other parts
of the program.

To get the same behavior in Ada as we do in C, we need to explicitly use the
Unchecked_Union aspect in the type declaration. This is the modified
example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Float_Int_Union (Use_Float : Boolean) is record
 6 case Use_Float is
 7 when True => F : Float;
 8 when False => I : Integer;
 9 end case;
10 end record
11 with Unchecked_Union;
12
13 V : constant Float_Int_Union := (Use_Float => True, F => 10.0);
14
15begin
16 Put_Line ("Integer value: " & Integer'Image (V.I));
17end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Unchecked_Union_Ada
MD5: f6c5eacbd96c23531d02bb47a9668ac5

Runtime output

Integer value: 1092616192

Now, we can display the integer component (V.I) even though we
initialized the floating-point component (V.F). As expected, the
information displayed by the test application in this case doesn't make sense.

Note that, when using the Unchecked_Union aspect in the declaration of a
variant record, the reference discriminant is not available anymore, since it
isn't stored as part of the record. Therefore, we cannot access the
Use_Float discriminant as in the following code:

[Ada]

 V : constant Float_Int_Union := (Use_Float => True, F => 10.0);
begin
 if V.Use_Float then -- COMPILATION ERROR!
 -- Do something...
 end if;

Unchecked unions are particularly useful in Ada when creating bindings for C
code.

Optional components

We can also use variant records to specify optional components of a record.
For example:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4 type Arr is array (Integer range <>) of Integer;
 5
 6 type Extra_Info is (No, Yes);
 7
 8 type S_Var (Last : Integer; Has_Extra_Info : Extra_Info) is record
 9 A : Arr (0 .. Last);
10
11 case Has_Extra_Info is
12 when No => null;
13 when Yes => B : Arr (0 .. Last);
14 end case;
15 end record;
16
17 V1 : S_Var (Last => 9, Has_Extra_Info => Yes);
18 V2 : S_Var (Last => 9, Has_Extra_Info => No);
19begin
20 Put_Line ("Size of V1 is: " & Integer'Image (V1'Size));
21 Put_Line ("Size of V2 is: " & Integer'Image (V2'Size));
22end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Var_Rec_Null_Ada
MD5: 548235fa8458302ba025c8fa49e61777

Build output

main.adb:17:04: warning: variable "V1" is read but never assigned [-gnatwv]
main.adb:18:04: warning: variable "V2" is read but never assigned [-gnatwv]

Runtime output

Size of V1 is: 704
Size of V2 is: 384

Here, in the declaration of S_Var, we don't have any component in case
Has_Extra_Info is false. The component is simply set to null in
this case.

When running the example above, we see that the size of V1 is greater
than the size of V2 due to the extra B component — which is
only included when Has_Extra_Info is true.

Optional output information

We can use optional components to prevent subprograms from generating invalid
information that could be misused by the caller. Consider the following
example:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4float calculate (float f1,
 5 float f2,
 6 int *success)
 7{
 8 if (f1 < f2) {
 9 *success = 1;
10 return f2 - f1;
11 }
12 else {
13 *success = 0;
14 return 0.0;
15 }
16}
17
18void display (float v,
19 int success)
20{
21 if (success) {
22 printf("Value = %f\n", v);
23 }
24 else {
25 printf("Calculation error!\n");
26 }
27}
28
29int main(int argc, const char * argv[])
30{
31 float f;
32 int success;
33
34 f = calculate (1.0, 0.5, &success);
35 display (f, success);
36
37 f = calculate (0.5, 1.0, &success);
38 display (f, success);
39
40 return 0;
41}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Non_Opt_C
MD5: 56f8a72782c4a54d8a6026aa39ce421a

Runtime output

Calculation error!
Value = 0.500000

In this code, we're using the output parameter success of the
calculate() function to indicate whether the calculation was successful
or not. This approach has a major problem: there's no way to prevent that the
invalid value returned by calculate() in case of an error is misused in
another computation. For example:

[C]

int main(int argc, const char * argv[])
{
 float f;
 int success;

 f = calculate (1.0, 0.5, &success);

 f = f * 0.25; // Using f in another computation even though
 // calculate() returned a dummy value due to error!
 // We should have evaluated "success", but we didn't.

 return 0;
}

We cannot prevent access to the returned value or, at least, force the caller
to evaluate success before using the returned value.

This is the corresponding code in Ada:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 function Calculate (F1, F2 : Float;
 6 Success : out Boolean) return Float is
 7 begin
 8 if F1 < F2 then
 9 Success := True;
10 return F2 - F1;
11 else
12 Success := False;
13 return 0.0;
14 end if;
15 end Calculate;
16
17 procedure Display (V : Float; Success : Boolean) is
18 begin
19 if Success then
20 Put_Line ("Value = " & Float'Image (V));
21 else
22 Put_Line ("Calculation error!");
23 end if;
24 end Display;
25
26 F : Float;
27 Success : Boolean;
28begin
29 F := Calculate (1.0, 0.5, Success);
30 Display (F, Success);
31
32 F := Calculate (0.5, 1.0, Success);
33 Display (F, Success);
34end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Non_Opt_Ada
MD5: bb27fd31660ad604487f908934a3d3cb

Runtime output

Calculation error!
Value = 5.00000E-01

The Ada code above suffers from the same drawbacks as the C code. Again,
there's no way to prevent misuse of the invalid value returned by
Calculate in case of errors.

However, in Ada, we can use variant records to make the component unavailable
and therefore prevent misuse of this information. Let's rewrite the original
example and wrap the returned value in a variant record:

[Ada]

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4
 5 type Opt_Float (Success : Boolean) is record
 6 case Success is
 7 when False => null;
 8 when True => F : Float;
 9 end case;
10 end record;
11
12 function Calculate (F1, F2 : Float) return Opt_Float is
13 begin
14 if F1 < F2 then
15 return (Success => True, F => F2 - F1);
16 else
17 return (Success => False);
18 end if;
19 end Calculate;
20
21 procedure Display (V : Opt_Float) is
22 begin
23 if V.Success then
24 Put_Line ("Value = " & Float'Image (V.F));
25 else
26 Put_Line ("Calculation error!");
27 end if;
28 end Display;
29
30begin
31 Display (Calculate (1.0, 0.5));
32 Display (Calculate (0.5, 1.0));
33end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Opt_Ada
MD5: 8b70cd16d5ff13611567fa71059d6891

Runtime output

Calculation error!
Value = 5.00000E-01

In this example, we can determine whether the calculation was successful or not
by evaluating the Success component of the Opt_Float. If the
calculation wasn't successful, we won't be able to access the F
component of the Opt_Float. As mentioned before, trying to access the
component in this case would raise an exception. Therefore, in case of errors,
we can ensure that no information is misused after the call to
Calculate.

Object orientation

In the previous section, we've seen that we
can add variability to records by using discriminants. Another approach is to
use tagged records, which are the base for object-oriented programming in
Ada.

Type extension

A tagged record type is declared by adding the tagged keyword. For
example:

[Ada]

main.adb

 1procedure Main is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 type Tagged_Rec is tagged record
 8 V : Integer;
 9 end record;
10
11 R1 : Rec;
12 R2 : Tagged_Rec;
13
14 pragma Unreferenced (R1, R2);
15begin
16 R1 := (V => 0);
17 R2 := (V => 0);
18end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Decl
MD5: 53810d3bb5aa7e7b1483270d974eb025

In this simple example, there isn't much difference between the Rec and
Tagged_Rec type. However, tagged types can be derived and extended. For
example:

[Ada]

main.adb

 1procedure Main is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 -- We cannot declare this:
 8 --
 9 -- type Ext_Rec is new Rec with record
10 -- V : Integer;
11 -- end record;
12
13 type Tagged_Rec is tagged record
14 V : Integer;
15 end record;
16
17 -- But we can declare this:
18 --
19 type Ext_Tagged_Rec is new Tagged_Rec with record
20 V2 : Integer;
21 end record;
22
23 R1 : Rec;
24 R2 : Tagged_Rec;
25 R3 : Ext_Tagged_Rec;
26
27 pragma Unreferenced (R1, R2, R3);
28begin
29 R1 := (V => 0);
30 R2 := (V => 0);
31 R3 := (V => 0, V2 => 0);
32end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Extension_Decl
MD5: 707a3e6b220357f50f6792190b000c91

As indicated in the example, a type derived from an untagged type cannot have
an extension. The compiler indicates this error if you uncomment the
declaration of the Ext_Rec type above. In contrast, we can extend a
tagged type, as we did in the declaration of Ext_Tagged_Rec. In this
case, Ext_Tagged_Rec has all the components of the Tagged_Rec
type (V, in this case) plus the additional components from its own type
declaration (V2, in this case).

Overriding subprograms

Previously, we've seen that subprograms can be overriden. For example, if we
had implemented a Reset and a Display procedure for the
Rec type that we declared above, these procedures would be available for
an Ext_Rec type derived from Rec. Also, we could override these
procedures for the Ext_Rec type. In Ada, we don't need object-oriented
programming features to do that: simple (untagged) records can be used to
derive types, inherit operations and override them. However, in applications
where the actual subprogram to be called is determined dynamically at run-time,
we need dispatching calls. In this case, we must use tagged types to implement
this.

Comparing untagged and tagged types

Let's discuss the similarities and differences between untagged and tagged
types based on this example:

[Ada]

p.ads

 1package P is
 2
 3 type Rec is record
 4 V : Integer;
 5 end record;
 6
 7 procedure Display (R : Rec);
 8 procedure Reset (R : out Rec);
 9
10 type New_Rec is new Rec;
11
12 overriding procedure Display (R : New_Rec);
13 not overriding procedure New_Op (R : in out New_Rec);
14
15 type Tagged_Rec is tagged record
16 V : Integer;
17 end record;
18
19 procedure Display (R : Tagged_Rec);
20 procedure Reset (R : out Tagged_Rec);
21
22 type Ext_Tagged_Rec is new Tagged_Rec with record
23 V2 : Integer;
24 end record;
25
26 overriding procedure Display (R : Ext_Tagged_Rec);
27 overriding procedure Reset (R : out Ext_Tagged_Rec);
28 not overriding procedure New_Op (R : in out Ext_Tagged_Rec);
29
30end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display (R : Rec) is
 6 begin
 7 Put_Line ("TYPE: REC");
 8 Put_Line ("Rec.V = " & Integer'Image (R.V));
 9 New_Line;
10 end Display;
11
12 procedure Reset (R : out Rec) is
13 begin
14 R.V := 0;
15 end Reset;
16
17 procedure Display (R : New_Rec) is
18 begin
19 Put_Line ("TYPE: NEW_REC");
20 Put_Line ("New_Rec.V = " & Integer'Image (R.V));
21 New_Line;
22 end Display;
23
24 procedure New_Op (R : in out New_Rec) is
25 begin
26 R.V := R.V + 1;
27 end New_Op;
28
29 procedure Display (R : Tagged_Rec) is
30 begin
31 -- Using External_Tag attribute to retrieve the tag as a string
32 Put_Line ("TYPE: " & Tagged_Rec'External_Tag);
33 Put_Line ("Tagged_Rec.V = " & Integer'Image (R.V));
34 New_Line;
35 end Display;
36
37 procedure Reset (R : out Tagged_Rec) is
38 begin
39 R.V := 0;
40 end Reset;
41
42 procedure Display (R : Ext_Tagged_Rec) is
43 begin
44 -- Using External_Tag attribute to retrieve the tag as a string
45 Put_Line ("TYPE: " & Ext_Tagged_Rec'External_Tag);
46 Put_Line ("Ext_Tagged_Rec.V = " & Integer'Image (R.V));
47 Put_Line ("Ext_Tagged_Rec.V2 = " & Integer'Image (R.V2));
48 New_Line;
49 end Display;
50
51 procedure Reset (R : out Ext_Tagged_Rec) is
52 begin
53 Tagged_Rec (R).Reset;
54 R.V2 := 0;
55 end Reset;
56
57 procedure New_Op (R : in out Ext_Tagged_Rec) is
58 begin
59 R.V := R.V + 1;
60 end New_Op;
61
62end P;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P; use P;
 3
 4procedure Main is
 5 X_Rec : Rec;
 6 X_New_Rec : New_Rec;
 7
 8 X_Tagged_Rec : aliased Tagged_Rec;
 9 X_Ext_Tagged_Rec : aliased Ext_Tagged_Rec;
10
11 X_Tagged_Rec_Array : constant array (1 .. 2) of access Tagged_Rec'Class
12 := (X_Tagged_Rec'Access, X_Ext_Tagged_Rec'Access);
13begin
14 --
15 -- Reset all objects
16 --
17 Reset (X_Rec);
18 Reset (X_New_Rec);
19 X_Tagged_Rec.Reset; -- we could write "Reset (X_Tagged_Rec)" as well
20 X_Ext_Tagged_Rec.Reset;
21
22 --
23 -- Use new operations when available
24 --
25 New_Op (X_New_Rec);
26 X_Ext_Tagged_Rec.New_Op;
27
28 --
29 -- Display all objects
30 --
31 Display (X_Rec);
32 Display (X_New_Rec);
33 X_Tagged_Rec.Display; -- we could write "Display (X_Tagged_Rec)" as well
34 X_Ext_Tagged_Rec.Display;
35
36 --
37 -- Resetting and display objects of Tagged_Rec'Class
38 --
39 Put_Line ("Operations on Tagged_Rec'Class");
40 Put_Line ("------------------------------");
41 for E of X_Tagged_Rec_Array loop
42 E.Reset;
43 E.Display;
44 end loop;
45end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Type_Extension_Decl
MD5: 29412b74db6680f0a0986b62e5284cf7

Runtime output

TYPE: REC
Rec.V = 0

TYPE: NEW_REC
New_Rec.V = 1

TYPE: P.TAGGED_REC
Tagged_Rec.V = 0

TYPE: P.EXT_TAGGED_REC
Ext_Tagged_Rec.V = 1
Ext_Tagged_Rec.V2 = 0

Operations on Tagged_Rec'Class

TYPE: P.TAGGED_REC
Tagged_Rec.V = 0

TYPE: P.EXT_TAGGED_REC
Ext_Tagged_Rec.V = 0
Ext_Tagged_Rec.V2 = 0

These are the similarities between untagged and tagged types:

	We can derive types and inherit operations in both cases.

	Both X_New_Rec and X_Ext_Tagged_Rec inherit the
Display and Reset procedures from their respective
ancestors.

	We can override operations in both cases.

	We can implement new operations in both cases.

	Both X_New_Rec and X_Ext_Tagged_Rec implement a procedure
called New_Op, which is not available for their respective
ancestors.

Now, let's look at the differences between untagged and tagged types:

	We can dispatch calls for a given type class.

	This is what we do when we iterate over objects of the
Tagged_Rec class — in the loop over
X_Tagged_Rec_Array at the last part of the Main procedure.

	We can use the dot notation.

	We can write both E.Reset or Reset (E) forms: they're
equivalent.

Dispatching calls

Let's look more closely at the dispatching calls implemented above. First, we
declare the X_Tagged_Rec_Array array and initialize it with the access
to objects of both parent and derived tagged types:

[Ada]

X_Tagged_Rec : aliased Tagged_Rec;
X_Ext_Tagged_Rec : aliased Ext_Tagged_Rec;

X_Tagged_Rec_Array : constant array (1 .. 2) of access Tagged_Rec'Class
 := (X_Tagged_Rec'Access, X_Ext_Tagged_Rec'Access);

Here, we use the aliased keyword to be able to get access to the objects
(via the 'Access attribute).

Then, we loop over this array and call the Reset and Display
procedures:

[Ada]

for E of X_Tagged_Rec_Array loop
 E.Reset;
 E.Display;
end loop;

Since we're using dispatching calls, the actual procedure that is selected
depends on the type of the object. For the first element
(X_Tagged_Rec_Array (1)), this is Tagged_Rec, while for the
second element (X_Tagged_Rec_Array (2)), this is Ext_Tagged_Rec.

Dispatching calls are only possible for a type class — for example, the
Tagged_Rec'Class. When the type of an object is known at compile time,
the calls won't dispatch at runtime. For example, the call to the Reset
procedure of the X_Ext_Tagged_Rec object
(X_Ext_Tagged_Rec.Reset) will always take the overriden
Reset procedure of the Ext_Tagged_Rec type. Similarly, if we
perform a view conversion by writing
Tagged_Rec (A_Ext_Tagged_Rec).Display, we're instructing the compiler to
interpret A_Ext_Tagged_Rec as an object of type Tagged_Rec, so
that the compiler selects the Display procedure of the Tagged_Rec
type.

Interfaces

Another useful feature of object-oriented programming is the use of interfaces.
In this case, we can define abstract operations, and implement them in the
derived tagged types. We declare an interface by simply writing
type T is interface. For example:

[Ada]

type My_Interface is interface;

procedure Op (Obj : My_Interface) is abstract;

-- We cannot declare actual objects of an interface:
--
-- Obj : My_Interface; -- ERROR!

All operations on an interface type are abstract, so we need to write
is abstract in the signature — as we did in the declaration of
Op above. Also, since interfaces are abstract types and don't have an
actual implementation, we cannot declare objects for it.

We can derive tagged types from an interface and implement the actual
operations of that interface:

[Ada]

type My_Derived is new My_Interface with null record;

procedure Op (Obj : My_Derived);

Note that we're not using the tagged keyword in the declaration because
any type derived from an interface is automatically tagged.

Let's look at an example with an interface and two derived tagged types:

[Ada]

p.ads

 1package P is
 2
 3 type Display_Interface is interface;
 4 procedure Display (D : Display_Interface) is abstract;
 5
 6 type Small_Display_Type is new Display_Interface with null record;
 7 procedure Display (D : Small_Display_Type);
 8
 9 type Big_Display_Type is new Display_Interface with null record;
10 procedure Display (D : Big_Display_Type);
11
12end P;

p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5 procedure Display (D : Small_Display_Type) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Using Small_Display_Type");
 9 end Display;
10
11 procedure Display (D : Big_Display_Type) is
12 pragma Unreferenced (D);
13 begin
14 Put_Line ("Using Big_Display_Type");
15 end Display;
16
17end P;

main.adb

 1with P; use P;
 2
 3procedure Main is
 4 D_Small : Small_Display_Type;
 5 D_Big : Big_Display_Type;
 6
 7 procedure Dispatching_Display (D : Display_Interface'Class) is
 8 begin
 9 D.Display;
10 end Dispatching_Display;
11
12begin
13 Dispatching_Display (D_Small);
14 Dispatching_Display (D_Big);
15end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Interfaces_1
MD5: 564eba158b2f8fc3efea9e892a21caa9

Runtime output

Using Small_Display_Type
Using Big_Display_Type

In this example, we have an interface type Display_Interface and two
tagged types that are derived from Display_Interface:
Small_Display_Type and Big_Display_Type.

Both types (Small_Display_Type and Big_Display_Type) implement
the interface by overriding the Display procedure. Then, in the inner
procedure Dispatching_Display of the Main procedure, we perform
a dispatching call depending on the actual type of D.

Deriving from multiple interfaces

We may derive a type from multiple interfaces by simply writing
type Derived_T is new T1 and T2 with null record. For example:

[Ada]

transceivers.ads

 1package Transceivers is
 2
 3 type Send_Interface is interface;
 4
 5 procedure Send (Obj : in out Send_Interface) is abstract;
 6
 7 type Receive_Interface is interface;
 8
 9 procedure Receive (Obj : in out Receive_Interface) is abstract;
10
11 type Transceiver is new Send_Interface and Receive_Interface
12 with null record;
13
14 procedure Send (D : in out Transceiver);
15 procedure Receive (D : in out Transceiver);
16
17end Transceivers;

transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Transceivers is
 4
 5 procedure Send (D : in out Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Sending data...");
 9 end Send;
10
11 procedure Receive (D : in out Transceiver) is
12 pragma Unreferenced (D);
13 begin
14 Put_Line ("Receiving data...");
15 end Receive;
16
17end Transceivers;

main.adb

1with Transceivers; use Transceivers;
2
3procedure Main is
4 D : Transceiver;
5begin
6 D.Send;
7 D.Receive;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: c81813941bd3458eaf7b1fd39b010a03

Runtime output

Sending data...
Receiving data...

In this example, we're declaring two interfaces (Send_Interface and
Receive_Interface) and the tagged type Transceiver that derives
from both interfaces. Since we need to implement the interfaces, we implement
both Send and Receive for Transceiver.

Abstract tagged types

We may also declare abstract tagged types. Note that, because the type is
abstract, we cannot use it to declare objects for it — this is the same
as for interfaces. We can only use it to derive other types. Let's look at the
abstract tagged type declared in the Abstract_Transceivers package:

[Ada]

abstract_transceivers.ads

 1with Transceivers; use Transceivers;
 2
 3 package Abstract_Transceivers is
 4
 5 type Abstract_Transceiver is abstract new Send_Interface and
 6 Receive_Interface with null record;
 7
 8 procedure Send (D : in out Abstract_Transceiver);
 9 -- We don't implement Receive for Abstract_Transceiver!
10
11 end Abstract_Transceivers;

abstract_transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3 package body Abstract_Transceivers is
 4
 5 procedure Send (D : in out Abstract_Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Sending data...");
 9 end Send;
10
11 end Abstract_Transceivers;

main.adb

1with Abstract_Transceivers; use Abstract_Transceivers;
2
3 procedure Main is
4 D : Abstract_Transceiver;
5 begin
6 D.Send;
7 D.Receive;
8 end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: c2b0b3aab1ffc9c3b9a0749bf6721088

Build output

main.adb:4:09: error: type of object cannot be abstract
main.adb:7:06: error: call to abstract procedure must be dispatching
gprbuild: *** compilation phase failed

In this example, we declare the abstract tagged type
Abstract_Transceiver. Here, we're only partially implementing the
interfaces from which this type is derived: we're implementing Send, but
we're skipping the implementation of Receive. Therefore, Receive
is an abstract operation of Abstract_Transceiver. Since any tagged type
that has abstract operations is abstract, we must indicate this by adding the
abstract keyword in type declaration.

Also, when compiling this example, we get an error because we're trying to
declare an object of Abstract_Transceiver (in the Main
procedure), which is not possible. Naturally, if we derive another type from
Abstract_Transceiver and implement Receive as well, then we can
declare objects of this derived type. This is what we do in the
Full_Transceivers below:

[Ada]

full_transceivers.ads

1with Abstract_Transceivers; use Abstract_Transceivers;
2
3package Full_Transceivers is
4
5 type Full_Transceiver is new Abstract_Transceiver with null record;
6 procedure Receive (D : in out Full_Transceiver);
7
8end Full_Transceivers;

full_transceivers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Full_Transceivers is
 4
 5 procedure Receive (D : in out Full_Transceiver) is
 6 pragma Unreferenced (D);
 7 begin
 8 Put_Line ("Receiving data...");
 9 end Receive;
10
11end Full_Transceivers;

main.adb

1with Full_Transceivers; use Full_Transceivers;
2
3procedure Main is
4 D : Full_Transceiver;
5begin
6 D.Send;
7 D.Receive;
8end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Multiple_Interfaces
MD5: 77a86a6d917547d306a89422e7522111

Runtime output

Sending data...
Receiving data...

Here, we implement the Receive procedure for the
Full_Transceiver. Therefore, the type doesn't have any abstract
operation, so we can use it to declare objects.

From simple derivation to OOP

In the section about simple derivation, we've seen an
example where the actual selection was done at implementation time by
renaming one of the packages:

[Ada]

with Drivers_1;

package Drivers renames Drivers_1;

Although this approach is useful in many cases, there might be situations where
we need to select the actual driver dynamically at runtime. Let's look at how
we could rewrite that example using interfaces, tagged types and dispatching
calls:

[Ada]

drivers_base.ads

1package Drivers_Base is
2
3 type Transceiver is interface;
4
5 procedure Send (Device : Transceiver; Data : Integer) is abstract;
6 procedure Receive (Device : Transceiver; Data : out Integer) is abstract;
7 procedure Display (Device : Transceiver) is abstract;
8
9end Drivers_Base;

drivers_1.ads

 1with Drivers_Base;
 2
 3package Drivers_1 is
 4
 5 type Transceiver is new Drivers_Base.Transceiver with null record;
 6
 7 procedure Send (Device : Transceiver; Data : Integer);
 8 procedure Receive (Device : Transceiver; Data : out Integer);
 9 procedure Display (Device : Transceiver);
10
11end Drivers_1;

drivers_1.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Drivers_1 is
 4
 5 procedure Send (Device : Transceiver; Data : Integer) is null;
 6
 7 procedure Receive (Device : Transceiver; Data : out Integer) is
 8 pragma Unreferenced (Device);
 9 begin
10 Data := 42;
11 end Receive;
12
13 procedure Display (Device : Transceiver) is
14 pragma Unreferenced (Device);
15 begin
16 Put_Line ("Using Drivers_1");
17 end Display;
18
19end Drivers_1;

drivers_2.ads

 1with Drivers_Base;
 2
 3package Drivers_2 is
 4
 5 type Transceiver is new Drivers_Base.Transceiver with null record;
 6
 7 procedure Send (Device : Transceiver; Data : Integer);
 8 procedure Receive (Device : Transceiver; Data : out Integer);
 9 procedure Display (Device : Transceiver);
10
11end Drivers_2;

drivers_2.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Drivers_2 is
 4
 5 procedure Send (Device : Transceiver; Data : Integer) is null;
 6
 7 procedure Receive (Device : Transceiver; Data : out Integer) is
 8 pragma Unreferenced (Device);
 9 begin
10 Data := 7;
11 end Receive;
12
13 procedure Display (Device : Transceiver) is
14 pragma Unreferenced (Device);
15 begin
16 Put_Line ("Using Drivers_2");
17 end Display;
18
19end Drivers_2;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Drivers_Base;
 4with Drivers_1;
 5with Drivers_2;
 6
 7procedure Main is
 8 D1 : aliased Drivers_1.Transceiver;
 9 D2 : aliased Drivers_2.Transceiver;
10 D : access Drivers_Base.Transceiver'Class;
11
12 I : Integer;
13
14 type Driver_Number is range 1 .. 2;
15
16 procedure Select_Driver (N : Driver_Number) is
17 begin
18 if N = 1 then
19 D := D1'Access;
20 else
21 D := D2'Access;
22 end if;
23 D.Display;
24 end Select_Driver;
25
26begin
27 Select_Driver (1);
28 D.Send (999);
29 D.Receive (I);
30 Put_Line (Integer'Image (I));
31
32 Select_Driver (2);
33 D.Send (999);
34 D.Receive (I);
35 Put_Line (Integer'Image (I));
36end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Tagged_Drivers
MD5: d823b7231f1adf003fb6f545cb482308

Runtime output

Using Drivers_1
 42
Using Drivers_2
 7

In this example, we declare the Transceiver interface in the
Drivers_Base package. This interface is then used to derive the tagged
types Transceiver from both Drivers_1 and Drivers_2
packages.

In the Main procedure, we use the access to Transceiver'Class
— from the interface declared in the Drivers_Base package —
to declare D. This object D contains the access to the actual
driver loaded at any specific time. We select the driver at runtime in the
inner Select_Driver procedure, which initializes D (with the
access to the selected driver). Then, any operation on D triggers a
dispatching call to the selected driver.

Further resources

In the appendices, we have a step-by-step
hands-on overview of object-oriented programming that
discusses how to translate a simple system written in C to an equivalent
system in Ada using object-oriented programming.

Pointer to subprograms

Pointers to subprograms allow us to dynamically select an appropriate
subprogram at runtime. This selection might be triggered by an external
event, or simply by the user. This can be useful when multiple versions of a
routine exist, and the decision about which one to use cannot be made at
compilation time.

This is an example on how to declare and use pointers to functions in C:

[C]

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4void show_msg_v1 (char *msg)
 5{
 6 printf("Using version #1: %s\n", msg);
 7}
 8
 9void show_msg_v2 (char *msg)
10{
11 printf("Using version #2:\n %s\n", msg);
12}
13
14int main()
15{
16 int selection = 1;
17 void (*current_show_msg) (char *);
18
19 switch (selection)
20 {
21 case 1: current_show_msg = &show_msg_v1; break;
22 case 2: current_show_msg = &show_msg_v2; break;
23 default: current_show_msg = NULL; break;
24 }
25
26 if (current_show_msg != NULL)
27 {
28 current_show_msg ("Hello there!");
29 }
30 else
31 {
32 printf("ERROR: no version of show_msg() selected!\n");
33 }
34
35 return 0;
36}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Selecting_Subprogram_C
MD5: 414c99fca2490611d20d031f8549ff59

Runtime output

Using version #1: Hello there!

The example above contains two versions of the show_msg() function:
show_msg_v1() and show_msg_v2(). The function is selected depending
on the value of selection, which initializes the function pointer
current_show_msg. If there's no corresponding value, current_show_msg
is set to null — alternatively, we could have selected a default
version of show_msg() function. By calling
current_show_msg ("Hello there!"), we're calling the function that
current_show_msg is pointing to.

This is the corresponding implementation in Ada:

[Ada]

show_subprogram_selection.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Subprogram_Selection is
 4
 5 procedure Show_Msg_V1 (Msg : String) is
 6 begin
 7 Put_Line ("Using version #1: " & Msg);
 8 end Show_Msg_V1;
 9
10 procedure Show_Msg_V2 (Msg : String) is
11 begin
12 Put_Line ("Using version #2: ");
13 Put_Line (Msg);
14 end Show_Msg_V2;
15
16 type Show_Msg_Proc is access procedure (Msg : String);
17
18 Current_Show_Msg : Show_Msg_Proc;
19 Selection : Natural;
20
21begin
22 Selection := 1;
23
24 case Selection is
25 when 1 => Current_Show_Msg := Show_Msg_V1'Access;
26 when 2 => Current_Show_Msg := Show_Msg_V2'Access;
27 when others => Current_Show_Msg := null;
28 end case;
29
30 if Current_Show_Msg /= null then
31 Current_Show_Msg ("Hello there!");
32 else
33 Put_Line ("ERROR: no version of Show_Msg selected!");
34 end if;
35
36end Show_Subprogram_Selection;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Selecting_Subprogram_Ada
MD5: ee41e042e3b879b4a2671bfe6d8072aa

Runtime output

Using version #1: Hello there!

The structure of the code above is very similar to the one used in the C code.
Again, we have two version of Show_Msg: Show_Msg_V1 and
Show_Msg_V2. We set Current_Show_Msg according to the value of
Selection. Here, we use 'Access to get access to the
corresponding procedure. If no version of Show_Msg is available, we set
Current_Show_Msg to null.

Pointers to subprograms are also typically used as callback functions. This
approach is extensively used in systems that process events, for example. Here,
we could have a two-layered system:

	A layer of the system (an event manager) triggers events depending on
information from sensors.

	For each event, callback functions can be registered.

	The event manager calls registered callback functions when an event is
triggered.

	Another layer of the system registers callback functions for specific events
and decides what to do when those events are triggered.

This approach promotes information hiding and component decoupling because:

	the layer of the system responsible for managing events doesn't need to know
what the callback function actually does, while

	the layer of the system that implements callback functions remains
agnostic to implementation details of the event manager — for example,
how events are implemented in the event manager.

Let's see an example in C where we have a process_values() function that
calls a callback function (process_one) to process a list of values:

[C]

process_values.h

1typedef int (*process_one_callback) (int);
2
3void process_values (int *values,
4 int len,
5 process_one_callback process_one);

process_values.c

 1#include "process_values.h"
 2
 3#include <assert.h>
 4#include <stdio.h>
 5
 6void process_values (int *values,
 7 int len,
 8 process_one_callback process_one)
 9{
10 int i;
11
12 assert (process_one != NULL);
13
14 for (i = 0; i < len; i++)
15 {
16 values[i] = process_one (values[i]);
17 }
18}

main.c

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4#include "process_values.h"
 5
 6int proc_10 (int val)
 7{
 8 return val + 10;
 9}
10
11# define LEN_VALUES 5
12
13int main()
14{
15
16 int values[LEN_VALUES] = { 1, 2, 3, 4, 5 };
17 int i;
18
19 process_values (values, LEN_VALUES, &proc_10);
20
21 for (i = 0; i < LEN_VALUES; i++)
22 {
23 printf("Value [%d] = %d\n", i, values[i]);
24 }
25
26 return 0;
27}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Callback_C
MD5: ff5c8611d0901f40b6c4a9effeb0a323

Runtime output

Value [0] = 11
Value [1] = 12
Value [2] = 13
Value [3] = 14
Value [4] = 15

As mentioned previously, process_values() doesn't have any knowledge about
what process_one() does with the integer value it receives as a parameter.
Also, we could replace proc_10() by another function without having to
change the implementation of process_values().

Note that process_values() calls an assert() for the function
pointer to compare it against null. Here, instead of checking the validity
of the function pointer, we're expecting the caller of process_values()
to provide a valid pointer.

This is the corresponding implementation in Ada:

[Ada]

values_processing.ads

 1package Values_Processing is
 2
 3 type Integer_Array is array (Positive range <>) of Integer;
 4
 5 type Process_One_Callback is not null access
 6 function (Value : Integer) return Integer;
 7
 8 procedure Process_Values (Values : in out Integer_Array;
 9 Process_One : Process_One_Callback);
10
11end Values_Processing;

values_processing.adb

 1package body Values_Processing is
 2
 3 procedure Process_Values (Values : in out Integer_Array;
 4 Process_One : Process_One_Callback) is
 5 begin
 6 for I in Values'Range loop
 7 Values (I) := Process_One (Values (I));
 8 end loop;
 9 end Process_Values;
10
11end Values_Processing;

proc_10.ads

1function Proc_10 (Value : Integer) return Integer;

proc_10.adb

1function Proc_10 (Value : Integer) return Integer is
2begin
3 return Value + 10;
4end Proc_10;

show_callback.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Values_Processing; use Values_Processing;
 4with Proc_10;
 5
 6procedure Show_Callback is
 7 Values : Integer_Array := (1, 2, 3, 4, 5);
 8begin
 9 Process_Values (Values, Proc_10'Access);
10
11 for I in Values'Range loop
12 Put_Line ("Value ["
13 & Positive'Image (I)
14 & "] = "
15 & Integer'Image (Values (I)));
16 end loop;
17end Show_Callback;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.Callback_Ada
MD5: f49c54f0d14193d305c0e962a392ab67

Runtime output

Value [1] = 11
Value [2] = 12
Value [3] = 13
Value [4] = 14
Value [5] = 15

Similar to the implementation in C, the Process_Values procedure
receives the access to a callback routine, which is then called for each value
of the Values array.

Note that the declaration of Process_One_Callback makes use of the
not null access declaration. By using this approach, we ensure that
any parameter of this type has a valid value, so we can always call the
callback routine.

Design by components using dynamic libraries

In the previous sections, we have shown how to use packages to create separate
components of a system. As we know, when designing a complex system, it is
advisable to separate concerns into distinct units, so we can use Ada packages
to represent each unit of a system. In this section, we go one step further and
create separate dynamic libraries for each component, which we'll then link to
the main application.

Let's suppose we have a main system (Main_System) and a
component A (Component_A) that we want to use in the main system. For
example:

[Ada]

component_a.ads

 1--
 2-- File: component_a.ads
 3--
 4package Component_A is
 5
 6 type Float_Array is array (Positive range <>) of Float;
 7
 8 function Average (Data : Float_Array) return Float;
 9
10end Component_A;

component_a.adb

 1--
 2-- File: component_a.adb
 3--
 4package body Component_A is
 5
 6 function Average (Data : Float_Array) return Float is
 7 Total : Float := 0.0;
 8 begin
 9 for Value of Data loop
10 Total := Total + Value;
11 end loop;
12 return Total / Float (Data'Length);
13 end Average;
14
15end Component_A;

main_system.adb

 1--
 2-- File: main_system.adb
 3--
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6with Component_A; use Component_A;
 7
 8procedure Main_System is
 9 Values : constant Float_Array := (10.0, 11.0, 12.0, 13.0);
10 Average_Value : Float;
11begin
12 Average_Value := Average (Values);
13 Put_Line ("Average = " & Float'Image (Average_Value));
14end Main_System;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Reusability.System_For_Dyn_Lib
MD5: d759132b787e636d4bcd5f8cd6393f2a

Runtime output

Average = 1.15000E+01

Note that, in the source-code example above, we're indicating the name of each
file. We'll now see how to organize those files in a structure that is suitable
for the GNAT build system (GPRbuild).

In order to discuss how to create dynamic libraries, we need to dig into some
details about the build system. With GNAT, we can use project files for
GPRbuild to easily design dynamic libraries. Let's say we use the
following directory structure for the code above:

|- component_a
| | component_a.gpr
| |- src
| | | component_a.adb
| | | component_a.ads
|- main_system
| | main_system.gpr
| |- src
| | | main_system.adb

Here, we have two directories: component_a and main_system. Each directory
contains a project file (with the .gpr file extension) and a source-code
directory (src).

In the source-code example above, we've seen the content of files
component_a.ads, component_a.adb and main_system.adb.
Now, let's discuss how to write the project file for Component_A
(component_a.gpr), which will build the dynamic library for this
component:

library project Component_A is

 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Create_Missing_Dirs use "True";
 for Library_Name use "component_a";
 for Library_Kind use "dynamic";
 for Library_Dir use "lib";

end Component_A;

The project is defined as a library project instead of project. This tells
GPRbuild to build a library instead of an executable binary. We then
specify the library name using the Library_Name attribute, which is required,
so it must appear in a library project. The next two library-related attributes
are optional, but important for our use-case. We use:

	Library_Kind to specify that we want to create a dynamic library —
by default, this attribute is set to static;

	Library_Dir to specify the directory where the library is stored.

In the project file of our main system (main_system.gpr), we just need
to reference the project of Component_A using a with clause and
indicating the correct path to that project file:

with "../component_a/component_a.gpr";

project Main_System is
 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Create_Missing_Dirs use "True";
 for Main use ("main_system.adb");
end Main_System;

GPRbuild takes care of selecting the correct settings to link the
dynamic library created for Component_A with the main application
(Main_System) and build an executable.

We can use the same strategy to create a Component_B and dynamically
link to it in the Main_System. We just need to create the separate
structure for this component — with the appropriate Ada packages and
project file — and include it in the project file of the main system
using a with clause:

with "../component_a/component_a.gpr";
with "../component_b/component_b.gpr";

...

Again, GPRbuild takes care of selecting the correct settings to link
both dynamic libraries together with the main application.

You can find more details and special setting for library projects in the
GPRbuild documentation[#2].

In the GNAT toolchain

The GNAT toolchain includes a more advanced example focusing on how to load
dynamic libraries at runtime. You can find it in the
share/examples/gnat/plugins directory of the GNAT toolchain
installation. As described in the README file from that directory, this
example "comprises a main program which probes regularly for the existence
of shared libraries in a known location. If such libraries are present, it
uses them to implement features initially not present in the main program."

Footnotes

[#1]
http://www.ada-auth.org/standards/12rm/html/RM-H-4.html

[#2]
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug/gnat_project_manager.html#library-projects

Performance considerations

Overall expectations

All in all, there should not be significant performance differences between
code written in Ada and code written in C, provided that they are semantically
equivalent. Taking the current GNAT implementation and its GCC C counterpart
for example, most of the code generation and optimization phases are shared
between C and Ada — so there's not one compiler more efficient than the
other. Furthermore, the two languages are fairly similar in the way they
implement imperative semantics, in particular with regards to memory management
or control flow. They should be equivalent on average.

When comparing the performance of C and Ada code, differences might be
observed. This usually comes from the fact that, while the two piece appear
semantically equivalent, they happen to be actually quite different; C code
semantics do not implicitly apply the same run-time checks that Ada does.
This section will present common ways for improving Ada code performance.

Switches and optimizations

Clever use of compilation switches might optimize the performance of an
application significantly. In this section, we'll briefly look into some of
the switches available in the GNAT toolchain.

Optimizations levels

Optimization levels can be found in many compilers for multiple languages. On
the lowest level, the GNAT compiler doesn't optimize the code at all, while at
the higher levels, the compiler analyses the code and optimizes it by removing
unnecessary operations and making the most use of the target processor's
capabilities.

By being part of GCC, GNAT offers the same -O_ switches as GCC:

	Switch

	Description

	-O0

	No optimization: the generated code is completely
unoptimized. This is the default optimization level.

	-O1

	Moderate optimization.

	-O2

	Full optimization.

	-O3

	Same optimization level as for -O2. In addition, further
optimization strategies, such as aggressive automatic
inlining and vectorization.

Note that the higher the level, the longer the compilation time. For
fast compilation during development phase, unless you're working on
benchmarking algorithms, using -O0 is probably a good idea.

In addition to the levels presented above, GNAT also has the -Os switch,
which allows for optimizing code and data usage.

Inlining

As we've seen in the previous section, automatic inlining depends on the
optimization level. The highest optimization level (-O3), for example,
performs aggressive automatic inlining. This could mean that this level inlines
too much rather than not enough. As a result, the cache may become an issue and
the overall performance may be worse than the one we would achieve by compiling
the same code with optimization level 2 (-O2). Therefore, the general
recommendation is to not just select -O3 for the optimized version of an
application, but instead compare it the optimized version built with -O2.

In some cases, it's better to reduce the optimization level and perform manual
inlining instead of automatic inlining. We do that by using the Inline
aspect. Let's reuse an example from a previous chapter and inline the
Average function:

[Ada]

float_arrays.ads

1package Float_Arrays is
2
3 type Float_Array is array (Positive range <>) of Float;
4
5 function Average (Data : Float_Array) return Float
6 with Inline;
7
8end Float_Arrays;

float_arrays.adb

 1package body Float_Arrays is
 2
 3 function Average (Data : Float_Array) return Float is
 4 Total : Float := 0.0;
 5 begin
 6 for Value of Data loop
 7 Total := Total + Value;
 8 end loop;
 9 return Total / Float (Data'Length);
10 end Average;
11
12end Float_Arrays;

compute_average.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Arrays; use Float_Arrays;
 4
 5procedure Compute_Average is
 6 Values : constant Float_Array := (10.0, 11.0, 12.0, 13.0);
 7 Average_Value : Float;
 8begin
 9 Average_Value := Average (Values);
10 Put_Line ("Average = " & Float'Image (Average_Value));
11end Compute_Average;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Inlining
MD5: faf9d0d8cd5aefd7a48bcd950b1256fa

Runtime output

Average = 1.15000E+01

When compiling this example, GNAT will inline Average in the
Compute_Average procedure.

In order to effectively use this aspect, however, we need to set the
optimization level to at least -O1 and use the -gnatn switch, which
instructs the compiler to take the Inline aspect into account.

Note, however, that the Inline aspect is just a recommendation to the
compiler. Sometimes, the compiler might not be able to follow this
recommendation, so it won't inline the subprogram. In this case, we get a
compilation warning from GNAT.

These are some examples of situations where the compiler might not be able to
inline a subprogram:

	when the code is too large,

	when it's too complicated — for example, when it involves exception
handling —, or

	when it contains tasks, etc.

In addition to the Inline aspect, we also have the Inline_Always
aspect. In contrast to the former aspect, however, the Inline_Always
aspect isn't primarily related to performance. Instead, it should be used when
the functionality would be incorrect if inlining was not performed by the
compiler. Examples of this are procedures that insert Assembly instructions
that only make sense when the procedure is inlined, such as memory barriers.

Similar to the Inline aspect, there might be situations where a
subprogram has the Inline_Always aspect, but the compiler is unable to
inline it. In this case, we get a compilation error from GNAT.

Checks and assertions

Checks

Ada provides many runtime checks to ensure that the implementation is working
as expected. For example, when accessing an array, we would like to make sure
that we're not accessing a memory position that is not allocated for that
array. This is achieved by an index check.

Another example of runtime check is the verification of valid ranges. For
example, when adding two integer numbers, we would like to ensure that the
result is still in the valid range — that the value is neither too large
nor too small. This is achieved by an range check. Likewise, arithmetic operations
shouldn't overflow or underflow. This is achieved by an overflow check.

Although runtime checks are very useful and should be used as much as possible,
they can also increase the overhead of implementations at certain hot-spots.
For example, checking the index of an array in a sorting algorithm may
significantly decrease its performance. In those cases, suppressing the check
may be an option. We can achieve this suppression by using
pragma Suppress (Index_Check). For example:

[Ada]

procedure Sort (A : in out Integer_Array) is
 pragma Suppress (Index_Check);
begin
 -- (implementation removed...)
 null;
end Sort;

In case of overflow checks, we can use pragma Suppress (Overflow_Check)
to suppress them:

function Some_Computation (A, B : Int32) return Int32 is
 pragma Suppress (Overflow_Check);
begin
 -- (implementation removed...)
 null;
end Sort;

We can also deactivate overflow checks for integer types using the -gnato
switch when compiling a source-code file with GNAT. In this case, overflow
checks in the whole file are deactivated.

It is also possible to suppress all checks at once using
pragma Suppress (All_Checks). In addition, GNAT offers a compilation
switch called -gnatp, which has the same effect on the whole file.

Note, however, that this kind of suppression is just a recommendation to the
compiler. There's no guarantee that the compiler will actually suppress any of
the checks because the compiler may not be able to do so — typically
because the hardware happens to do it. For example, if the machine traps on any
access via address zero, requesting the removal of null access value checks in
the generated code won't prevent the checks from happening.

It is important to differentiate between required and redundant checks. Let's
consider the following example in C:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 8, b = 0, res;
 6
 7 res = a / b;
 8
 9 // printing the result
10 printf("res = %d\n", res);
11
12 return 0;
13}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_C
MD5: c8d95cbdd76618108119886c27ce7eb6

Because C doesn't have language-defined checks, as soon as the application
tries to divide a value by zero in res = a / b, it'll break — on
Linux, for example, you may get the following error message by the operating
system: Floating point exception (core dumped). Therefore, we need to
manually introduce a check for zero before this operation. For example:

[C]

main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5 int a = 8, b = 0, res;
 6
 7 if (b != 0) {
 8 res = a / b;
 9
10 // printing the result
11 printf("res = %d\n", res);
12 }
13 else
14 {
15 // printing error message
16 printf("Error: cannot calculate value (division by zero)\n");
17 }
18
19 return 0;
20}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Check_C
MD5: 67ea0140d8248674b4aac06825c7cdbe

Runtime output

Error: cannot calculate value (division by zero)

This is the corresponding code in Ada:

[Ada]

show_division_by_zero.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Division_By_Zero is
 4 A : Integer := 8;
 5 B : Integer := 0;
 6 Res : Integer;
 7begin
 8 Res := A / B;
 9
10 Put_Line ("Res = " & Integer'Image (Res));
11end Show_Division_By_Zero;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Ada
MD5: 2af6690eb977203ef7ce2178d15255af

Build output

show_division_by_zero.adb:8:15: warning: division by zero [enabled by default]
show_division_by_zero.adb:8:15: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_division_by_zero.adb:8 divide by zero

Similar to the first version of the C code, we're not explicitly checking for a
potential division by zero here. In Ada, however, this check is automatically
inserted by the language itself. When running the application above, an
exception is raised when the application tries to divide the value in A
by zero. We could introduce exception handling in our example, so that we get
the same message as we did in the second version of the C code:

[Ada]

show_division_by_zero.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Division_By_Zero is
 4 A : Integer := 8;
 5 B : Integer := 0;
 6 Res : Integer;
 7begin
 8 Res := A / B;
 9
10 Put_Line ("Res = " & Integer'Image (Res));
11exception
12 when Constraint_Error =>
13 Put_Line ("Error: cannot calculate value (division by zero)");
14 when others =>
15 null;
16end Show_Division_By_Zero;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Division_By_Zero_Check_Ada
MD5: a96a94c15fda5f6c5feb232d615b1ea3

Build output

show_division_by_zero.adb:8:15: warning: division by zero [enabled by default]
show_division_by_zero.adb:8:15: warning: Constraint_Error will be raised at run time [enabled by default]

Runtime output

Error: cannot calculate value (division by zero)

This example demonstrates that the division check for Res := A / B is
required and shouldn't be suppressed. In contrast, a check is redundant —
and therefore not required — when we know that the condition that leads
to a failure can never happen. In many cases, the compiler itself detects
redundant checks and eliminates them (for higher optimization levels).
Therefore, when improving the performance of your application, you should:

	keep all checks active for most parts of the application;

	identify the hot-spots of your application;

	identify which checks haven't been eliminated by the optimizer on these
hot-spots;

	identify which of those checks are redundant;

	only suppress those checks that are redundant, and keep the required ones.

Assertions

We've already discussed assertions in
this section of the SPARK chapter.
Assertions are user-defined checks that you can add to your code using the
pragma Assert. For example:

[Ada]

function Some_Computation (A, B : Int32) return Int32 is
 Res : Int32;
begin
 -- (implementation removed...)

 pragma Assert (Res >= 0);

 return Res;
end Sort;

Assertions that are specified with pragma Assert are not enabled by
default. You can enable them by setting the assertion policy to check —
using pragma Assertion_Policy (Check) — or by using the -gnata
switch when compiling with GNAT.

Similar to the checks discussed previously, assertions can generate significant
overhead when used at hot-spots. Restricting those assertions to development
(e.g. debug version) and turning them off on the release version may be an
option. In this case, formal proof — as discussed in the
SPARK chapter — can help you. By formally proving that
assertions will never fail at run-time, you can safely deactivate them.

Dynamic vs. static structures

Ada generally speaking provides more ways than C or C++ to write simple dynamic
structures, that is to say structures that have constraints computed after
variables. For example, it's quite typical to have initial values in record
types:

[Ada]

type R is record
 F : Some_Field := Call_To_Some_Function;
end record;

However, the consequences of the above is that any declaration of a instance of
this type without an explicit value for F will issue a call to
Call_To_Some_Function. More subtle issue may arise with elaboration. For
example, it's possible to write:

some_functions.ads

1package Some_Functions is
2
3 function Some_Function_Call return Integer is (2);
4
5 function Some_Other_Function_Call return Integer is (10);
6
7end Some_Functions;

values.ads

1with Some_Functions; use Some_Functions;
2
3package Values is
4 A_Start : Integer := Some_Function_Call;
5 A_End : Integer := Some_Other_Function_Call;
6end Values;

arr_def.ads

1with Values; use Values;
2
3package Arr_Def is
4 type Arr is array (Integer range A_Start .. A_End) of Integer;
5end Arr_Def;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Dynamic_Array
MD5: 0c97cecb64d27e935724c8b5f941fb4f

It may indeed be appealing to be able to change the values of A_Start
and A_End at startup so as to align a series of arrays dynamically. The
consequence, however, is that these values will not be known statically, so any
code that needs to access to boundaries of the array will need to read data
from memory. While it's perfectly fine most of the time, there may be
situations where performances are so critical that static values for array
boundaries must be enforced.

Here's a last case which may also be surprising:

[Ada]

arr_def.ads

1package Arr_Def is
2 type Arr is array (Integer range <>) of Integer;
3
4 type R (D1, D2 : Integer) is record
5 F1 : Arr (1 .. D1);
6 F2 : Arr (1 .. D2);
7 end record;
8end Arr_Def;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Record_With_Arrays
MD5: e7b2656433279d36db87506276b68398

In the code above, R contains two arrays, F1 and F2,
respectively constrained by the discriminant D1 and D2. The
consequence is, however, that to access F2, the run-time needs to know
how large F1 is, which is dynamically constrained when creating an
instance. Therefore, accessing to F2 requires a computation involving
D1 which is slower than, let's say, two pointers in an C array that
would point to two different arrays.

Generally speaking, when values are used in data structures, it's useful to
always consider where they're coming from, and if their value is static
(computed by the compiler) or dynamic (only known at run-time). There's nothing
fundamentally wrong with dynamically constrained types, unless they appear in
performance-critical pieces of the application.

Pointers vs. data copies

In the section about pointers, we mentioned that the
Ada compiler will automatically pass parameters by reference when
needed. Let's look into what "when needed" means. The fundamental point
to understand is that the parameter types determine how the parameters
are passed in and/or out. The parameter modes do not control how parameters
are passed.

Specifically, the language standards specifies that scalar types are
always passed by value, and that some other types are always passed by
reference. It would not make sense to make a copy of a task when passing
it as a parameter, for example. So parameters that can be passed
reasonably by value will be, and those that must be passed by reference
will be. That's the safest approach.

But the language also specifies that when the parameter is an array type
or a record type, and the record/array components are all by-value
types, then the compiler decides: it can pass the parameter using either
mechanism. The critical case is when such a parameter is large, e.g., a
large matrix. We don't want the compiler to pass it by value because
that would entail a large copy, and indeed the compiler will not do so.
But if the array or record parameter is small, say the same size as an
address, then it doesn't matter how it is passed and by copy is just as
fast as by reference. That's why the language gives the choice to the
compiler. Although the language does not mandate that large parameters
be passed by reference, any reasonable compiler will do the right thing.

The modes do have an effect, but not in determining how the parameters
are passed. Their effect, for parameters passed by value, is to
determine how many times the value is copied. For mode in and
mode out there is just one copy. For mode in out there
will be two copies, one in each direction.

Therefore, unlike C, you don't have to use access types in Ada to get
better performance when passing arrays or records to subprograms. The
compiler will almost certainly do the right thing for you.

Let's look at this example:

[C]

main.c

 1#include <stdio.h>
 2
 3struct Data {
 4 int prev, curr;
 5};
 6
 7void update(struct Data *d,
 8 int v)
 9{
10 d->prev = d->curr;
11 d->curr = v;
12}
13
14void display(const struct Data *d)
15{
16 printf("Prev : %d\n", d->prev);
17 printf("Curr : %d\n", d->curr);
18}
19
20int main(int argc, const char * argv[])
21{
22 struct Data D1 = { 0, 1 };
23
24 update (&D1, 3);
25 display (&D1);
26
27 return 0;
28}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Rec_By_Reference_C
MD5: 9087e26168e49d095b5e0776d6330d69

Runtime output

Prev : 1
Curr : 3

In this C code example, we're using pointers to pass D1 as a reference to
update and display. In contrast, the equivalent code in Ada simply
uses the parameter modes to specify the data flow directions. The mechanisms
used to pass the values do not appear in the source code.

[Ada]

update_record.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Update_Record is
 4
 5 type Data is record
 6 Prev : Integer;
 7 Curr : Integer;
 8 end record;
 9
10 procedure Update (D : in out Data;
11 V : Integer) is
12 begin
13 D.Prev := D.Curr;
14 D.Curr := V;
15 end Update;
16
17 procedure Display (D : Data) is
18 begin
19 Put_Line ("Prev: " & Integer'Image (D.Prev));
20 Put_Line ("Curr: " & Integer'Image (D.Curr));
21 end Display;
22
23 D1 : Data := (0, 1);
24
25begin
26 Update (D1, 3);
27 Display (D1);
28end Update_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Rec_By_Reference_Ada
MD5: 6c64fb73e2cf490c0a129f0cd73c190b

Runtime output

Prev: 1
Curr: 3

In the calls to Update and Display, D1 is always be passed
by reference. Because no extra copy takes place, we get a performance that is
equivalent to the C version. If we had used arrays in the example above,
D1 would have been passed by reference as well:

[Ada]

update_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Update_Array is
 4
 5 type Data_State is (Prev, Curr);
 6 type Data is array (Data_State) of Integer;
 7
 8 procedure Update (D : in out Data;
 9 V : Integer) is
10 begin
11 D (Prev) := D (Curr);
12 D (Curr) := V;
13 end Update;
14
15 procedure Display (D : Data) is
16 begin
17 Put_Line ("Prev: " & Integer'Image (D (Prev)));
18 Put_Line ("Curr: " & Integer'Image (D (Curr)));
19 end Display;
20
21 D1 : Data := (0, 1);
22
23begin
24 Update (D1, 3);
25 Display (D1);
26end Update_Array;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Passing_Array_By_Reference_Ada
MD5: 5fb27811f34543fc4150eb4fddbe7034

Runtime output

Prev: 1
Curr: 3

Again, no extra copy is performed in the calls to Update and
Display, which gives us optimal performance when dealing with arrays and
avoids the need to use access types to optimize the code.

Function returns

Previously, we've discussed the cost of passing complex records as
arguments to subprograms. We've seen that we don't have to use explicit
access type parameters to get better performance in Ada. In this
section, we'll briefly discuss the cost of function returns.

In general, we can use either procedures or functions to initialize a
data structure. Let's look at this example in C:

[C]

main.c

 1#include <stdio.h>
 2
 3struct Data {
 4 int prev, curr;
 5};
 6
 7void init_data(struct Data *d)
 8{
 9 d->prev = 0;
10 d->curr = 1;
11}
12
13struct Data get_init_data()
14{
15 struct Data d = { 0, 1 };
16
17 return d;
18}
19
20int main(int argc, const char * argv[])
21{
22 struct Data D1;
23
24 D1 = get_init_data();
25
26 init_data(&D1);
27
28 return 0;
29}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Rec_Proc_And_Func_C
MD5: 0586636d5e25c0d6bec2257af75ae998

This code example contains two subprograms that initialize the Data
structure:

	init_data(), which receives the data structure as a reference (using
a pointer) and initializes it, and

	get_init_data(), which returns the initialized structure.

In C, we generally avoid implementing functions such as get_init_data()
because of the extra copy that is needed for the function return.

This is the corresponding implementation in Ada:

[Ada]

init_record.adb

 1procedure Init_Record is
 2
 3 type Data is record
 4 Prev : Integer;
 5 Curr : Integer;
 6 end record;
 7
 8 procedure Init (D : out Data) is
 9 begin
10 D := (Prev => 0, Curr => 1);
11 end Init;
12
13 function Init return Data is
14 D : constant Data := (Prev => 0, Curr => 1);
15 begin
16 return D;
17 end Init;
18
19 D1 : Data;
20
21 pragma Unreferenced (D1);
22begin
23 D1 := Init;
24
25 Init (D1);
26end Init_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Rec_Proc_And_Func_Ada
MD5: 0f930eea432a82d78840b72c0714b283

Build output

init_record.adb:25:10: warning: pragma Unreferenced given for "D1" [enabled by default]

In this example, we have two versions of Init: one using a
procedural form, and the other one using a functional form. Note that,
because of Ada's support for subprogram overloading, we can use the same
name for both subprograms.

The issue is that assignment of a function result entails a copy, just
as if we assigned one variable to another. For example, when assigning a
function result to a constant, the function result is copied into the
memory for the constant. That's what is happening in the above examples
for the initialized variables.

Therefore, in terms of performance, the same recommendations apply: for
large types we should avoid writing functions like the Init
function above. Instead, we should use the procedural form of
Init. The reason is that the compiler necessarily generates a
copy for the Init function, while the Init procedure uses
a reference for the output parameter, so that the actual record
initialization is performed in place in the caller's argument.

An exception to this is when we use functions returning values of
limited types, which by definition do not allow assignment. Here, to
avoid allowing something that would otherwise look suspiciously like an
assignment, the compiler generates the function body so that it builds
the result directly into the object being assigned. No copy takes place.

We could, for example, rewrite the example above using limited types:

[Ada]

init_limited_record.adb

 1procedure Init_Limited_Record is
 2
 3 type Data is limited record
 4 Prev : Integer;
 5 Curr : Integer;
 6 end record;
 7
 8 function Init return Data is
 9 begin
10 return D : Data do
11 D.Prev := 0;
12 D.Curr := 1;
13 end return;
14 end Init;
15
16 D1 : Data := Init;
17
18 pragma Unreferenced (D1);
19begin
20 null;
21end Init_Limited_Record;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.Performance.Init_Lim_Rec_Proc_And_Func_Ada
MD5: 57fc1b3f69b42dd4633b0c67e252c2d2

In this example, D1 : Data := Init; has the same cost as the call to the
procedural form — Init (D1); — that we've seen in the
previous example. This is because the assignment is done in place.

Note that limited types require the use of the extended return statements
(return ... do ... end return) in function implementations. Also note
that, because the Data type is limited, we can only use the Init
function in the declaration of D1; a statement in the code such as
D1 := Init; is therefore forbidden.

Footnotes

Argumentation and Business Perspectives

The technical benefits of a migration from C to Ada are usually relatively
straightforward to demonstrate. Hopefully, this course provides a good basis
for it. However, when faced with an actual business decision to make,
additional considerations need to be taken into account, such as return on
investment, perennity of the solution, tool support, etc. This section will
cover a number of usual questions and provide elements of answers.

What's the expected ROI of a C to Ada transition?

Switching from one technology to another is a cost, may that be in terms of
training, transition of the existing environment or acquisition of new tools.
This investment needs to be matched with an expected return on investment, or
ROI, to be consistent. Of course, it's incredibly difficult to provide a firm
answer to how much money can be saved by transitioning, as this is highly
dependent on specific project objectives and constraints. We're going to
provide qualitative and quantitative arguments here, from the perspective of a
project that has to reach a relatively high level of integrity, that is to say
a system where the occurrence of a software failure is a relatively costly
event.

From a qualitative standpoint, there are various times in the software
development life cycle where defects can be found:

	on the developer's desk

	during component testing

	during integration testing

	after deployment

	during maintenance

Numbers from studies vary greatly on the relative costs of defects found at
each of these phases, but there's a clear ordering between them. For example,
a defect found while developing is orders of magnitude less expensive to fix
than a defect found e.g. at integration time, which may involve costly
debugging sessions and slow down the entire system acceptance. The whole
purpose of Ada and SPARK is to push defect detection to the developer's desk as
much as possible; at least for all of these defects that can be identified at
that level. While the strict act of writing software may be taking more effort
because of all of the additional safeguards, this should have a significant and
positive impact down the line and help to control costs overall. The exact
value this may translate into is highly business dependent.

From a quantitative standpoint, two studies have been done almost 25 years
apart and provide similar insights:

	Rational Software in 1995 found that the cost of developing software in Ada
was overall half as much as the cost of developing software in C.

	VDC ran a study in 2018, finding that the cost savings of developing with Ada
over C ranged from 6% to 38% in savings.

From a qualitative standpoint, in particular with regards to Ada and C from a
formal proof perspective, an interesting presentation was made in 2017 by two
researchers. They tried to apply formal proof on the same piece of code,
developed in Ada/SPARK on one end and C/Frama-C on the other. Their results
indicate that the Ada/SPARK technology is indeed more conducive to formal proof
methodologies.

Although all of these studies have their own biases, they provide a good idea
of what to expect in terms of savings once the initial investment in switching
to Ada is made. This is assuming everything else is equal, in particular that
the level of integrity is the same. In many situations, the migration to Ada is
justified by an increase in terms of integrity expectations, in which case it's
expected that development costs will rise (it's more expensive to develop
better software) and Ada is viewed as a means to mitigate this rise in
development costs.

That being said, the point of this argument is not to say that it's not
possible to write very safe and secure software with languages different than
Ada. With the right expertise, the right processes and the right tools, it's
done every day. The point is that Ada overall reduces the level of processes,
expertise and tools necessary and will allow to reach the same target at a
lower cost.

Who is using Ada today?

Ada was initially born as a DoD project, and thus got its initial customer base
in aerospace and defence (A&D). At the time these lines are written and from
the perspective of AdaCore, A&D is still the largest consumer of Ada today and
covers about 70% of the market. This creates a consistent and long lasting set
of established users as these project last often for decades, using the same
codebase migrating from platform to platform.

More recently however, there has been an emerging interest for Ada in new
communities of users such as automotive, medical device, industrial automation
and overall cyber-security. This can probably be explained by a rise of safety,
reliability and cyber-security requirements. The market is moving relatively
rapidly today and we're anticipating an increase of the Ada footprint in these
domains, while still remaining a technology of choice for the development of
mission critical software.

What is the future of the Ada technology?

The first piece of the answer lies in the user base of the Ada language, as
seen in the previous question. Projects using Ada in the aerospace and defence
domain maintain source code over decades, providing healthy funding foundation
for Ada-based technologies.

AdaCore being the author of this course, it's difficult for us to be fair in
our description of other Ada compilation technologies. We will leave to the
readers the responsibility of forging their own opinion. If they present a
credible alternative to the GNAT compiler, then this whole section can be
considered as void.

Assuming GNAT is the only option available, and acknowledging that this is an
argument that we're hearing from a number of Ada adopters, let's discuss the
"sole source" issue.

First of all, it's worth noting that industries are using a lot of software
that is provided by only one source, so while non-ideal, these
situations are also quite common.

In the case of the GNAT compiler however, while AdaCore is the main maintainer,
this maintenance is done as part of an open-source community. This means that
nothing prevents a third party to start selling a competing set of products
based on the same compiler, provided that it too adopts the open-source
approach. Our job is to be more cost-effective than the alternative, and indeed
for the vast part this has prevented a competing offering to emerge. However,
should AdaCore disappear or switch focus, Ada users would not be prevented from
carrying on using its software (there is no lock) and a third party could take
over maintenance. This is not a theoretical case, this has been done in the
past either by companies looking at supporting their own version of GNAT,
vendors occupying a specific niche that was left uncovered , or hobbyists
developing their own builds.

With that in mind, it's clear that the "sole source" provider issue is a
circumstantial — nothing is preventing other vendors from emerging if the
conditions are met.

Is the Ada toolset complete?

A language by itself is of little use for the development of safety-critical
software. Instead, a complete toolset is needed to accompany the development
process, in particular tools for edition, testing, static analysis, etc.

AdaCore provides a number of these tools either in through its core or add-on
package. These include (as of 2019):

	An IDE (GNAT Studio)

	An Eclipse plug-in (GNATbench)

	A debugger (GDB)

	A testing tool (GNATtest)

	A structural code coverage tool (GNATcoverage)

	A metric computation tool (GNATmetric)

	A coding standard checker (GNATcheck)

	Static analysis tools (CodePeer, SPARK Pro)

	A Simulink code generator (QGen)

	An Ada parser to develop custom tools (libadalang)

Ada is, however, an internationally standardized language, and many companies
are providing third party solutions to complete the toolset. Overall, the
language can be and is used with tools on par with their equivalent C
counterparts.

Where can I find Ada or SPARK developers?

A common question from teams on the verge of selecting Ada and SPARK is how to
manage the developer team growth and turnover. While Ada and SPARK are taught
by a growing number of universities worldwide, it may still be challenging to
hire new staff with prior Ada experience.

Fortunately, Ada's base semantics are very close to those of C/C++, so that a
good embedded software developer should be able to learn it relatively easily.
This course is definitely a resource available to get started. Online training
material is also available, together with on-site in person training.

In general, getting an engineer operational in Ada and SPARK shouldn't take
more than a few weeks worth of time.

How to introduce Ada and SPARK in an existing code base?

The most common scenario when introducing Ada and SPARK to a project or a team
is to do it within a pre-existing C codebase, which can already spread over
hundreds of thousands if not millions lines of code. Re-writing this software
to Ada or SPARK is of course not practical and counterproductive.

Most teams select either a small piece of existing code which deserves
particular attention, or new modules to develop, and concentrate on this.
Developing this module or part of the application will also help in developing
the coding patterns to be used for the particular project and company. This
typically concentrates an effort of a few people on a few thousands lines of
code. The resulting code can be linked to the rest of the C application.
From there, the newly established practices and their benefit can slowly
spread through the rest of the environment.

Establishing this initial core in Ada and SPARK is critical, and while learning
the language isn't a particularly difficult task, applying it to its full
capacity may require some expertise. One possibility to accelerate this initial
process is to use AdaCore mentorship services.

Footnotes

Conclusion

Although Ada's syntax might seem peculiar to C developers at first glance, it
was designed to increase readability and maintainability, rather than making it
faster to write in a condensed manner — as it is often the case in C.

Especially in the embedded domain, C developers are used to working at a very
low level, which includes mathematical operations on pointers, complex bit
shifts, and logical bitwise operations. C is well designed for such operations
because it was designed to replace Assembly language for faster, more efficient
programming.

Ada can be used to describe high level semantics and architectures. The beauty
of the language, however, is that it can be used all the way down to the lowest
levels of the development, including embedded Assembly code or bit-level data
management. However, although Ada supports bitwise operations such as masks and
shifts, they should be relatively rarely needed. When translating C code to
Ada, it's good practice to consider alternatives. In a lot of cases, these
operations are used to insert several pieces of data into a larger structure.
In Ada, this can be done by describing the structure layout at the type level
through representation clauses, and then accessing this structure as any other.
For example, we can interpret an arbitrary data type as a bit-field and perform
low-level operations on it.

Because Ada is a strongly typed language, it doesn't define any implicit type
conversions like C. If we try to compile Ada code that contains type
mismatches, we'll get a compilation error. Because the compiler prevents
mixing variables of different types without explicit type conversion, we can't
accidentally end up in a situation where we assume something will happen
implicitly when, in fact, our assumption is incorrect. In this sense, Ada's
type system encourages programmers to think about data at a high level of
abstraction. Ada supports overlays and unchecked conversions as a way of
converting between unrelated data type, which are typically used for
interfacing with low-level elements such as registers.

In Ada, arrays aren't interchangeable with operations on pointers like in C.
Also, array types are considered first-class citizens and have dedicated
semantics such as the availability of the array's boundaries at run-time.
Therefore, unhandled array overflows are impossible unless checks are
suppressed. Any discrete type can serve as an array index, and we can specify
both the starting and ending bounds. In addition, Ada offers high-level
operations for copying, slicing, and assigning values to arrays.

Although Ada supports pointers, most situations that would require a pointer in
C do not in Ada. In the vast majority of the cases, indirect memory management
can be hidden from the developer and thus prevent many potential errors. In
C, pointers are typically used to pass references to subprograms, for example.
In contrast, Ada parameter modes indicate the flow of information to the
reader, leaving the means of passing that information to the compiler.

When translating pointers from C code to Ada, we need to assess whether they
are needed in the first place. Ada pointers (access types) should only be used
with complex structures that cannot be allocated at run-time. There are many
situations that would require a pointer in C, but do not in Ada. For example,
arrays — even when dynamically allocated —, results of functions,
passing of large structures as parameters, access to registers, etc.

Because of the absence of namespaces, global names in C tend to be very long.
Also, because of the absence of overloading, they can even encode type names in
their name. In Ada, a package is a namespace. Also, we can use the private part
of a package to declare private types and private subprograms. In fact, private
types are useful for preventing the users of those types from depending on the
implementation details. Another use-case is the prevention of package users
from accessing the package state/data arbitrarily.

Ada has a dedicated set of features for interfacing with other languages, so we
can easily interface with our existing C code before translating it to Ada.
Also, GNAT includes automatic binding generators. Therefore, instead of
re-writing the entire C code upfront, which isn't practical or
cost-effective, we can selectively translate modules from C to Ada.

When it comes to implementing concurrency and real time, Ada offers several
options. Ada provides high level constructs such as tasks and protected
objects to express concurrency and synchronization, which can be used when
running on top of an operating system such as Linux. On more constrained
systems, such as bare metal or some real-time operating systems, a subset of
the Ada tasking capabilities — known as the Ravenscar and Jorvik profiles
— is available. Though restricted, this subset also has nice properties,
in particular the absence of deadlock,the absence of priority inversion,
schedulability and very small footprint. On bare metal systems, this also
essentially means that Ada comes with its own real-time kernel. The advantage
of using the full Ada tasking model or the restricted profiles is to enhance
portability.

Ada includes many features typically used for embedded programming:

	Built-in support for handling interrupts, so we can process interrupts by
attaching a handler — as a protected procedure — to it.

	Built-in support for handling both volatile and atomic data.

	Support for register overlays, which we can use to create a structure that
facilitates manipulating bits from registers.

	Support for creating data streams for serialization of arbitrary information
and transmission over a communication channel, such as a serial port.

	Built-in support for fixed-point arithmetic, which is an option when our
target device doesn't have a floating-point unit or the result of
calculations needs to be bit-exact.

Also, Ada compilers such as GNAT have built-in support for directly mixing Ada
and Assembly code.

Ada also supports contracts, which can be associated with types and variables
to refine values and define valid and invalid values. The most common kind of
contract is a range constraint — using the range reserved word.
Ada also supports contract-based programming in the form of preconditions and
postconditions. One typical benefit of contract-based programming is the
removal of defensive code in subprogram implementations.

It is common to see embedded software being used in a variety of configurations
that require small changes to the code for each instance. In C, variability is
usually achieved through macros and function pointers, the former being tied to
static variability and the latter to dynamic variability. Ada offers many
alternatives for both techniques, which aim at structuring possible variations
of the software. Examples of static variability in Ada are: genericity, simple
derivation, configuration pragma files, and configuration packages. Examples of
dynamic variability in Ada are: records with discriminants, variant records
— which may include the use of unions —, object orientation,
pointers to subprograms, and design by components using dynamic libraries.

There shouldn't be significant performance differences between code written in
Ada and code written in C — provided that they are semantically
equivalent. One reason is that the two languages are fairly similar in the way
they implement imperative semantics, in particular with regards to memory
management or control flow. Therefore, they should be equivalent on average.
However, when a piece of code in Ada is significantly slower than its
counterpart in C, this usually comes from the fact that, while the two pieces
of code appear to be semantically equivalent, they happen to be actually quite
different. Fortunately, there are strategies that we can use to improve the
performance and make it equivalent to the C version. These are some examples:

	Clever use of compilation switches, which might optimize the performance of
an application significantly.

	Suppression of checks at specific parts of the implementation.

	Although runtime checks are very useful and should be used as much as
possible, they can also increase the overhead of implementations at
certain hot-spots.

	Restriction of assertions to development code.

	For example, we may use assertions in the debug version of the code and
turn them off in the release version.

	Also, we may use formal proof to decide which assertions we turn off in
the release version. By formally proving that assertions will never fail
at run-time, we can safely deactivate them.

Formal proof — a form of static analysis — can give strong
guarantees about checks, for all possible conditions and all possible inputs.
It verifies conditions prior to execution, even prior to compilation, so we can
remove bugs earlier in the development phase. This is far less expensive than
doing so later because the cost to fix bugs increases exponentially over the
phases of the project life cycle, especially after deployment. Preventing bug
introduction into the deployed system is the least expensive approach of all.

Formal analysis for proof can be achieved through the SPARK subset of the Ada
language combined with the gnatprove verification tool. SPARK is a
subset encompassing most of the Ada language, except for features that preclude
proof.

In Ada, several common programming errors that are not already detected at
compile-time are detected instead at run-time, triggering exceptions that
interrupt the normal flow of execution. However, we may be able to prove that
the language-defined checks won't raise exceptions at run-time. This is known
as proving Absence of Run-Time Errors. Successful proof of these checks
is highly significant in itself. One of the major resulting benefits is that we
can deploy the final executable with checks disabled.

In many situations, the migration of C code to Ada is justified by an increase
in terms of integrity expectations, in which case it's expected that
development costs will raise. However, Ada is a more expressive, powerful
language, designed to reduce errors earlier in the life-cycle, thus reducing
costs. Therefore, Ada makes it possible to write very safe and secure software
at a lower cost than languages such as C.

Footnotes

Appendix A: Hands-On Object-Oriented Programming

The goal of this appendix is to present a hands-on view on how to translate a
system from C to Ada and improve it with object-oriented programming.

System Overview

Let's start with an overview of a simple system that we'll implement and use
below. The main system is called AB and it combines two systems A and B. System
AB is not supposed to do anything useful. However, it can serve as a good model
for the hands-on we're about to start.

This is a list of requirements for the individual systems A and B, and the
combined system AB:

	System A:

	The system can be activated and deactivated.

	During activation, the system's values are reset.

	Its current value (in floating-point) can be retrieved.

	This value is the average of the two internal floating-point values.

	Its current state (activated or deactivated) can be retrieved.

	System B:

	The system can be activated and deactivated.

	During activation, the system's value is reset.

	Its current value (in floating-point) can be retrieved.

	Its current state (activated or deactivated) can be retrieved.

	System AB

	The system contains an instance of system A and an instance of system B.

	The system can be activated and deactivated.

	System AB activates both systems A and B during its own activation.

	System AB deactivates both systems A and B during its own
deactivation.

	Its current value (in floating-point) can be retrieved.

	This value is the average of the current values of systems A and B.

	Its current state (activated or deactivated) can be retrieved.

	AB is only considered activated when both systems A and B are
activated.

	The system's health can be checked.

	This check consists in calculating the absolute difference D between
the current values of systems A and B and checking whether D is below
a threshold of 0.1.

The source-code in the following section contains an implementation of these
requirements.

Non Object-Oriented Approach

In this section, we look into implementations (in both C and Ada) of system AB
that don't make use of object-oriented programming.

Starting point in C

Let's start with an implementation in C for the system described above:

[C]

system_a.h

 1typedef struct {
 2 float val[2];
 3 int active;
 4} A;
 5
 6void A_activate (A *a);
 7
 8int A_is_active (A *a);
 9
10float A_value (A *a);
11
12void A_deactivate (A *a);

system_a.c

 1#include "system_a.h"
 2
 3void A_activate (A *a)
 4{
 5 int i;
 6
 7 for (i = 0; i < 2; i++)
 8 {
 9 a->val[i] = 0.0;
10 }
11 a->active = 1;
12}
13
14int A_is_active (A *a)
15{
16 return a->active == 1;
17}
18
19float A_value (A *a)
20{
21 return (a->val[0] + a->val[1]) / 2.0;
22}
23
24void A_deactivate (A *a)
25{
26 a->active = 0;
27}

system_b.h

 1typedef struct {
 2 float val;
 3 int active;
 4} B;
 5
 6void B_activate (B *b);
 7
 8int B_is_active (B *b);
 9
10float B_value (B *b);
11
12void B_deactivate (B *b);

system_b.c

 1#include "system_b.h"
 2
 3void B_activate (B *b)
 4{
 5 b->val = 0.0;
 6 b->active = 1;
 7}
 8
 9int B_is_active (B *b)
10{
11 return b->active == 1;
12}
13
14float B_value (B *b)
15{
16 return b->val;
17}
18
19void B_deactivate (B *b)
20{
21 b->active = 0;
22}

system_ab.h

 1#include "system_a.h"
 2#include "system_b.h"
 3
 4typedef struct {
 5 A a;
 6 B b;
 7} AB;
 8
 9void AB_activate (AB *ab);
10
11int AB_is_active (AB *ab);
12
13float AB_value (AB *ab);
14
15int AB_check (AB *ab);
16
17void AB_deactivate (AB *ab);

system_ab.c

 1#include <math.h>
 2#include "system_ab.h"
 3
 4void AB_activate (AB *ab)
 5{
 6 A_activate (&ab->a);
 7 B_activate (&ab->b);
 8}
 9
10int AB_is_active (AB *ab)
11{
12 return A_is_active(&ab->a) && B_is_active(&ab->b);
13}
14
15float AB_value (AB *ab)
16{
17 return (A_value (&ab->a) + B_value (&ab->b)) / 2;
18}
19
20int AB_check (AB *ab)
21{
22 const float threshold = 0.1;
23
24 return fabs (A_value (&ab->a) - B_value (&ab->b)) < threshold;
25}
26
27void AB_deactivate (AB *ab)
28{
29 A_deactivate (&ab->a);
30 B_deactivate (&ab->b);
31}

main.c

 1#include <stdio.h>
 2#include "system_ab.h"
 3
 4void display_active (AB *ab)
 5{
 6 if (AB_is_active (ab))
 7 printf ("System AB is active.\n");
 8 else
 9 printf ("System AB is not active.\n");
10}
11
12void display_check (AB *ab)
13{
14 if (AB_check (ab))
15 printf ("System AB check: PASSED.\n");
16 else
17 printf ("System AB check: FAILED.\n");
18}
19
20int main()
21{
22 AB s;
23
24 printf ("Activating system AB...\n");
25 AB_activate (&s);
26
27 display_active (&s);
28 display_check (&s);
29
30 printf ("Deactivating system AB...\n");
31 AB_deactivate (&s);
32
33 display_active (&s);
34}

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_C
MD5: 649bcfe39504c853a0c3f43e1e048f34

Runtime output

Activating system AB...
System AB is active.
System AB check: PASSED.
Deactivating system AB...
System AB is not active.

Here, each system is implemented in a separate set of header and source-code
files. For example, the API of system AB is in system_ab.h and its
implementation in system_ab.c.

In the main application, we instantiate system AB and activate it. Then, we
proceed to display the activation state and the result of the system's health
check. Finally, we deactivate the system and display the activation state
again.

Initial translation to Ada

The direct implementation in Ada is:

[Ada]

system_a.ads

 1package System_A is
 2
 3 type Val_Array is array (Positive range <>) of Float;
 4
 5 type A is record
 6 Val : Val_Array (1 .. 2);
 7 Active : Boolean;
 8 end record;
 9
10 procedure A_Activate (E : in out A);
11
12 function A_Is_Active (E : A) return Boolean;
13
14 function A_Value (E : A) return Float;
15
16 procedure A_Deactivate (E : in out A);
17
18end System_A;

system_a.adb

 1package body System_A is
 2
 3 procedure A_Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 E.Active := True;
 7 end A_Activate;
 8
 9 function A_Is_Active (E : A) return Boolean is
10 begin
11 return E.Active;
12 end A_Is_Active;
13
14 function A_Value (E : A) return Float is
15 begin
16 return (E.Val (1) + E.Val (2)) / 2.0;
17 end A_Value;
18
19 procedure A_Deactivate (E : in out A) is
20 begin
21 E.Active := False;
22 end A_Deactivate;
23
24end System_A;

system_b.ads

 1package System_B is
 2
 3 type B is record
 4 Val : Float;
 5 Active : Boolean;
 6 end record;
 7
 8 procedure B_Activate (E : in out B);
 9
10 function B_Is_Active (E : B) return Boolean;
11
12 function B_Value (E : B) return Float;
13
14 procedure B_Deactivate (E : in out B);
15
16end System_B;

system_b.adb

 1package body System_B is
 2
 3 procedure B_Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 E.Active := True;
 7 end B_Activate;
 8
 9 function B_Is_Active (E : B) return Boolean is
10 begin
11 return E.Active;
12 end B_Is_Active;
13
14 function B_Value (E : B) return Float is
15 begin
16 return E.Val;
17 end B_Value;
18
19 procedure B_Deactivate (E : in out B) is
20 begin
21 E.Active := False;
22 end B_Deactivate;
23
24end System_B;

system_ab.ads

 1with System_A; use System_A;
 2with System_B; use System_B;
 3
 4package System_AB is
 5
 6 type AB is record
 7 SA : A;
 8 SB : B;
 9 end record;
10
11 procedure AB_Activate (E : in out AB);
12
13 function AB_Is_Active (E : AB) return Boolean;
14
15 function AB_Value (E : AB) return Float;
16
17 function AB_Check (E : AB) return Boolean;
18
19 procedure AB_Deactivate (E : in out AB);
20
21end System_AB;

system_ab.adb

 1package body System_AB is
 2
 3 procedure AB_Activate (E : in out AB) is
 4 begin
 5 A_Activate (E.SA);
 6 B_Activate (E.SB);
 7 end AB_Activate;
 8
 9 function AB_Is_Active (E : AB) return Boolean is
10 begin
11 return A_Is_Active (E.SA) and B_Is_Active (E.SB);
12 end AB_Is_Active;
13
14 function AB_Value (E : AB) return Float is
15 begin
16 return (A_Value (E.SA) + B_Value (E.SB)) / 2.0;
17 end AB_Value;
18
19 function AB_Check (E : AB) return Boolean is
20 Threshold : constant := 0.1;
21 begin
22 return abs (A_Value (E.SA) - B_Value (E.SB)) < Threshold;
23 end AB_Check;
24
25 procedure AB_Deactivate (E : in out AB) is
26 begin
27 A_Deactivate (E.SA);
28 B_Deactivate (E.SB);
29 end AB_Deactivate;
30
31end System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with System_AB; use System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if AB_Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if AB_Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 AB_Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 AB_Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada
MD5: f2e3df0b3874e5edc5ea90c01961cf64

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

As you can see, this is a direct translation that doesn't change much of the
structure of the original C code. Here, the goal was to simply translate the
system from one language to another and make sure that the behavior remains the
same.

Improved Ada implementation

By analyzing this direct implementation, we may notice the following points:

	Packages System_A, System_B and System_AB are used to
describe aspects of the same system. Instead of having three distinct
packages, we could group them as child packages of a common parent package
— let's call it Simple, since this system is supposed to be
simple. This approach has the advantage of allowing us to later use the
parent package to implement functionality that is common for all parts of the
system.

	Since we have subprograms that operate on types A, B and
AB, we should avoid exposing the record components by moving the
type declarations to the private part of the corresponding packages.

	Since Ada supports subprogram overloading — as discussed in
this section from chapter 2 —, we don't need to
have different names for subprograms with similar functionality. For example,
instead of having A_Is_Active and B_Is_Active, we can simply
name these functions Is_Active for both types A and B.

	Some of the functions — such as A_Is_Active and A_Value
— are very simple, so we could simplify them with expression functions.

This is an update to the implementation that addresses all the points above:

[Ada]

simple.ads

1package Simple
2 with Pure
3is
4end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is private;
 4
 5 procedure Activate (E : in out A);
 6
 7 function Is_Active (E : A) return Boolean;
 8
 9 function Value (E : A) return Float;
10
11 procedure Finalize (E : in out A);
12
13private
14
15 type Val_Array is array (Positive range <>) of Float;
16
17 type A is record
18 Val : Val_Array (1 .. 2);
19 Active : Boolean;
20 end record;
21
22end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 E.Active := True;
 7 end Activate;
 8
 9 function Is_Active (E : A) return Boolean is
10 (E.Active);
11
12 function Value (E : A) return Float is
13 begin
14 return (E.Val (1) + E.Val (2)) / 2.0;
15 end Value;
16
17 procedure Finalize (E : in out A) is
18 begin
19 E.Active := False;
20 end Finalize;
21
22end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is private;
 4
 5 procedure Activate (E : in out B);
 6
 7 function Is_Active (E : B) return Boolean;
 8
 9 function Value (E : B) return Float;
10
11 procedure Finalize (E : in out B);
12
13private
14
15 type B is record
16 Val : Float;
17 Active : Boolean;
18 end record;
19
20end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 E.Active := True;
 7 end Activate;
 8
 9 function Is_Active (E : B) return Boolean is
10 begin
11 return E.Active;
12 end Is_Active;
13
14 function Value (E : B) return Float is
15 (E.Val);
16
17 procedure Finalize (E : in out B) is
18 begin
19 E.Active := False;
20 end Finalize;
21
22end Simple.System_B;

simple-system_ab.ads

 1with Simple.System_A; use Simple.System_A;
 2with Simple.System_B; use Simple.System_B;
 3
 4package Simple.System_AB is
 5
 6 type AB is private;
 7
 8 procedure Activate (E : in out AB);
 9
10 function Is_Active (E : AB) return Boolean;
11
12 function Value (E : AB) return Float;
13
14 function Check (E : AB) return Boolean;
15
16 procedure Finalize (E : in out AB);
17
18private
19
20 type AB is record
21 SA : A;
22 SB : B;
23 end record;
24
25end Simple.System_AB;

simple-system_ab.adb

 1package body Simple.System_AB is
 2
 3 procedure Activate (E : in out AB) is
 4 begin
 5 Activate (E.SA);
 6 Activate (E.SB);
 7 end Activate;
 8
 9 function Is_Active (E : AB) return Boolean is
10 (Is_Active (E.SA) and Is_Active (E.SB));
11
12 function Value (E : AB) return Float is
13 ((Value (E.SA) + Value (E.SB)) / 2.0);
14
15 function Check (E : AB) return Boolean is
16 Threshold : constant := 0.1;
17 begin
18 return abs (Value (E.SA) - Value (E.SB)) < Threshold;
19 end Check;
20
21 procedure Finalize (E : in out AB) is
22 begin
23 Finalize (E.SA);
24 Finalize (E.SB);
25 end Finalize;
26
27end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Finalize (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_Enhanced
MD5: 5019a7088ab4160f5e3b33c73db2b03b

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

First Object-Oriented Approach

Until now, we haven't used any of the object-oriented programming features of
the Ada language. So we can start by analyzing the API of systems A and B and
deciding how to best abstract some of its elements using object-oriented
programming.

Interfaces

The first thing we may notice is that we actually have two distinct sets of
APIs there:

	one API for activating and deactivating the system.

	one API for retrieving the value of the system.

We can use this distinction to declare two interface types:

	Activation_IF for the Activate and Deactivate procedures
and the Is_Active function;

	Value_Retrieval_IF for the Value function.

This is how the declaration could look like:

type Activation_IF is interface;

procedure Activate (E : in out Activation_IF) is abstract;
function Is_Active (E : Activation_IF) return Boolean is abstract;
procedure Deactivate (E : in out Activation_IF) is abstract;

type Value_Retrieval_IF is interface;

function Value (E : Value_Retrieval_IF) return Float is abstract;

Note that, because we are declaring interface types, all operations on those
types must be abstract or, in the case of procedures, they can also be declared
null. For example, we could change the declaration of the procedures
above to this:

procedure Activate (E : in out Activation_IF) is null;
procedure Deactivate (E : in out Activation_IF) is null;

When an operation is declared abstract, we must override it for the type that
derives from the interface. When a procedure is declared null, it acts
as a do-nothing default. In this case, overriding the operation is optional for
the type that derives from this interface.

Base type

Since the original system needs both interfaces we've just described, we have
to declare another type that combines those interfaces. We can do this by
declaring the interface type Sys_Base, which serves as the base type for
systems A and B. This is the declaration:

type Sys_Base is interface and Activation_IF and Value_Retrieval_IF;

Since the system activation functionality is common for both systems A and B,
we could implement it as part of Sys_Base. That would require changing
the declaration from a simple interface to an abstract record:

type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
 with null record;

Now, we can add the Boolean component to the record (as a private component)
and override the subprograms of the Activation_IF interface. This is the
adapted declaration:

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with private;

 overriding procedure Activate (E : in out Sys_Base);
 overriding function Is_Active (E : Sys_Base) return Boolean;
 overriding procedure Deactivate (E : in out Sys_Base);

private

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with record
 Active : Boolean;
 end record;

Derived types

In the declaration of the Sys_Base type we've just seen, we're not
overriding the Value function — from the
Value_Retrieval_IF interface — for the Sys_Base type, so it
remains an abstract function for Sys_Base. Therefore, the
Sys_Base type itself remains abstract and needs be explicitly declared
as such.

We use this strategy to ensure that all types derived from Sys_Base need
to implement their own version of the Value function. For example:

type A is new Sys_Base with private;

overriding function Value (E : A) return Float;

Here, the A type is derived from the Sys_Base and it includes its
own version of the Value function by overriding it. Therefore,
A is not an abstract type anymore and can be used to declare objects:

procedure Main is
 Obj : A;
 V : Float;
begin
 Obj.Activate;
 V := Obj.Value;
end Main;

Important

Note that the use of the overriding keyword in the subprogram
declaration is not strictly necessary. In fact, we could leave this keyword
out, and the code would still compile. However, if provided, the compiler
will check whether the information is correct.

Using the overriding keyword can help to avoid bad surprises
— when you may think that you're overriding a subprogram, but
you're actually not. Similarly, you can also write not overriding to
be explicit about subprograms that are new primitives of a derived type.
For example:

not overriding function Check (E : AB) return Boolean;

We also need to declare the values that are used internally in systems A and B.
For system A, this is the declaration:

 type A is new Sys_Base with private;

 overriding function Value (E : A) return Float;

private

 type Val_Array is array (Positive range <>) of Float;

 type A is new Sys_Base with record
 Val : Val_Array (1 .. 2);
 end record;

Subprograms from parent

In the previous implementation, we've seen that the A_Activate and
B_Activate procedures perform the following steps:

	initialize internal values;

	indicate that the system is active (by setting the Active flag to
True).

In the implementation of the Activate procedure for the Sys_Base
type, however, we're only dealing with the second step. Therefore, we need to
override the Activate procedure and make sure that we initialize
internal values as well. First, we need to declare this procedure for type
A:

type A is new Sys_Base with private;

overriding procedure Activate (E : in out A);

In the implementation of Activate, we should call the Activate
procedure from the parent (Sys_Base) to ensure that whatever was
performed for the parent will be performed in the derived type as well. For
example:

overriding procedure Activate (E : in out A) is
begin
 E.Val := (others => 0.0);
 Sys_Base (E).Activate; -- Calling Activate for Sys_Base type:
 -- this call initializes the Active flag.
end;

Here, by writing Sys_Base (E), we're performing a view conversion.
Basically, we're telling the compiler to view E not as an object of
type A, but of type Sys_Base. When we do this, any operation
performed on this object will be done as if it was an object of
Sys_Base type, which includes calling the Activate procedure of
the Sys_Base type.

Important

If we write T (Obj).Proc, we're telling the compiler to call the
Proc procedure of type T and apply it on Obj.

If we write T'Class (Obj).Proc, however, we're telling the compiler
to dispatch the call. For example, if Obj is of derived type
T2 and there's an overridden Proc procedure for type
T2, then this procedure will be called instead of the Proc
procedure for type T.

Type AB

While the implementation of systems A and B is almost straightforward, it gets
more interesting in the case of system AB. Here, we have a similar API, but we
don't need the activation mechanism implemented in the abstract type
Sys_Base. Therefore, deriving from Sys_Base is not the best
option. Instead, when declaring the AB type, we can simply use the same
interfaces as we did for Sys_Base, but keep it independent from
Sys_Base. For example:

 type AB is new Activation_IF and Value_Retrieval_IF with private;

private

 type AB is new Activation_IF and Value_Retrieval_IF with record
 SA : A;
 SB : B;
 end record;

Naturally, we still need to override all the subprograms that are part of the
Activation_IF and Value_Retrieval_IF interfaces. Also, we need
to implement the additional Check function that was originally only
available on system AB. Therefore, we declare these subprograms:

overriding procedure Activate (E : in out AB);
overriding function Is_Active (E : AB) return Boolean;
overriding procedure Deactivate (E : in out AB);

overriding function Value (E : AB) return Float;

not overriding function Check (E : AB) return Boolean;

Updated source-code

Finally, this is the complete source-code example:

[Ada]

simple.ads

 1package Simple is
 2
 3 type Activation_IF is interface;
 4
 5 procedure Activate (E : in out Activation_IF) is abstract;
 6 function Is_Active (E : Activation_IF) return Boolean is abstract;
 7 procedure Deactivate (E : in out Activation_IF) is abstract;
 8
 9 type Value_Retrieval_IF is interface;
10
11 function Value (E : Value_Retrieval_IF) return Float is abstract;
12
13 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
14 with private;
15
16 overriding procedure Activate (E : in out Sys_Base);
17 overriding function Is_Active (E : Sys_Base) return Boolean;
18 overriding procedure Deactivate (E : in out Sys_Base);
19
20private
21
22 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF
23 with record
24 Active : Boolean;
25 end record;
26
27end Simple;

simple.adb

 1package body Simple is
 2
 3 overriding procedure Activate (E : in out Sys_Base) is
 4 begin
 5 E.Active := True;
 6 end Activate;
 7
 8 overriding function Is_Active (E : Sys_Base) return Boolean is
 9 (E.Active);
10
11 overriding procedure Deactivate (E : in out Sys_Base) is
12 begin
13 E.Active := False;
14 end Deactivate;
15
16end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is new Sys_Base with private;
 4
 5 overriding procedure Activate (E : in out A);
 6
 7 overriding function Value (E : A) return Float;
 8
 9private
10
11 type Val_Array is array (Positive range <>) of Float;
12
13 type A is new Sys_Base with record
14 Val : Val_Array (1 .. 2);
15 end record;
16
17end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activate (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 Sys_Base (E).Activate;
 7 end Activate;
 8
 9 function Value (E : A) return Float is
10 pragma Assert (E.Val'Length = 2);
11 begin
12 return (E.Val (1) + E.Val (2)) / 2.0;
13 end Value;
14
15end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is new Sys_Base with private;
 4
 5 overriding procedure Activate (E : in out B);
 6
 7 overriding function Value (E : B) return Float;
 8
 9private
10
11 type B is new Sys_Base with record
12 Val : Float;
13 end record;
14
15end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activate (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 Sys_Base (E).Activate;
 7 end Activate;
 8
 9 function Value (E : B) return Float is
10 (E.Val);
11
12end Simple.System_B;

simple-system_ab.ads

 1with Simple.System_A; use Simple.System_A;
 2with Simple.System_B; use Simple.System_B;
 3
 4package Simple.System_AB is
 5
 6 type AB is new Activation_IF and Value_Retrieval_IF with private;
 7
 8 overriding procedure Activate (E : in out AB);
 9 overriding function Is_Active (E : AB) return Boolean;
10 overriding procedure Deactivate (E : in out AB);
11
12 overriding function Value (E : AB) return Float;
13
14 not overriding function Check (E : AB) return Boolean;
15
16private
17
18 type AB is new Activation_IF and Value_Retrieval_IF with record
19 SA : A;
20 SB : B;
21 end record;
22
23end Simple.System_AB;

simple-system_ab.adb

 1package body Simple.System_AB is
 2
 3 procedure Activate (E : in out AB) is
 4 begin
 5 E.SA.Activate;
 6 E.SB.Activate;
 7 end Activate;
 8
 9 function Is_Active (E : AB) return Boolean is
10 (E.SA.Is_Active and E.SB.Is_Active);
11
12 procedure Deactivate (E : in out AB) is
13 begin
14 E.SA.Deactivate;
15 E.SB.Deactivate;
16 end Deactivate;
17
18 function Value (E : AB) return Float is
19 ((E.SA.Value + E.SB.Value) / 2.0);
20
21 function Check (E : AB) return Boolean is
22 Threshold : constant := 0.1;
23 begin
24 return abs (E.SA.Value - E.SB.Value) < Threshold;
25 end Check;
26
27end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_OOP_1
MD5: 02adee1f81b025007244bd6d13e8b5a3

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

Further Improvements

When analyzing the complete source-code, we see that there are at least two
areas that we could still improve.

Dispatching calls

The first issue concerns the implementation of the Activate procedure
for types derived from Sys_Base. For those derived types, we're
expecting that the Activate procedure of the parent must be called in
the implementation of the overriding Activate procedure. For example:

package body Simple.System_A is

 procedure Activate (E : in out A) is
 begin
 E.Val := (others => 0.0);
 Activate (Sys_Base (E));
 end;

If a developer forgets to call that specific Activate procedure,
however, the system won't work as expected. A better strategy could be the
following:

	Declare a new Activation_Reset procedure for Sys_Base type.

	Make a dispatching call to the Activation_Reset procedure in the body
of the Activate procedure (of the Sys_Base type).

	Let the derived types implement their own version of the
Activation_Reset procedure.

This is a simplified view of the implementation using the points described
above:

package Simple is

 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
 private;

 not overriding procedure Activation_Reset (E : in out Sys_Base) is abstract;

end Simple;

package body Simple is

 procedure Activate (E : in out Sys_Base) is
 begin
 -- NOTE: calling "E.Activation_Reset" does NOT dispatch!
 -- We need to use the 'Class attribute here --- not using this
 -- attribute is an error that will be caught by the compiler.
 Sys_Base'Class (E).Activation_Reset;

 E.Active := True;
 end Activate;

end Simple;

package Simple.System_A is

 type A is new Sys_Base with private;

private

 type Val_Array is array (Positive range <>) of Float;

 type A is new Sys_Base with record
 Val : Val_Array (1 .. 2);
 end record;

 overriding procedure Activation_Reset (E : in out A);

end Simple.System_A;

package body Simple.System_A is

 procedure Activation_Reset (E : in out A) is
 begin
 E.Val := (others => 0.0);
 end Activation_Reset;

end Simple.System_A;

An important detail is that, in the implementation of Activate, we use
Sys_Base'Class to ensure that the call to Activation_Reset will
dispatch. If we had just written E.Activation_Reset instead, then we
would be calling the Activation_Reset procedure of Sys_Base
itself, which is not what we actually want here. The compiler will catch the
error if you don't do the conversion to the class-wide type, because it would
otherwise be a statically-bound call to an abstract procedure, which is illegal
at compile-time.

Dynamic allocation

The next area that we could improve is in the declaration of the system AB. In
the previous implementation, we were explicitly describing the two
components of that system, namely a component of type A and a component
of type B:

type AB is new Activation_IF and Value_Retrieval_IF with record
 SA : A;
 SB : B;
end record;

Of course, this declaration matches the system requirements that we presented
in the beginning. However, we could use strategies that make it easier to
incorporate requirement changes later on. For example, we could hide this
information about systems A and B by simply declaring an array of
components of type access Sys_Base'Class and allocate them dynamically
in the body of the package. Naturally, this approach might not be suitable for
certain platforms. However, the advantage would be that, if we wanted to
replace the component of type B by a new component of type C, for
example, we wouldn't need to change the interface. This is how the updated
declaration could look like:

type Sys_Base_Class_Access is access Sys_Base'Class;
type Sys_Base_Array is array (Positive range <>) of Sys_Base_Class_Access;

type AB is limited new Activation_IF and Value_Retrieval_IF with record
 S_Array : Sys_Base_Array (1 .. 2);
end record;

Important

Note that we're now using the limited keyword in the declaration of
type AB. That is necessary because we want to prevent objects of
type AB being copied by assignment, which would lead to two objects
having the same (dynamically allocated) subsystems A and B internally. This
change requires that both Activation_IF and
Value_Retrieval_IF are declared limited as well.

The body of Activate could then allocate those components:

procedure Activate (E : in out AB) is
begin
 E.S_Array := (new A, new B);
 for S of E.S_Array loop
 S.Activate;
 end loop;
end Activate;

And the body of Deactivate could deallocate them:

procedure Deactivate (E : in out AB) is
 procedure Free is
 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
begin
 for S of E.S_Array loop
 S.Deactivate;
 Free (S);
 end loop;
end Deactivate;

Limited controlled types

Another approach that we could use to implement the dynamic allocation of
systems A and B is to declare AB as a limited controlled type —
based on the Limited_Controlled type of the Ada.Finalization
package.

The Limited_Controlled type includes the following operations:

	Initialize, which is called when objects of a type derived from the
Limited_Controlled type are being created — by declaring an
object of the derived type, for example —, and

	Finalize, which is called when objects are being destroyed —
for example, when an object gets out of scope at the end of a subprogram
where it was created.

In this case, we must override those procedures, so we can use them for dynamic
memory allocation. This is a simplified view of the update implementation:

package Simple.System_AB is

 type AB is limited new Ada.Finalization.Limited_Controlled and
 Activation_IF and Value_Retrieval_IF with private;

 overriding procedure Initialize (E : in out AB);
 overriding procedure Finalize (E : in out AB);

end Simple.System_AB;

package body Simple.System_AB is

 overriding procedure Initialize (E : in out AB) is
 begin
 E.S_Array := (new A, new B);
 end Initialize;

 overriding procedure Finalize (E : in out AB) is
 procedure Free is
 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
 begin
 for S of E.S_Array loop
 Free (S);
 end loop;
 end Finalize;

end Simple.System_AB;

Updated source-code

Finally, this is the complete updated source-code example:

[Ada]

simple.ads

 1package Simple is
 2
 3 type Activation_IF is limited interface;
 4
 5 procedure Activate (E : in out Activation_IF) is abstract;
 6 function Is_Active (E : Activation_IF) return Boolean is abstract;
 7 procedure Deactivate (E : in out Activation_IF) is abstract;
 8
 9 type Value_Retrieval_IF is limited interface;
10
11 function Value (E : Value_Retrieval_IF) return Float is abstract;
12
13 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
14 private;
15
16 overriding procedure Activate (E : in out Sys_Base);
17 overriding function Is_Active (E : Sys_Base) return Boolean;
18 overriding procedure Deactivate (E : in out Sys_Base);
19
20 not overriding procedure Activation_Reset (E : in out Sys_Base) is abstract;
21
22private
23
24 type Sys_Base is abstract new Activation_IF and Value_Retrieval_IF with
25 record
26 Active : Boolean;
27 end record;
28
29end Simple;

simple.adb

 1package body Simple is
 2
 3 procedure Activate (E : in out Sys_Base) is
 4 begin
 5 -- NOTE: calling "E.Activation_Reset" does NOT dispatch!
 6 -- We need to use the 'Class attribute:
 7 Sys_Base'Class (E).Activation_Reset;
 8
 9 E.Active := True;
10 end Activate;
11
12 function Is_Active (E : Sys_Base) return Boolean is
13 (E.Active);
14
15 procedure Deactivate (E : in out Sys_Base) is
16 begin
17 E.Active := False;
18 end Deactivate;
19
20end Simple;

simple-system_a.ads

 1package Simple.System_A is
 2
 3 type A is new Sys_Base with private;
 4
 5 overriding function Value (E : A) return Float;
 6
 7private
 8
 9 type Val_Array is array (Positive range <>) of Float;
10
11 type A is new Sys_Base with record
12 Val : Val_Array (1 .. 2);
13 end record;
14
15 overriding procedure Activation_Reset (E : in out A);
16
17end Simple.System_A;

simple-system_a.adb

 1package body Simple.System_A is
 2
 3 procedure Activation_Reset (E : in out A) is
 4 begin
 5 E.Val := (others => 0.0);
 6 end Activation_Reset;
 7
 8 function Value (E : A) return Float is
 9 pragma Assert (E.Val'Length = 2);
10 begin
11 return (E.Val (1) + E.Val (2)) / 2.0;
12 end Value;
13
14end Simple.System_A;

simple-system_b.ads

 1package Simple.System_B is
 2
 3 type B is new Sys_Base with private;
 4
 5 overriding function Value (E : B) return Float;
 6
 7private
 8
 9 type B is new Sys_Base with record
10 Val : Float;
11 end record;
12
13 overriding procedure Activation_Reset (E : in out B);
14
15end Simple.System_B;

simple-system_b.adb

 1package body Simple.System_B is
 2
 3 procedure Activation_Reset (E : in out B) is
 4 begin
 5 E.Val := 0.0;
 6 end Activation_Reset;
 7
 8 function Value (E : B) return Float is
 9 (E.Val);
10
11end Simple.System_B;

simple-system_ab.ads

 1with Ada.Finalization;
 2
 3package Simple.System_AB is
 4
 5 type AB is limited new Ada.Finalization.Limited_Controlled and
 6 Activation_IF and Value_Retrieval_IF with private;
 7
 8 overriding procedure Activate (E : in out AB);
 9 overriding function Is_Active (E : AB) return Boolean;
10 overriding procedure Deactivate (E : in out AB);
11
12 overriding function Value (E : AB) return Float;
13
14 not overriding function Check (E : AB) return Boolean;
15
16private
17
18 type Sys_Base_Class_Access is access Sys_Base'Class;
19 type Sys_Base_Array is array (Positive range <>) of Sys_Base_Class_Access;
20
21 type AB is limited new Ada.Finalization.Limited_Controlled and
22 Activation_IF and Value_Retrieval_IF with record
23 S_Array : Sys_Base_Array (1 .. 2);
24 end record;
25
26 overriding procedure Initialize (E : in out AB);
27 overriding procedure Finalize (E : in out AB);
28
29end Simple.System_AB;

simple-system_ab.adb

 1with Ada.Unchecked_Deallocation;
 2
 3with Simple.System_A; use Simple.System_A;
 4with Simple.System_B; use Simple.System_B;
 5
 6package body Simple.System_AB is
 7
 8 overriding procedure Initialize (E : in out AB) is
 9 begin
10 E.S_Array := (new A, new B);
11 end Initialize;
12
13 overriding procedure Finalize (E : in out AB) is
14 procedure Free is
15 new Ada.Unchecked_Deallocation (Sys_Base'Class, Sys_Base_Class_Access);
16 begin
17 for S of E.S_Array loop
18 Free (S);
19 end loop;
20 end Finalize;
21
22 procedure Activate (E : in out AB) is
23 begin
24 for S of E.S_Array loop
25 S.Activate;
26 end loop;
27 end Activate;
28
29 function Is_Active (E : AB) return Boolean is
30 (for all S of E.S_Array => S.Is_Active);
31
32 procedure Deactivate (E : in out AB) is
33 begin
34 for S of E.S_Array loop
35 S.Deactivate;
36 end loop;
37 end Deactivate;
38
39 function Value (E : AB) return Float is
40 ((E.S_Array (1).Value + E.S_Array (2).Value) / 2.0);
41
42 function Check (E : AB) return Boolean is
43 Threshold : constant := 0.1;
44 begin
45 return abs (E.S_Array (1).Value - E.S_Array (2).Value) < Threshold;
46 end Check;
47
48end Simple.System_AB;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple.System_AB; use Simple.System_AB;
 4
 5procedure Main is
 6
 7 procedure Display_Active (E : AB) is
 8 begin
 9 if Is_Active (E) then
10 Put_Line ("System AB is active");
11 else
12 Put_Line ("System AB is not active");
13 end if;
14 end Display_Active;
15
16 procedure Display_Check (E : AB) is
17 begin
18 if Check (E) then
19 Put_Line ("System AB check: PASSED");
20 else
21 Put_Line ("System AB check: FAILED");
22 end if;
23 end Display_Check;
24
25 S : AB;
26begin
27 Put_Line ("Activating system AB...");
28 Activate (S);
29
30 Display_Active (S);
31 Display_Check (S);
32
33 Put_Line ("Deactivating system AB...");
34 Deactivate (S);
35
36 Display_Active (S);
37end Main;

Code block metadata

Project: Courses.Ada_For_Embedded_C_Dev.HandsOnOOP.System_AB_Ada_OOP_2
MD5: f8d0d4a07aaa045cb30bddc88db2215a

Runtime output

Activating system AB...
System AB is active
System AB check: PASSED
Deactivating system AB...
System AB is not active

Naturally, this is by no means the best possible implementation of system AB.
By applying other software design strategies that we haven't covered here, we
could most probably think of different ways to use object-oriented programming
to improve this implementation. Also, in comparison to the
original implementation, we recognize that
the amount of source-code has grown. On the other hand, we now have a system
that is factored nicely, and also more extensible.

Footnotes

SPARK Ada for the MISRA C Developer

Release 2024-03

Mar 30, 2024

Copyright © 2018 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This book presents the SPARK technology — the SPARK subset of Ada and
its supporting static analysis tools — through an example-driven
comparison with the rules in the widely known MISRA C subset of the C
language.

This document was prepared by Yannick Moy, with contributions and review
from Ben Brosgol.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:

	Project: Courses.Intro_To_Ada.Imperative_Language.Greet

	MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:

	Unpack the zip file;

	Go to target directory;

	Start GNAT Studio on this directory;

	Build (or compile) the project;

	Run the application (if a main procedure is available in the
project).

Contents:

	Preface

	Enforcing Basic Program Consistency
	Taming Text-Based Inclusion

	Hardening Link-Time Checking

	Going Towards Encapsulation

	Enforcing Basic Syntactic Guarantees
	Distinguishing Code and Comments

	Specially Handling Function Parameters and Result
	Handling the Result of Function Calls

	Handling Function Parameters

	Ensuring Control Structures Are Not Abused
	Preventing the Semicolon Mistake

	Avoiding Complex Switch Statements

	Avoiding Complex Loops

	Avoiding the Dangling Else Issue

	Enforcing Strong Typing
	Enforcing Strong Typing for Pointers
	Pointers Are Not Addresses

	Pointers Are Not References

	Pointers Are Not Arrays

	Pointers Should Be Typed

	Enforcing Strong Typing for Scalars
	Restricting Operations on Types
	Arithmetic Operations on Arithmetic Types

	Boolean Operations on Boolean

	Bitwise Operations on Unsigned Integers

	Restricting Explicit Conversions

	Restricting Implicit Conversions

	Initializing Data Before Use
	Detecting Reads of Uninitialized Data

	Detecting Partial or Redundant Initialization of Arrays and Structures

	Controlling Side Effects
	Preventing Undefined Behavior

	Reducing Programmer Confusion

	Side Effects and SPARK

	Detecting Undefined Behavior
	Preventing Undefined Behavior in SPARK

	Proof of Absence of Run-Time Errors in SPARK

	Detecting Unreachable Code and Dead Code

	Conclusion

	References
	About MISRA C

	About SPARK

	About MISRA C and SPARK

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

[#2]
https://learn.adacore.com/zip/learning-ada_code.zip

Preface

MISRA C appeared in 1998 as a coding standard for C; it focused on avoiding
error-prone programming features of the C programming language rather than on
enforcing a particular programming style. A study of coding standards for C by
Les Hatton[#1] found that,
compared to ten typical coding standards for C, MISRA C was the only one to
focus exclusively on error avoidance rather than style enforcement, and by a
very large margin.

The popularity of the C programming language, as well as its many traps and
pitfalls, have led to the huge success of MISRA C
in domains where C is used for high-integrity sofware. This success has driven
tool vendors to propose many competing implementations of
MISRA C[#2] checkers. Tools compete in particular on the
coverage of MISRA C guidelines that they help enforce, as it is
impossible to enforce the 16 directives and 143 rules (collectively referred to
as guidelines) of MISRA C.

The 16 directives are broad guidelines, and it is not possible to define
compliance in a unique and automated way. For example, "all code should be
traceable to documented requirements" (Directive 3.1). Thus no tool is
expected to enforce directives, as the MISRA C:2012 states in introduction to
the guidelines: "different tools may place widely different interpretations on
what constitutes a non-compliance."

The 143 rules on the contrary are completely and precisely defined, and
"static analysis tools should be capable of checking compliance with
rules". But the same sentence continues with "subject to the limitations
described in Section 6.5", which addresses "decidability of
rules". It turns out that 27 rules out of 143 are not decidable, so no tool can
always detect all violations of these rules without at the same time reporting
"false alarms" on code that does not constitute a violation.

An example of an undecidable rule is rule 1.3: "There shall be no occurrence
of undefined or critical unspecified behaviour." Appendix H of MISRA:C 2012
lists hundreds of cases of undefined and critical unspecified
behavior in the C programming language standard, a majority of which are not
individually decidable. For the most part, MISRA C checkers ignore undecidable
rules such as rule 1.3 and instead focus on the 116 rules for which detection
of violations can be automated. It is telling in that respect that the
MISRA C:2012 document and its accompanying set of examples (which can be
downloaded from the MISRA website[#3]) does not
provide any example for rule 1.3.

However, violations of undecidable rules such as rule 1.3 are known to have
dramatic impact on software quality. Violations of rule 1.3 in particular are
commonly amplified by compilers using the permission in the C standard to optimize
aggressively without looking at the consequences for programs with undefined or
critical unspecified behavior. It would be valid to ignore these rules if
violations did not occur in practice, but on the contrary even experienced
programmers write C code with undefined or critical unspecified
behavior. An example comes from the MISRA C Committee itself in its
"Appendix I: Example deviation record" of the MISRA C:2012 document, repeated
in "Appendix A: Example deviation record" of the MISRA C: Compliance 2016
document[#4],
where the following code is proposed as a deviation of rule 10.6 "The value of
a composite expression shall not be assigned to an object with wider essential
type":

uint32_t prod = qty * time_step;

Here, the multiplication of two unsigned 16-bit values and assignment of the
result to an unsigned 32-bit variable constitutes a violation of the
aforementioned rule, which gets justified for efficiency reasons. What the
authors seem to have missed is that the multiplication is then performed with
the signed integer type int instead of the target unsigned type
uint32_t. Thus the multiplication of two unsigned 16-bit values may lead to
an overflow of the 32-bit intermediate signed result, which is an occurrence of
an undefined behavior. In such a case, a compiler is free to assume that the
value of prod cannot exceed 231 - 1 (the maximal value of a
signed 32-bit integer) as otherwise an undefined behavior would have been
triggered. For example, the undefined behavior with values 65535 for qty
and time_step is reported when running the code compiled by either the GCC
or LLVM compiler with option -fsanitize=undefined.

The MISRA C checkers that detect violations of
undecidable rules are either unsound tools that can detect only some of
the violations, or sound tools that guarantee to detect all such violations at
the cost of possibly many false reports of violations. This is a direct
consequence of undecidability. However, static analysis technology is available
that can achieve soundness without inundating users with false
alarms. One example is the SPARK toolset developed by AdaCore, Altran and Inria,
which is based on four principles:

	The base language Ada provides a solid foundation for static analysis through
a well-defined language standard, strong typing and rich specification features.

	The SPARK subset of Ada restricts the base language in essential ways to support
static analysis, by controlling sources of ambiguity such as side-effects and
aliasing.

	The static analysis tools work mostly at the granularity of an individual
function, making the analysis more precise and minimizing the
possibility of false alarms.

	The static analysis tools are interactive, allowing users to guide
the analysis if necessary or desired.

In this document, we show how SPARK can be used to achieve
high code quality with guarantees that go beyond what would be feasible
with MISRA C.

Footnotes

[#1]
https://www.leshatton.org/Documents/MISRAC.pdf

[#2]
https://en.wikipedia.org/wiki/MISRA_C

[#3]
https://www.misra.org.uk

[#4]
https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57

Enforcing Basic Program Consistency

Many consistency properties that are taken for granted in other languages are
not enforced in C. The basic property that all uses of a variable or function
are consistent with its type is not enforced by the language and is also very
difficult to enforce by a tool. Three features of C contribute to that situation:

	the textual-based inclusion of files means that every included declaration is
subject to a possibly different reinterpretation depending on context.

	the lack of consistency requirements across translation units means that type
inconsistencies can only be detected at link time, something linkers are
ill-equipped to do.

	the default of making a declaration externally visible means
that declarations that should be local will be visible to
the rest of the program, increasing the chances for inconsistencies.

MISRA C contains guidelines on all three fronts to enforce basic program
consistency.

Taming Text-Based Inclusion

The text-based inclusion of files is one of the dated idiosyncracies of the C
programming language that was inherited by C++ and that is known to cause
quality problems, especially during maintenance. Although multiple inclusion of
a file in the same translation unit can be used to emulate template
programming, it is generally undesirable. Indeed, MISRA C defines
Directive 4.10 precisely to forbid it for header files: "Precautions shall be
taken in order to prevent the contents of a header file being included more
than once".

The subsequent section on "Preprocessing Directives" contains 14
rules restricting the use of text-based inclusion through preprocessing.
Among other things these rules forbid the use of the #undef directive
(which works around conflicts in macro definitions introduced by text-based
inclusion) and enforces the well-known practice of enclosing macro arguments
in parentheses (to avoid syntactic reinterpretations in the context of the
macro use).

SPARK (and more generally Ada) does not suffer from these problems, as it
relies on semantic inclusion of context instead of textual inclusion of content,
using with clauses:

hello_world.adb

1with Ada.Text_IO;
2
3procedure Hello_World is
4begin
5 Ada.Text_IO.Put_Line ("hello, world!");
6end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 5ed9609dd61bbcee252bb8529a6d3479

Runtime output

hello, world!

Note that with clauses are only allowed at the beginning of files;
the compiler issues an error if they are used elsewhere:

hello_world.adb

1procedure Hello_World is
2 with Ada.Text_IO; -- Illegal
3begin
4 Ada.Text_IO.Put_Line ("hello, world!");
5end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: afa19e8e2c114a5832b49e9efcbe675e

Importing a unit (i.e., specifying it in a with clause) multiple times is
harmless, as it is equivalent to importing it once, but a compiler warning lets
us know about the redundancy:

hello_world.adb

1with Ada.Text_IO;
2with Ada.Text_IO; -- Legal but useless
3
4procedure Hello_World is
5begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 270928968d7beb4809af9e62df530722

Runtime output

hello, world!

The order in which units are imported is irrelevant. All orders are valid and
have the same semantics.

No conflict arises from importing multiple units, even if the same name is
defined in several, since each unit serves as namespace for the entities which it
defines. So we can define our own version of Put_Line in some Helper
unit and import it together with the standard version defined in
Ada.Text_IO:

helper.ads

1package Helper is
2 procedure Put_Line (S : String);
3end Helper;

helper.adb

 1with Ada.Text_IO;
 2
 3package body Helper is
 4 procedure Put_Line (S : String) is
 5 begin
 6 Ada.Text_IO.Put_Line ("Start helper version");
 7 Ada.Text_IO.Put_Line (S);
 8 Ada.Text_IO.Put_Line ("End helper version");
 9 end Put_Line;
10end Helper;

hello_world.adb

1with Ada.Text_IO;
2with Helper;
3
4procedure Hello_World is
5begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 5fa012cc996e24e3b1f604e35bbba44f

Runtime output

hello, world!
Start helper version
hello, world!
End helper version

The only way a conflict can arise is if we want to be able to reference Put_Line
directly, without using the qualified name Ada.Text_IO.Put_Line or
Helper.Put_Line. The use clause makes public declarations from a
unit available directly:

helper.ads

1package Helper is
2 procedure Put_Line (S : String);
3end Helper;

helper.adb

 1with Ada.Text_IO;
 2
 3package body Helper is
 4 procedure Put_Line (S : String) is
 5 begin
 6 Ada.Text_IO.Put_Line ("Start helper version");
 7 Ada.Text_IO.Put_Line (S);
 8 Ada.Text_IO.Put_Line ("End helper version");
 9 end Put_Line;
10end Helper;

hello_world.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Helper; use Helper;
3
4procedure Hello_World is
5begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8 Put_Line ("hello, world!"); -- ERROR
9end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 405e138d78e0dc869e8a340681d87e61

Build output

hello_world.adb:8:04: error: ambiguous expression (cannot resolve "Put_Line")
hello_world.adb:8:04: error: possible interpretation at helper.ads:2
hello_world.adb:8:04: error: possible interpretation at a-textio.ads:507
gprbuild: *** compilation phase failed

Here, both units Ada.Text_IO and Helper define a procedure
Put_Line taking a String as argument, so the compiler cannot
disambiguate the direct call to Put_Line and issues an error.

Note that it helpfully points to
candidate declarations, so that the user can decide which qualified name to use
as in the previous two calls.

Issues arising in C as a result of text-based inclusion of files are thus
completely prevented in SPARK (and Ada) thanks to semantic import of units.
Note that the C++ committee identified this weakness some time ago and
has approved[#1]
the addition of modules to C++20, which provide a mechanism for semantic import of
units.

Hardening Link-Time Checking

An issue related to text-based inclusion of files is that there is no
single source for declaring the type of a variable or function. If a file
origin.c defines a variable var and functions fun and
print:

origin.c

1#include <stdio.h>
2
3int var = 0;
4int fun() {
5 return 1;
6}
7void print() {
8 printf("var = %d\n", var);
9}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 3395f1e43408d5bc5c1e6b8431c959d6

and the corresponding header file origin.h declares var, fun
and print as having external linkage:

origin.h

1extern int var;
2extern int fun();
3extern void print();

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: e8e880a16f5099dc1e0a75ffeeeb9468

then client code can include origin.h with declarations
for var and fun:

main.c

1#include "origin.h"
2
3int main() {
4 var = fun();
5 print();
6 return 0;
7}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 3d4582d3956897b657778ae355d0ef1b

Runtime output

var = 1

or, equivalently, repeat these declarations directly:

main.c

1extern int var;
2extern int fun();
3extern void print();
4
5int main() {
6 var = fun();
7 print();
8 return 0;
9}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 4b25aa011b580f92f2831a48008fbef6

Runtime output

var = 1

Then, if an inconsistency is introduced in the type of var of fun
between these alternative declarations and their actual type, the compiler
cannot detect it. Only the linker, which has access to the set of object files
for a program, can detect such inconsistencies. However, a linker's main
task is to link, not to detect inconsistencies, and so inconsistencies in the
type of variables and functions in most cases cannot be detected. For example,
most linkers cannot detect if the type of var or the return type of fun
is changed to float in the declarations above. With the declaration of
var changed to float, the above program compiles and runs without
errors, producing the erroneous output var = 1065353216 instead of
var =1. With the return type of fun changed to float instead, the
program still compiles and runs without errors, producing this time the
erroneous output var = 0.

The inconsistency just discussed is prevented by MISRA C Rule 8.3 "All
declarations of an object or function shall use the same names and type
qualifiers". This is a decidable rule, but it must be enforced at system
level, looking at all translation units of the complete program. MISRA C Rule
8.6 also requires a unique definition for a given identifier
across translation units, and Rule 8.5 requires that an external declaration
shared between translation units comes from the same file. There is even a
specific section on "Identifiers" containing 9 rules requiring uniqueness of
various categories of identifiers.

SPARK (and more generally Ada) does not suffer from these problems, as it
relies on semantic inclusion of context using with clauses to provide a
unique declaration for each entity.

Going Towards Encapsulation

Many problems in C stem from the lack of encapsulation.
There is no notion of namespace that would allow a
file to make its declarations available without risking a conflict with other
files. Thus MISRA C has a number of guidelines that discourage the use of external
declarations:

	Directive 4.8 encourages hiding the definition of structures and unions in
implementation files (.c files) when possible: "If a pointer to a structure
or union is never dereferenced within a translation unit, then the
implementation of the object should be hidden."

	Rule 8.7 forbids the use of external declarations when not needed:
"Functions and objects should not be defined with external linkage if they
are referenced in only one translation unit."

	Rule 8.8 forces the explicit use of keyword static when appropriate:
"The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage."

The basic unit of modularization in SPARK, as in Ada, is the package.
A package always has a spec (in an .ads file), which defines the interface
to other units. It generally also has a body (in an .adb file), which
completes the spec with an implementation. Only declarations from the package spec are
visible from other units when they import (with) the package. In fact, only
declarations from what is called the "visible part" of the spec
(before the keyword private) are visible from units that with the package.

helper.ads

1package Helper is
2 procedure Public_Put_Line (S : String);
3private
4 procedure Private_Put_Line (S : String);
5end Helper;

helper.adb

 1with Ada.Text_IO;
 2
 3package body Helper is
 4 procedure Public_Put_Line (S : String) is
 5 begin
 6 Ada.Text_IO.Put_Line (S);
 7 end Public_Put_Line;
 8
 9 procedure Private_Put_Line (S : String) is
10 begin
11 Ada.Text_IO.Put_Line (S);
12 end Private_Put_Line;
13
14 procedure Body_Put_Line (S : String) is
15 begin
16 Ada.Text_IO.Put_Line (S);
17 end Body_Put_Line;
18end Helper;

hello_world.adb

1with Helper; use Helper;
2
3procedure Hello_World is
4begin
5 Public_Put_Line ("hello, world!");
6 Private_Put_Line ("hello, world!"); -- ERROR
7 Body_Put_Line ("hello, world!"); -- ERROR
8end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 148fd8101cc72413909675534f5e359c

Build output

hello_world.adb:6:04: error: "Private_Put_Line" is not visible
hello_world.adb:6:04: error: non-visible (private) declaration at helper.ads:4
hello_world.adb:7:04: error: "Body_Put_Line" is undefined
gprbuild: *** compilation phase failed

Note the different errors on the calls to the private and body versions of
Put_Line. In the first case the compiler can locate the candidate procedure
but it is illegal to call it from Hello_World, in the second case the
compiler does not even know about any Body_Put_Line when compiling
Hello_World since it only looks at the spec and not the body.

SPARK (and Ada) also allow defining a type in the private part of a package spec while
simply declaring the type name in the public ("visible") part of the spec. This way,
client code — i.e., code that with's the package — can use the type,
typically through a public API, but have no access to how the type is implemented:

vault.ads

1package Vault is
2 type Data is private;
3 function Get (X : Data) return Integer;
4 procedure Set (X : out Data; Value : Integer);
5private
6 type Data is record
7 Val : Integer;
8 end record;
9end Vault;

vault.adb

1package body Vault is
2 function Get (X : Data) return Integer is (X.Val);
3 procedure Set (X : out Data; Value : Integer) is
4 begin
5 X.Val := Value;
6 end Set;
7end Vault;

information_system.ads

1with Vault;
2
3package Information_System is
4 Archive : Vault.Data;
5end Information_System;

hacker.adb

1with Information_System;
2with Vault;
3
4procedure Hacker is
5 V : Integer := Vault.Get (Information_System.Archive);
6begin
7 Vault.Set (Information_System.Archive, V + 1);
8 Information_System.Archive.Val := 0; -- ERROR
9end Hacker;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hacker
MD5: 065ed34dc727e2eb0bdc50a667cb1f78

Build output

hacker.adb:8:22: error: invalid prefix in selected component "Information_System.Archive"
gprbuild: *** compilation phase failed

Note that it is possible to declare a variable of type Vault.Data in
package Information_System and to get/set it through its API in procedure
Hacker, but not to directly access its Val field.

Footnotes

[#1]
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

Enforcing Basic Syntactic Guarantees

C's syntax is concise but also very permissive, which makes it easy
to write programs whose effect is not what was intended.
MISRA C contains guidelines to:

	clearly distinguish code from comments

	specially handle function parameters and result

	ensure that control structures are not abused

Distinguishing Code and Comments

The problem arises from block comments in C, starting with /* and ending
with */. These comments do not nest with other block comments or with line
comments. For example, consider a block comment surrounding three lines that
each increase variable a by one:

/*
++a;
++a;
++a; */

Now consider what happens if the first line is commented out using a block
comment and the third line is commented out using a line comment (also known
as a C++ style comment, allowed in C since C99):

/*
/* ++a; */
++a;
// ++a; */

The result of commenting out code that was already commented out is that the
second line of code becomes live! Of course, the above example is simplified,
but similar situations do arise in practice, which is the reason for MISRA C
Directive 4.1 "Sections of code should not be 'commented out'". This is
reinforced with Rules 3.1 and 3.2 from the section on "Comments" that forbid in
particular the use of /* inside a comment like we did above.

These situations cannot arise in SPARK (or in Ada), as only line comments are
permitted, using --:

-- A := A + 1;
-- A := A + 1;
-- A := A + 1;

So commenting again the first and third lines does not change the effect:

-- -- A := A + 1;
-- A := A + 1;
-- -- A := A + 1;

Specially Handling Function Parameters and Result

Handling the Result of Function Calls

It is possible in C to ignore the result of a function call, either implicitly
or else explicitly by converting the result to void:

f();
(void)f();

This is particularly dangerous when the function returns an error status, as
the caller is then ignoring the possibility of errors in the callee. Thus the
MISRA C Directive 4.7: "If a function returns error
information, then that error information shall be tested". In the general case
of a function returning a result which is not an error status, MISRA C Rule
17.7 states that "The value returned by a function having non-void return type
shall be used", where an explicit conversion to void counts as a use.

In SPARK, as in Ada, the result of a function call must be used, for example by assigning
it to a variable or by passing it as a parameter, in
contrast with procedures (which are equivalent to void-returning functions
in C). SPARK analysis also checks that the result of the function is actually
used to influence an output of the calling subprogram. For example, the first
two calls to F in the following are detected as unused, even though the result
of the function call is assigned to a variable, which is itself used in
the second case:

fun.ads

1package Fun is
2 function F return Integer is (1);
3end Fun;

use_f.ads

1procedure Use_F (Z : out Integer);

use_f.adb

 1with Fun; use Fun;
 2
 3procedure Use_F (Z : out Integer) is
 4 X, Y : Integer;
 5begin
 6 X := F;
 7
 8 Y := F;
 9 X := Y;
10
11 Z := F;
12end Use_F;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Func_Return
MD5: 4fc78b4136677d6338984ab8ccfa5cd1

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
use_f.adb:6:06: warning: unused assignment
use_f.adb:8:06: warning: unused assignment
use_f.adb:9:06: warning: unused assignment

Only the result of the third call is used to influence the value of an output
of Use_F, here the output parameter Z of the procedure.

Handling Function Parameters

In C, function parameters are treated as local variables of the function. They
can be modified, but these modifications won't be visible outside the
function. This is an opportunity for mistakes. For example, the following code,
which appears to swap the values of its parameters, has in reality no effect:

void swap (int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
}

MISRA C Rule 17.8 prevents such mistakes by stating that "A function parameter
should not be modified".

No such rule is needed in SPARK, since function parameters are only inputs so
cannot be modified, and procedure parameters have a mode defining whether
they can be modified or not. Only parameters of mode out or ada:in out
can be modified — and these are prohibited from functions in SPARK
— and their modification is visible at the calling site. For example,
assigning to a parameter of mode in (the default parameter mode if
omitted) results in compilation errors:

swap.ads

1procedure Swap (X, Y : Integer);

swap.adb

1procedure Swap (X, Y : Integer) is
2 Tmp : Integer := X;
3begin
4 X := Y; -- ERROR
5 Y := Tmp; -- ERROR
6end Swap;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Swap
MD5: 187927c610e202f2e1eee6a602fda25e

Build output

swap.adb:4:04: error: assignment to "in" mode parameter not allowed
swap.adb:5:04: error: assignment to "in" mode parameter not allowed
gprbuild: *** compilation phase failed

Here is the output of AdaCore's GNAT compiler:

1. procedure Swap (X, Y : Integer) is
2. Tmp : Integer := X;
3. begin
4. X := Y; -- ERROR
 |
 >>> assignment to "in" mode parameter not allowed

5. Y := Tmp; -- ERROR
 |
 >>> assignment to "in" mode parameter not allowed

6. end Swap;

The correct version of Swap in SPARK takes parameters of mode
in out:

swap.ads

1procedure Swap (X, Y : in out Integer);

swap.adb

1procedure Swap (X, Y : in out Integer) is
2 Tmp : constant Integer := X;
3begin
4 X := Y;
5 Y := Tmp;
6end Swap;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Swap
MD5: c983a229fc5a69db5dbb85f49a91b325

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Ensuring Control Structures Are Not Abused

The previous issue (ignoring the result of a function call) is an
example of a control structure being abused, due to the permissive syntax
of C. There are many such examples, and MISRA C contains a number of guidelines
to prevent such abuse.

Preventing the Semicolon Mistake

Because a semicolon can act as a statement, and because an if-statement and a loop
accept a simple statement (possibly only a semicolon) as body, inserting
a single semicolon can completely change the behavior of the code:

int func() {
 if (0)
 return 1;
 while (1)
 return 0;
 return 0;
}

As written, the code above returns with status 0. If a semicolon is added after
the first line (if (0);), then the code returns with status 1. If a
semicolon is added instead after the third line (while (1);), then the
code does not return. To prevent such surprises, MISRA C Rule 15.6 states that
"The body of an iteration-statement or a selection-statement shall be a compound
statement" so that the code above must be written:

int func() {
 if (0) {
 return 1;
 }
 while (1) {
 return 0;
 }
 return 0;
}

Note that adding a semicolon after the test of the if or while
statement has the same effect as before! But doing so would violate MISRA C
Rule 15.6.

In SPARK, the semicolon is not a statement by itself, but rather a marker that
terminates a statement. The null statement is an explicit null;, and all
blocks of statements have explicit begin and end markers, which
prevents mistakes that are possible in C. The SPARK (also Ada) version of the
above C code is as follows:

func.ads

1function Func return Integer;

func.adb

 1function Func return Integer is
 2begin
 3 if False then
 4 return 1;
 5 end if;
 6 while True loop
 7 return 0;
 8 end loop;
 9 return 0;
10end Func;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Semicolon
MD5: 34fc5967c41d337aada17429ee5f44e9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
func.adb:3:04: warning: statement has no effect
func.adb:4:07: warning: this statement is never reached

Avoiding Complex Switch Statements

Switch statements are well-known for being easily misused. Control can jump
to any case section in the body of the switch, which in C can be before
any statement contained in the body of the switch. At the end of the sequence
of statements associated with a case, execution continues with the code that
follows unless a break is encountered. This is a recipe for mistakes, and
MISRA C enforces a simpler well-formed syntax for switch statements defined
in Rule 16.1: "All switch statements shall be well-formed".

The other rules in the section on "Switch statements" go on detailing
individual consequences of Rule 16.1. For example Rule 16.3 forbids the
fall-through from one case to the next: "An unconditional break statement
shall terminate every switch-clause". As another example, Rule 16.4 mandates
the presence of a default case to handle cases not taken into account
explicitly: "Every switch statement shall have a default label".

The analog of the C switch statements in SPARK (and in Ada) is the case statement. This statement
has a simpler and more robust structure than the C switch,
with control automatically exiting after one of the case alternatives is executed, and
the compiler checking that the alternatives are disjoint (like in C) and
complete (unlike in C). So the following code is rejected by the compiler:

sign_domain.ads

 1package Sign_Domain is
 2
 3 type Sign is (Negative, Zero, Positive);
 4
 5 function Opposite (A : Sign) return Sign is
 6 (case A is -- ERROR
 7 when Negative => Positive,
 8 when Positive => Negative);
 9
10 function Multiply (A, B : Sign) return Sign is
11 (case A is
12 when Negative => Opposite (B),
13 when Zero | Positive => Zero,
14 when Positive => B); -- ERROR
15
16 procedure Get_Sign (X : Integer; S : out Sign);
17
18end Sign_Domain;

sign_domain.adb

 1package body Sign_Domain is
 2
 3 procedure Get_Sign (X : Integer; S : out Sign) is
 4 begin
 5 case X is
 6 when 0 => S := Zero;
 7 when others => S := Negative; -- ERROR
 8 when 1 .. Integer'Last => S := Positive;
 9 end case;
10 end Get_Sign;
11
12end Sign_Domain;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Case_Statement
MD5: d345a4d23b5b2402f8bd103e5e550a3b

Build output

sign_domain.adb:7:15: error: the choice "others" must appear alone and last
sign_domain.ads:6:07: error: missing case value: "Zero"
sign_domain.ads:14:15: error: duplication of choice value: "Positive" at line 13
gprbuild: *** compilation phase failed

The error in function Opposite is that the when choices do not cover
all values of the target expression. Here, A is of the enumeration type
Sign, so all three values of the enumeration must be covered.

The error in function Multiply is that Positive is covered
twice, in the second and the third alternatives. This is not allowed.

The error in procedure Get_Sign is that the others choice (the equivalent
of C default case) must come last. Note that an others choice would be
useless in Opposite and Multiply, as all Sign values are covered.

Here is a correct version of the same code:

sign_domain.ads

 1package Sign_Domain is
 2
 3 type Sign is (Negative, Zero, Positive);
 4
 5 function Opposite (A : Sign) return Sign is
 6 (case A is
 7 when Negative => Positive,
 8 when Zero => Zero,
 9 when Positive => Negative);
10
11 function Multiply (A, B : Sign) return Sign is
12 (case A is
13 when Negative => Opposite (B),
14 when Zero => Zero,
15 when Positive => B);
16
17 procedure Get_Sign (X : Integer; S : out Sign);
18
19end Sign_Domain;

sign_domain.adb

 1package body Sign_Domain is
 2
 3 procedure Get_Sign (X : Integer; S : out Sign) is
 4 begin
 5 case X is
 6 when 0 => S := Zero;
 7 when 1 .. Integer'Last => S := Positive;
 8 when others => S := Negative;
 9 end case;
10 end Get_Sign;
11
12end Sign_Domain;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Case_Statement
MD5: 1c99fc53d2d2c0dddbea5e5b0a6c5746

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
sign_domain.ads:17:37: info: initialization of "S" proved

Avoiding Complex Loops

Similarly to C switches, for-loops in C can become unreadable. MISRA C thus
enforces a simpler well-formed syntax for for-loops, defined in Rule
14.2: "A for loop shall be well-formed". The main effect of this
simplification is that for-loops in C look like for-loops in SPARK (and in Ada), with a
loop counter that is incremented or decremented at each iteration. Section 8.14 defines
precisely what a loop counter is:

	It has a scalar type;

	Its value varies monotonically on each loop iteration; and

	It is used in a decision to exit the loop.

In particular, Rule 14.2 forbids any modification of the loop counter inside
the loop body. Here's the example used in MISRA C:2012 to illustrate
this rule:

bool_t flag = false;

for (int16_t i = 0; (i < 5) && !flag; i++)
{
 if (C)
 {
 flag = true; /* Compliant - allows early termination of loop */
 }

 i = i + 3; /* Non-compliant - altering the loop counter */
}

The equivalent SPARK (and Ada) code does not compile, because of the attempt
to modify the value of the loop counter:

well_formed_loop.adb

 1procedure Well_Formed_Loop (C : Boolean) is
 2 Flag : Boolean := False;
 3begin
 4 for I in 0 .. 4 loop
 5 exit when not Flag;
 6
 7 if C then
 8 Flag := True;
 9 end if;
10
11 I := I + 3; -- ERROR
12 end loop;
13end Well_Formed_Loop;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Well_Formed_Loop
MD5: 842564c961aa018e03e03f81439995ec

Build output

well_formed_loop.adb:11:07: error: assignment to loop parameter not allowed
gprbuild: *** compilation phase failed

Removing the problematic line leads to a valid program. Note that the
additional condition being tested in the C for-loop has been moved to a
separate exit statement at the start of the loop body.

SPARK (and Ada) loops can increase (or, with explicit syntax, decrease) the
loop counter by 1 at each iteration.

for I in reverse 0 .. 4 loop
 ... -- Successive values of I are 4, 3, 2, 1, 0
end loop;

SPARK loops can iterate over any discrete type; i.e., integers as above or enumerations:

type Sign is (Negative, Zero, Positive);

for S in Sign loop
 ...
end loop;

Avoiding the Dangling Else Issue

C does not provide a
closing symbol for an if-statement. This makes it possible to write the
following code, which appears to try to return the absolute value of its
argument, while it actually does the opposite:

main.c

 1#include <stdio.h>
 2
 3int absval (int x) {
 4 int result = x;
 5 if (x >= 0)
 6 if (x == 0)
 7 result = 0;
 8 else
 9 result = -x;
10 return result;
11}
12
13int main() {
14 printf("absval(5) = %d\n", absval(5));
15 printf("absval(0) = %d\n", absval(0));
16 printf("absval(-10) = %d\n", absval(-10));
17}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_C
MD5: c180a948dd8bed4e3b97efde1522214c

Runtime output

absval(5) = -5
absval(0) = 0
absval(-10) = -10

The warning issued by GCC or LLVM with option -Wdangling-else (implied by
-Wall) gives a clue about the problem: although the else branch is
written as though it completes the outer if-statement, in fact it completes the
inner if-statement.

MISRA C Rule 15.6 avoids the problem: "The body of an
iteration-statement or a selection-statement shall be a compound
statement". That's the same rule as the one shown earlier for
Preventing the Semicolon Mistake. So the code for absval must be
written:

main.c

 1#include <stdio.h>
 2
 3int absval (int x) {
 4 int result = x;
 5 if (x >= 0) {
 6 if (x == 0) {
 7 result = 0;
 8 }
 9 } else {
10 result = -x;
11 }
12 return result;
13}
14
15int main() {
16 printf("absval(5) = %d\n", absval(5));
17 printf("absval(0) = %d\n", absval(0));
18 printf("absval(-10) = %d\n", absval(-10));
19}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_MISRA_C
MD5: 2b76377aca52ff45ed6b19fa1f367473

Runtime output

absval(5) = 5
absval(0) = 0
absval(-10) = 10

which has the expected behavior.

In SPARK (as in Ada), each if-statement has a matching end marker end if;
so the dangling-else problem cannot arise. The above C code is written as follows:

absval.ads

1function Absval (X : Integer) return Integer;

absval.adb

 1function Absval (X : Integer) return Integer is
 2 Result : Integer := X;
 3begin
 4 if X >= 0 then
 5 if X = 0 then
 6 Result := 0;
 7 end if;
 8 else
 9 Result := -X;
10 end if;
11 return Result;
12end Absval;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_Ada
MD5: e867b6354ef7bdd89bae1673e888153a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
absval.adb:9:17: medium: overflow check might fail, cannot prove upper bound for -X [reason for check: result of negation must fit in a 32-bits machine integer] [possible fix: add precondition (-X in Integer) to subprogram at absval.ads:1]
gnatprove: unproved check messages considered as errors

Interestingly, SPARK analysis detects here that the negation operation on line
9 might overflow. That's an example of runtime error detection which will be
covered in the chapter on Detecting Undefined Behavior.

Footnotes

Enforcing Strong Typing

Annex C of MISRA C:2012 summarizes the problem succinctly:

"ISO C may be considered to exhibit poor type safety as it permits a wide
range of implicit type conversions to take place. These type conversions can
compromise safety as their implementation-defined aspects can cause developer
confusion."

The most severe consequences come from inappropriate conversions involving
pointer types, as they can cause memory safety violations. Two
sections of MISRA C are dedicated to these issues: "Pointer type
conversions" (9 rules) and "Pointers and arrays" (8 rules).

Inappropriate conversions between scalar types are only slightly less severe, as
they may introduce arbitrary violations of the intended functionality. MISRA C
has gone to great lengths to improve the situation, by defining a stricter
type system on top of the C language. This is described in Appendix D of
MISRA C:2012 and in the dedicated section on "The essential type model" (8
rules).

Enforcing Strong Typing for Pointers

Pointers in C provide a low-level view of the addressable memory as a set of
integer addresses. To write at address 42, just go through a pointer:

main.c

1int main() {
2 int *p = 42;
3 *p = 0;
4 return 0;
5}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointers_C
MD5: 005183ada50cb6642f38a3640d77efff

Running this program is likely to hit a segmentation fault on an operating
system, or to cause havoc in an embedded system, both because address 42 will
not be correctly aligned on a 32-bit or 64-bit machine and because this address
is unlikely to correspond to valid addressable data for the application. The
compiler might issue a helpful warning on the above code (with option
-Wint-conversion implied by -Wall in GCC or LLVM), but note that the
warning disappears when explicitly converting value 42 to the target pointer
type, although the problem is still present.

Beyond their ability to denote memory addresses, pointers are also used in C to
pass references as inputs or outputs to function calls, to construct complex
data structures with indirection or sharing, and to denote arrays of
elements. Pointers are thus at once pervasive, powerful and fragile.

Pointers Are Not Addresses

In an attempt to rule out issues that come from direct addressing of memory
with pointers, MISRA C states in Rule 11.4 that "A conversion should not be
performed between a pointer to object and an integer type". As this rule is
classified as only Advisory, MISRA C completes it with two Required rules:

	Rule 11.6: "A cast shall not be performed between pointer to void and an
arithmetic type"

	Rule 11.7: "A cast shall not be performed between pointer to object and
a non-integer arithmetic type"

In Ada, pointers are not addresses, and addresses are not integers. An opaque
standard type System.Address is used for addresses, and conversions to/from
integers are provided in a standard package System.Storage_Elements. The
previous C code can be written as follows in Ada:

pointer.adb

 1with System;
 2with System.Storage_Elements;
 3
 4procedure Pointer is
 5 A : constant System.Address := System.Storage_Elements.To_Address (42);
 6 M : aliased Integer with Address => A;
 7 P : constant access Integer := M'Access;
 8begin
 9 P.all := 0;
10end Pointer;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointers_Ada
MD5: 32ac91ade61a39d3505d155d7b97a8a5

The integer value 42 is converted to a memory address A by calling
System.Storage_Elements.To_Address, which is then used as the address of
integer variable M. The pointer variable P is set to point to M
(which is allowed because M is declared as aliased).

Ada requires more verbiage than C:

	The integer value 42 must be explicitly converted to type Address

	To get a pointer to a declared variable such as M, the declaration
must be marked as aliased

The added syntax helps first in making clear what is happening and, second,
in ensuring that a potentially dangerous feature (assigning to a value at a
specific machine address) is not used inadvertently.

The above example is legal in SPARK, but the SPARK analysis tool issues
warnings as it cannot control how the program or its environment may update the
memory cell at address 42.

Pointers Are Not References

Passing parameters by reference is critical for efficient programs, but the
absence of references distinct from pointers in C incurs a
serious risk. Any parameter of a pointer type can be copied freely to a
variable whose lifetime is longer than the object pointed to, a problem known
as "dangling pointers". MISRA C forbids such uses in Rule 18.6: "The address of
an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist". Unfortunately, enforcing
this rule is difficult, as it is undecidable.

In SPARK, parameters can be passed by reference, but no pointer to the
parameter can be stored past the return point of the function, which completely
solves this issue. In fact, the decision to pass a parameter by copy or by
reference rests in many cases with the compiler, but such compiler dependency
has no effect on the functional behavior of a SPARK program. In the example
below, the compiler may decide to pass parameter P of procedure
Rotate_X either by copy or by reference, but regardless of the choice
the postcondition of Rotate_X will hold: the final value of P
will be modified by rotation around the X axis.

geometry.ads

 1package Geometry is
 2
 3 type Point_3D is record
 4 X, Y, Z : Float;
 5 end record;
 6
 7 procedure Rotate_X (P : in out Point_3D) with
 8 Post => P = P'Old'Update (Y => P.Z'Old, Z => -P.Y'Old);
 9
10end Geometry;

geometry.adb

 1package body Geometry is
 2
 3 procedure Rotate_X (P : in out Point_3D) is
 4 Tmp : constant Float := P.Y;
 5 begin
 6 P.Y := P.Z;
 7 P.Z := -Tmp;
 8 end Rotate_X;
 9
10end Geometry;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Geometry
MD5: d3801cf1413887ffd5fff8b6b86b7742

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
geometry.ads:8:14: info: postcondition proved

SPARK's analysis tool can mathematically prove that the postcondition is true.

Pointers Are Not Arrays

The greatest source of vulnerabilities regarding pointers is their use as
substitutes for arrays. Although the C language has a syntax for declaring and
accessing arrays, this is just a thin syntactic layer on top of pointers. Thus:

	Array access is just pointer arithmetic;

	If a function is to manipulate an array
then the array's length must be separately passed as a parameter; and

	The program is susceptible to the various vulnerabilities
originating from the confusion of pointers and arrays, such as buffer overflow.

Consider a function that counts the number of times a value is present in an
array. In C, this could be written:

main.c

 1#include <stdio.h>
 2
 3int count(int *p, int len, int v) {
 4 int count = 0;
 5 while (len--) {
 6 if (*p++ == v) {
 7 count++;
 8 }
 9 }
10 return count;
11}
12
13int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_C
MD5: 34e3f7c2352e89a7c834184761293e57

Runtime output

value 3 is seen 3 times in p

Function count has no control over the range of addresses accessed from
pointer p. The critical property that the len parameter is a valid length
for an array of integers pointed to by parameter p rests completely with
the caller of count, and count has no way to check that this is
true.

To mitigate the risks associated with pointers being used for arrays, MISRA C
contains eight rules in a section on "Pointers and arrays". These rules
forbid pointer arithmetic (Rule 18.4) or, if this Advisory rule is not
followed, require pointer arithmetic to stay within bounds (Rule 18.1). But,
even if we rewrite the loop in count to respect all decidable MISRA C
rules, the program's correctness still depends on the caller of count
passing a correct value of len:

main.c

 1#include <stdio.h>
 2
 3int count(int *p, int len, int v) {
 4 int count = 0;
 5 for (int i = 0; i < len; i++) {
 6 if (p[i] == v) {
 7 count++;
 8 }
 9 }
10 return count;
11}
12
13int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_MISRA_C
MD5: d04179de3f1e309541b3d88e53eb5e3a

Runtime output

value 3 is seen 3 times in p

The resulting code is more readable, but still vulnerable to incorrect values
of parameter len passed by the caller of count, which violates
undecidable MISRA C Rules 18.1 (pointer arithmetic should stay within bounds)
and 1.3 (no undefined behavior). Contrast this with the same function in SPARK
(and Ada):

types.ads

1package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3end Types;

count.ads

1with Types; use Types;
2
3function Count (P : Int_Array; V : Integer) return Natural;

count.adb

 1function Count (P : Int_Array; V : Integer) return Natural is
 2 Count : Natural := 0;
 3begin
 4 for I in P'Range loop
 5 if P (I) = V then
 6 Count := Count + 1;
 7 end if;
 8 end loop;
 9 return Count;
10end Count;

test_count.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Types; use Types;
 3with Count;
 4
 5procedure Test_Count is
 6 P : constant Int_Array := (0, 3, 9, 3, 3);
 7 C : constant Integer := Count (P, 3);
 8begin
 9 Put_Line ("value 3 is seen" & C'Img & " times in p");
10end Test_Count;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_Ada
MD5: 82e9d18d4b8ad8aa87ca8520bd7b830c

Runtime output

value 3 is seen 3 times in p

The array parameter P is not simply a homogeneous sequence of Integer
values. The compiler must represent P so that its lower and upper bounds
(P'First and P'Last) and thus also its length (P'Length)
can be retrieved. Function Count can
simply loop over the range of valid array indexes P'First .. P'Last (or
P'Range for short). As a result, function Count can be verified in
isolation to be free of vulnerabilities such as buffer overflow, as it does
not depend on the values of parameters passed by its callers. In fact, we can
go further in SPARK and show that the value returned by Count is no greater
than the length of parameter P by stating this property in the postcondition of
Count and asking the SPARK analysis tool to prove it:

types.ads

1package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3end Types;

count.ads

1with Types; use Types;
2
3function Count (P : Int_Array; V : Integer) return Natural with
4 Post => Count'Result <= P'Length;

count.adb

 1function Count (P : Int_Array; V : Integer) return Natural
 2is
 3 Count : Natural := 0;
 4begin
 5 for I in P'Range loop
 6 pragma Loop_Invariant (Count <= I - P'First);
 7 if P (I) = V then
 8 Count := Count + 1;
 9 end if;
10 end loop;
11 return Count;
12end Count;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_Ada
MD5: 4c9a34614d53c4d268cbff787c9b73e6

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
count.adb:6:30: info: loop invariant preservation proved
count.adb:6:30: info: loop invariant initialization proved
count.adb:6:41: info: overflow check proved
count.adb:8:25: info: overflow check proved
count.ads:4:11: info: postcondition proved
count.ads:4:28: info: range check proved

The only help that SPARK analysis required from the programmer, in order to prove the
postcondition, is a loop invariant (a special kind of assertion) that reflects
the value of Count at each iteration.

Pointers Should Be Typed

The C language defines a special pointer type void* that corresponds to an
untyped pointer. It is legal to convert any pointer type to and from void*,
which makes it a convenient way to simulate C++ style templates. Consider the following
code which indirectly applies assign_int to integer i and
assign_float to floating-point f by calling assign on both:

main.c

 1#include <stdio.h>
 2
 3void assign_int (int *p) {
 4 *p = 42;
 5}
 6
 7void assign_float (float *p) {
 8 *p = 42.0;
 9}
10
11typedef void (*assign_fun)(void *p);
12
13void assign(assign_fun fun, void *p) {
14 fun(p);
15}
16
17int main() {
18 int i;
19 float f;
20 assign((assign_fun)&assign_int, &i);
21 assign((assign_fun)&assign_float, &f);
22 printf("i = %d; f = %f\n", i, f);
23}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Typed_Pointers_C
MD5: fc00ba9eb97640037488569347591cc2

Runtime output

i = 42; f = 42.000000

The references to the variables i and f are implicitly converted to
the void* type as a way
to apply assign to any second parameter p whose type matches the
argument type of its first argument fun. The use of an untyped argument
means that the responsibility for the correct typing rests completely
with the programmer. Swap i and f in the calls to assign
and you still get a compilable program without warnings, that runs and produces
completely bogus output:

i = 1109917696; f = 0.000000

instead of the expected:

i = 42; f = 42.000000

Generics in SPARK (and Ada) can implement the desired functionality in a fully
typed way, with any errors caught at compile time, where procedure Assign
applies its parameter procedure Initialize to its parameter V:

assign.ads

1generic
2 type T is private;
3 with procedure Initialize (V : out T);
4procedure Assign (V : out T);

assign.adb

1procedure Assign (V : out T) is
2begin
3 Initialize (V);
4end Assign;

apply_assign.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Assign;
 3
 4procedure Apply_Assign is
 5 procedure Assign_Int (V : out Integer) is
 6 begin
 7 V := 42;
 8 end Assign_Int;
 9
10 procedure Assign_Float (V : out Float) is
11 begin
12 V := 42.0;
13 end Assign_Float;
14
15 procedure Assign_I is new Assign (Integer, Assign_Int);
16 procedure Assign_F is new Assign (Float, Assign_Float);
17
18 I : Integer;
19 F : Float;
20begin
21 Assign_I (I);
22 Assign_F (F);
23 Put_Line ("I =" & I'Img & "; F =" & F'Img);
24end Apply_Assign;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Typed_Pointers_Ada
MD5: af23d6f8a742676139aac38a385c7bf7

Runtime output

I = 42; F = 4.20000E+01

The generic procedure Assign must be instantiated with a specific
type for T and a specific procedure (taking a single out parameter
of this type) for Initialize. The procedure resulting from the
instantiation applies to a variable of this type. So switching I and
F above would result in an error detected by the compiler.
Likewise, an instantiation such as the following would also be
a compile-time error:

procedure Assign_I is new Assign (Integer, Assign_Float);

Enforcing Strong Typing for Scalars

In C, all scalar types can be converted both implicitly and explicitly to any
other scalar type. The semantics is defined by rules of
promotion and conversion, which can confuse even experts.
One example was noted earlier, in the Preface.
Another example appears in
an article introducing a safe library for manipulating scalars[#1] by Microsoft expert
David LeBlanc. In its conclusion, the author acknowledges the inherent
difficulty in understanding scalar type conversions in C, by showing an early
buggy version of the code to produce the minimum signed integer:

return (T)(1 << (BitCount()-1));

The issue here is that the literal 1 on the left-hand side of the shift is an
int, so on a 64-bit machine with 32-bit int and 64-bit type T, the
above is shifting 32-bit value 1 by 63 bits. This is a case of undefined behavior,
producing an unexpected output with the Microsoft compiler. The correction is to convert
the first literal 1 to T before the shift:

return (T)((T)1 << (BitCount()-1));

Although he'd asked some expert programmers to review the code, no one found
this problem.

To avoid these issues as much as possible, MISRA C defines its own type system
on top of C types, in the section on "The essential type model" (eight
rules). These can be seen as additional typing rules, since all rules in this section
are decidable, and can be enforced at the level of a single translation
unit. These rules forbid in particular the confusing cases
mentioned above. They can be divided into three sets of rules:

	restricting operations on types

	restricting explicit conversions

	restricting implicit conversions

Restricting Operations on Types

Apart from the application of some operations to floating-point arguments (the
bitwise, mod and array access operations) which are invalid and reported by the
compiler, all operations apply to all scalar types in C. MISRA C Rule 10.1
constrains the types on which each operation is possible as follows.

Arithmetic Operations on Arithmetic Types

Adding two Boolean values, or an Apple and an Orange, might sound like a
bad idea, but it is easily done in C:

main.c

 1#include <stdbool.h>
 2#include <stdio.h>
 3
 4int main() {
 5 bool b1 = true;
 6 bool b2 = false;
 7 bool b3 = b1 + b2;
 8
 9 typedef enum {Apple, Orange} fruit;
10 fruit f1 = Apple;
11 fruit f2 = Orange;
12 fruit f3 = f1 + f2;
13
14 printf("b3 = %d; f3 = %d\n", b3, f3);
15
16 return 0;
17}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_C
MD5: 30e28b34f616f8e6d35233a4ce698c23

Runtime output

b3 = 1; f3 = 1

No error from the compiler here. In fact, there is no undefined behavior in the
above code. Variables b3 and f3 both end up with value 1. Of course it
makes no sense to add Boolean or enumerated values, and thus MISRA C
Rule 18.1 forbids the use of all arithmetic operations on Boolean and
enumerated values, while also forbidding most arithmetic operations on
characters. That leaves the use of arithmetic operations for signed or unsigned
integers as well as floating-point types and the use of modulo operation %
for signed or unsigned integers.

Here's an attempt to simulate the above C code in SPARK (and Ada):

bad_arith.ads

 1package Bad_Arith is
 2
 3 B1 : constant Boolean := True;
 4 B2 : constant Boolean := False;
 5 B3 : constant Boolean := B1 + B2;
 6
 7 type Fruit is (Apple, Orange);
 8 F1 : constant Fruit := Apple;
 9 F2 : constant Fruit := Orange;
10 F3 : constant Fruit := F1 + F2;
11
12end Bad_Arith;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_Ada
MD5: 984381fdcf1a682e1998f7881c0532f9

Build output

bad_arith.ads:5:32: error: there is no applicable operator "+" for type "Standard.Boolean"
bad_arith.ads:10:30: error: there is no applicable operator "+" for type "Fruit" defined at line 7
gprbuild: *** compilation phase failed

It is possible, however, to get the predecessor of a Boolean or enumerated
value with Value'Pred and its successor with Value'Succ, as well as
to iterate over all values of the type:

ok_arith.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Ok_Arith is
 4
 5 B1 : constant Boolean := False;
 6 B2 : constant Boolean := Boolean'Succ (B1);
 7 B3 : constant Boolean := Boolean'Pred (B2);
 8
 9 type Fruit is (Apple, Orange);
10 F1 : constant Fruit := Apple;
11 F2 : constant Fruit := Fruit'Succ (F1);
12 F3 : constant Fruit := Fruit'Pred (F2);
13
14begin
15 pragma Assert (B1 = B3);
16 pragma Assert (F1 = F3);
17
18 for B in Boolean loop
19 Put_Line (B'Img);
20 end loop;
21
22 for F in Fruit loop
23 Put_Line (F'Img);
24 end loop;
25end Ok_Arith;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_Ada
MD5: 6ad400913a48fd815845b6a99d90ec2d

Runtime output

FALSE
TRUE
APPLE
ORANGE

Boolean Operations on Boolean

"Two bee or not two bee? Let's C":

main.c

1#include <stdbool.h>
2#include <stdio.h>
3
4int main() {
5 typedef enum {Ape, Bee, Cat} Animal;
6 bool answer = (2 * Bee) || ! (2 * Bee);
7 printf("two bee or not two bee? %d\n", answer);
8 return 0;
9}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Boolean_C
MD5: a9d4886827c983df51c9285fe3fd6c77

Runtime output

two bee or not two bee? 1

The answer to the question posed by Shakespeare's Hamlet is 1, since it
reduces to A or not A and this is true in classical logic.

As previously noted, MISRA C forbids the use of the multiplication operator
with an operand of an enumerated type. Rule 18.1 also forbids
the use of Boolean operations "and", "or", and "not" (&&, ||, !,
respectively, in C) on anything other than Boolean operands. It would
thus prohibit the Shakespearian code above.

Below is an attempt to express the same code in SPARK (and Ada), where the Boolean operators are
and, or, and not. The and and or operators evaluate both
operands, and the language also supplies short-circuit forms that evaluate
the left operand and only evaluate the right operand when its value may affect
the result.

bad_hamlet.ads

1package Bad_Hamlet is
2 type Animal is (Ape, Bee, Cat);
3 Answer : Boolean := 2 * Bee or not 2 * Bee; -- Illegal
4end Bad_Hamlet;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Boolean_Ada
MD5: 9089114f9cc6495dabd6957b54b33bd2

Build output

bad_hamlet.ads:3:28: error: expected type universal integer
bad_hamlet.ads:3:28: error: found type "Animal" defined at line 2
bad_hamlet.ads:3:43: error: expected a modular type
bad_hamlet.ads:3:43: error: found type "Animal" defined at line 2
gprbuild: *** compilation phase failed

As expected, the compiler rejects this code. There is no available * operation
that works on an enumeration type, and likewise no available or or not
operation.

Bitwise Operations on Unsigned Integers

Here's a genetic engineering example that combines a Bee with a Dog to produce
a Cat, by manipulating the atomic structure (the bits in its representation):

main.c

1#include <stdbool.h>
2#include <assert.h>
3
4int main() {
5 typedef enum {Ape, Bee, Cat, Dog} Animal;
6 Animal mutant = Bee ^ Dog;
7 assert (mutant == Cat);
8 return 0;
9}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_C
MD5: 645b0b6155f1cb17d02c7bcbb976993c

This algorithm works by accessing the underlying bitwise representation
of Bee and Dog (0x01 and 0x03, respectively) and, by applying the
exclusive-or operator ^, transforming it into the underlying bitwise
representation of a Cat (0x02). While powerful, manipulating the bits
in the representation of values is best reserved for unsigned integers as
illustrated in the book Hacker's Delight[#2].
MISRA C Rule 18.1 thus forbids the use of all bitwise operations on anything
but unsigned integers.

Below is an attempt to do the same in SPARK (and Ada). The bitwise operators are
and, or, xor, and not, and the related bitwise functions are
Shift_Left, Shift_Right, Shift_Right_Arithmetic, Rotate_Left
and Rotate_Right:

bad_genetics.ads

1package Bad_Genetics is
2 type Animal is (Ape, Bee, Cat, Dog);
3 Mutant : Animal := Bee xor Dog; -- ERROR
4 pragma Assert (Mutant = Cat);
5end Bad_Genetics;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_Ada
MD5: 3f7c3dd616f065016590d574200cf1db

Build output

bad_genetics.ads:3:27: error: there is no applicable operator "Xor" for type "Animal" defined at line 2
gprbuild: *** compilation phase failed

The declaration of Mutant is illegal, since the xor operator is only
available for Boolean and unsigned integer (modular) values; it is not available
for Animal. The same restriction applies to the other bitwise operators
listed above. If we really wanted to achieve the effect of the above code
in legal SPARK (or Ada), then the following approach will work (the type Unsigned_8
is an 8-bit modular type declared in the predefined package Interfaces).

unethical_genetics.ads

1with Interfaces; use Interfaces;
2package Unethical_Genetics is
3 type Animal is (Ape, Bee, Cat, Dog);
4 A : constant array (Animal) of Unsigned_8 :=
5 (Animal'Pos (Ape), Animal'Pos (Bee),
6 Animal'Pos (Cat), Animal'Pos (Dog));
7 Mutant : Animal := Animal'Val (A (Bee) xor A (Dog));
8 pragma Assert (Mutant = Cat);
9end Unethical_Genetics;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_Ada_2
MD5: 359439d40740fe2d99e6f334ed3500f9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Note that and, or, not and xor are used both as logical operators
and as bitwise operators, but there is no possible confusion between these two uses.
Indeed the use of such operators on values from modular types is a natural
generalization of their uses on Boolean, since values from modular types are often
interpreted as arrays of Booleans.

Restricting Explicit Conversions

A simple way to bypass the restrictions of Rule 10.1 is to explicitly
convert the arguments of an operation to a type that the rule allows. While
it can often be useful to cast a value from one type to another, many
casts that are allowed in C are either downright errors or poor replacements
for clearer syntax.

One example is to cast from a scalar type to Boolean. A better way to
express (bool)x is to compare x to the zero value of its type: x != 0
for integers, x != 0.0 for floats, x != '0' for characters, x != Enum
where Enum is the first enumerated value of the type. Thus, MISRA C
Rule 10.5 advises avoiding casting non-Boolean values to Boolean.

Rule 10.5 also advises avoiding other casts that are, at best, obscure:

	from a Boolean to any other scalar type

	from a floating-point value to an enumeration or a character

	from any scalar type to an enumeration

The rules are not symmetric, so although a float should not be cast to
an enum, casting an enum to a float is allowed. Similarly, although it is
advised to not cast a character to an enum, casting an enum
to a character is allowed.

The rules in SPARK are simpler. There are no conversions between numeric types
(integers, fixed-point and floating-point) and non-numeric types (such as Boolean,
Character, and other enumeration types). Conversions between different
non-numeric types are limited to those that make semantic sense, for example
between a derived type and its parent type. Any numeric type can be converted to
any other numeric type, with precise
rules for rounding/truncating values when needed and run-time checking that the
converted value is in the range associated with the target type.

Restricting Implicit Conversions

Rules 10.1 and 10.5 restrict operations on types and explicit
conversions. That's not enough to avoid problematic C programs; a program
violating one of these rules can be expressed using only implicit type
conversions. For example, the Shakespearian code in section
Boolean Operations on Boolean can be reformulated to
satisfy both Rules 10.1 and 10.5:

main.c

 1#include <stdbool.h>
 2#include <stdio.h>
 3
 4int main() {
 5 typedef enum {Ape, Bee, Cat} Animal;
 6 int b = Bee;
 7 bool t = 2 * b;
 8 bool answer = t || ! t;
 9 printf("two bee or not two bee? %d\n", answer);
10 return 0;
11}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_C
MD5: a157dd05c5fe8926886361b533305e14

Runtime output

two bee or not two bee? 1

Here, we're implicitly converting the enumerated value Bee to an int,
and then implicitly converting the integer value 2 * b to a Boolean.
This does not violate 10.1 or 10.5, but it is prohibited by
MISRA C Rule 10.3: "The value of an
expression shall not be assigned to an object with a narrower essential type or
of a different essential type category".

Rule 10.1 also does not prevent arguments of an operation from being
inconsistent, for example comparing a floating-point value and an enumerated
value. But MISRA C Rule 10.4 handles this situation:
"Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category".

In addition, three rules in the "Composite operators and
expressions" section avoid common mistakes related to the combination of
explicit/implicit conversions and operations.

The rules in SPARK (and Ada) are far simpler: there are no implicit conversions! This
applies both between types of a different essential type category as MISRA C
puts it, as well as between types that are structurally the same but declared as
different types.

bad_conversions.adb

 1procedure Bad_Conversions is
 2 pragma Warnings (Off);
 3 F : Float := 0.0;
 4 I : Integer := 0;
 5 type Animal is (Ape, Bee, Cat);
 6 type My_Animal is new Animal; -- derived type
 7 A : Animal := Cat;
 8 M : My_Animal := Bee;
 9 B : Boolean := True;
10 C : Character := 'a';
11begin
12 F := I; -- ERROR
13 I := A; -- ERROR
14 A := B; -- ERROR
15 M := A; -- ERROR
16 B := C; -- ERROR
17 C := F; -- ERROR
18end Bad_Conversions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_Bad_Ada
MD5: f10b50048595df0b4ed77c06a7508412

Build output

bad_conversions.adb:12:09: error: expected type "Standard.Float"
bad_conversions.adb:12:09: error: found type "Standard.Integer"
bad_conversions.adb:13:09: error: expected type "Standard.Integer"
bad_conversions.adb:13:09: error: found type "Animal" defined at line 5
bad_conversions.adb:14:09: error: expected type "Animal" defined at line 5
bad_conversions.adb:14:09: error: found type "Standard.Boolean"
bad_conversions.adb:15:09: error: expected type "My_Animal" defined at line 6
bad_conversions.adb:15:09: error: found type "Animal" defined at line 5
bad_conversions.adb:16:09: error: expected type "Standard.Boolean"
bad_conversions.adb:16:09: error: found type "Standard.Character"
bad_conversions.adb:17:09: error: expected type "Standard.Character"
bad_conversions.adb:17:09: error: found type "Standard.Float"
gprbuild: *** compilation phase failed

The compiler reports a mismatch on every statement in the above procedure
(the declarations are all legal).

Adding explicit conversions makes the assignments to F and M valid,
since SPARK (and Ada) allow conversions between numeric types and between a derived
type and its parent type, but all other conversions are illegal:

bad_conversions.adb

 1procedure Bad_Conversions is
 2 pragma Warnings (Off);
 3 F : Float := 0.0;
 4 I : Integer := 0;
 5 type Animal is (Ape, Bee, Cat);
 6 type My_Animal is new Animal; -- derived type
 7 A : Animal := Cat;
 8 M : My_Animal := Bee;
 9 B : Boolean := True;
10 C : Character := 'a';
11begin
12 F := Float (I); -- OK
13 I := Integer (A); -- ERROR
14 A := Animal (B); -- ERROR
15 M := My_Animal (A); -- OK
16 B := Boolean (C); -- ERROR
17 C := Character (F); -- ERROR
18end Bad_Conversions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_Bad_Ada
MD5: 4d3f6a8629d51f27b6628dae5fc7b680

Build output

bad_conversions.adb:13:18: error: illegal operand for numeric conversion
bad_conversions.adb:14:09: error: invalid conversion, not compatible with type "Standard.Boolean"
bad_conversions.adb:16:09: error: invalid conversion, not compatible with type "Standard.Character"
bad_conversions.adb:17:09: error: invalid conversion, not compatible with type "Standard.Float"
gprbuild: *** compilation phase failed

Although an enumeration value cannot be converted to an integer (or vice
versa) either implicitly or explicitly, SPARK (and Ada) provide functions
to obtain the effect of a type conversion. For any enumeration type T,
the function T'Pos(e) takes an enumeration value from type T
and returns its relative position as an integer, starting at 0.
For example, Animal'Pos(Bee) is 1, and Boolean'Pos(False)
is 0. In the other direction, T'Val(n), where n is an integer,
returns the enumeration value in type T at relative position n.
If n is negative or greater then T'Pos(T'Last) then a run-time
exception is raised.

Hence, the following is valid SPARK (and Ada) code; Character is defined as
an enumeration type:

ok_conversions.adb

 1procedure Ok_Conversions is
 2 pragma Warnings (Off);
 3 F : Float := 0.0;
 4 I : Integer := 0;
 5 type Animal is (Ape, Bee, Cat);
 6 type My_Animal is new Animal;
 7 A : Animal := Cat;
 8 M : My_Animal := Bee;
 9 B : Boolean := True;
10 C : Character := 'a';
11begin
12 F := Float (I);
13 I := Animal'Pos (A);
14 I := My_Animal'Pos (M);
15 I := Boolean'Pos (B);
16 I := Character'Pos (C);
17 I := Integer (F);
18 A := Animal'Val (2);
19end Ok_Conversions;

Footnotes

[#1]
https://msdn.microsoft.com/en-us/library/ms972705.aspx

[#2]
http://www.hackersdelight.org/

Initializing Data Before Use

As with most programming languages, C does not require that variables be initialized at
their declaration, which makes it possible to unintentionally read
uninitialized data. This is a case of undefined behavior, which can sometimes
be used to attack the program.

Detecting Reads of Uninitialized Data

MISRA C attempts to prevent reads of uninitialized data in a specific section
on "Initialization", containing five rules. The most important is Rule 9.1:
"The value of an object with automatic storage duration shall not be read
before it has been set". The first example in the rule is interesting, as it
shows a non-trivial (and common) case of conditional initialization, where a
function f initializes an output parameter p only in some cases, and
the caller g of f ends up reading the value of the variable u
passed in argument to f in cases where it has not been initialized:

f.h

1#include <stdint.h>
2
3void f (int b, uint16_t *p);

f.c

1#include "f.h"
2
3void f (int b, uint16_t *p)
4{
5 if (b)
6 {
7 *p = 3U;
8 }
9}

g.c

 1#include <stdint.h>
 2#include "f.h"
 3
 4static void g (void)
 5{
 6 uint16_t u;
 7
 8 f (0, &u);
 9
10 if (u == 3U)
11 {
12 /* Non-compliant use - "u" has not been assigned a value. */
13 }
14}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_C
MD5: f36430141f48b34810d53a43294c7d74

Detecting the violation of Rule 9.1 can be arbitrarily complex, as the program
points corresponding to a variable's initialization and read can be separated
by many calls and conditions. This is one of the undecidable rules, for which most
MISRA C checkers won't detect all violations.

In SPARK, the guarantee that all reads are to initialized data is enforced by
the SPARK analysis tool, GNATprove, through what is referred to as
flow analysis. Every subprogram is analyzed
separately to check that it cannot read uninitialized data. To make this
modular analysis possible, SPARK programs need to respect the following
constraints:

	all inputs of a subprogram should be initialized on subprogram entry

	all outputs of a subprogram should be initialized on subprogram return

Hence, given the following code translated from C, GNATprove reports that
function F might not always initialize output parameter P:

init.ads

1with Interfaces; use Interfaces;
2
3package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6end Init;

init.adb

 1package body Init is
 2
 3 procedure F (B : Boolean; P : out Unsigned_16) is
 4 begin
 5 if B then
 6 P := 3;
 7 end if;
 8 end F;
 9
10 procedure G is
11 U : Unsigned_16;
12 begin
13 F (False, U);
14
15 if U = 3 then
16 null;
17 end if;
18 end G;
19
20end Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_Ada
MD5: d54bc9901b3bff4f0cfea9942a795156

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.ads:4:30: medium: "P" might not be initialized in "F" [reason for check: OUT parameter should be initialized on return] [possible fix: initialize "P" on all paths or make "P" an IN OUT parameter]
gnatprove: unproved check messages considered as errors

We can correct the program by initializing P to value 0 when condition B is
not satisfied:

init.ads

1with Interfaces; use Interfaces;
2
3package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6end Init;

init.adb

 1package body Init is
 2
 3 procedure F (B : Boolean; P : out Unsigned_16) is
 4 begin
 5 if B then
 6 P := 3;
 7 else
 8 P := 0;
 9 end if;
10 end F;
11
12 procedure G is
13 U : Unsigned_16;
14 begin
15 F (False, U);
16
17 if U = 3 then
18 null;
19 end if;
20 end G;
21
22end Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_Ada
MD5: 481787c333014d56814a7205720f72bc

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:13:07: info: initialization of "U" proved
init.ads:4:30: info: initialization of "P" proved

GNATprove now does not report any possible reads of uninitialized data.
On the contrary, it confirms that all reads are made from initialized data.

In contrast with C, SPARK does not guarantee that global data (called
library-level data in SPARK and Ada) is zero-initialized at program startup. Instead,
GNATprove checks that all global data is explicitly initialized (at declaration
or elsewhere) before it is read. Hence it goes beyond the MISRA C Rule 9.1, which
considers global data as always initialized even if the default value of
all-zeros might not be valid data for the application. Here's a variation of
the above code where variable U is now global:

init.ads

1with Interfaces; use Interfaces;
2
3package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G;
7end Init;

init.adb

 1package body Init is
 2
 3 procedure F (B : Boolean) is
 4 begin
 5 if B then
 6 U := 3;
 7 end if;
 8 end F;
 9
10 procedure G is
11 begin
12 F (False);
13
14 if U = 3 then
15 null;
16 end if;
17 end G;
18
19end Init;

call_init.adb

1with Init;
2
3procedure Call_Init is
4begin
5 Init.G;
6end Call_Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_Ada
MD5: a85cde45a658727975367b041a1a5dc3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
call_init.adb:5:08: medium: "U" might not be initialized after elaboration of main program "Call_Init"
init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports here that variable U might not be initialized at program
startup, which is indeed the case here. It reports this issue on the main
program Call_Init because its analysis showed that F needs to take
U as an initialized input (since F is not initializing U on all
paths, U keeps its value on the other path, which needs to be an
initialized value), which means that G which calls F also needs to take
U as an initialized input, which in turn means that Call_Init which
calls G also needs to take U as an initialized input. At this point,
we've reached the main program, so the initialization phase (referred to as
elaboration in SPARK and Ada) should have taken care of initializing U.
This is not the case here, hence the message from GNATprove.

It is possible in SPARK to specify that G should initialize variable U;
this is done with a data dependency contract introduced with aspect Global
following the declaration of procedure G:

init.ads

1with Interfaces; use Interfaces;
2
3package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G with Global => (Output => U);
7end Init;

init.adb

 1package body Init is
 2
 3 procedure F (B : Boolean) is
 4 begin
 5 if B then
 6 U := 3;
 7 end if;
 8 end F;
 9
10 procedure G is
11 begin
12 F (False);
13
14 if U = 3 then
15 null;
16 end if;
17 end G;
18
19end Init;

call_init.adb

1with Init;
2
3procedure Call_Init is
4begin
5 Init.G;
6end Call_Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_Ada
MD5: 100122ca3c8c60c134822a85d564a60a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:12:07: high: "U" is not initialized
init.adb:12:07: high: "U" is not an input in the Global contract of subprogram "G" at init.ads:6
init.adb:12:07: high: either make "U" an input in the Global contract or initialize it before use
init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports the error on the call to F in G, as it
knows at this point that F needs U to be initialized but the calling
context in G cannot provide that guarantee. If we provide the same data
dependency contract for F, then GNATprove reports the error on F
itself, similarly to what we saw for an output parameter U.

Detecting Partial or Redundant Initialization of Arrays and Structures

The other rules in the section on "Initialization" deal with common errors in
initializing aggregates and designated initializers in C99 to initialize a
structure or array at declaration. These rules attempt to patch holes created
by the lax syntax and rules in C standard. For example, here are five valid
initializations of an array of 10 elements in C:

main.c

1int main() {
2 int a[10] = {0};
3 int b[10] = {0, 0};
4 int c[10] = {0, [8] = 0};
5 int d[10] = {0, [8] = 0, 0};
6 int e[10] = {0, [8] = 0, 0, [8] = 1};
7 return 0;
8}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Redundant_Init
MD5: 1212a5565fc3a382e7f967d1cf0b48f9

Only a is fully initialized to all-zeros in the above code snippet. MISRA C
Rule 9.3 thus forbids all other declarations by stating that "Arrays shall not
be partially initialized". In addition, MISRA C Rule 9.4 forbids the
declaration of e by stating that "An element of an object shall not be
initialised more than once" (in e's declaration, the element at index 8 is
initialized twice).

The same holds for initialization of structures. Here is an equivalent set of
declarations with the same potential issues:

main.c

1int main() {
2 typedef struct { int x; int y; int z; } rec;
3 rec a = {0};
4 rec b = {0, 0};
5 rec c = {0, .y = 0};
6 rec d = {0, .y = 0, 0};
7 rec e = {0, .y = 0, 0, .y = 1};
8 return 0;
9}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Redundant_Init
MD5: e562ef70b8c8a170d2bd09281cf2a075

Here only a, d and e are fully initialized. MISRA C Rule 9.3 thus
forbids the declarations of b and c. In addition, MISRA C Rule 9.4
forbids the declaration of e.

In SPARK and Ada, the aggregate used to initialize an array or a record must fully
cover the components of the array or record. Violations lead to compilation
errors, both for records:

init_record.ads

1package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1); -- ERROR, Y and Z not specified
6end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_1
MD5: 6b28bffe6270c5ea5055123c5b89c508

Build output

init_record.ads:5:15: error: no value supplied for component "Y"
init_record.ads:5:15: error: no value supplied for component "Z"
gprbuild: *** compilation phase failed

and for arrays:

init_array.ads

1package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 => 1); -- ERROR, elements 2..10 not specified
4end Init_Array;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Array_1
MD5: 81aa6363ba770ded10bef8d3d8776914

Build output

init_array.ads:3:15: warning: too few elements for type "Arr" defined at line 2 [enabled by default]
init_array.ads:3:15: warning: expected 10 elements; found 1 element [enabled by default]
init_array.ads:3:15: warning: Constraint_Error will be raised at run time [enabled by default]

Similarly, redundant initialization leads to compilation errors for records:

init_record.ads

1package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, Y => 1, Z => 1, X => 2); -- ERROR, X duplicated
6end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_2
MD5: 07d3f790009be97cef2daaf08b2f7afd

Build output

init_record.ads:5:40: error: more than one value supplied for "X"
gprbuild: *** compilation phase failed

and for arrays:

init_array.ads

1package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => 2, 7 => 3); -- ERROR, A(7) duplicated
4end Init_Array;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Array_2
MD5: 12f5fa4615abccde43f63f72340fd4a0

Build output

init_array.ads:3:43: error: index value in array aggregate duplicates the one given at line 3
init_array.ads:3:43: error: 7
gprbuild: *** compilation phase failed

Finally, while it is legal in Ada to leave uninitialized parts in a record or
array aggregate by using the box notation (meaning that the default
initialization of the type is used, which may be no initialization at all),
SPARK analysis rejects such use when it leads to components not being
initialized, both for records:

init_record.ads

1package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, others => <>); -- ERROR, Y and Z not specified
6end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_3
MD5: a7736f2b563c39fb4ab10007e927ad97

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init_record.ads:5:04: error: "R" is not allowed in SPARK (due to box notation without default initialization)
init_record.ads:5:04: error: violation of pragma SPARK_Mode at /vagrant/frontend/dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_Record_3/a7736f2b563c39fb4ab10007e927ad97/main_spark.adc:12
init_record.ads:5:15: error: box notation without default initialization is not allowed in SPARK (SPARK RM 4.3(1))
init_record.ads:5:15: error: violation of pragma SPARK_Mode at /vagrant/frontend/dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_Record_3/a7736f2b563c39fb4ab10007e927ad97/main_spark.adc:12
gnatprove: error during analysis of data and information flow

and for arrays:

init_array.ads

1package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => <>); -- ERROR, A(9..10) not specified
4end Init_Array;

Footnotes

Controlling Side Effects

As with most programming languages, C allows side effects in expressions. This
leads to subtle issues about conflicting side effects, when subexpressions of
the same expression read/write the same variable.

Preventing Undefined Behavior

Conflicting side effects are a kind of undefined behavior; the C Standard (section
6.5) defines the concept as follows:

"Between two sequence points, an object is modified more than once, or is
modified and the prior value is read other than to determine the value to
be stored"

This legalistic wording is somewhat opaque, but the notion of sequence points
is summarized in Annex C of the C90 and C99 standards. MISRA C repeats these
conditions in the Amplification of Rule 13.2, including the read of a volatile
variable as a side effect similar to writing a variable.

This rule is undecidable, so MISRA C completes it with two rules that provide
simpler restrictions preventing some side effects in expressions, thus reducing
the potential for undefined behavior:

	Rule 13.3: "A full expression containing an increment
(++) or decrement (--) operator should have no other potential side effects
other than that caused by the increment or decrement operator".

	Rule 13.4: "The result of an assignment operator should
not be used".

In practice, conflicting side effects usually manifest themselves as
portability issues, since the result of the evaluation of an expression depends on
the order in which a compiler decides to evaluate its subexpressions. So
changing the compiler version or the target platform might lead to a different
behavior of the application.

To reduce the dependency on evaluation order, MISRA C
Rule 13.1 states: "Initializer lists shall not contain persistent
side effects". This case is theoretically different from the previously
mentioned conflicting side effects, because initializers that comprise an
initializer list are separated by sequence points, so there is no risk of
undefined behavior if two initializers have conflicting side effects. But
given that initializers are executed in an unspecified order, the result
of a conflict is potentially as damaging for the application.

Reducing Programmer Confusion

Even in cases with no undefined or unspecified behavior, expressions with
multiple side effects can be confusing to programmers reading or maintaining
the code. This problem arises in particular with C's increment and decrement
operators that can be applied prior to or after the expression evaluation,
and with the assignment operator = in C since it can easily be mistaken
for equality. Thus MISRA C forbids the use of the
increment / decrement (Rule 13.3) and assignment (Rule 13.4) operators in
expressions that have other potential side effects.

In other cases, the presence of expressions with side effects might be
confusing, if the programmer wrongly thinks that the side effects are
guaranteed to occur. Consider the function decrease_until_one_is_null
below, which decreases both arguments until one is null:

main.c

 1#include <stdio.h>
 2
 3void decrease_until_one_is_null (int *x, int *y) {
 4 if (x == 0 || y == 0) {
 5 return;
 6 }
 7 while (--*x != 0 && --*y != 0) {
 8 // nothing
 9 }
10}
11
12int main() {
13 int x = 42, y = 42;
14 decrease_until_one_is_null (&x, &y);
15 printf("x = %d, y = %d\n", x, y);
16 return 0;
17}

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Side_Effect_C
MD5: a3e991881894bc3fb25a5f49a083fd2e

Runtime output

x = 0, y = 1

The program produces the following output:

x = 0, y = 1

I.e., starting from the same value 42 for both x and y, only
x has reached the value zero after decrease_until_one_is_null
returns. The reason is that the side effect on y is performed only
conditionally. To avoid such surprises, MISRA C Rule 13.5 states:
"The right hand operand of a logical && or || operator shall not contain
persistent side effects"; this rule forbids the code above.

MISRA C Rule 13.6 similarly states: "The operand of the sizeof operator
shall not contain any expression which has potential side effects". Indeed,
the operand of sizeof is evaluated only in rare situations, and only
according to C99 rules, which makes any side effect in such an operand a
likely mistake.

Side Effects and SPARK

In SPARK, expressions cannot have side effects; only statements can. In
particular, there are no increment/decrement operators, and no assignment
operator. There is instead an assignment statement, whose syntax using :=
clearly distinguishes it from equality (using =). And in any event an
expression is not allowed as a statement and this a construct such as
X = Y; would be illegal. Here is how a variable X can be assigned,
incremented and decremented:

X := 1;
X := X + 1;
X := X - 1;

There are two possible side effects when evaluating an expression:

	a read of a volatile variable

	a side effect occurring inside a function that the expression calls

Reads of volatile variables in SPARK are restricted to appear immediately at
statement level, so the following is not allowed:

volatile_read.ads

1package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4end Volatile_Read;

volatile_read.adb

1package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 begin
4 Y := X - X; -- ERROR
5 end P;
6end Volatile_Read;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Volatile_Read_1
MD5: 7ec58b4d1432d03d60b5ea6019cc031e

Prover output

Phase 1 of 2: generation of Global contracts ...
volatile_read.adb:4:12: error: volatile object cannot appear in this context (SPARK RM 7.1.3(10))
volatile_read.adb:4:16: error: volatile object cannot appear in this context (SPARK RM 7.1.3(10))
gnatprove: error during generation of Global contracts

Instead, every read of a volatile variable must occur immediately before being
assigned to another variable, as follows:

volatile_read.ads

1package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4end Volatile_Read;

volatile_read.adb

1package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 X1 : constant Integer := X;
4 X2 : constant Integer := X;
5 begin
6 Y := X1 - X2;
7 end P;
8end Volatile_Read;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Volatile_Read_2
MD5: 1224af597a12a8ca77b96976c76b422f

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
volatile_read.ads:3:17: info: initialization of "Y" proved

Note here that the order of capture of the volatile value of X might be
significant. For example, X might denote a quantity which only increases,
like clock time, so that the above expression X1 - X2 would always be
negative or zero.

Even more significantly, functions in SPARK cannot have side effects; only
procedures can. The only effect of a SPARK function is the computation of a
result from its inputs, which may be passed as parameters or as global
variables. In particular, SPARK functions cannot have out or in out
parameters:

bad_function.ads

1function Bad_Function (X, Y : Integer; Sum, Max : out Integer) return Boolean;
2-- ERROR, since "out" parameters are not allowed

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Function_With_Out_Param
MD5: 204dd22df61fe15208ae34ebc3828974

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_function.ads:1:10: error: function with "out" parameter is not allowed in SPARK
bad_function.ads:1:10: error: violation of pragma SPARK_Mode at /vagrant/frontend/dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Side_Effect/Function_With_Out_Param/204dd22df61fe15208ae34ebc3828974/main_spark.adc:12
gnatprove: error during analysis of data and information flow

More generally, SPARK does not allow functions that have a side effect
in addition to returning their result, as is typical of many idioms in other
languages, for example when setting a new value and returning the previous one:

bad_functions.ads

1package Bad_Functions is
2 function Set (V : Integer) return Integer;
3 function Get return Integer;
4end Bad_Functions;

bad_functions.adb

 1package body Bad_Functions is
 2
 3 Value : Integer := 0;
 4
 5 function Set (V : Integer) return Integer is
 6 Previous : constant Integer := Value;
 7 begin
 8 Value := V; -- ERROR
 9 return Previous;
10 end Set;
11
12 function Get return Integer is (Value);
13
14end Bad_Functions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Side_Effect_Ada
MD5: 3337b6025c4996e7fa8c7e27b4df42c1

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_functions.ads:2:13: error: function with output global "Value" is not allowed in SPARK
gnatprove: error during analysis of data and information flow

GNATprove detects that function Set has a side effect on global variable
Value and issues an error. The correct idiom in SPARK for such a case is to
use a procedure with an out parameter to return the desired result:

ok_subprograms.ads

1package Ok_Subprograms is
2 procedure Set (V : Integer; Prev : out Integer);
3 function Get return Integer;
4end Ok_Subprograms;

ok_subprograms.adb

 1package body Ok_Subprograms is
 2
 3 Value : Integer := 0;
 4
 5 procedure Set (V : Integer; Prev : out Integer) is
 6 begin
 7 Prev := Value;
 8 Value := V;
 9 end Set;
10
11 function Get return Integer is (Value);
12
13end Ok_Subprograms;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.No_Side_Effect_Ada
MD5: 04e2235b8b6a01706434d35f6636674c

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
ok_subprograms.ads:2:32: info: initialization of "Prev" proved

With the above restrictions in SPARK, none of the conflicts of side effects
that can occur in C can occur in SPARK, and this is guaranteed by flow analysis.

Footnotes

Detecting Undefined Behavior

Undefined behavior (and critical unspecified behavior, which we'll treat as
undefined behavior) are the plague of C programs. Many
rules in MISRA C are designed to avoid undefined behavior, as evidenced by
the twenty occurrences of "undefined" in the MISRA C:2012 document.

MISRA C Rule 1.3 is the overarching rule, stating very simply:

"There shall be no occurrence of undefined or critical unspecified
behaviour."

The deceptive simplicity of this rule rests on the definition of undefined or
critical unspecified behaviour. Appendix H of MISRA:C 2012 lists
hundreds of cases of undefined and critical unspecified behavior in the C
programming language standard, a majority of which are not individually
decidable.

It is therefore not surprising that a majority of MISRA C checkers do
not make a serious attempt to verify compliance with MISRA C Rule 1.3.

Preventing Undefined Behavior in SPARK

Since SPARK is a subset of the Ada programming language, SPARK programs may
exhibit two types of undefined behaviors that can occur in Ada:

	bounded error: when the program enters a state not defined by the
language semantics, but the consequences are bounded in various
ways. For example, reading uninitialized data can lead to a bounded error,
when the value read does not correspond to a valid value for the type of the
object. In this specific case, the Ada Reference Manual states that either a
predefined exception is raised or execution continues using the invalid
representation.

	erroneous execution: when when the program enters a state not defined
by the language semantics, but the consequences are not bounded
by the Ada Reference Manual. This is the closest to an undefined behavior
in C. For example, concurrently writing through different tasks to the same
unprotected variable is a case of erroneous execution.

Many cases of undefined behavior in C would in fact raise exceptions in
SPARK. For example, accessing an array beyond its bounds raises the exception
Constraint_Error while reaching the end of a function without returning a
value raises the exception Program_Error.

The SPARK Reference Manual defines the SPARK subset through a combination of
legality rules (checked by the compiler, or the compiler-like phase preceding
analysis) and verification rules (checked by the formal analysis tool
GNATprove). Bounded errors and erroneous execution are prevented by a
combination of legality rules and the flow analysis part of GNATprove,
which in particular detects potential reads of uninitialized data, as described in
Detecting Reads of Uninitialized Data. The following discussion focuses
on how SPARK can verify that no exceptions can be raised.

Proof of Absence of Run-Time Errors in SPARK

The most common run-time errors are related to misuse of arithmetic (division by
zero, overflows, exceeding the range of allowed values), arrays (accessing
beyond an array bounds, assigning between arrays of different lengths), and
structures (accessing components that are not defined for a given variant).

Arithmetic run-time errors can occur with signed integers,
unsigned integers, fixed-point and floating-point (although with
IEEE 754 floating-point arithmetic, errors are manifest as special
run-time values such as NaN and infinities rather than as exceptions
that are raised). These errors can occur when applying
arithmetic operations or when converting between numeric types (if the
value of the expression being converted is outside the range of the
type to which it is being converted).

Operations on enumeration values can also lead to run-time errors; e.g.,
T'Pred(T'First) or T'Succ(T'Last) for an enumeration type T,
or T'Val(N) where N is an integer value that
is outside the range 0 .. T'Pos(T'Last).

The Update procedure below contains what appears to be a simple assignment
statement, which sets the value of array element A(I+J) to P/Q.

show_runtime_errors.ads

1package Show_Runtime_Errors is
2
3 type Nat_Array is array (Integer range <>) of Natural;
4 -- The values in subtype Natural are 0 , 1, ... Integer'Last
5
6 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer);
7
8end Show_Runtime_Errors;

show_runtime_errors.adb

1package body Show_Runtime_Errors is
2
3 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer) is
4 begin
5 A (I + J) := P / Q;
6 end Update;
7
8end Show_Runtime_Errors;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Undefined_Behavior.Runtime_Errors
MD5: 8ad4488974ab9e49ac17bf094ae33eac

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_runtime_errors.adb:5:12: medium: overflow check might fail, cannot prove lower bound for I + J [reason for check: result of addition must fit in a 32-bits machine integer] [possible fix: add precondition (if J >= 0 then I <= Integer'Last - J else I >= Integer'First - J) to subprogram at show_runtime_errors.ads:6]
show_runtime_errors.adb:5:12: medium: array index check might fail [reason for check: result of addition must be a valid index into the array] [possible fix: add precondition (if J >= 0 then I <= A'Last - J else I >= A'First - J) to subprogram at show_runtime_errors.ads:6]
show_runtime_errors.adb:5:22: medium: divide by zero might fail [possible fix: add precondition (Q /= 0) to subprogram at show_runtime_errors.ads:6]
show_runtime_errors.adb:5:22: medium: overflow check might fail, cannot prove lower bound for P / Q [reason for check: result of division must fit in a 32-bits machine integer] [possible fix: add precondition (P / Q in Integer) to subprogram at show_runtime_errors.ads:6]
show_runtime_errors.adb:5:22: medium: range check might fail, cannot prove lower bound for P / Q [reason for check: result of division must fit in the target type of the assignment] [possible fix: add precondition (P / Q in Natural) to subprogram at show_runtime_errors.ads:6]
gnatprove: unproved check messages considered as errors

However, for an arbitrary invocation of this procedure, say
Update(A, I, J, P, Q), an exception can be raised in a variety of
circumstances:

	The computation I+J may overflow, for example if I
is Integer'Last and J is positive.

A (Integer'Last + 1) := P / Q;

	The value of I+J may be outside the range of the array A.

A (A'Last + 1) := P / Q;

	The division P / Q may overflow in the special case where P
is Integer'First and Q is -1, because of the asymmetric
range of signed integer types.

A (I + J) := Integer'First / -1;

	Since the array can only contain non-negative numbers (the element subtype
is Natural), it is also an error to store a negative value in it.

A (I + J) := 1 / -1;

	Finally, if Q is 0 then a divide by zero error will occur.

A (I + J) := P / 0;

For each of these potential run-time errors, the compiler will generate checks in the
executable code, raising an exception if any of the checks fail:

A (Integer'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : overflow check failed

A (A'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : index check failed

A (I + J) := Integer'First / (-1);
-- raised CONSTRAINT_ERROR : overflow check failed

A (I + J) := 1 / (-1);
-- raised CONSTRAINT_ERROR : range check failed

A (I + J) := P / 0;
-- raised CONSTRAINT_ERROR : divide by zero

These run-time checks incur an overhead in program size
and execution time. Therefore it may be appropriate to remove them
if we are confident that they are not needed.

The traditional way to obtain the needed confidence is through testing,
but it is well known that this can never be complete, at least for
non-trivial programs. Much better is to guarantee the absence of
run-time errors through sound static analysis, and that's where
SPARK and GNATprove can help.

More precisely, GNATprove logically interprets the meaning of every instruction
in the program, taking into account both control flow and data/information
dependencies. It uses this analysis to generate a logical
formula called a verification condition for each possible check.

A (Integer'Last + 1) := P / Q;
-- medium: overflow check might fail

A (A'Last + 1) := P / Q;
-- medium: array index check might fail

A (I + J) := Integer'First / (-1);
-- medium: overflow check might fail

A (I + J) := 1 / (-1);
-- medium: range check might fail

A (I + J) := P / 0;
-- medium: divide by zero might fail

The verification conditions are then given to an automatic prover. If
every verification condition can be proved, then no run-time errors will
occur.

GNATprove's analysis is sound — it will detect all possible instances of
run-time exceptions being raised — while also having high precision
(i.e., not producing a cascade of "false alarms").

The way to program in SPARK so that GNATprove can guarantee the absence of run-time
errors entails:

	declaring variables with precise constraints, and in particular to specify
precise ranges for scalars; and

	defining preconditions and postconditions on subprograms, to specify respectively
the constraints that callers should respect and the guarantees that the
subprogram should provide on exit.

For example, here is a revised version of the previous example, which
can guarantee through proof that no possible run-time error can be raised:

no_runtime_errors.ads

 1package No_Runtime_Errors is
 2
 3 subtype Index_Range is Integer range 0 .. 100;
 4
 5 type Nat_Array is array (Index_Range range <>) of Natural;
 6
 7 procedure Update (A : in out Nat_Array;
 8 I, J : Index_Range;
 9 P, Q : Positive)
10 with
11 Pre => I + J in A'Range;
12
13end No_Runtime_Errors;

no_runtime_errors.adb

 1package body No_Runtime_Errors is
 2
 3 procedure Update (A : in out Nat_Array;
 4 I, J : Index_Range;
 5 P, Q : Positive) is
 6 begin
 7 A (I + J) := P / Q;
 8 end Update;
 9
10end No_Runtime_Errors;

Footnotes

Detecting Unreachable Code and Dead Code

MISRA C defines unreachable code as code that cannot be executed, and
it defines dead code as code that can be executed
but has no effect on the functional behavior of the program. (These
definitions differ from traditional terminology, which refers to the first
category as "dead code" and the second category as "useless code".)
Regardless of the terminology, however,
both types are actively harmful, as they might confuse
programmers and lead to errors during maintenance.

The "Unused code" section of MISRA C contains seven rules that deal with
detecting both unreachable code and dead code. The two most
important rules are:

	Rule 2.1: "A project shall not contain unreachable code", and

	Rule 2.2: "There shall not be dead code".

Other rules in the same section prohibit unused entities of
various kinds (type declarations, tag declarations, macro declarations, label
declarations, function parameters).

While some simple cases of unreachable code can be detected by static analysis
(typically if a condition in an if statement can be determined to be always
true or false), most cases of unreachable code can only be detected by performing
coverage analysis in testing, with the caveat that code reported as not being
executed is not necessarily unreachable (it could simply reflect gaps in the test
suite). Note that statement coverage, rather than the more comprehensive
decision coverage or modified condition / decision coverage (MC/DC) as
defined in the DO-178C standard for airborne software, is sufficient to detect
potential unreachable statements, corresponding to code that is not covered
during the testing campaign.

The presence of dead code is much harder to detect, both statically and
dynamically, as it requires creating a complete dependency graph linking
statements in the code and their effect on visible behavior of the program.

SPARK can detect some cases of both unreachable and dead code through its
precise construction of a dependency graph linking a subprogram's statements
to all its inputs and outputs. This analysis might not be able to
detect complex cases, but it goes well beyond what other analyses do in general.

much_ado_about_little.ads

1procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean);

much_ado_about_little.adb

 1procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean) is
 2
 3 procedure Ok is
 4 begin
 5 Success := True;
 6 end Ok;
 7
 8 procedure NOk is
 9 begin
10 Success := False;
11 end NOk;
12
13begin
14 Success := False;
15
16 for K in Y .. Z loop
17 if K < X and not Success then
18 Ok;
19 end if;
20 end loop;
21
22 if X > Y then
23 Ok;
24 else
25 NOk;
26 end if;
27
28 if Z > Y then
29 NOk;
30 return;
31 else
32 Ok;
33 return;
34 end if;
35
36 if Success then
37 Success := not Success;
38 end if;
39end Much_Ado_About_Little;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Unreachable_And_Dead_Code.Much_Ado_About_Little
MD5: ccccb112fbab169ba964b3f8ef36ec2d

Build output

much_ado_about_little.adb:36:04: warning: unreachable code [enabled by default]

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at much_ado_about_little.adb:18
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at much_ado_about_little.adb:23
much_ado_about_little.adb:10:15: warning: unused assignment, in call inlined at much_ado_about_little.adb:25
much_ado_about_little.adb:14:12: warning: unused assignment
much_ado_about_little.adb:16:20: warning: statement has no effect
much_ado_about_little.adb:17:07: warning: statement has no effect
much_ado_about_little.adb:22:04: warning: statement has no effect
much_ado_about_little.adb:36:04: warning: unreachable code [enabled by default]
much_ado_about_little.adb:36:04: warning: this statement is never reached
much_ado_about_little.adb:37:15: warning: this statement is never reached
much_ado_about_little.ads:1:34: warning: unused initial value of "X"

The only code in the body of Much_Ado_About_Little that affects the result
of the procedure's execution is the if Z > Y... statement, since this
statement sets Success to either True or False regardless of what the
previous statements did. I.e., the statements preceding this if are
dead code in the MISRA C sense. Since both branches of the if Z > Y...
statement return from the procedure, the subsequent if Success... statement
is unreachable. GNATprove detects and issues warnings about both
the dead code and the unreachable code.

Footnotes

Conclusion

The C programming language is "close to the metal" and has
emerged as a lingua franca for the majority of embedded platforms of all
sizes. However, its software engineering deficiencies (such as the absence of
data encapsulation) and its many traps and pitfalls present major obstacles
to those developing critical applications. To some extent, it
is possible to put the blame for programming errors on programmers themselves,
as Linus Torvalds admonished:

"Learn C, instead of just stringing random characters
together until it compiles (with warnings)."

But programmers are human, and even the best would be hard pressed to be 100%
correct about the myriad of semantic details such as those discussed
in this document. Programming language abstractions
have been invented precisely to help developers focus on the "big picture"
(thinking in terms of problem-oriented concepts) rather than low-level
machine-oriented details, but C lacks these abstractions.
As Kees Cook from the Kernel Self Protection
Project puts it (during the Linux Security Summit North America 2018):

"Talking about C as a language, and how it's really just a fancy
assembler"

Even experts sometimes have problems with
the C programming language rules, as illustrated by Microsoft
expert David LeBlanc (see Enforcing Strong Typing for Scalars) or the
MISRA C Committee itself (see the Preface).

The rules in MISRA C represent an impressive collective effort to improve the
reliability of C code in critical applications, with a focus on avoiding
error-prone features rather than enforcing a
particular programming style. The Rationale provided with each rule is a clear
and unobjectionable justification of the rule's benefit.

At a fundamental level, however, MISRA C is still built on a base language
that was not really designed with the goal of supporting large high-assurance
applications. As shown in this document, there are limits to what static
analysis can enforce with respect to the MISRA C rules. It's hard to
retrofit reliability, safety and security into a language that did not
have these as goals from the start.

The SPARK language took a different approach, starting from a base language
(Ada) that was designed from the outset to support solid software engineering,
and eliminating features that were implementation dependent or otherwise
hard to formally analyze. In this document we have shown how the SPARK
programming language and its associated formal verification tools can
contribute usefully to the goal of producing error-free
software, going beyond the guarantees that can be achieved in MISRA C.

Footnotes

References

About MISRA C

The official website of the MISRA association https://www.misra.org.uk/ has
many freely available resources about MISRA C, some of which can be downloaded
after registering on the MISRA Bulletin Board at
https://www.misra.org.uk/forum/ (such as the examples from the MISRA C:2012
standard, which includes a one-line description of each guideline).

The following documents are freely available:

	MISRA Compliance 2016: Achieving compliance with MISRA coding guidelines,
2016, which explains the rationale and process for compliance, including a
thorough discussions of acceptable deviations

	MISRA C:2012 - Amendment 1: Additional security guidelines for MISRA
C:2012, 2016, which contains 14 additional guidelines focusing on
security. This is a minor addition to MISRA C.

The main MISRA C:2012 document can be purchased from the MISRA
webstore.

PRQA is the company that first developed MISRA C, and they
have been heavily involved in every version since then. Their webpage
http://www.prqa.com/coding-standards/misra/ contains many resources about
MISRA C: product datasheets, white papers, webinars, professional courses.

The PRQA Resources Library at
http://info.prqa.com/resources-library?filter=white_paper has some freely
available white papers on MISRA C and the use of static analyzers:

	An introduction to MISRA C:2012 at
http://info.prqa.com/MISRA C-2012-whitepaper-evaluation-lp

	The Myth of Perfect MISRA Compliance at
http://info.prqa.com/myth-of-perfect-MISRA Compliance-evaluation-lp,
providing background information on the use and limitations of static
analyzers for checking MISRA C compliance

In 2013 ISO standardized a set of 45 rules focused on security, available in
the C Secure Coding Rules. A draft is freely available at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1624.pdf

In 2018 MISRA published MISRA C:2012 - Addendum 2:
Coverage of MISRA C:2012 against ISO/IEC TS 17961:2013 "C Secure", mapping ISO
rules to MISRA C:2012 guidelines. This document is freely available from
https://www.misra.org.uk/.

About SPARK

The e-learning website https://learn.adacore.com/ contains a freely available
interactive course on SPARK.

The SPARK User's Guide is available at
http://docs.adacore.com/spark2014-docs/html/ug/.

The SPARK Reference Manual is available at
http://docs.adacore.com/spark2014-docs/html/lrm/.

A student-oriented textbook on SPARK is Building High Integrity Applications
with SPARK by John McCormick and Peter Chapin, published by Cambridge University
Press. It covers the latest version of the language, SPARK 2014.

A historical account of the evolution of SPARK technology and its use in
industry is covered in the article Are We There Yet? 20 Years of Industrial Theorem
Proving with SPARK by Roderick Chapman and Florian Schanda, at
http://proteancode.com/keynote.pdf

The website https://www.adacore.com/sparkpro is a portal for up-to-date
information and resources on SPARK. AdaCore blog's site https://blog.adacore.com/
contains a number of SPARK-related posts.

The booklet AdaCore Technologies for Cyber Security shows how
AdaCore's technology can be used to prevent or mitigate the most common security
vulnerabilities in software. See
https://www.adacore.com/books/adacore-tech-for-cyber-security/.

The booklet AdaCore Technologies for CENELEC EN 50128:2011 shows how
AdaCore's technology can be used in conjunction with the CENELEC EN 50128:2011
software standard for railway control and protection systems. It describes
in particular where the SPARK technology fits best and
how it can be used to meet various requirements of the standard. See:
https://www.adacore.com/books/cenelec-en-50128-2011/.

The booklet AdaCore Technologies for DO-178C/ED-12C similarly shows how
AdaCore's technology can be used in conjunction with the DO-178C/ED-12C
standard for airborne software, and describes in particular how SPARK
can be used in conjunction with the Formal Methods supplement DO-333/ED-216.
See https://www.adacore.com/books/do-178c-tech/.

About MISRA C and SPARK

The blog post at
https://blog.adacore.com/MISRA-C-2012-vs-spark-2014-the-subset-matching-game
reviews the 27 undecidable rules in MISRA C:2012 and describes how SPARK
addresses them.

The white paper A Comparison of SPARK with MISRA C and Frama-C at
https://www.adacore.com/papers/compare-spark-MISRA-C-frama-c compares SPARK to
MISRA C and to the formal verification tool Frama-C for C programs.

Footnotes

Introduction to the GNAT Toolchain

Release 2024-03

Mar 30, 2024

Copyright © 2019 – 2023, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

This course presents an introduction to the GNAT toolchain. The course
includes first steps to get started with the toolchain and some details on
the project manager (GPRbuild) and the integrated development environment
(GNAT Studio).

This document was written by Gustavo A. Hoffmann, with contributions and
review from Richard Kenner and Robert Duff.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Contents:

	GNAT Toolchain Basics
	Basic commands

	Compiler warnings
	-gnatwa switch and warning suppression

	Style checking

	GPRbuild
	Basic commands

	Project files
	Basic structure

	Customization

	Project dependencies
	Simple dependency

	Dependencies to dynamic libraries

	Configuration pragma files

	Configuration packages

	GNAT Studio
	Start-up
	Windows

	Linux

	Creating projects

	Building

	Debugging
	Debug information

	Improving main application

	Debugging the application

	Formal verification

	GNAT Tools
	gnatchop

	gnatprep

	gnatmem

	gnatmetric

	gnatdoc

	gnatpp

	gnatstub

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

GNAT Toolchain Basics

This chapter presents a couple of basic commands from the GNAT toolchain.

Basic commands

Now that the toolchain is installed, you can start using it. From the
command line, you can compile a project using gprbuild. For
example:

gprbuild -P project.gpr

You can find the binary built with the command above in the obj
directory. You can the run it in the same way as you would do with any
other executable on your platform. For example:

obj/main

A handy command-line option for gprbuild you might want to use
is -p, which automatically creates directories such as obj if they
aren't in the directory tree:

gprbuild -p -P project.gpr

Ada source-code are stored in .ads and .adb files. To view the
content of these files, you can use GNAT Studio. To open
GNAT Studio, double-click on the .gpr
project file or invoke GNAT Studio on the command line:

gps -P project.gpr

To compile your project using GNAT Studio, use the top-level menu to
invoke Build → Project → main.adb (or press the
keyboard shortcut F4). To run the main program, click on
Build → Run → main (or press the keyboard shortcut
Shift + F2).

Compiler warnings

One of the strengths of the GNAT compiler is its ability to generate
many useful warnings. Some are displayed by default but others need to
be explicitly enabled. In this section, we discuss some of these
warnings, their purpose, and how you activate them.

-gnatwa switch and warning suppression

Section author: Robert Duff

We first need to understand the difference between a warning and an
error. Errors are violations of the Ada language rules as specified
in the Ada Reference Manual; warnings don't indicate violations of
those rules, but instead flag constructs in a program that seem
suspicious to the compiler. Warnings are GNAT-specific, so other Ada
compilers might not warn about the same things GNAT does or might warn
about them in a different way. Warnings are typically conservative;
meaning that some warnings are false alarms. The programmer needs to study
the code to determine if each warning is describing a real problem.

Some warnings are produced by default while others are produced only if a
switch enables them. Use the -gnatwa switch to turn on (almost) all
warnings.

Warnings are useless if you don't do anything about them. If you give
your team member some code that causes warnings, how are they supposed
to know whether they represent real problems? If you don't address
each warning, people will soon starting ignoring warnings and there'll
be lots of things that generates warnings scattered all over your
code. To avoid this, you may want to use the -gnatwae switch to
both turn on (almost) all warnings and to treat warnings as
errors. This forces you to get a clean (no warnings or errors)
compilation.

However, as we said, some warnings are false alarms. Use
pragma Warnings (Off) to suppress those warnings. It's best to be as
specific as possible and narrow down to a single line of code and a single
warning. Then use a comment to explain why the warning is a false alarm if it's
not obvious.

Let's look at the following example:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

 procedure Mumble (X : Integer) is
 begin
 Put_Line ("Mumble processing...");
 end Mumble;

end Warnings_Example;

We compile the above code with -gnatwae:

gnat compile -gnatwae ./src/warnings_example.adb

This causes GNAT to complain:

warnings_example.adb:5:22: warning: formal parameter "X" is not referenced

But the following compiles cleanly:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

 pragma Warnings (Off, "formal parameter ""X"" is not referenced");
 procedure Mumble (X : Integer) is
 pragma Warnings (On, "formal parameter ""X"" is not referenced");

 -- X is ignored here, because blah blah blah...
 begin
 Put_Line ("Mumble processing...");
 end Mumble;

end Warnings_Example;

Here we've suppressed a specific warning message on a specific line.

If you get many warnings of a specific type and it's not feasible to fix
all of them, you can suppress that type of message so the good warnings
won't get buried beneath a pile of bogus ones. For example, you can use the
-gnatwaeF switch to silence the warning on the first version of
Mumble above: the F suppresses warnings on unreferenced formal
parameters. It would be a good idea to use it if you have many of those.

As discussed above, -gnatwa activates almost all warnings, but not
all. Refer to the
section on warnings[#1]
of the GNAT User's Guide to get a list of the remaining warnings you
could enable in your project. One is -gnatw.o, which displays
warnings when the compiler detects modified but unreferenced out
parameters. Consider the following example:

package Warnings_Example is

 procedure Process (X : in out Integer;
 B : out Boolean);

end Warnings_Example;

package body Warnings_Example is

 procedure Process (X : in out Integer;
 B : out Boolean) is
 begin
 if X = Integer'First or else X = Integer'Last then
 B := False;
 else
 X := X + 1;
 B := True;
 end if;
 end Process;

end Warnings_Example;

with Ada.Text_IO; use Ada.Text_IO;

with Warnings_Example; use Warnings_Example;

procedure Main is
 X : Integer := 0;
 Success : Boolean;
begin
 Process (X, Success);
 Put_Line (Integer'Image (X));
end Main;

If we build the main application using the -gnatw.o switch, the
compiler warns us that we didn't reference the Success variable,
which was modified in the call to Process:

main.adb:8:16: warning: "Success" modified by call, but value might not be referenced

In this case, this actually points us to a bug in our program, since
X only contains a valid value if Success is
True. The corrected code for Main is:

-- ...
begin
 Process (X, Success);

 if Success then
 Put_Line (Integer'Image (X));
 else
 Put_Line ("Couldn't process variable X.");
 end if;
end Main;

We suggest turning on as many warnings as makes sense for your
project. Then, when you see a warning message, look at the code and decide
if it's real. If it is, fix the code. If it's a false alarm, suppress the
warning. In either case, we strongly recommend you make the warning
disappear before you check your code into your configuration management
system.

Style checking

GNAT provides many options to configure style checking of your code. The
main compiler switch for this is -gnatyy, which sets almost all
standard style check options. As indicated by the
section on style checking[#2]
of the GNAT User's Guide, using this switch "is equivalent to
-gnaty3aAbcefhiklmnprst, that is all checking options enabled with the
exception of -gnatyB, -gnatyd, -gnatyI, -gnatyLnnn,
-gnatyo, -gnatyO, -gnatyS, -gnatyu, and -gnatyx."

You may find that selecting the appropriate coding style is useful to
detect issues at early stages. For example, the -gnatyO switch checks
that overriding subprograms are explicitly marked as such. Using this
switch can avoid surprises when you didn't intentionally want to override
an operation for some data type. We recommend studying the list of coding
style switches and selecting the ones that seem relevant for your
project. When in doubt, you can start by using all of them — using
-gnatyy and -gnatyBdIL4oOSux, for example — and deactivating
the ones that cause too much noise during compilation.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#warning-message-control

[#2]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#style-checking

GPRbuild

This chapter presents a brief overview of GPRbuild, the project
manager of the GNAT toolchain. It can be used to manage complex builds. In
terms of functionality, it's similar to make and cmake,
just to name two examples.

For a detailed presentation of the tool, please refer to the
GPRbuild User’s Guide[#1].

Basic commands

As mentioned in the previous chapter, you can build a project using
gprbuild from the command line:

gprbuild -P project.gpr

In order to clean the project, you can use gprclean:

gprclean -P project.gpr

Project files

You can create project files using GNAT Studio, which presents many
options on its graphical interface. However, you can also edit project
files manually as a normal text file in an editor, since its syntax is
human readable. In fact, project files use a syntax similar to the one
from the Ada language. Let's look at the basic structure of project files
and how to customize them.

Basic structure

The main element of a project file is a project declaration, which
contains definitions for the current project. A project file may also
include other project files in order to compose a complex build. One of
the simplest form of a project file is the following:

project Default is

 for Main use ("main");
 for Source_Dirs use ("src");

end Default;

In this example, we declare a project named Default. The
for Main use expression indicates that the main.adb file is used
as the entry point (main source-code file) of the project. The main file
doesn't necessary need to be called main.adb; we could use any source-code
implementing a main application, or even have a list of multiple main
files. The for Source_Dirs use expression indicates that the src
directory contains the source-file for the application (including the main
file).

Customization

GPRbuild support scenario variables, which allow you to control the way
binaries are built. For example, you may want to distinguish between debug
and optimized versions of your binary. In principle, you could pass
command-line options to gprbuild that turn debugging on and
off, for example. However, defining this information in the project file
is usually easier to handle and to maintain. Let's define a scenario
variable called ver in our project:

project Default is

 Ver := external ("ver", "debug");

 for Main use ("main");
 for Source_Dirs use ("src");

end Default;

In this example, we're specifying that the scenario variable Ver is
initialized with the external variable ver. Its default value is set
to debug.

We can now set this variable in the call to gprbuild:

gprbuild -P project.gpr -Xver=debug

Alternatively, we can simply specify an environment variable. For example,
on Unix systems, we can say:

export ver=debug

Value from environment variable "ver" used in the following call:

gprbuild -P project.gpr

In the project file, we can use the scenario variable to customize the
build:

project Default is
 Ver := external ("ver", "debug");

 for Main use ("main.adb");
 for Source_Dirs use ("src");

 -- Using "ver" variable for obj directory
 for Object_Dir use "obj/" & Ver;

 package Compiler is
 case Ver is
 when "debug" =>
 for Switches ("Ada") use ("-g");
 when "opt" =>
 for Switches ("Ada") use ("-O2");
 when others =>
 null;
 end case;
 end Compiler;

end Default;

We're now using Ver in the for Object_Dir clause to specify a
subdirectory of the obj directory that contains the object files.
Also, we're using Ver to select compiler options in the Compiler
package declaration.

We could also specify all available options in the project file by
creating a typed variable. For example:

project Default is

 type Ver_Option is ("debug", "opt");
 Ver : Ver_Option := external ("ver", "debug");

 for Source_Dirs use ("src");
 for Main use ("main.adb");

 -- Using "ver" variable for obj directory
 for Object_Dir use "obj/" & Ver;

 package Compiler is
 case Ver is
 when "debug" =>
 for Switches ("Ada") use ("-g");
 when "opt" =>
 for Switches ("Ada") use ("-O2");
 when others =>
 null;
 end case;
 end Compiler;

end Default;

The advantage of this approach is that gprbuild can now check
whether the value that you provide for the ver variable is available
on the list of possible values and give you an error if you're entering
a wrong value.

Project dependencies

GPRbuild supports project dependencies. This allows you to
reuse information from existing projects. Specifically, the keyword
with allows you to include another project within the current
project.

Simple dependency

Let's look at a very simple example. We have a package called
Test_Pkg associated with the project file test_pkg.gpr, which
contains:

project Test_Pkg is
 for Source_Dirs use ("src");
 for Object_Dir use "obj";
end Test_Pkg;

This is the code for the Test_Pkg package:

package Test_Pkg is

 type T is record
 X : Integer;
 Y : Integer;
 end record;

 function Init return T;

end Test_Pkg;

package body Test_Pkg is

 function Init return T is
 begin
 return V : T do
 V.X := 0;
 V.Y := 0;
 end return;
 end Init;

end Test_Pkg;

For this example, we use a directory test_pkg containing the
project file and a subdirectory test_pkg/src containing the
source files. The directory structure looks like this:

|- test_pkg
| | test_pkg.gpr
| |- src
| | | test_pkg.adb
| | | test_pkg.ads

Suppose we want to use the Test_Pkg package in a new
application. Instead of directly including the source files of
Test_Pkg in the project file of our application (either
directly or indirectly), we can instead reference the existing project
file for the package by using with "test_pkg.gpr". This is the
resulting project file:

with "../test_pkg/test_pkg.gpr";

project Default is
 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Main use ("main.adb");
end Default;

And this is the code for the main application:

with Test_Pkg; use Test_Pkg;

procedure Main is
 A : T;
begin
 A := Init;
end Main;

When we build the main project file (default.gpr), we're
automatically building all dependent projects. More specifically, the
project file for the main application automatically includes the
information from the dependent projects such as
test_pkg.gpr. Using a with in the main project file is all
we have to do for that to happen.

Dependencies to dynamic libraries

We can structure project files to make use of dynamic (shared)
libraries using a very similar approach. It's straightforward to
convert the project above so that Test_Pkg is now compiled into
a dynamic library and linked to our main application. All we need to
do is to make a few additions to the project file for the
Test_Pkg package:

library project Test_Pkg is
 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Library_Name use "test_pkg";
 for Library_Dir use "lib";
 for Library_Kind use "Dynamic";
end Test_Pkg;

This is what we had to do:

	We changed the project to library project.

	We added the specification for Library_Name, Library_Dir
and Library_Kind.

We don't need to change the project file for the main application because
GPRbuild automatically detects the dependency information
(e.g., the path to the dynamic library) from the project file for the
Test_Pkg package. With these small changes, we're able to
compile the Test_Pkg package to a dynamic library and link it
with our main application.

Configuration pragma files

Configuration pragma files contain a set of pragmas that modify the
compilation of source files according to external requirements. For
example, you may use pragmas to either relax or strengthen
requirements depending on your environment.

In GPRbuild, we can use Local_Configuration_Pragmas (in
the Compiler package) to indicate the configuration pragmas file
we want GPRbuild to use with the source files in our project.

The file gnat.adc shown here is an example of a configuration
pragma file:

pragma Suppress (Overflow_Check);

We can use this in our project by declaring a Compiler package. Here's
the complete project file:

project Default is

 for Source_Dirs use ("src");
 for Object_Dir use "obj";
 for Main use ("main.adb");

 package Compiler is
 for Local_Configuration_Pragmas use "gnat.adc";
 end Compiler;

end Default;

Each pragma contained in gnat.adc is used in the compilation
of each file, as if that pragma was placed at the beginning of each
file.

Configuration packages

You can control the compilation of your source code by creating
variants for various cases and selecting the appropriate variant in
the compilation package in the project file. One example where this is
useful is conditional compilation using Boolean constants, shown in
the code below:

with Ada.Text_IO; use Ada.Text_IO;

with Config;

procedure Main is
begin

 if Config.Debug then
 Put_Line ("Debug version");
 else
 Put_Line ("Release version");
 end if;
end Main;

In this example, we declared the Boolean constant in the Config
package. By having multiple versions of that package, we can create
different behavior for each usage. For this simple example, there are
only two possible cases: either Debug is True or
False. However, we can apply this strategy to create more
complex cases.

In our next example, we store the packages in the subdirectories debug
and release of the source code directory. Here's the content of the
src/debug/config.ads file:

package Config is

 Debug : constant Boolean := True;

end Config;

Here's the src/release/config.ads file:

package Config is

 Debug : constant Boolean := False;

end Config;

In this case, GPRbuild selects the appropriate directory to
look for the config.ads file according to information we
provide for the compilation process. We do this by using a scenario
type called Mode_Type in our project file:

gprbuild -P default.gpr -Xmode=release

project Default is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external ("mode", "debug");

 for Source_Dirs use ("src", "src/" & Mode);
 for Object_Dir use "obj";
 for Main use ("main.adb");

end Default;

We declare the scenario variable Mode and use it in the
Source_Dirs declaration to add the desired path to the
subdirectory containing the config.ads file. The expression
"src/" & Mode concatenates the user-specified mode to select the
appropriate subdirectory. For more complex cases, we could use either
a tree of subdirectories or multiple scenario variables for each
aspect that we need to configure.

Footnotes

[#1]
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

GNAT Studio

This chapter presents an introduction to the GNAT Studio, which provides an IDE
to develop applications in Ada. For a detailed overview, please refer to the
GNAT Studio tutorial[#1].
Also, you can refer to the
GNAT Studio product page[#2] for
some introductory videos.

In this chapter, all indications using "→" refer to options from the
GNAT Studio menu that you can click in order to execute commands.

Start-up

The first step is to start-up the GNAT Studio. The actual step
depends on your platform.

Windows

	You may find an icon (shortcut to GNAT Studio) on your desktop.

	Otherwise, start GNAT Studio by typing gnatstudio on the
command prompt.

Linux

	Start GNAT Studio by typing gnatstudio on a shell.

Creating projects

After starting-up GNAT Studio, you can create a project. These are
the steps:

	Click on Create new project in the welcome window

	Alternatively, if the wizard (which let's you customize new
projects) isn't already opened, click on File →
New Project... to open it.

	After clicking on Create new project, you should see a window with
this title: Create Project from Template.

	Select one of the options from the list and click on Next.

	The simplest one is Basic > Simple Ada Project, which creates a
project containing a main application.

	Select the project location and basic settings, and click on Apply.

	If you selected "Simple Ada Project" in the previous step, you may
now select the name of the project and of the main file.

	Note that you can select any name for the main file.

You should now have a working project file.

Building

As soon as you've created a project file, you can use it to build an
application. These are the required steps:

	Click on Build → Project → Build All

	You can also click on this icon:

[image: ../../../_images/gnat_windows_build_opt.png]

	Alternatively, you can click on
Build → Project → Build & Run →
<name of your main application>

	You can also click on this icon:

[image: ../../../_images/gnat_windows_build_run_opt.png]

	You can also use the keyboard for building and running the main
application:

	Press F4 to open a window that allows you to build the main
application and click on Execute.

	Then, press Shift + F2 to open a window that allows you to run
the application, and click on Execute.

Debugging

Debug information

Before you can debug a project, you need to make sure that debugging
symbols have been included in the binary build. You can do this by
manually adding a debug version into your project, as described in the
previous chapter (see GPRbuild).

Alternatively, you can change the project properties directly in
GNAT Studio. In order to do that, click on Edit →
Project Properties..., which opens the following window:

[image: ../../../_images/gnat_windows_project_debug_opt.png]
Click on Build → Switches → Ada on this window,
and make sure that the Debug Information option is selected.

Improving main application

If you selected "Simple Ada Project" while creating your project in the
beginning, you probably still have a very simple main application that
doesn't do anything useful. Therefore, in order to make the debugging
activity more interesting, please enter some statements to your
application. For example:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
begin
 Put_Line ("Hello World!");
 Put_Line ("Hello again!");
end Main;

Debugging the application

You can now build and debug the application by clicking on
Build → Project → Build & Debug →
<name of your main application>.

You can then click on Debug → Run... to open a window that
allows you to start the application. Alternatively, you can press
Shift + F9. As soon as the application has started, you can press
F5 to step through the application or press F6 to execute until
the next line. Both commands are available in the menu by clicking on
Debug → Step or Debug → Next.

When you've finished debugging your application, you need to terminate
the debugger. To do this, you can click on Debug →
Terminate.

Formal verification

In order to see how SPARK can detect issues, let's creating a simple
application that accumulates values in a variable A:

procedure Main
 with SPARK_Mode is

 procedure Acc (A : in out Natural;
 V : Natural) is
 begin
 A := A + V;
 end Acc;

 A : Natural := 0;
begin
 Acc (A, Natural'Last);
 Acc (A, 1);
end Main;

You can now click on SPARK → Prove All, which opens a
window with various options. For example, on this window, you can select
the proof level — varying between 0 and 4 — on the
Proof level list. Next, click on Execute. After the prover has
completed its analysis, you'll see a list of issues found in the source
code of your application.

For the example above, the prover complains about an overflow check that
might fail. This is due to the fact that, in the Acc procedure,
we're not dealing with the possibility that the result of the addition
might be out of range. In order to fix this, we could define a new
saturating addition Sat_Add that makes use of a custom type
T with an extended range. For example:

procedure Main
 with SPARK_Mode is

 function Sat_Add (A : Natural;
 V : Natural) return Natural
 is
 type T is range Natural'First .. Natural'Last * 2;

 A2 : T := T (A);
 V2 : constant T := T (V);
 A_Last : constant T := T (Natural'Last);
 begin
 A2 := A2 + V2;

 -- Saturate result if needed
 if A2 > A_Last then
 A2 := A_Last;
 end if;

 return Natural (A2);
 end Sat_Add;

 procedure Acc (A : in out Natural;
 V : Natural) is
 begin
 A := Sat_Add (A, V);
 end Acc;

 A : Natural := 0;
begin
 Acc (A, Natural'Last);
 Acc (A, 1);
end Main;

Now, when running the prover again with the modified code, no issues are
found.

Footnotes

[#1]
https://docs.adacore.com/live/wave/gps/html/gps_tutorial/index.html

[#2]
https://www.adacore.com/gnatpro/toolsuite/gps

GNAT Tools

In chapter we present a brief overview of some of the tools included
in the GNAT toolchain.

For further details on how to use these tools, please refer to the
GNAT User's Guide[#1].

gnatchop

gnatchop renames files so they match the file structure and
naming convention expected by the rest of the GNAT toolchain. The
GNAT compiler expects specifications to be stored in .ads
files and bodies (implementations) to be stored in .adb
files. It also expects file names to correspond to the content of each
file. For example, it expects the specification of a package
Pkg.Child to be stored in a file named pkg-child.ads.

However, we may not want to use that convention for our project. For
example, we may have multiple Ada packages contained in a single
file. Consider a file example.ada containing the following:

with Ada.Text_IO; use Ada.Text_IO;

package P is
 procedure Test;
end P;

package body P is
 procedure Test is
 begin
 Put_Line("Test passed.");
 end Test;
end P;

with P; use P;

procedure P_Main is
begin
 P.Test;
end P_Main;

To compile this code, we first pass the file containing our source
code to gnatchop before we call gprbuild:

gnatchop example.ada
gprbuild p_main

This generates source files for our project, extracted from
example_ada, that conform to the default naming convention and
then builds the executable binary p_main from those files. In this
example gnatchop created the files p.ads,
p.adb, and p_main.adb using the package names in
example.ada.

When we use this mechanism, any warnings or errors the compiler
displays refers to the files generated by gnatchop. We can,
however, instruct gnatchop to instrument the generated
files so the compiler refers to the original file (example.ada
in our case) when displaying messages. We do this by using the -r
switch:

gnatchop -r example.ada
gprbuild p_main

If, for example, we had an unused variable in example.ada, the
compiler warning would now refer to the line in the original file, not
in one of the generated ones.

For documentation of other switches available for gnatchop,
please refer to the
gnatchop chapter[#2]
of the GNAT User's Guide.

gnatprep

We may want to use conditional compilation in some situations. For
example, we might need a customized implementation of a package for a
specific platform or need to select a specific version of an algorithm
depending on the requirements of the target environment. A traditional
way to do this uses a source-code preprocessor. However, in many cases
where conditional compilation is needed, we can instead use the syntax
of the Ada language or the functionality provided by
GPRbuild to avoid using a preprocessor in those cases. The
conditional compilation section[#3]
of the GNAT User's Guide discusses how to do this in detail.

Nevertheless, using a preprocessor is often the most straightforward
option in complex cases. When we encounter such a case, we can use
gnatprep, which provides a syntax that reminds us of the C
and C++ preprocessor. However, unlike in C and C++, this syntax is not
part of the Ada standard and can only be used with
gnatprep. Also, you'll notice some differences in the
syntax from that preprocessor, such as shown in the example below:

#if VERSION'Defined and then (VERSION >= 4) then
 -- Implementation for version 4.0 and above...
#else
 -- Standard implementation for older versions...
#end if;

Of course, in this simple case, we could have used the Ada language
directly and avoided the preprocessor entirely:

package Config is
 Version : constant Integer := 4;
end Config;

with Config;
procedure Do_Something is
begin
 if Config.Version >= 4 then
 null;
 -- Implementation for version 4.0 and above...
 else
 null;
 -- Standard implementation for older versions...
 end if;
end Do_Something;

But for the sake of illustrating the use of gnatprep, let's
use that tool in this simple case. This is the complete procedure, which we
place in file do_something.org.adb:

procedure Do_Something is
begin
 #if VERSION'Defined and then (VERSION >= 4) then
 -- Implementation for version 4.0 and above...
 null;
 #else
 -- Standard implementation for older versions...
 null;
 #end if;
end Do_Something;

To preprocess this file and build the application, we call
gnatprep followed by GPRbuild:

gnatprep do_something.org.adb do_something.adb
gprbuild do_something

If we look at the resulting file after preprocessing, we see that the
#else implementation was selected by gnatprep. To
cause it to select the newer "version" of the code, we include the
symbol and its value in our call to gnatprep, just like
we'd do for C/C++:

gnatprep -DVERSION=5 do_something.org.adb do_something.adb

However, a cleaner approach is to create a symbol definition file
containing all symbols we use in our implementation. Let's create the
file and name it prep.def:

VERSION := 5

Now we just need to pass it to gnatprep:

gnatprep do_something.org.adb do_something.adb prep.def
gprbuild do_something

When we use gnatprep in that way, the line numbers of the
output file differ from those of the input file. To preserve line
numbers, we can use one of these command-line switches:

	-b: replace stripped-out code by blank lines

	-c: comment-out the stripped-out code

For example:

gnatprep -b do_something.org.adb do_something.adb prep.def
gnatprep -c do_something.org.adb do_something.adb prep.def

When we use one of these options, gnatprep ensures that the
output file do_something.adb has the same line numbering as the
original file (do_something.org.adb).

The
gnatprep chapter[#4]
of the GNAT User's Guide contains further details about this tool, such as
how to integrate gnatprep with project files for
GPRbuild and how to replace symbols without using preprocessing
directives (using the $symbol syntax).

gnatmem

Memory allocation errors involving mismatches between allocations and
deallocations are a common source of memory leaks. To test an application
for memory allocation issues, we can use gnatmem. This tool
monitors all memory allocations in our application. We use this tool by
linking our application to a special version of the memory allocation
library (libgmem.a).

Let's consider this simple example:

procedure Simple_Mem is
 I_Ptr : access Integer := new Integer;
begin
 null;
end Simple_Mem;

To generate a memory report for this code, we need to:

	Build the application, linking it to libgmem.a;

	Run the application, which generates an output file (gmem.out);

	Run gnatmem to generate a report from gmem.out.

For our example above, we do the following:

Build application using gmem
gnatmake -g simple_mem.adb -largs -lgmem

Run the application and generate gmem.out
./simple_mem

Call gnatmem to display the memory report based on gmem.out
gnatmem simple_mem

For this example, gnatmem produces the following output:

Global information

 Total number of allocations : 1
 Total number of deallocations : 0
 Final Water Mark (non freed mem) : 4 Bytes
 High Water Mark : 4 Bytes

Allocation Root # 1

 Number of non freed allocations : 1
 Final Water Mark (non freed mem) : 4 Bytes
 High Water Mark : 4 Bytes
 Backtrace :
 simple_mem.adb:2 simple_mem

This shows all the memory we allocated and tells us that we didn't
deallocate any of it.

Please refer to the
chapter on gnatmem[#5]
of the GNAT User's Guide for a more detailed discussion of
gnatmem.

gnatmetric

We can use the GNAT metric tool (gnatmetric) to compute various
programming metrics, either for individual files or for our complete
project.

For example, we can compute the metrics of the body of package P
above by running gnatmetric as follows:

gnatmetric p.adb

This produces the following output:

Line metrics summed over 1 units
 all lines : 13
 code lines : 11
 comment lines : 0
 end-of-line comments : 0
 comment percentage : 0.00
 blank lines : 2

Average lines in body: 4.00

Element metrics summed over 1 units
 all statements : 2
 all declarations : 3
 logical SLOC : 5

 2 subprogram bodies in 1 units

Average cyclomatic complexity: 1.00

Please refer to the
section on gnatmetric[#6]
of the GNAT User's Guide for the many switches available for
gnatmetric, including the ability to generate reports in XML
format.

gnatdoc

Use GNATdoc to generate HTML documentation for your project. It
scans the source files in the project and extracts information from
package, subprogram, and type declarations.

The simplest way to use it is to provide the name of the project or to
invoke GNATdoc from a directory containing a project file:

gnatdoc -P some_directory/default.gpr

Alternatively, when the :file:`default.gpr` file is in the same directory

gnatdoc

Just using this command is sufficient if your goal is to generate a
list of the packages and a list of subprograms in each. However, to create
more meaningful documentation, you can annotate your source code to add a
description of each subprogram, parameter, and field. For example:

package P is
-- Collection of auxiliary subprograms

 function Add_One
 (V : Integer
 -- Coefficient to be incremented
) return Integer;
 -- @return Coefficient incremented by one

end P;

package body P is

 function Add_One (V : Integer) return Integer is
 begin
 return V + 1;
 end Add_One;

end P;

with P; use P;

procedure Main is

 I : Integer;

begin
 I := Add_One (0);
end Main;

When we run this example, GNATdoc will extract the documentation
from the specification of package P and add the description of each
element, which we provided as a comment in the line below the actual
declaration. It will also extract the package description, which we wrote
as a comment in the line right after package P is. Finally, it will
extract the documentation of function Add_One (both the description
of the V parameter and the return value).

In addition to the approach we've just seen, GNATdoc also
supports the tagged format that's commonly found in tools such as Javadoc
and uses the @ syntax. We could rewrite the documentation for package
P as follows:

package P is
-- @summary Collection of auxiliary subprograms

 function Add_One
 (V : Integer
) return Integer;
 -- @param V Coefficient to be incremented
 -- @return Coefficient incremented by one

end P;

You can control what parts of the source-code GNATdoc parses to
extract the documentation. For example, you can specify the -b switch
to request that the package body be parsed for additional documentation
and you can use the -p switch to request GNATdoc to parse the
private part of package specifications. For a complete list of switches,
please refer to the
GNATdoc User's Guide[#7].

gnatpp

The term 'pretty-printing' refers to the process of formatting source code
according to a pre-defined convention. gnatpp is used for the
pretty-printing of Ada source-code files.

Let's look at this example, which contains very messy formatting:

PrOcEDuRE Main
 IS

 FUNCtioN
 Init_2
 RETurn
 inteGER iS
 (2);

 I : INTeger;

 BeGiN
 I := Init_2;
 ENd;

We can request gnatpp to clean up this file by using the
command:

gnatpp main.adb

gnatpp reformats the file in place. After this command,
main.adb looks like this:

procedure Main is

 function Init_2 return Integer is (2);

 I : Integer;

begin
 I := Init_2;
end Main;

We can also process all source code files from a project at once by
specifying a project file. For example:

gnatpp -P default.gpr

gnatpp has an extensive list of options, which allow for
specifying the formatting of many aspects of the source and implementing
many coding styles. These are extensively discussed in the
section on gnatpp[#8]
of the GNAT User's Guide.

gnatstub

Suppose you've created a complex specification of an Ada package. You can
create the corresponding package body by copying and adapting the content
of the package specification. But you can also have gnatstub do
much of that job for you. For example, let's consider the following package
specification:

package Aux is

 function Add_One (V : Integer) return Integer;

 procedure Reset (V : in out Integer);

end Aux;

We call gnatstub, passing the file containing the package
specification:

gnatstub aux.ads

This generates the file aux.adb with the following contents:

pragma Ada_2012;
package body Aux is

 -- Add_One --

 function Add_One (V : Integer) return Integer is
 begin
 -- Generated stub: replace with real body!
 pragma Compile_Time_Warning (Standard.True, "Add_One unimplemented");
 return raise Program_Error with "Unimplemented function Add_One";
 end Add_One;

 -- Reset --

 procedure Reset (V : in out Integer) is
 begin
 -- Generated stub: replace with real body!
 pragma Compile_Time_Warning (Standard.True, "Reset unimplemented");
 raise Program_Error with "Unimplemented procedure Reset";
 end Reset;

end Aux;

As we can see in this example, not only has gnatstub created a
package body from all the elements in the package specification, but it
also created:

	Headers for each subprogram (as comments);

	Pragmas and exceptions that prevent us from using the unimplemented
subprograms in our application.

This is a good starting point for the implementation of the body. Please
refer to the
section on gnatstub[#9]
of the GNAT User's Guide for a detailed discussion of gnatstub
and its options.

Footnotes

[#1]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn.html

[#2]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#renaming-files-with-gnatchop

[#3]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#conditional-compilation

[#4]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#preprocessing-with-gnatprep

[#5]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#the-gnatmem-tool

[#6]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-metrics-tool-gnatmetric

[#7]
http://docs.adacore.com/gnatdoc-docs/users_guide/_build/html/index.html

[#8]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-pretty-printer-gnatpp

[#9]
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-body-stub-generator-gnatstub

Introduction to Ada: Laboratories

Release 2024-03

Mar 30, 2024

Copyright © 2019 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

These labs contain exercises for the
Introduction to Ada course.

This document was written by Gustavo A. Hoffmann and reviewed by Michael
Frank.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Contents:

	Imperative Language
	Hello World

	Greetings

	Positive Or Negative

	Numbers

	Subprograms
	Subtract procedure

	Subtract function

	Equality function

	States

	States #2

	States #3

	States #4

	Modular Programming
	Months

	Operations

	Strongly Typed Language
	Colors

	Integers

	Temperatures

	Records
	Directions

	Colors

	Inventory

	Arrays
	Constrained Array

	Colors: Lookup-Table

	Unconstrained Array

	Product info

	String_10

	List of Names

	More About Types
	Aggregate Initialization

	Versioning

	Simple todo list

	Price list

	Privacy
	Directions

	Limited Strings

	Bonus exercise
	Colors

	List of Names

	Price List

	Generics
	Display Array

	Average of Array of Float

	Average of Array of Any Type

	Generic list

	Exceptions
	Uninitialized Value

	Numerical Exception

	Re-raising Exceptions

	Tasking
	Display Service

	Event Manager

	Generic Protected Queue

	Design by contracts
	Price Range

	Pythagorean Theorem: Predicate

	Pythagorean Theorem: Precondition

	Pythagorean Theorem: Postcondition

	Pythagorean Theorem: Type Invariant

	Primary Color

	Object Oriented Programming
	Simple type extension

	Online Store

	Standard Library: Containers
	Simple todo list

	List of unique integers

	Standard Library: Dates & Times
	Holocene calendar

	List of events

	Standard Library: Strings
	Concatenation

	List of events

	Standard Library: Numerics
	Decibel Factor

	Root-Mean-Square

	Rotation

	Solutions
	Imperative Language
	Hello World

	Greetings

	Positive Or Negative

	Numbers

	Subprograms
	Subtract Procedure

	Subtract Function

	Equality function

	States

	States #2

	States #3

	States #4

	Modular Programming
	Months

	Operations

	Strongly typed language
	Colors

	Integers

	Temperatures

	Records
	Directions

	Colors

	Inventory

	Arrays
	Constrained Array

	Colors: Lookup-Table

	Unconstrained Array

	Product info

	String_10

	List of Names

	More About Types
	Aggregate Initialization

	Versioning

	Simple todo list

	Price list

	Privacy
	Directions

	Limited Strings

	Generics
	Display Array

	Average of Array of Float

	Average of Array of Any Type

	Generic list

	Exceptions
	Uninitialized Value

	Numerical Exception

	Re-raising Exceptions

	Tasking
	Display Service

	Event Manager

	Generic Protected Queue

	Design by contracts
	Price Range

	Pythagorean Theorem: Predicate

	Pythagorean Theorem: Precondition

	Pythagorean Theorem: Postcondition

	Pythagorean Theorem: Type Invariant

	Primary Colors

	Object-oriented programming
	Simple type extension

	Online Store

	Standard library: Containers
	Simple todo list

	List of unique integers

	Standard library: Dates & Times
	Holocene calendar

	List of events

	Standard library: Strings
	Concatenation

	List of events

	Standard library: Numerics
	Decibel Factor

	Root-Mean-Square

	Rotation

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

Imperative language

For the exercises below (except for the first one), don't worry about the
details of the Main procedure. You should just focus on implementing the
application in the subprogram specified by the exercise.

Hello World

Goal: create a "Hello World!" application.

Steps:

	Complete the Main procedure.

Requirements:

	The application must display the message "Hello World!".

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4begin
5 -- Implement the application here!
6 null;
7end Main;

Greetings

Goal: create an application that greets a person.

Steps:

	Complete the Greet procedure.

Requirements:

	Given an input string <name>, procedure Greet must display
the message "Hello <name>!".

	For example, if the name is "John", it displays the message
"Hello John!".

Remarks:

	You can use the concatenation operator (&).

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Greet (Name : String) is
 7 begin
 8 -- Implement the application here!
 9 null;
10 end Greet;
11
12begin
13 if Argument_Count < 1 then
14 Put_Line ("ERROR: missing arguments! Exiting...");
15 return;
16 elsif Argument_Count > 1 then
17 Put_Line ("Ignoring additional arguments...");
18 end if;
19
20 Greet (Argument (1));
21end Main;

Positive Or Negative

Goal: create an application that classifies integer numbers.

Steps:

	Complete the Classify_Number procedure.

Requirements:

	Given an integer number X, procedure Classify_Number must
classify X as positive, negative or zero and display the result:

	If X > 0, it displays Positive.

	If X < 0, it displays Negative.

	If X = 0, it displays Zero.

classify_number.ads

1procedure Classify_Number (X : Integer);

classify_number.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Classify_Number (X : Integer) is
4begin
5 -- Implement the application here!
6 null;
7end Classify_Number;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Classify_Number;
 5
 6procedure Main is
 7 A : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17
18 Classify_Number (A);
19end Main;

Numbers

Goal: create an application that displays numbers in a specific order.

Steps:

	Complete the Display_Numbers procedure.

Requirements:

	Given two integer numbers, Display_Numbers displays all numbers
in the range starting with the smallest number.

display_numbers.ads

1procedure Display_Numbers (A, B : Integer);

display_numbers.adb

1procedure Display_Numbers (A, B : Integer) is
2begin
3 -- Implement the application here!
4 null;
5end Display_Numbers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Numbers;
 5
 6procedure Main is
 7 A, B : Integer;
 8begin
 9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18
19 Display_Numbers (A, B);
20end Main;

Footnotes

Subprograms

Subtract procedure

Goal: write a procedure that subtracts two numbers.

Steps:

	Complete the procedure Subtract.

Requirements:

	Subtract performs the operation A - B.

subtract.ads

1-- Write the correct parameters for the procedure below.
2procedure Subtract;

subtract.adb

1procedure Subtract is
2begin
3 -- Implement the procedure here.
4 null;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Subtract function

Goal: write a function that subtracts two numbers.

Steps:

	Rewrite the Subtract procedure from the previous exercise as a
function.

Requirements:

	Subtract performs the operation A - B and returns the
result.

subtract.ads

1-- Write the correct signature for the function below.
2-- Don't forget to replace the keyword "procedure" by "function."
3procedure Subtract;

subtract.adb

1procedure Subtract is
2begin
3 -- Implement the function here!
4 null;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Equality function

Goal: write a function that compares two values and returns a flag.

Steps:

	Complete the Is_Equal subprogram.

Requirements:

	Is_Equal returns a flag as a Boolean value.

	The flag must indicate whether the values are equal (flag is
True) or not (flag is False).

is_equal.ads

1-- Write the correct signature for the function below.
2-- Don't forget to replace the keyword "procedure" by "function."
3procedure Is_Equal;

is_equal.adb

1procedure Is_Equal is
2begin
3 -- Implement the function here!
4 null;
5end Is_Equal;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Is_Equal;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Equal_Chk,
 9 Inequal_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24
25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40
41begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48
49 Check (Test_Case_Index'Value (Argument (1)));
50end Main;

States

Goal: write a procedure that displays the state of a machine.

Steps:

	Complete the procedure Display_State.

Requirements:

	The states can be set according to the following numbers:

	Number

	State

	0

	Off

	1

	On: Simple Processing

	2

	On: Advanced Processing

	The procedure Display_State receives the number corresponding to
a state and displays the state (indicated by the table above) as a user
message.

Remarks:

	You can use a case statement to implement this procedure.

display_state.ads

1procedure Display_State (State : Integer);

display_state.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_State (State : Integer) is
4begin
5 null;
6end Display_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Display_State (State);
19end Main;

States #2

Goal: write a function that returns the state of a machine.

Steps:

	Implement the function Get_State.

Requirements:

	Implement same state machine as in the previous exercise.

	Function Get_State must return the state as a string.

Remarks:

	You can implement a function returning a string by simply using quotes in
a return statement. For example:

get_hello.ads

1function Get_Hello return String;

get_hello.adb

1function Get_Hello return String is
2begin
3 return "Hello";
4end Get_Hello;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Get_Hello;
3
4procedure Main is
5 S : constant String := Get_Hello;
6begin
7 Put_Line (S);
8end Main;

	You can reuse your previous implementation and replace it by a case
expression.

	For values that do not correspond to a state, you can simply
return an empty string ("").

get_state.ads

1function Get_State (State : Integer) return String;

get_state.adb

1function Get_State (State : Integer) return String is
2begin
3 return "";
4end Get_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Get_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Put_Line (Get_State (State));
19end Main;

States #3

Goal: implement an on/off indicator for a state machine.

Steps:

	Implement the function Is_On.

	Implement the procedure Display_On_Off.

Requirements:

	Implement same state machine as in the previous exercise.

	Function Is_On returns:

	True if the machine is on;

	otherwise, it returns False.

	Procedure Display_On_Off displays the message

	"On" if the machine is on, or

	"Off" otherwise.

	Is_On must be called in the implementation of
Display_On_Off.

Remarks:

	You can implement both subprograms using if expressions.

is_on.ads

1function Is_On (State : Integer) return Boolean;

is_on.adb

1function Is_On (State : Integer) return Boolean is
2begin
3 return False;
4end Is_On;

display_on_off.ads

1procedure Display_On_Off (State : Integer);

display_on_off.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Is_On;
3
4procedure Display_On_Off (State : Integer) is
5begin
6 Put_Line ("");
7end Display_On_Off;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_On_Off;
 5with Is_On;
 6
 7procedure Main is
 8 State : Integer;
 9begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16
17 State := Integer'Value (Argument (1));
18
19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21end Main;

States #4

Goal: implement a procedure to update the state of a machine.

Steps:

	Implement the procedure Set_Next.

Requirements:

	Implement the same state machine as in the previous exercise.

	Procedure Set_Next updates the machine's state with the next one
in a circular manner:

	In most cases, the next state of N is simply the next number
(N + 1).

	However, if the state is the last one (which is 2 for our machine),
the next state must be the first one (in our case: 0).

Remarks:

	You can use an if expression to implement Set_Next.

set_next.ads

1procedure Set_Next (State : in out Integer);

set_next.adb

1procedure Set_Next (State : in out Integer) is
2begin
3 null;
4end Set_Next;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Set_Next;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20end Main;

Footnotes

Modular Programming

Months

Goal: create a package to display the months of the year.

Steps:

	Convert the Months procedure below to a package.

	Create the specification and body of the Months package.

Requirements:

	Months must contain the declaration of strings for each month of
the year, which are stored in three-character constants based on the
month's name.

	For example, the string "January" is stored in the constant
Jan. These strings are then used by the Display_Months
procedure, which is also part of the Months package.

Remarks:

	The goal of this exercise is to create the Months package.

	In the code below, Months is declared as a procedure.

	Therefore, we need to convert it into a real package.

	You have to modify the procedure declaration and implementation in
the code below, so that it becomes a package specification and a
package body.

months.ads

1-- Create specification for Months package, which includes
2-- the declaration of the Display_Months procedure.
3--
4procedure Months;

months.adb

 1-- Create body of Months package, which includes
 2-- the implementation of the Display_Months procedure.
 3--
 4procedure Months is
 5
 6 procedure Display_Months is
 7 begin
 8 Put_Line ("Months:");
 9 Put_Line ("- " & Jan);
10 Put_Line ("- " & Feb);
11 Put_Line ("- " & Mar);
12 Put_Line ("- " & Apr);
13 Put_Line ("- " & May);
14 Put_Line ("- " & Jun);
15 Put_Line ("- " & Jul);
16 Put_Line ("- " & Aug);
17 Put_Line ("- " & Sep);
18 Put_Line ("- " & Oct);
19 Put_Line ("- " & Nov);
20 Put_Line ("- " & Dec);
21 end Display_Months;
22
23begin
24 null;
25end Months;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Months; use Months;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Months_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18
19begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26
27 Check (Test_Case_Index'Value (Argument (1)));
28end Main;

Operations

Goal: create a package to perform basic mathematical operations.

Steps:

	Implement the Operations package.

	Declare and implement the Add function.

	Declare and implement the Subtract function.

	Declare and implement the Multiply: function.

	Declare and implement the Divide function.

	Implement the Operations.Test package

	Declare and implement the Display procedure.

Requirements:

	Package Operations contains functions for each of the four
basic mathematical operations for parameters of Integer type:

	Function Add performs the addition of A and B
and returns the result;

	Function Subtract performs the subtraction of A and
B and returns the result;

	Function Multiply performs the multiplication of A and
B and returns the result;

	Function Divide performs the division of A and
B and returns the result.

	Package Operations.Test contains the test environment:

	Procedure Display must use the functions from
the parent (Operations) package as indicated by the template
in the code below.

operations.ads

1package Operations is
2
3 -- Create specification for Operations package, including the
4 -- declaration of the functions mentioned above.
5 --
6
7end Operations;

operations.adb

1package body Operations is
2
3 -- Create body of Operations package.
4 --
5
6end Operations;

operations-test.ads

1package Operations.Test is
2
3 -- Create specification for Operations package, including the
4 -- declaration of the Display procedure:
5 --
6 -- procedure Display (A, B : Integer);
7 --
8
9end Operations.Test;

operations-test.adb

 1package body Operations.Test is
 2
 3 -- Implement body of Operations.Test package.
 4 --
 5
 6 procedure Display (A, B : Integer) is
 7 A_Str : constant String := Integer'Image (A);
 8 B_Str : constant String := Integer'Image (B);
 9 begin
10 Put_Line ("Operations:");
11 Put_Line (A_Str & " + " & B_Str & " = "
12 & Integer'Image (Add (A, B))
13 & ",");
14 -- Use the line above as a template and add the rest of the
15 -- implementation for Subtract, Multiply and Divide.
16 end Display;
17
18end Operations.Test;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Operations;
 5with Operations.Test; use Operations.Test;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30
31begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38
39 Check (Test_Case_Index'Value (Argument (1)));
40end Main;

Footnotes

Strongly typed language

Colors

Goal: create a package to represent HTML colors in hexadecimal form and its
corresponding names.

Steps:

	Implement the Color_Types package.

	Declare the HTML_Color enumeration.

	Declare the Basic_HTML_Color enumeration.

	Implement the To_Integer function.

	Implement the To_HTML_Color function.

Requirements:

	Enumeration HTML_Color has the following colors:

	Salmon

	Firebrick

	Red

	Darkred

	Lime

	Forestgreen

	Green

	Darkgreen

	Blue

	Mediumblue

	Darkblue

	Enumeration Basic_HTML_Color has the following colors: Red,
Green, Blue.

	Function To_Integer converts from the HTML_Color type to
the HTML color code — as integer values in hexadecimal notation.

	You can find the HTML color codes in the table below.

	Function To_HTML_Color converts from Basic_HTML_Color to
HTML_Color.

	This is the table to convert from an HTML color to a HTML color code in
hexadecimal notation:

	Color

	HTML color code (hexa)

	Salmon

	#FA8072

	Firebrick

	#B22222

	Red

	#FF0000

	Darkred

	#8B0000

	Lime

	#00FF00

	Forestgreen

	#228B22

	Green

	#008000

	Darkgreen

	#006400

	Blue

	#0000FF

	Mediumblue

	#0000CD

	Darkblue

	#00008B

Remarks:

	In order to express the hexadecimal values above in Ada, use the following
syntax: 16#<hex_value># (e.g.: 16#FFFFFF#).

	For function To_Integer, you may use a case for this.

color_types.ads

 1package Color_Types is
 2
 3 -- Include type declaration for HTML_Color!
 4 --
 5 -- type HTML_Color is [...]
 6 --
 7
 8 -- Include function declaration for:
 9 -- function To_Integer (C : HTML_Color) return Integer;
10
11 -- Include type declaration for Basic_HTML_Color!
12 --
13 -- type Basic_HTML_Color is [...]
14 --
15
16 -- Include function declaration for:
17 -- - Basic_HTML_Color => HTML_Color
18 --
19 -- function To_HTML_Color [...];
20 --
21end Color_Types;

color_types.adb

 1package body Color_Types is
 2
 3 -- Implement the conversion from HTML_Color to Integer here!
 4 --
 5 -- function To_Integer (C : HTML_Color) return Integer is
 6 -- begin
 7 -- -- Hint: use 'case' for the HTML colors;
 8 -- -- use 16#...# for the hexadecimal values.
 9 -- end To_Integer;
10
11 -- Implement the conversion from Basic_HTML_Color to HTML_Color here!
12 --
13 -- function To_HTML_Color [...] is
14 --
15end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Integer_Text_IO;
 4
 5with Color_Types; use Color_Types;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 6,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Integers

Goal: implement a package with various integer types.

Steps:

	Implement the Int_Types package.

	Declare the integer type I_100.

	Declare the modular type U_100.

	Implement the To_I_100 function to convert from the
U_100 type.

	Implement the To_U_100 function to convert from the
I_100 type.

	Declare the derived type D_50.

	Declare the subtype S_50.

	Implement the To_D_50 function to convert from the
I_100 type.

	Implement the To_S_50 function to convert from the
I_100 type.

	Implement the To_I_100 function to convert from the
D_50 type.

Requirements:

	Types I_100 and U_100 have values between 0 and 100.

	Type I_100 is an integer type.

	Type U_100 is a modular type.

	Function To_I_100 converts from the U_100 type to the
I_100 type.

	Function To_U_100 converts from the I_100 type to the
U_100 type.

	Types D_50 and S_50 have values between 10 and 50 and
use I_100 as a base type.

	D_50 is a derived type.

	S_50 is a subtype.

	Function To_D_50 converts from the I_100 type to the
D_50 type.

	Function To_S_50 converts from the I_100 type to the
S_50 type.

	Functions To_D_50 and To_S_50 saturate the input values if
they are out of range.

	If the input is less than 10 the output should be 10.

	If the input is greater than 50 the output should be 50.

	Function To_I_100 converts from the D_50 type to the
I_100 type.

Remarks:

	For the implementation of functions To_D_50 and To_S_50, you
may use the type attributes D_50'First and D_50'Last:

	D_50'First indicates the minimum value of the D_50 type.

	D_50'Last indicates the maximum value of the D_50 type.

	The same attributes are available for the S_50 type (
S_50'First and S_50'Last).

	We could have implemented a function To_I_100 as well to convert from
S_50 to I_100. However, we skip this here because explicit
conversions are not needed for subtypes.

int_types.ads

 1package Int_Types is
 2
 3 -- Include type declarations for I_100 and U_100!
 4 --
 5 -- type I_100 is [...]
 6 -- type U_100 is [...]
 7 --
 8
 9 function To_I_100 (V : U_100) return I_100;
10
11 function To_U_100 (V : I_100) return U_100;
12
13 -- Include type declarations for D_50 and S_50!
14 --
15 -- [...] D_50 is [...]
16 -- [...] S_50 is [...]
17 --
18
19 function To_D_50 (V : I_100) return D_50;
20
21 function To_S_50 (V : I_100) return S_50;
22
23 function To_I_100 (V : D_50) return I_100;
24
25end Int_Types;

int_types.adb

 1package body Int_Types is
 2
 3 function To_I_100 (V : U_100) return I_100 is
 4 begin
 5 -- Implement the conversion from U_100 to I_100 here!
 6 --
 7 null;
 8 end To_I_100;
 9
10 function To_U_100 (V : I_100) return U_100 is
11 begin
12 -- Implement the conversion from I_100 to U_100 here!
13 --
14 null;
15 end To_U_100;
16
17 function To_D_50 (V : I_100) return D_50 is
18 Min : constant I_100 := I_100 (D_50'First);
19 Max : constant I_100 := I_100 (D_50'Last);
20 begin
21 -- Implement the conversion from I_100 to D_50 here!
22 --
23 -- Hint: using the constants above simplifies the checks needed for
24 -- this function.
25 --
26 null;
27 end To_D_50;
28
29 function To_S_50 (V : I_100) return S_50 is
30 begin
31 -- Implement the conversion from I_100 to S_50 here!
32 --
33 -- Remark: don't forget to verify whether an explicit conversion like
34 -- S_50 (V) is needed.
35 --
36 null;
37 end To_S_50;
38
39 function To_I_100 (V : D_50) return I_100 is
40 begin
41 -- Implement the conversion from I_100 to D_50 here!
42 --
43 -- Remark: don't forget to verify whether an explicit conversion like
44 -- I_100 (V) is needed.
45 --
46 null;
47 end To_I_100;
48
49end Int_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Int_Types; use Int_Types;
 5
 6procedure Main is
 7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
 8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
 9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
 10
 11 use I_100_IO;
 12 use U_100_IO;
 13 use D_50_IO;
 14
 15 type Test_Case_Index is
 16 (I_100_Range,
 17 U_100_Range,
 18 U_100_Wraparound,
 19 U_100_To_I_100,
 20 I_100_To_U_100,
 21 D_50_Range,
 22 S_50_Range,
 23 I_100_To_D_50,
 24 I_100_To_S_50,
 25 D_50_To_I_100,
 26 S_50_To_I_100);
 27
 28 procedure Check (TC : Test_Case_Index) is
 29 begin
 30 I_100_IO.Default_Width := 1;
 31 U_100_IO.Default_Width := 1;
 32 D_50_IO.Default_Width := 1;
 33
 34 case TC is
 35 when I_100_Range =>
 36 Put (I_100'First);
 37 New_Line;
 38 Put (I_100'Last);
 39 New_Line;
 40 when U_100_Range =>
 41 Put (U_100'First);
 42 New_Line;
 43 Put (U_100'Last);
 44 New_Line;
 45 when U_100_Wraparound =>
 46 Put (U_100'First - 1);
 47 New_Line;
 48 Put (U_100'Last + 1);
 49 New_Line;
 50 when U_100_To_I_100 =>
 51 for I in U_100'Range loop
 52 I_100_IO.Put (To_I_100 (I));
 53 New_Line;
 54 end loop;
 55 when I_100_To_U_100 =>
 56 for I in I_100'Range loop
 57 Put (To_U_100 (I));
 58 New_Line;
 59 end loop;
 60 when D_50_Range =>
 61 Put (D_50'First);
 62 New_Line;
 63 Put (D_50'Last);
 64 New_Line;
 65 when S_50_Range =>
 66 Put (S_50'First);
 67 New_Line;
 68 Put (S_50'Last);
 69 New_Line;
 70 when I_100_To_D_50 =>
 71 for I in I_100'Range loop
 72 Put (To_D_50 (I));
 73 New_Line;
 74 end loop;
 75 when I_100_To_S_50 =>
 76 for I in I_100'Range loop
 77 Put (To_S_50 (I));
 78 New_Line;
 79 end loop;
 80 when D_50_To_I_100 =>
 81 for I in D_50'Range loop
 82 Put (To_I_100 (I));
 83 New_Line;
 84 end loop;
 85 when S_50_To_I_100 =>
 86 for I in S_50'Range loop
 87 Put (I);
 88 New_Line;
 89 end loop;
 90 end case;
 91 end Check;
 92
 93begin
 94 if Argument_Count < 1 then
 95 Put_Line ("ERROR: missing arguments! Exiting...");
 96 return;
 97 elsif Argument_Count > 1 then
 98 Put_Line ("Ignoring additional arguments...");
 99 end if;
100
101 Check (Test_Case_Index'Value (Argument (1)));
102end Main;

Temperatures

Goal: create a package to handle temperatures in Celsius and Kelvin.

Steps:

	Implement the Temperature_Types package.

	Declare the Celsius type.

	Declare the Int_Celsius type.

	Implement the To_Celsius function.

	Implement the To_Int_Celsius function.

	Declare the Kelvin type.

	Implement the To_Celsius function to convert from the
Kelvin type.

	Implement the To_Kelvin function.

Requirements:

	The custom floating-point types declared in Temperature_Types
must use a precision of six digits.

	Types Celsius and Int_Celsius are used for temperatures in
Celsius:

	Celsius is a floating-point type with a range between -273.15
and 5504.85.

	Int_Celsius is an integer type with a range between -273 and
5505.

	Functions To_Celsius and To_Int_Celsius are used for type
conversion:

	To_Celsius converts from Int_Celsius to Celsius
type.

	To_Int_Celsius converts from Celsius and
Int_Celsius types:

	Kelvin is a floating-point type for temperatures in Kelvin using
a range between 0.0 and 5778.0.

	The functions To_Celsius and To_Kelvin are used to convert
between temperatures in Kelvin and Celsius.

	In order to convert temperatures in Celsius to Kelvin, you must use
the formula \(K = C + 273.15\), where:

	K is the temperature in Kelvin, and

	C is the temperature in Celsius.

Remarks:

	When implementing the To_Celsius function for the Int_Celsius
type:

	You'll need to check for the minimum and maximum values of the input
values because of the slightly different ranges.

	You may use variables of floating-point type (Float) for
intermediate values.

	For the implementation of the functions To_Celsius and
To_Kelvin (used for converting between Kelvin and
Celsius), you may use a variable of floating-point type
(Float) for intermediate values.

temperature_types.ads

 1package Temperature_Types is
 2
 3 -- Include type declaration for Celsius!
 4 --
 5 -- Celsius is [...];
 6 -- Int_Celsius is [...];
 7 --
 8
 9 function To_Celsius (T : Int_Celsius) return Celsius;
10
11 function To_Int_Celsius (T : Celsius) return Int_Celsius;
12
13 -- Include type declaration for Kelvin!
14 --
15 -- type Kelvin is [...];
16 --
17
18 -- Include function declarations for:
19 -- - Kelvin => Celsius
20 -- - Celsius => Kelvin
21 --
22 -- function To_Celsius [...];
23 -- function To_Kelvin [...];
24 --
25end Temperature_Types;

temperature_types.adb

 1package body Temperature_Types is
 2
 3 function To_Celsius (T : Int_Celsius) return Celsius is
 4 begin
 5 null;
 6 end To_Celsius;
 7
 8 function To_Int_Celsius (T : Celsius) return Int_Celsius is
 9 begin
10 null;
11 end To_Int_Celsius;
12
13 -- Include function implementation for:
14 -- - Kelvin => Celsius
15 -- - Celsius => Kelvin
16 --
17 -- function To_Celsius [...] is
18 -- function To_Kelvin [...] is
19 --
20end Temperature_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Temperature_Types; use Temperature_Types;
 5
 6procedure Main is
 7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
 8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
 9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10
11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14
15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21
22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27
28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62
63begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70
71 Check (Test_Case_Index'Value (Argument (1)));
72end Main;

Footnotes

Records

Directions

Goal: create a package that handles directions and geometric angles.

Steps:

	Implement the Directions package.

	Declare the Ext_Angle record.

	Implement the Display procedure.

	Implement the To_Ext_Angle function.

Requirements:

	Record Ext_Angle stores information about the extended angle
(see remark about extended angles below).

	Procedure Display displays information about the extended angle.

	You should use the implementation that has been commented out (see
code below) as a starting point.

	Function To_Ext_Angle converts a simple angle value to an
extended angle (Ext_Angle type).

Remarks:

	We make use of the algorithm implemented in the Check_Direction
procedure (chapter on imperative language).

	For the sake of this exercise, we use the concept of extended angles.
This includes the actual geometric angle and the corresponding direction
(North, South, Northwest, and so on).

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northeast,
 8 East,
 9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14
15 function To_Direction (N: Angle_Mod) return Direction;
16
17 -- Include type declaration for Ext_Angle record type:
18 --
19 -- NOTE: Use the Angle_Mod and Direction types declared above!
20 --
21 -- type Ext_Angle is [...]
22 --
23
24 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
25
26 procedure Display (N : Ext_Angle);
27
28end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 -- Uncomment the code below and fill the missing elements
 8 --
 9 -- Put_Line ("Angle: "
10 -- & Angle_Mod'Image (____)
11 -- & " => "
12 -- & Direction'Image (____)
13 -- & ".");
14 null;
15 end Display;
16
17 function To_Direction (N : Angle_Mod) return Direction is
18 begin
19 case N is
20 when 0 => return North;
21 when 1 .. 89 => return Northeast;
22 when 90 => return East;
23 when 91 .. 179 => return Southeast;
24 when 180 => return South;
25 when 181 .. 269 => return Southwest;
26 when 270 => return West;
27 when 271 .. 359 => return Northwest;
28 end case;
29 end To_Direction;
30
31 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
32 begin
33 -- Implement the conversion from Angle_Mod to Ext_Angle here!
34 --
35 -- Hint: you can use a return statement and an aggregate.
36 --
37 null;
38 end To_Ext_Angle;
39
40end Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Directions; use Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Colors

Goal: create a package to represent HTML colors in RGB format using the
hexadecimal form.

Steps:

	Implement the Color_Types package.

	Declare the RGB record.

	Implement the To_RGB function.

	Implement the Image function for the RGB type.

Requirements:

	The following table contains the HTML colors and the corresponding value
in hexadecimal form for each color element:

	Color

	Red

	Green

	Blue

	Salmon

	#FA

	#80

	#72

	Firebrick

	#B2

	#22

	#22

	Red

	#FF

	#00

	#00

	Darkred

	#8B

	#00

	#00

	Lime

	#00

	#FF

	#00

	Forestgreen

	#22

	#8B

	#22

	Green

	#00

	#80

	#00

	Darkgreen

	#00

	#64

	#00

	Blue

	#00

	#00

	#FF

	Mediumblue

	#00

	#00

	#CD

	Darkblue

	#00

	#00

	#8B

	The hexadecimal information of each HTML color can be mapped to three
color elements: red, green and blue.

	Each color element has a value between 0 and 255, or 00 and
FF in hexadecimal.

	For example, for the color salmon, the hexadecimal value of the
color elements are:

	red = FA,

	green = 80, and

	blue = 72.

	Record RGB stores information about HTML colors in RGB format, so
that we can retrieve the individual color elements.

	Function To_RGB converts from the HTML_Color enumeration
to the RGB type based on the information from the table above.

	Function Image returns a string representation of the RGB
type in this format:

	"(Red => 16#..#, Green => 16#...#, Blue => 16#...#)"

Remarks:

	We use the exercise on HTML colors from the previous lab on
Strongly typed language as a starting point.

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25 subtype Int_Color is Integer range 0 .. 255;
26
27 -- Replace type declaration for RGB record below
28 --
29 -- - NOTE: Use the Int_Color type declared above!
30 --
31 -- type RGB is [...]
32 --
33 type RGB is null record;
34
35 function To_RGB (C : HTML_Color) return RGB;
36
37 function Image (C : RGB) return String;
38
39end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_Integer (C : HTML_Color) return Integer is
 6 begin
 7 case C is
 8 when Salmon => return 16#FA8072#;
 9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20
21 end To_Integer;
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;
30 end To_HTML_Color;
31
32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 -- Implement the conversion from HTML_Color to RGB here!
35 --
36 return (null record);
37 end To_RGB;
38
39 function Image (C : RGB) return String is
40 subtype Str_Range is Integer range 1 .. 10;
41 SR : String (Str_Range);
42 SG : String (Str_Range);
43 SB : String (Str_Range);
44 begin
45 -- Replace argument in the calls to Put below
46 -- with the missing elements (red, green, blue)
47 -- from the RGB record
48 --
49 Ada.Integer_Text_IO.Put (To => SR,
50 Item => 0, -- REPLACE!
51 Base => 16);
52 Ada.Integer_Text_IO.Put (To => SG,
53 Item => 0, -- REPLACE!
54 Base => 16);
55 Ada.Integer_Text_IO.Put (To => SB,
56 Item => 0, -- REPLACE!
57 Base => 16);
58 return ("(Red => " & SR
59 & ", Green => " & SG
60 & ", Blue => " & SB
61 &")");
62 end Image;
63
64end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_To_RGB);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");
17 end loop;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Inventory

Goal: create a simplified inventory system for a store to enter items and
keep track of assets.

Steps:

	Implement the Inventory_Pkg package.

	Declare the Item record.

	Implement the Init function.

	Implement the Add procedure.

Requirements:

	Record Item collects information about products from the store.

	To keep it simple, this record only contains the name, quantity and
price of each item.

	The record components are:

	Name of Item_Name type;

	Quantity of Natural type;

	Price of Float type.

	Function Init returns an initialized item (of Item type).

	Function Init must also display the item name by calling the
To_String function for the Item_Name type.

	This is already implemented in the code below.

	Procedure Add adds an item to the assets.

	Since we want to keep track of the assets, the implementation must
accumulate the total value of each item's inventory, the result of
multiplying the item quantity and its price.

inventory_pkg.ads

 1package Inventory_Pkg is
 2
 3 type Item_Name is
 4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
 5
 6 function To_String (I : Item_Name) return String;
 7
 8 -- Replace type declaration for Item record:
 9 --
10 type Item is null record;
11
12 function Init (Name : Item_Name;
13 Quantity : Natural;
14 Price : Float) return Item;
15
16 procedure Add (Assets : in out Float;
17 I : Item);
18
19end Inventory_Pkg;

inventory_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Inventory_Pkg is
 4
 5 function To_String (I : Item_Name) return String is
 6 begin
 7 case I is
 8 when Ballpoint_Pen => return "Ballpoint Pen";
 9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19
20 -- Replace return statement with the actual record initialization!
21 --
22 return (null record);
23 end Init;
24
25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 -- Implement the function that adds an item to the inventory here!
29 --
30 null;
31 end Add;
32
33end Inventory_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Inventory_Pkg; use Inventory_Pkg;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42);
 9
10 type Test_Case_Index is
11 (Inventory_Chk);
12
13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15
16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23
24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27
28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38
39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42
43 I := Init (Feather_Quill_Pen, 2, 40.0);
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48
49begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56
57 Check (Test_Case_Index'Value (Argument (1)));
58end Main;

Footnotes

Arrays

Constrained Array

Goal: declare a constrained array and implement operations on it.

Steps:

	Implement the Constrained_Arrays package.

	Declare the range type My_Index.

	Declare the array type My_Array.

	Declare and implement the Init function.

	Declare and implement the Double procedure.

	Declare and implement the First_Elem function.

	Declare and implement the Last_Elem function.

	Declare and implement the Length function.

	Declare the object A of My_Array type.

Requirements:

	Range type My_Index has a range from 1 to 10.

	My_Array is a constrained array of Integer type.

	It must make use of the My_Index type.

	It is therefore limited to 10 elements.

	Function Init returns an array where each element is initialized
with the corresponding index.

	Procedure Double doubles the value of each element of an array.

	Function First_Elem returns the first element of the array.

	Function Last_Elem returns the last element of the array.

	Function Length returns the length of the array.

	Object A of My_Array type is initialized with:

	the values 1 and 2 for the first two elements, and

	42 for all other elements.

constrained_arrays.ads

 1package Constrained_Arrays is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5 -- type My_Index is [...]
 6 --
 7 -- type My_Array is [...]
 8 --
 9 -- function Init ...
10 --
11 -- procedure Double ...
12 --
13 -- function First_Elem ...
14 --
15 -- function Last_Elem ...
16 --
17 -- function Length ...
18 --
19 -- A : ...
20
21end Constrained_Arrays;

constrained_arrays.adb

1package body Constrained_Arrays is
2
3 -- Create the implementation of the subprograms!
4 --
5
6end Constrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Constrained_Arrays; use Constrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Range_Chk,
 9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19
20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26
27 procedure Local_Init (A : in out My_Array) is
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60
61begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68
69 Check (Test_Case_Index'Value (Argument (1)));
70end Main;

Colors: Lookup-Table

Goal: rewrite a package to represent HTML colors in RGB format using a
lookup table.

Steps:

	Implement the Color_Types package.

	Declare the array type HTML_Color_RGB.

	Declare the To_RGB_Lookup_Table object and initialize it.

	Adapt the implementation of the To_RGB function.

Requirements:

	Array type HTML_Color_RGB is used for the table.

	The To_RGB_Lookup_Table object of HTML_Color_RGB type
contains the lookup table.

	This table must be implemented as an array of constant values.

	The implementation of the To_RGB function must use the
To_RGB_Lookup_Table object.

Remarks:

	This exercise is based on the HTML colors exercise from a previous lab
(Records).

	In the previous implementation, you could use a case statement to
implement the To_RGB function. Here, you must rewrite the
function using a look-up table.

	The implementation of the To_RGB function below includes the
case statement as commented-out code. You can use this as your
starting point: you just need to copy it and convert the case
statement to an array declaration.

	Don't use a case statement to implement the To_RGB function.
Instead, write code that accesses To_RGB_Lookup_Table to get
the correct value.

	The following table contains the HTML colors and the corresponding value
in hexadecimal form for each color element:

	Color

	Red

	Green

	Blue

	Salmon

	#FA

	#80

	#72

	Firebrick

	#B2

	#22

	#22

	Red

	#FF

	#00

	#00

	Darkred

	#8B

	#00

	#00

	Lime

	#00

	#FF

	#00

	Forestgreen

	#22

	#8B

	#22

	Green

	#00

	#80

	#00

	Darkgreen

	#00

	#64

	#00

	Blue

	#00

	#00

	#FF

	Mediumblue

	#00

	#00

	#CD

	Darkblue

	#00

	#00

	#8B

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;
23
24 function To_RGB (C : HTML_Color) return RGB;
25
26 function Image (C : RGB) return String;
27
28 -- Declare array type for lookup table here:
29 --
30 -- type HTML_Color_RGB is ...
31
32 -- Declare lookup table here:
33 --
34 -- To_RGB_Lookup_Table : ...
35
36end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2package body Color_Types is
 3
 4 function To_RGB (C : HTML_Color) return RGB is
 5 begin
 6 -- Implement To_RGB using To_RGB_Lookup_Table
 7 return (0, 0, 0);
 8
 9 -- Use the code below from the previous version of the To_RGB
10 -- function to declare the To_RGB_Lookup_Table:
11 --
12 -- case C is
13 -- when Salmon => return (16#FA#, 16#80#, 16#72#);
14 -- when Firebrick => return (16#B2#, 16#22#, 16#22#);
15 -- when Red => return (16#FF#, 16#00#, 16#00#);
16 -- when Darkred => return (16#8B#, 16#00#, 16#00#);
17 -- when Lime => return (16#00#, 16#FF#, 16#00#);
18 -- when Forestgreen => return (16#22#, 16#8B#, 16#22#);
19 -- when Green => return (16#00#, 16#80#, 16#00#);
20 -- when Darkgreen => return (16#00#, 16#64#, 16#00#);
21 -- when Blue => return (16#00#, 16#00#, 16#FF#);
22 -- when Mediumblue => return (16#00#, 16#00#, 16#CD#);
23 -- when Darkblue => return (16#00#, 16#00#, 16#8B#);
24 -- end case;
25
26 end To_RGB;
27
28 function Image (C : RGB) return String is
29 subtype Str_Range is Integer range 1 .. 10;
30 SR : String (Str_Range);
31 SG : String (Str_Range);
32 SB : String (Str_Range);
33 begin
34 Ada.Integer_Text_IO.Put (To => SR,
35 Item => C.Red,
36 Base => 16);
37 Ada.Integer_Text_IO.Put (To => SG,
38 Item => C.Green,
39 Base => 16);
40 Ada.Integer_Text_IO.Put (To => SB,
41 Item => C.Blue,
42 Base => 16);
43 return ("(Red => " & SR
44 & ", Green => " & SG
45 & ", Blue => " & SB
46 &")");
47 end Image;
48
49end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Color_Table_Chk,
 9 HTML_Color_To_Integer_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26
27begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34
35 Check (Test_Case_Index'Value (Argument (1)));
36end Main;

Unconstrained Array

Goal: declare an unconstrained array and implement operations on it.

Steps:

	Implement the Unconstrained_Arrays package.

	Declare the My_Array type.

	Declare and implement the Init procedure.

	Declare and implement the Init function.

	Declare and implement the Double procedure.

	Declare and implement the Diff_Prev_Elem function.

Requirements:

	My_Array is an unconstrained array (with a Positive range)
of Integer elements.

	Procedure Init initializes each element with the index starting
with the last one.

	For example, for an array of 3 elements where the index of the first
element is 1 (My_Array (1 .. 3)), the values of these elements
after a call to Init must be (3, 2, 1).

	Function Init returns an array based on the length L and
start index I provided to the Init function.

	I indicates the index of the first element of the array.

	L indicates the length of the array.

	Both I and L must be positive.

	This is its declaration:
function Init (I, L : Positive) return My_Array;.

	You must initialize the elements of the array in the same manner
as for the Init procedure described above.

	Procedure Double doubles each element of an array.

	Function Diff_Prev_Elem returns — for each element of an
input array A — an array with the difference between an
element of array A and the previous element.

	For the first element, the difference must be zero.

	For example:

	INPUT: (2, 5, 15)

	RETURN of Diff_Prev_Elem: (0, 3, 10), where

	0 is the constant difference for the first element;

	5 - 2 = 3 is the difference between the second and the
first elements of the input array;

	15 - 5 = 10 is the difference between the third and
the second elements of the input array.

Remarks:

	For an array A, you can retrieve the index of the last element with
the attribute 'Last.

	For example: Y : Positive := A'Last;

	This can be useful during the implementation of procedure Init.

	For the implementation of the Init function, you can call the
Init procedure to initialize the elements. By doing this, you avoid
code duplication.

	Some hints about attributes:

	You can use the range attribute (A'Range) to retrieve the
range of an array A.

	You can also use the range attribute in the declaration of another array
(e.g.: B : My_Array (A'Range)).

	Alternatively, you can use the A'First and A'Last
attributes in an array declaration.

unconstrained_arrays.ads

 1package Unconstrained_Arrays is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5 -- type My_Array is ...;
 6 --
 7 -- procedure Init ...;
 8
 9 function Init (I, L : Positive) return My_Array;
10
11 -- procedure Double ...;
12 --
13 -- function Diff_Prev_Elem ...;
14
15end Unconstrained_Arrays;

unconstrained_arrays.adb

 1package body Unconstrained_Arrays is
 2
 3 -- Implement the subprograms:
 4 --
 5
 6 -- procedure Init is...
 7
 8 -- function Init (L : Positive) return My_Array is...
 9
10 -- procedure Double ... is...
11
12 -- function Diff_Prev_Elem ... is...
13
14end Unconstrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Unconstrained_Arrays; use Unconstrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Init_Chk,
 9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17
18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24
25 procedure Local_Init (A : in out My_Array) is
26 begin
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;
29
30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Product info

Goal: create a system to keep track of quantities and prices of products.

Steps:

	Implement the Product_Info_Pkg package.

	Declare the array type Product_Infos.

	Declare the array type Currency_Array.

	Implement the Total procedure.

	Implement the Total function returning an array of
Currency_Array type.

	Implement the Total function returning a single value of
Currency type.

Requirements:

	Quantity of an individual product is represented by the Quantity
subtype.

	Price of an individual product is represented by the Currency
subtype.

	Record type Product_Info deals with information for various
products.

	Array type Product_Infos is used to represent a list of products.

	Array type Currency_Array is used to represent a list of total
values of individual products (see more details below).

	Procedure Total receives an input array of products.

	It outputs an array with the total value of each product using the
Currency_Array type.

	The total value of an individual product is calculated by
multiplying the quantity for this product by its price.

	Function Total returns an array of Currency_Array type.

	This function has the same purpose as the procedure Total.

	The difference is that the function returns an array instead of
providing this array as an output parameter.

	The second function Total returns a single value of
Currency type.

	This function receives an array of products.

	It returns a single value corresponding to the total value for all
products in the system.

Remarks:

	You can use Currency (Q) to convert from an element Q of
Quantity type to the Currency type.

	As you might remember, Ada requires an explicit conversion in
calculations where variables of both integer and floating-point
types are used.

	In our case, the Quantity subtype is based on the
Integer type and the Currency subtype is based on the
Float type, so a conversion is necessary in calculations
using those types.

product_info_pkg.ads

 1package Product_Info_Pkg is
 2
 3 subtype Quantity is Natural;
 4
 5 subtype Currency is Float;
 6
 7 type Product_Info is record
 8 Units : Quantity;
 9 Price : Currency;
10 end record;
11
12 -- Complete the type declarations:
13 --
14 -- type Product_Infos is ...
15 --
16 -- type Currency_Array is ...
17
18 procedure Total (P : Product_Infos;
19 Tot : out Currency_Array);
20
21 function Total (P : Product_Infos) return Currency_Array;
22
23 function Total (P : Product_Infos) return Currency;
24
25end Product_Info_Pkg;

product_info_pkg.adb

 1package body Product_Info_Pkg is
 2
 3 -- Complete the subprogram implementations:
 4 --
 5
 6 -- procedure Total (P : Product_Infos;
 7 -- Tot : out Currency_Array) is ...
 8
 9 -- function Total (P : Product_Infos) return Currency_Array is ...
10
11 -- function Total (P : Product_Infos) return Currency is ...
12
13end Product_Info_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Product_Info_Pkg; use Product_Info_Pkg;
 5
 6procedure Main is
 7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
 8
 9 type Test_Case_Index is
10 (Total_Func_Chk,
11 Total_Proc_Chk,
12 Total_Value_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16
17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20
21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28
29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37
38 begin
39 Currency_IO.Default_Fore := 1;
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42
43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

String_10

Goal: work with constrained string types.

Steps:

	Implement the Strings_10 package.

	Declare the String_10 type.

	Implement the To_String_10 function.

Requirements:

	The constrained string type String_10 is an array of ten
characters.

	Function To_String_10 returns constrained strings of
String_10 type based on an input parameter of String type.

	For strings that are more than 10 characters, omit everything
after the 11th character.

	For strings that are fewer than 10 characters, pad the string
with ' ' characters until it is 10 characters.

Remarks:

	Declaring String_10 as a subtype of String is the easiest
way.

	You may declare it as a new type as well. However, this requires some
adaptations in the Main test procedure.

	You can use Integer'Min to calculate the minimum of two integer
values.

strings_10.ads

 1package Strings_10 is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5
 6 -- subtype String_10 is ...;
 7
 8 -- Using "type String_10 is..." is possible, too. However, it
 9 -- requires a custom Put_Line procedure that is called in Main:
10 -- procedure Put_Line (S : String_10);
11
12 -- function To_String_10 ...;
13
14end Strings_10;

strings_10.adb

1package body Strings_10 is
2
3 -- Complete the subprogram declaration and implementation:
4 --
5 -- function To_String_10 ... is
6
7end Strings_10;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Strings_10; use Strings_10;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (String_10_Long_Chk,
 9 String_10_Short_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15
16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of Names

Goal: create a system for a list of names and ages.

Steps:

	Implement the Names_Ages package.

	Declare the People_Array array type.

	Complete the declaration of the People record type with the
People_A element of People_Array type.

	Implement the Add procedure.

	Implement the Reset procedure.

	Implement the Get function.

	Implement the Update procedure.

	Implement the Display procedure.

Requirements:

	Each person is represented by the Person type, which is a record
containing the name and the age of that person.

	People_Array is an unconstrained array of Person type
with a positive range.

	The Max_People constant is set to 10.

	Record type People contains:

	The People_A element of People_Array type.

	This array must be constrained by the Max_People constant.

	Procedure Add adds a person to the list.

	By default, the age of this person is set to zero in this procedure.

	Procedure Reset resets the list.

	Function Get retrieves the age of a person from the list.

	Procedure Update updates the age of a person in the list.

	Procedure Display shows the complete list using the following
format:

	The first line must be LIST OF NAMES:. It is followed by the
name and age of each person in the next lines.

	For each person on the list, the procedure must display the
information in the following format:

NAME: XXXX
AGE: YY

Remarks:

	In the implementation of procedure Add, you may use an index to
indicate the last valid position in the array — see
Last_Valid in the code below.

	In the implementation of procedure Display, you should use the
Trim function from the Ada.Strings.Fixed package to format
the person's name — for example: Trim (P.Name, Right).

	You may need the Integer'Min (A, B) and the
Integer'Max (A, B) functions to get the minimum and maximum
values in a comparison between two integer values A and B.

	Fixed-length strings can be initialized with whitespaces using
the others syntax. For example:
S : String_10 := (others => ' ');

	You may implement additional subprograms to deal with other types
declared in the Names_Ages package below, such as the
Name_Type and the Person type.

	For example, a function To_Name_Type to convert from
String to Name_Type might be useful.

	Take a moment to reflect on which additional subprograms could be
useful as well.

names_ages.ads

 1package Names_Ages is
 2
 3 Max_People : constant Positive := 10;
 4
 5 subtype Name_Type is String (1 .. 50);
 6
 7 type Age_Type is new Natural;
 8
 9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13
14 -- Add type declaration for People_Array record:
15 --
16 -- type People_Array is ...;
17
18 -- Replace type declaration for People record. You may use the
19 -- following template:
20 --
21 -- type People is record
22 -- People_A : People_Array ...;
23 -- Last_Valid : Natural;
24 -- end record;
25 --
26 type People is null record;
27
28 procedure Reset (P : in out People);
29
30 procedure Add (P : in out People;
31 Name : String);
32
33 function Get (P : People;
34 Name : String) return Age_Type;
35
36 procedure Update (P : in out People;
37 Name : String;
38 Age : Age_Type);
39
40 procedure Display (P : People);
41
42end Names_Ages;

names_ages.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 4
 5package body Names_Ages is
 6
 7 procedure Reset (P : in out People) is
 8 begin
 9 null;
10 end Reset;
11
12 procedure Add (P : in out People;
13 Name : String) is
14 begin
15 null;
16 end Add;
17
18 function Get (P : People;
19 Name : String) return Age_Type is
20 begin
21 return 0;
22 end Get;
23
24 procedure Update (P : in out People;
25 Name : String;
26 Age : Age_Type) is
27 begin
28 null;
29 end Update;
30
31 procedure Display (P : People) is
32 begin
33 null;
34 end Display;
35
36end Names_Ages;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Names_Ages; use Names_Ages;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Names_Ages_Chk,
 9 Get_Age_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34
35begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42
43 Check (Test_Case_Index'Value (Argument (1)));
44end Main;

Footnotes

More About Types

Aggregate Initialization

Goal: initialize records and arrays using aggregates.

Steps:

	Implement the Aggregates package.

	Create the record type Rec.

	Create the array type Int_Arr.

	Implement the Init procedure that outputs a record of
Rec type.

	Implement the Init_Some procedure.

	Implement the Init procedure that outputs an array of
Int_Arr type.

Requirements:

	Record type Rec has four components of Integer type. These
are the components with the corresponding default values:

	W = 10

	X = 11

	Y = 12

	Z = 13

	Array type Int_Arr has 20 elements of Integer type (with
indices ranging from 1 to 20).

	The first Init procedure outputs a record of Rec type
where:

	X is initialized with 100,

	Y is initialized with 200, and

	the remaining elements use their default values.

	Procedure Init_Some outputs an array of Int_Arr type
where:

	the first five elements are initialized with the value 99, and

	the remaining elements are initialized with the value 100.

	The second Init procedure outputs an array of Int_Arr type
where:

	all elements are initialized with the value 5.

aggregates.ads

 1package Aggregates is
 2
 3 -- type Rec is ...;
 4
 5 -- type Int_Arr is ...;
 6
 7 procedure Init;
 8
 9 -- procedure Init_Some ...;
10
11 -- procedure Init ...;
12
13end Aggregates;

aggregates.adb

1package body Aggregates is
2
3 procedure Init is null;
4
5end Aggregates;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Aggregates; use Aggregates;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42)
 9 with Unreferenced;
10
11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53
54begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");
60 end if;
61
62 Check (Test_Case_Index'Value (Argument (1)));
63end Main;

Versioning

Goal: implement a simple package for source-code versioning.

Steps:

	Implement the Versioning package.

	Declare the record type Version.

	Implement the Convert function that returns a string.

	Implement the Convert function that returns a floating-point
number.

Requirements:

	Record type Version has the following components of
Natural type:

	Major,

	Minor, and

	Maintenance.

	The first Convert function returns a string containing the
version number.

	The second Convert function returns a floating-point value.

	For this floating-point value:

	the number before the decimal point must correspond to the major
number, and

	the number after the decimal point must correspond to the minor
number.

	the maintenance number is ignored.

	For example, version "1.3.5" is converted to the floating-point
value 1.3.

	An obvious limitation of this function is that it can only handle
one-digit numbers for the minor component.

	For example, we cannot convert version "1.10.0" to a reasonable
value with the approach described above. The result of the call
Convert ((1, 10, 0)) is therefore unspecified.

	For the scope of this exercise, only version numbers with
one-digit components are checked.

Remarks:

	We use overloading for the Convert functions.

	For the function Convert that returns a string, you can make use
of the Image_Trim function, as indicated in the source-code below
— see package body of Versioning.

versioning.ads

1package Versioning is
2
3 -- type Version is record...
4
5 -- function Convert ...
6
7 -- function Convert
8
9end Versioning;

versioning.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3
 4package body Versioning is
 5
 6 function Image_Trim (N : Natural) return String is
 7 S_N : constant String := Trim (Natural'Image (N), Left);
 8 begin
 9 return S_N;
10 end Image_Trim;
11
12 -- function Convert ...
13 -- S_Major : constant String := Image_Trim (V.Major);
14 -- S_Minor : constant String := Image_Trim (V.Minor);
15 -- S_Maint : constant String := Image_Trim (V.Maintenance);
16 -- begin
17 -- end Convert;
18
19 -- function Convert ...
20 -- begin
21 -- end Convert;
22
23end Versioning;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Versioning; use Versioning;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Ver_String_Chk,
 9 Ver_Float_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21
22begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29
30 Check (Test_Case_Index'Value (Argument (1)));
31end Main;

Simple todo list

Goal: implement a simple to-do list system.

Steps:

	Implement the Todo_Lists package.

	Declare the Todo_Item type.

	Declare the Todo_List type.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	Todo_Item type is used to store a to-do item.

	It should be implemented as an access type to strings.

	Todo_Items type is an array of to-do items.

	It should be implemented as an unconstrained array with positive
range.

	Todo_List type is the container for all to-do items.

	This record type must have a discriminant for the maximum number of
elements of the list.

	In order to store the to-do items, it must contain a component named
Items of Todo_Items type.

	Don't forget to keep track of the last element added to the
list!

	You should declare a Last component in the record.

	Procedure Add adds items (of Todo_Item type) to the list
(of Todo_List type).

	This requires allocating a string for the access type.

	An item can only be added to the list if the list isn't full yet
— see next point for details on error handling.

	Since the number of items that can be stored on the list is limited,
the list might eventually become full in a call to Add.

	You must write code in the implementation of the Add
procedure that verifies this condition.

	If the procedure detects that the list is full, it must display the
following message: "ERROR: list is full!".

	Procedure Display is used to display all to-do items.

	The header (first line) must be TO-DO LIST.

	It must display one item per line.

Remarks:

	We use access types and unconstrained arrays in the implementation of
the Todo_Lists package.

todo_lists.ads

 1package Todo_Lists is
 2
 3 -- Replace by actual type declaration
 4 type Todo_Item is null record;
 5
 6 -- Replace by actual type declaration
 7 type Todo_Items is null record;
 8
 9 -- Replace by actual type declaration
10 type Todo_List is null record;
11
12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14
15 procedure Display (Todos : Todo_List);
16
17end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 Put_Line ("ERROR: list is full!");
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 null;
14 end Display;
15
16end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Price list

Goal: implement a list containing prices

Steps:

	Implement the Price_Lists package.

	Declare the Price_Type type.

	Declare the Price_List record.

	Implement the Reset procedure.

	Implement the Add procedure.

	Implement the Get function.

	Implement the Display procedure.

Requirements:

	Price_Type is a decimal fixed-point data type with a delta
of two digits (e.g. 0.01) and twelve digits in total.

	Price_List is a record type that contains the price list.

	This record type must have a discriminant for the maximum number of
elements of the list.

	Procedure Reset resets the list.

	Procedure Add adds a price to the list.

	You should keep track of the last element added to the list.

	Function Get retrieves a price from the list using an index.

	This function returns a record instance of Price_Result type.

	Price_Result is a variant record containing:

	the Boolean component Ok, and

	the component Price (of Price_Type).

	The returned value of Price_Result type is one of the
following:

	If the index specified in a call to Get contains a valid
(initialized) price, then

	Ok is set to True, and

	the Price component contains the price for that index.

	Otherwise:

	Ok is set to False, and

	the Price component is not available.

	Procedure Display shows all prices from the list.

	The header (first line) must be PRICE LIST.

	The remaining lines contain one price per line.

	For example:

	For the following code:

procedure Test is
 L : Price_List (10);
begin
 Reset (L);
 Add (L, 1.45);
 Add (L, 2.37);
 Display (L);
end Test;

	The output is:

PRICE LIST
 1.45
 2.37

Remarks:

	To implement the package, you'll use the following features of the Ada
language:

	decimal fixed-point types;

	records with discriminants;

	dynamically-sized record types;

	variant records.

	For record type Price_List, you may use an unconstrained array as a
component of the record and use the discriminant in the component
declaration.

price_lists.ads

 1package Price_Lists is
 2
 3 -- Replace by actual type declaration
 4 type Price_Type is new Float;
 5
 6 -- Replace by actual type declaration
 7 type Price_List is null record;
 8
 9 -- Replace by actual type declaration
10 type Price_Result is null record;
11
12 procedure Reset (Prices : in out Price_List);
13
14 procedure Add (Prices : in out Price_List;
15 Item : Price_Type);
16
17 function Get (Prices : Price_List;
18 Idx : Positive) return Price_Result;
19
20 procedure Display (Prices : Price_List);
21
22end Price_Lists;

price_lists.adb

 1package body Price_Lists is
 2
 3 procedure Reset (Prices : in out Price_List) is
 4 begin
 5 null;
 6 end Reset;
 7
 8 procedure Add (Prices : in out Price_List;
 9 Item : Price_Type) is
10 begin
11 null;
12 end Add;
13
14 function Get (Prices : Price_List;
15 Idx : Positive) return Price_Result is
16 begin
17 null;
18 end Get;
19
20 procedure Display (Prices : Price_List) is
21 begin
22 null;
23 end Display;
24
25end Price_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Price_Lists; use Price_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Price_Type_Chk,
 9 Price_List_Chk,
10 Price_List_Get_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14
15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29
30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47
48 end Get_Display;
49
50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68
69begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76
77 Check (Test_Case_Index'Value (Argument (1)));
78end Main;

Footnotes

Privacy

Directions

Goal: create a package that handles directions and geometric angles using
a previous implementation.

Steps:

	Fix the implementation of the Test_Directions procedure.

Requirements:

	The implementation of the Test_Directions procedure must compile
correctly.

Remarks:

	This exercise is based on the Directions exercise from the
Records labs.

	In this version, however, Ext_Angle is a private type.

	In the implementation of the Test_Directions procedure below, the
Ada developer tried to initialize All_Directions — an array
of Ext_Angle type — with aggregates.

	Since we now have a private type, the compiler complains about this
initialization.

	To fix the implementation of the Test_Directions procedure, you
should use the appropriate function from the Directions package.

	The initialization of All_Directions in the code below contains a
consistency error where the angle doesn't match the assessed direction.

	See if you can spot this error!

	This kind of errors can happen when record components that have
correlated information are initialized individually without
consistency checks — using private types helps to avoid the
problem by requiring initialization routines that can enforce
consistency.

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northwest,
 8 West,
 9 Southwest,
10 South,
11 Southeast,
12 East);
13
14 function To_Direction (N : Angle_Mod) return Direction;
15
16 type Ext_Angle is private;
17
18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19
20 procedure Display (N : Ext_Angle);
21
22private
23
24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28
29end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

test_directions.adb

 1with Directions; use Directions;
 2
 3procedure Test_Directions is
 4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;
 5
 6 All_Directions : constant Ext_Angle_Array (1 .. 6)
 7 := ((0, East),
 8 (45, Northwest),
 9 (90, North),
10 (91, North),
11 (180, West),
12 (270, South));
13
14begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18
19end Test_Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Limited Strings

Goal: work with limited private types.

Steps:

	Implement the Limited_Strings package.

	Implement the Copy function.

	Implement the = operator.

Requirements:

	For both Copy and =, the two parameters may refer to
strings with different lengths. We'll limit the implementation to just
take the minimum length:

	In case of copying the string "Hello World" to a string with 5
characters, the copied string is "Hello":

 S1 : constant Lim_String := Init ("Hello World");
 S2 : Lim_String := Init (5);
begin
 Copy (From => S1, To => S2);
 Put_Line (S2); -- This displays "Hello".

	When comparing "Hello World" to "Hello", the = operator
indicates that these strings are equivalent:

 S1 : constant Lim_String := Init ("Hello World");
 S2 : constant Lim_String := Init ("Hello");
begin
 if S1 = S2 then
 -- True => This branch gets selected.

	When copying from a short string to a longer string, the remaining
characters of the longer string must be initialized with underscores
(_). For example:

 S1 : constant Lim_String := Init ("Hello");
 S2 : Lim_String := Init (10);
begin
 Copy (From => S1, To => S2);
 Put_Line (S2); -- This displays "Hello_____".

Remarks:

	As we've discussed in the course:

	Variables of limited types have the following limitations:

	they cannot be assigned to;

	they don't have an equality operator (=).

	We can, however, define our own, custom subprograms to circumvent
these limitations:

	In order to copy instances of a limited type, we can define a
custom Copy procedure.

	In order to compare instances of a limited type, we can define an
= operator.

	You can use the Min_Last constant — which is already
declared in the implementation of these subprograms — in
the code you write.

	Some details about the Limited_Strings package:

	The Lim_String type acts as a container for strings.

	In the the private part, Lim_String is declared as an
access type to a String.

	There are two versions of the Init function that initializes
an object of Lim_String type:

	The first one takes another string.

	The second one receives the number of characters for a string
container.

	Procedure Put_Line displays object of Lim_String type.

	The design and implementation of the Limited_Strings package
is very simplistic.

	A good design would have better handling of access types, for
example.

limited_strings.ads

 1package Limited_Strings is
 2
 3 type Lim_String is limited private;
 4
 5 function Init (S : String) return Lim_String;
 6
 7 function Init (Max : Positive) return Lim_String;
 8
 9 procedure Put_Line (LS : Lim_String);
10
11 procedure Copy (From : Lim_String;
12 To : in out Lim_String);
13
14 function "=" (Ref, Dut : Lim_String) return Boolean;
15
16private
17
18 type Lim_String is access String;
19
20end Limited_Strings;

limited_strings.adb

 1with Ada.Text_IO;
 2
 3package body Limited_Strings
 4is
 5
 6 function Init (S : String) return Lim_String is
 7 LS : constant Lim_String := new String'(S);
 8 begin
 9 return Ls;
10 end Init;
11
12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18
19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23
24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28
29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 -- Complete the implementation!
34 null;
35 end;
36
37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 -- Complete the implementation!
41 return True;
42 end;
43
44end Limited_Strings;

check_lim_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Limited_Strings; use Limited_Strings;
 4
 5procedure Check_Lim_String is
 6 S : constant String := "----------";
 7 S1 : constant Lim_String := Init ("Hello World");
 8 S2 : constant Lim_String := Init (30);
 9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16
17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22
23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26
27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32
33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36
37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42end Check_Lim_String;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Check_Lim_String;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Lim_String_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Bonus exercise

In previous labs, we had many source-code snippets containing records that
could be declared private. The source-code for the exercise above
(Directions) is an example: we've modified the type declaration of
Ext_Angle, so that the record is now private. Encapsulating the
record components — by declaring record components in the private
part — makes the code safer. Also, because many of the code snippets
weren't making use of record components directly (but handling record
types via the API instead), they continue to work fine after these
modifications.

This exercise doesn't contain any source-code. In fact, the goal here is
to modify previous labs, so that the record declarations are made private.
You can look into those labs, modify the type declarations, and recompile
the code. The corresponding test-cases must still pass.

If no other changes are needed apart from changes in the declaration, then that
indicates we have used good programming techniques in the original code. On the
other hand, if further changes are needed, then you should investigate why this
is the case.

Also note that, in some cases, you can move support types into the private
part of the specification without affecting its compilation. This is the case,
for example, for the People_Array type of the List of Names lab
mentioned below. You should, in fact, keep only relevant types and subprograms
in the public part and move all support declarations to the private part of the
specification whenever possible.

Below, you find the selected labs that you can work on, including changes
that you should make. In case you don't have a working version of the
source-code of previous labs, you can look into the corresponding solutions.

Colors

Chapter: Records

Steps:

	Change declaration of RGB type to private.

Requirements:

	Implementation must compile correctly and test cases must pass.

List of Names

Chapter: Arrays

Steps:

	Change declaration of Person and People types to
limited private.

	Move type declaration of People_Array to private part.

Requirements:

	Implementation must compile correctly and test cases must pass.

Price List

Chapter: More About Types

Steps:

	Change declaration of Price_List type to limited private.

Requirements:

	Implementation must compile correctly and test cases must pass.

Footnotes

Generics

Display Array

Goal: create a generic procedure that displays the elements of an array.

Steps:

	Implement the generic procedure Display_Array.

Requirements:

	Generic procedure Display_Array displays the elements of an
array.

	It uses the following scheme:

	First, it displays a header.

	Then, it displays the elements of the array.

	When displaying the elements, it must:

	use one line per element, and

	include the corresponding index of the array.

	This is the expected format:

<HEADER>
<index #1>: <element #1>
<index #2>: <element #2>
...

	For example:

	For the following code:

procedure Test is
 A : Int_Array (1 .. 2) := (1, 5);
begin
 Display_Int_Array ("Elements of A", A);;
end Test;

	The output is:

Elements of A
 1: 1
 2: 5

	These are the formal parameters of the procedure:

	a range type T_Range for the the array;

	a formal type T_Element for the elements of the array;

	This type must be declared in such a way that it can be mapped to
any type in the instantiation — including record types.

	an array type T_Array using the T_Range and
T_Element types;

	a function Image that converts a variable of T_Element
type to a String.

display_array.ads

1generic
2procedure Display_Array (Header : String;
3 A : T_Array);

display_array.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_Array (Header : String;
4 A : T_Array) is
5begin
6 null;
7end Display_Array;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Array;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Array_Chk,
 8 Point_Array_Chk);
 9
10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12
13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,
16 T_Array => Int_Array,
17 Image => Integer'Image);
18
19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23
24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29
30 type Point_Array is array (Natural range <>) of Point;
31
32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37
38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43
44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49
50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Average of Array of Float

Goal: create a generic function that calculates the average of an array
of floating-point elements.

Steps:

	Declare and implement the generic function Average.

Requirements:

	Generic function Average calculates the average of an array
containing floating-point values of arbitrary precision.

	Generic function Average must contain the following formal
parameters:

	a range type T_Range for the array;

	a formal type T_Element that can be mapped to floating-point
types of arbitrary precision;

	an array type T_Array using T_Range and
T_Element;

Remarks:

	You should use the Float type for the accumulator.

average.ads

1generic
2function Average (A : T_Array) return T_Element;

average.adb

1function Average (A : T_Array) return T_Element is
2begin
3 return 0.0;
4end Average;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Average;
 5
 6procedure Main is
 7 type Test_Case_Index is (Float_Array_Chk,
 8 Digits_7_Float_Array_Chk);
 9
10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12
13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17
18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22
23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25
26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28
29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33
34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39
40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;
48 end Check;
49
50begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57
58 Check (Test_Case_Index'Value (Argument (1)));
59end Main;

Average of Array of Any Type

Goal: create a generic function that calculates the average of an array
of elements of any arbitrary type.

Steps:

	Declare and implement the generic function Average.

	Implement the test procedure Test_Item.

	Declare the F_IO package.

	Implement the Get_Total function for the Item type.

	Implement the Get_Price function for the Item type.

	Declare the Average_Total function.

	Declare the Average_Price function.

Requirements:

	Generic function Average calculates the average of an array
containing elements of any arbitrary type.

	Generic function Average has the same formal parameters as in the
previous exercise, except for:

	T_Element, which is now a formal type that can be mapped to
any arbitrary type.

	To_Float, which is an additional formal parameter.

	To_Float is a function that converts the arbitrary element
of T_Element type to the Float type.

	Procedure Test_Item is used to test the generic Average
procedure for a record type (Item).

	Record type Item contains the Quantity and
Price components.

	The following functions have to implemented to be used for the formal
To_Float function parameter:

	For the Decimal type, the function is pretty straightforward:
it simply returns the floating-point value converted from the
decimal type.

	For the Item type, two functions must be created to convert
to floating-point type:

	Get_Total, which returns the multiplication of the
quantity and the price components of the Item type;

	Get_Price, which returns just the price.

	The generic function Average must be instantiated as follows:

	For the Item type, you must:

	declare the Average_Total function (as an instance of
Average) using the Get_Total for the
To_Float parameter;

	declare the Average_Price function (as an instance of
Average) using the Get_Price for the
To_Float parameter.

	You must use the Put procedure from Ada.Text_IO.Float_IO.

	The generic standard package Ada.Text_IO.Float_IO must be
instantiated as F_IO in the test procedures.

	This is the specification of the Put procedure, as described
in the appendix A.10.9 of the Ada Reference Manual:

procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

	This is the expected format when calling Put from
Float_IO:

	Function

	Fore

	Aft

	Exp

	Test_Item

	3

	2

	0

Remarks:

	In this exercise, you'll abstract the Average function from the
previous exercises a step further.

	In this case, the function shall be able to calculate the average of
any arbitrary type — including arrays containing elements of
record types.

	Since record types can be composed by many components of different
types, we need to provide a way to indicate which component (or
components) of the record will be used when calculating the average
of the array.

	This problem is solved by specifying a To_Float function as a
formal parameter, which converts the arbitrary element of
T_Element type to the Float type.

	In the implementation of the Average function, we use the
To_Float function and calculate the average using a
floating-point variable.

average.ads

1generic
2function Average (A : T_Array) return Float;

average.adb

1function Average (A : T_Array) return Float is
2begin
3 null;
4end Average;

test_item.ads

1procedure Test_Item;

test_item.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Average;
 4
 5procedure Test_Item is
 6 type Amount is delta 0.01 digits 12;
 7
 8 type Item is record
 9 Quantity : Natural;
10 Price : Amount;
11 end record;
12
13 type Item_Array is
14 array (Positive range <>) of Item;
15
16 A : constant Item_Array (1 .. 4)
17 := ((Quantity => 5, Price => 10.00),
18 (Quantity => 80, Price => 2.50),
19 (Quantity => 40, Price => 5.00),
20 (Quantity => 20, Price => 12.50));
21
22begin
23 Put ("Average per item & quantity: ");
24 F_IO.Put (Average_Total (A));
25 New_Line;
26
27 Put ("Average price: ");
28 F_IO.Put (Average_Price (A));
29 New_Line;
30end Test_Item;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Item;
 5
 6procedure Main is
 7 type Test_Case_Index is (Item_Array_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Generic list

Goal: create a system based on a generic list to add and displays elements.

Steps:

	Declare and implement the generic package Gen_List.

	Implement the Init procedure.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	Generic package Gen_List must have the following subprograms:

	Procedure Init initializes the list.

	Procedure Add adds an item to the list.

	This procedure must contain a Status output parameter
that is set to False when the list was full — i.e.
if the procedure failed while trying to add the item;

	Procedure Display displays the complete list.

	This includes the name of the list and its elements —
using one line per element.

	This is the expected format:

<NAME>
<element #1>
<element #2>
...

	Generic package Gen_List has these formal parameters:

	an arbitrary formal type Item;

	an unconstrained array type Items of Item element with
positive range;

	the Name parameter containing the name of the list;

	This must be a formal input object of String type.

	It must be used in the Display procedure.

	an actual array List_Array to store the list;

	This must be a formal in out object of Items type.

	the variable Last to store the index of the last element;

	This must be a formal in out object of Natural
type.

	a procedure Put for the Item type.

	This procedure is used in the Display procedure to display
individual elements of the list.

	The test procedure Test_Int is used to test a list of
elements of Integer type.

	For both test procedures, you must:

	add missing type declarations;

	declare and implement a Put procedure for individual elements
of the list;

	declare instances of the Gen_List package.

	For the Test_Int procedure, declare the
Int_List package.

Remarks:

	In previous labs, you've been implementing lists for a variety of types.

	The List of Names exercise from the Arrays labs is an
example.

	In this exercise, you have to abstract those implementations to
create the generic Gen_List package.

gen_list.ads

 1generic
 2package Gen_List is
 3
 4 procedure Init;
 5
 6 procedure Add (I : Item;
 7 Status : out Boolean);
 8
 9 procedure Display;
10
11end Gen_List;

gen_list.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_List is
 4
 5 procedure Init is
 6 begin
 7 null;
 8 end Init;
 9
10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 null;
14 end Add;
15
16 procedure Display is
17 begin
18 null;
19 end Display;
20
21end Gen_List;

test_int.ads

1procedure Test_Int;

test_int.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_List;
 4
 5procedure Test_Int is
 6
 7 type Integer_Array is array (Positive range <>) of Integer;
 8
 9 A : Integer_Array (1 .. 3);
10 L : Natural;
11
12 Success : Boolean;
13
14 procedure Display_Add_Success (Success : Boolean) is
15 begin
16 if Success then
17 Put_Line ("Added item successfully!");
18 else
19 Put_Line ("Couldn't add item!");
20 end if;
21
22 end Display_Add_Success;
23
24begin
25 Int_List.Init;
26
27 Int_List.Add (2, Success);
28 Display_Add_Success (Success);
29
30 Int_List.Add (5, Success);
31 Display_Add_Success (Success);
32
33 Int_List.Add (7, Success);
34 Display_Add_Success (Success);
35
36 Int_List.Add (8, Success);
37 Display_Add_Success (Success);
38
39 Int_List.Display;
40end Test_Int;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Int;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Footnotes

Exceptions

Uninitialized Value

Goal: implement an enumeration to avoid the use of uninitialized values.

Steps:

	Implement the Options package.

	Declare the Option enumeration type.

	Declare the Uninitialized_Value exception.

	Implement the Image function.

Requirements:

	Enumeration Option contains:

	the Uninitialized value, and

	the actual options:

	Option_1,

	Option_2,

	Option_3.

	Function Image returns a string for the Option type.

	In case the argument to Image is Uninitialized, the
function must raise the Uninitialized_Value exception.

Remarks:

	In this exercise, we employ exceptions as a mechanism to avoid the use
of uninitialized values for a certain type.

options.ads

1package Options is
2
3 -- Declare the Option enumeration type!
4 type Option is null record;
5
6 function Image (O : Option) return String;
7
8end Options;

options.adb

1package body Options is
2
3 function Image (O : Option) return String is
4 begin
5 return "";
6 end Image;
7
8end Options;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Options; use Options;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Options_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20
21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Numerical Exception

Goal: handle numerical exceptions in a test procedure.

Steps:

	Add exception handling to the Check_Exception procedure.

Requirements:

	The test procedure Num_Exception_Test from the Tests
package below must be used in the implementation of
Check_Exception.

	The Check_Exception procedure must be extended to handle
exceptions as follows:

	If the exception raised by Num_Exception_Test is
Constraint_Error, the procedure must display the message
"Constraint_Error detected!" to the user.

	Otherwise, it must display the message associated with the
exception.

Remarks:

	You can use the Exception_Message function to retrieve the
message associated with an exception.

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.adb

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID) is
4begin
5 Num_Exception_Test (ID);
6end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Re-raising Exceptions

Goal: make use of exception re-raising in a test procedure.

Steps:

	Declare new exception: Another_Exception.

	Add exception re-raise to the Check_Exception procedure.

Requirements:

	Exception Another_Exception must be declared in the Tests
package.

	Procedure Check_Exception must be extended to re-raise any
exception. When an exception is detected, the procedure must:

	display a user message (as implemented in the previous exercise),
and then

	Raise or re-raise exception depending on the exception that is
being handled:

	In case of Constraint_Error exception, re-raise the
exception.

	In all other cases, raise Another_Exception.

Remarks:

	In this exercise, you should extend the implementation of the
Check_Exception procedure from the previous exercise.

	Naturally, you can use the code for the Check_Exception
procedure from the previous exercise as a starting point.

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.ads

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID);

check_exception.adb

1procedure Check_Exception (ID : Test_ID) is
2begin
3 Num_Exception_Test (ID);
4end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Footnotes

Tasking

Display Service

Goal: create a simple service that displays messages to the user.

Steps:

	Implement the Display_Services package.

	Declare the task type Display_Service.

	Implement the Display entry for strings.

	Implement the Display entry for integers.

Requirements:

	Task type Display_Service uses the Display entry to
display messages to the user.

	There are two versions of the Display entry:

	One that receives messages as a string parameter.

	One that receives messages as an Integer parameter.

	When a message is received via a Display entry, it must be
displayed immediately to the user.

display_services.ads

1package Display_Services is
2
3end Display_Services;

display_services.adb

1package body Display_Services is
2
3end Display_Services;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Services; use Display_Services;
 5
 6procedure Main is
 7 type Test_Case_Index is (Display_Service_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22
23begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30
31 Check (Test_Case_Index'Value (Argument (1)));
32end Main;

Event Manager

Goal: implement a simple event manager.

Steps:

	Implement the Event_Managers package.

	Declare the task type Event_Manager.

	Implement the Start entry.

	Implement the Event entry.

Requirements:

	The event manager has a similar behavior as an alarm

	The sole purpose of this event manager is to display the event ID at
the correct time.

	After the event ID is displayed, the task must finish.

	The event manager (Event_Manager type) must have two entries:

	Start, which starts the event manager with an event ID;

	Event, which delays the task until a certain time and then
displays the event ID as a user message.

	The format of the user message displayed by the event manager is
Event #<event_id>.

	You should use Natural'Image to display the ID (as indicated
in the body of the Event_Managers package below).

Remarks:

	In the Start entry, you can use the Natural type for the
ID.

	In the Event entry, you should use the Time type from the
Ada.Real_Time package for the time parameter.

	Note that the test application below creates an array of event managers
with different delays.

event_managers.ads

1package Event_Managers is
2
3end Event_Managers;

event_managers.adb

1package body Event_Managers is
2
3 -- Don't forget to display the event ID:
4 --
5 -- Put_Line ("Event #" & Natural'Image (Event_ID));
6
7end Event_Managers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Event_Managers; use Event_Managers;
 5with Ada.Real_Time; use Ada.Real_Time;
 6
 7procedure Main is
 8 type Test_Case_Index is (Event_Manager_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Generic Protected Queue

Goal: create a queue container using a protected type.

Steps:

	Implement the generic package Gen_Queues.

	Declare the protected type Queue.

	Implement the Empty function.

	Implement the Full function.

	Implement the Push entry.

	Implement the Pop entry.

Requirements:

	These are the formal parameters for the generic package
Gen_Queues:

	a formal modular type;

	This modular type should be used by the Queue to declare
an array that stores the elements of the queue.

	The modulus of the modular type must correspond to the maximum
number of elements of the queue.

	the data type of the elements of the queue.

	Select a formal parameter that allows you to store elements of
any data type in the queue.

	These are the operations of the Queue type:

	Function Empty indicates whether the queue is empty.

	Function Full indicates whether the queue is full.

	Entry Push stores an element in the queue.

	Entry Pop removes an element from the queue and returns the
element via output parameter.

Remarks:

	In this exercise, we create a queue container by declaring and
implementing a protected type (Queue) as part of a generic
package (Gen_Queues).

	As a bonus exercise, you can analyze the body of the Queue_Tests
package and understand how the Queue type is used there.

	In particular, the procedure Concurrent_Test implements two
tasks: T_Producer and T_Consumer. They make use of the
queue concurrently.

gen_queues.ads

1package Gen_Queues is
2
3end Gen_Queues;

gen_queues.adb

1package body Gen_Queues is
2
3end Gen_Queues;

queue_tests.ads

1package Queue_Tests is
2
3 procedure Simple_Test;
4
5 procedure Concurrent_Test;
6
7end Queue_Tests;

queue_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_Queues;
 4
 5package body Queue_Tests is
 6
 7 Max : constant := 10;
 8 type Queue_Mod is mod Max;
 9
10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12
13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21
22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27
28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30
31 Q_I : Queues_Integer.Queue;
32
33 task T_Producer;
34 task T_Consumer;
35
36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44
45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59
60end Queue_Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Queue_Tests; use Queue_Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is (Simple_Queue_Chk,
 8 Concurrent_Queue_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11
12 begin
13 case TC is
14 when Simple_Queue_Chk =>
15 Simple_Test;
16 when Concurrent_Queue_Chk =>
17 Concurrent_Test;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Footnotes

Design by contracts

Price Range

Goal: use predicates to indicate the correct range of prices.

Steps:

	Complete the Prices package.

	Rewrite the type declaration of Price.

Requirements:

	Type Price must use a predicate instead of a range.

Remarks:

	As discussed in the course, ranges are a form of contract.

	For example, the subtype Price below indicates that a value
of this subtype must always be positive:

subtype Price is Amount range 0.0 .. Amount'Last;

	Interestingly, you can replace ranges by predicates, which is the
goal of this exercise.

prices.ads

1package Prices is
2
3 type Amount is delta 10.0 ** (-2) digits 12;
4
5 subtype Price is Amount range 0.0 .. Amount'Last;
6
7end Prices;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Prices; use Prices;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Price_Range_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19
20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Pythagorean Theorem: Predicate

Goal: use the Pythagorean theorem as a predicate.

Steps:

	Complete the Triangles package.

	Add a predicate to the Right_Triangle type.

Requirements:

	The Right_Triangle type must use the Pythagorean theorem as a
predicate to ensure that its components are consistent.

Remarks:

	As you probably remember, the
Pythagoras' theorem[#1]
states that the square of the hypotenuse of a right triangle is equal to
the sum of the squares of the other two sides.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Precondition

Goal: use the Pythagorean theorem as a precondition.

Steps:

	Complete the Triangles package.

	Add a precondition to the Init function.

Requirements:

	The Init function must use the Pythagorean theorem as a
precondition to ensure that the input values are consistent.

Remarks:

	In this exercise, you'll work again with the Right_Triangle type.

	This time, your job is to use a precondition instead of a
predicate.

	The precondition is applied to the Init function, not to the
Right_Triangle type.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Postcondition

Goal: use the Pythagorean theorem as a postcondition.

Steps:

	Complete the Triangles package.

	Add a postcondition to the Init function.

Requirements:

	The Init function must use the Pythagorean theorem as a
postcondition to ensure that the returned object is consistent.

Remarks:

	In this exercise, you'll work again with the Triangles package.

	This time, your job is to apply a postcondition instead of a
precondition to the Init function.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Type Invariant

Goal: use the Pythagorean theorem as a type invariant.

Steps:

	Complete the Triangles package.

	Add a type invariant to the Right_Triangle type.

Requirements:

	Right_Triangle is a private type.

	It must use the Pythagorean theorem as a type invariant to ensure
that its encapsulated components are consistent.

Remarks:

	In this exercise, Right_Triangle is declared as a private type.

	In this case, we use a type invariant for Right_Triangle to
check the Pythagorean theorem.

	As a bonus, after completing the exercise, you may analyze the effect
that default values have on type invariants.

	For example, the declaration of Right_Triangle uses zero as
the default values of the three triangle lengths.

	If you replace those default values with Length'Last, you'll
get different results.

	Make sure you understand why this is happening.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is private;
 6
 7 function Init (H, C1, C2 : Length) return Right_Triangle;
 8
 9private
10
11 type Right_Triangle is record
12 H : Length := 0;
13 -- Hypotenuse
14 C1, C2 : Length := 0;
15 -- Catheti / legs
16 end record;
17
18 function Init (H, C1, C2 : Length) return Right_Triangle is
19 ((H, C1, C2));
20
21end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Primary Color

Goal: extend a package for HTML colors so that it can handle primary
colors.

Steps:

	Complete the Color_Types package.

	Declare the HTML_RGB_Color subtype.

	Implement the To_Int_Color function.

Requirements:

	The HTML_Color type is an enumeration that contains a list of
HTML colors.

	The To_RGB_Lookup_Table array implements a lookup-table to
convert the colors into a hexadecimal value using RGB color components
(i.e. Red, Green and Blue)

	Function To_Int_Color extracts one of the RGB components of an
HTML color and returns its hexadecimal value.

	The function has two parameters:

	First parameter is the HTML color (HTML_Color type).

	Second parameter indicates which RGB component is to be extracted
from the HTML color (HTML_RGB_Color subtype).

	For example, if we call To_Int_Color (Salmon, Red), the
function returns #FA,

	This is the hexadecimal value of the red component of the
Salmon color.

	You can find further remarks below about this color as an
example.

	The HTML_RGB_Color subtype is limited to the primary RGB colors
components (i.e. Red, Green and Blue).

	This subtype is used to select the RGB component in calls to
To_Int_Color.

	You must use a predicate in the type declaration.

Remarks:

	In this exercise, we reuse the code of the Colors: Lookup-Table
exercise from the Arrays labs.

	These are the hexadecimal values of the colors that we used in the
original exercise:

	Color

	Value

	Salmon

	#FA8072

	Firebrick

	#B22222

	Red

	#FF0000

	Darkred

	#8B0000

	Lime

	#00FF00

	Forestgreen

	#228B22

	Green

	#008000

	Darkgreen

	#006400

	Blue

	#0000FF

	Mediumblue

	#0000CD

	Darkblue

	#00008B

	You can extract the hexadecimal value of each primary color by splitting
the values from the table above into three hexadecimal values with two
digits each.

	For example, the hexadecimal value of Salmon is #FA8072,
where:

	the first part of this hexadecimal value (#FA) corresponds
to the red component,

	the second part (#80) corresponds to the green component, and

	the last part (#72) corresponds to the blue component.

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 function Image (I : Int_Color) return String;
19
20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25
26 function To_RGB (C : HTML_Color) return RGB;
27
28 function Image (C : RGB) return String;
29
30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31
32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44
45 subtype HTML_RGB_Color is HTML_Color;
46
47 function To_Int_Color (C : HTML_Color;
48 S : HTML_RGB_Color) return Int_Color;
49 -- Convert to hexadecimal value for the selected RGB component S
50
51end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_RGB (C : HTML_Color) return RGB is
 6 begin
 7 return To_RGB_Lookup_Table (C);
 8 end To_RGB;
 9
10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 begin
13 -- Implement function!
14 return 0;
15 end To_Int_Color;
16
17 function Image (I : Int_Color) return String is
18 subtype Str_Range is Integer range 1 .. 10;
19 S : String (Str_Range);
20 begin
21 Ada.Integer_Text_IO.Put (To => S,
22 Item => I,
23 Base => 16);
24 return S;
25 end Image;
26
27 function Image (C : RGB) return String is
28 begin
29 return ("(Red => " & Image (C.Red)
30 & ", Green => " & Image (C.Green)
31 & ", Blue => " & Image (C.Blue)
32 &")");
33 end Image;
34
35end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_Red_Chk,
 9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22
23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Pythagorean_theorem

Object-oriented programming

Simple type extension

Goal: work with type extensions using record types containing numeric
components.

Steps:

	Implement the Type_Extensions package.

	Declare the record type T_Float.

	Declare the record type T_Mixed

	Implement the Init function for the T_Float type with
a floating-point input parameter.

	Implement the Init function for the T_Float type with
an integer input parameter.

	Implement the Image function for the T_Float type.

	Implement the Init function for the T_Mixed type with
a floating-point input parameter.

	Implement the Init function for the T_Mixed type with
an integer input parameter.

	Implement the Image function for the T_Mixed type.

Requirements:

	Record type T_Float contains the following component:

	F, a floating-point type.

	Record type T_Mixed is derived from the T_Float type.

	T_Mixed extends T_Float with the following component:

	I, an integer component.

	Both components must be numerically synchronized:

	For example, if the floating-point component contains the value
2.0, the value of the integer component must be 2.

	In order to simplify the implementation, you can simply use
Integer (F) to convert a floating-point variable F
to integer.

	Function Init returns an object of the corresponding type
(T_Float or T_Mixed).

	For each type, two versions of Init must be declared:

	one with a floating-point input parameter,

	another with an integer input parameter.

	The parameter to Init is used to initialize the record
components.

	Function Image returns a string for the components of the
record type.

	In case of the Image function for the T_Float
type, the string must have the format
"{ F => <float value> }".

	For example, the call Image (T_Float'(Init (8.0))))
should return the string "{ F => 8.00000E+00 }".

	In case of the Image function for the T_Mixed
type, the string must have the format
"{ F => <float value>, I => <integer value> }".

	For example, the call Image (T_Mixed'(Init (8.0))))
should return the string
"{ F => 8.00000E+00, I => 8 }".

type_extensions.ads

 1package Type_Extensions is
 2
 3 -- Create declaration of T_Float type!
 4 type T_Float is null record;
 5
 6 -- function Init ...
 7
 8 -- function Image ...
 9
10 -- Create declaration of T_Mixed type!
11 type T_Mixed is null record;
12
13end Type_Extensions;

type_extensions.adb

1package body Type_Extensions is
2
3end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

Goal: create an online store for the members of an association.

Steps:

	Implement the Online_Store package.

	Declare the Member type.

	Declare the Full_Member type.

	Implement the Get_Status function for the Member type.

	Implement the Get_Price function for the Member type.

	Implement the Get_Status function for the Full_Member
type.

	Implement the Get_Price function for the Full_Member
type.

	Implement the Online_Store.Tests child package.

	Implement the Simple_Test procedure.

Requirements:

	Package Online_Store implements an online store application for
the members of an association.

	In this association, members can have one of the following status:

	associate member, or

	full member.

	Function Get_Price returns the correct price of an item.

	Associate members must pay the full price when they buy items
from the online store.

	Full members can get a discount.

	The discount rate can be different for each full member —
depending on factors that are irrelevant for this exercise.

	Package Online_Store has following types:

	Percentage type, which represents a percentage ranging from
0.0 to 1.0.

	Member type for associate members containing following
components:

	Start, which indicates the starting year of the
membership.

	This information is common for both associate and full
members.

	You can use the Year_Number type from the standard
Ada.Calendar package for this component.

	Full_Member type for full members.

	This type must extend the Member type above.

	It contains the following additional component:

	Discount, which indicates the discount rate that the
full member gets in the online store.

	This component must be of Percentage type.

	For the Member and Full_Member types, you must implement
the following functions:

	Get_Status, which returns a string with the membership
status.

	The string must be "Associate Member" or
"Full Member", respectively.

	Get_Price, which returns the adapted price of an item
— indicating the actual due amount.

	For example, for a full member with a 10% discount rate, the
actual due amount of an item with a price of 100.00 is 90.00.

	Associated members don't get a discount, so they always pay the
full price.

	Procedure Simple_Test (from the Online_Store.Tests
package) is used for testing.

	Based on a list of members that bought on the online store and the
corresponding full price of the item, Simple_Test must
display information about each member and the actual due amount
after discounts.

	Information about the members must be displayed in the following
format:

Member # <number>
Status: <status>
Since: <year>
Due Amount: <value>

	For this exercise, Simple_Test must use the following list:

	#

	Membership status

	Start (year)

	Discount

	Full Price

	1

	Associate

	2010

	N/A

	250.00

	2

	Full

	1998

	10.0 %

	160.00

	3

	Full

	1987

	20.0 %

	400.00

	4

	Associate

	2013

	N/A

	110.00

	In order to pass the tests, the information displayed by a call to
Simple_Test must conform to the format described above.

	You can find another example in the remarks below.

Remarks:

	In previous labs, we could have implemented a simplified version of the
system described above by simply using an enumeration type to specify
the membership status. For example:

type Member_Status is (Associate_Member, Full_Member);

	In this case, the Get_Price function would then evaluate the
membership status and adapt the item price — assuming a fixed
discount rate for all full members. This could be the corresponding
function declaration:

type Amount is delta 10.0**(-2) digits 10;

function Get_Price (M : Member_Status;
 P : Amount) return Amount;

	In this exercise, however, we'll use type extension to represent the
membership status in our application.

	For the procedure Simple_Test, let's consider the following list
of members as an example:

	#

	Membership status

	Start (year)

	Discount

	Full Price

	1

	Associate

	2002

	N/A

	100.00

	2

	Full

	2005

	10.0 %

	100.00

	For this list, the test procedure displays the following information
(in this exact format):

Member # 1
Status: Associate Member
Since: 2002
Due Amount: 100.00

Member # 2
Status: Full Member
Since: 2005
Due Amount: 90.00

	Here, although both members had the same full price (as indicated by
the last column), member #2 gets a reduced due amount of 90.00
because of the full membership status.

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 -- Create declaration of Member type!
10 --
11 -- You can use Year_Number from Ada.Calendar for the membership
12 -- starting year.
13 --
14 type Member is null record;
15
16 function Get_Status (M : Member) return String;
17
18 function Get_Price (M : Member;
19 P : Amount) return Amount;
20
21 -- Create declaration of Full_Member type!
22 --
23 -- Use the Percentage type for storing the membership discount.
24 --
25 type Full_Member is null record;
26
27 function Get_Status (M : Full_Member) return String;
28
29 function Get_Price (M : Full_Member;
30 P : Amount) return Amount;
31
32end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (0.0);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (0.0);
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6 begin
 7 null;
 8 end Simple_Test;
 9
10end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Footnotes

Standard library: Containers

Simple todo list

Goal: implement a simple to-do list system using vectors.

Steps:

	Implement the Todo_Lists package.

	Declare the Todo_Item type.

	Declare the Todo_List type.

	Implement the Add procedure.

	Implement the Display procedure.

	Todo_Item type is used to store to-do items.

	It should be implemented as an access type to strings.

	Todo_List type is the container for all to-do items.

	It should be implemented as a vector.

	Procedure Add adds items (of Todo_Item type) to the list
(of Todo_List type).

	This requires allocating a string for the access type.

	Procedure Display is used to display all to-do items.

	It must display one item per line.

Remarks:

	This exercise is based on the Simple todo list exercise from the
More About Types.

	Your goal is to rewrite that exercise using vectors instead of
arrays.

	You may reuse the code you've already implemented as a starting
point.

todo_lists.ads

 1package Todo_Lists is
 2
 3 type Todo_Item is access String;
 4
 5 type Todo_List is null record;
 6
 7 procedure Add (Todos : in out Todo_List;
 8 Item : String);
 9
10 procedure Display (Todos : Todo_List);
11
12end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 null;
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 Put_Line ("TO-DO LIST");
14 end Display;
15
16end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

List of unique integers

Goal: create function that removes duplicates from and orders a collection
of elements.

Steps:

	Implement package Ops.

	Declare the Int_Array type.

	Declare the Integer_Sets type.

	Implement the Get_Unique function that returns a set.

	Implement the Get_Unique function that returns an array of
integer values.

Requirements:

	The Int_Array type is an unconstrained array of positive range.

	The Integer_Sets package is an instantiation of the
Ordered_Sets package for the Integer type.

	The Get_Unique function must remove duplicates from an input
array of integer values and order the elements.

	For example:

	if the input array contains (7, 7, 1)

	the function must return (1, 7).

	You must implement this function by using sets from the
Ordered_Sets package.

	Get_Unique must be implemented in two versions:

	one version that returns a set — Set type from the
Ordered_Sets package.

	one version that returns an array of integer values —
Int_Array type.

Remarks:

	Sets — as the one found in the generic Ordered_Sets package
— are useful for quickly and easily creating an algorithm that
removes duplicates from a list of elements.

ops.ads

 1with Ada.Containers.Ordered_Sets;
 2
 3package Ops is
 4
 5 -- type Int_Array is ...
 6
 7 -- package Integer_Sets is ...
 8
 9 subtype Int_Set is Integer_Sets.Set;
10
11 function Get_Unique (A : Int_Array) return Int_Set;
12
13 function Get_Unique (A : Int_Array) return Int_Array;
14
15end Ops;

ops.adb

 1package body Ops is
 2
 3 function Get_Unique (A : Int_Array) return Int_Set is
 4 begin
 5 null;
 6 end Get_Unique;
 7
 8 function Get_Unique (A : Int_Array) return Int_Array is
 9 begin
10 null;
11 end Get_Unique;
12
13end Ops;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Ops; use Ops;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Get_Unique_Set_Chk,
 9 Get_Unique_Array_Chk);
10
11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13
14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21
22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29
30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51end Main;

Footnotes

Standard library: Dates & Times

Holocene calendar

Goal: create a function that returns the year in the Holocene calendar.

Steps:

	Implement the To_Holocene_Year function.

Requirements:

	The To_Holocene_Year extracts the year from a time object
(Time type) and returns the corresponding year for the
Holocene calendar[#1].

	For positive (AD) years, the Holocene year is calculated by adding
10,000 to the year number.

Remarks:

	In this exercise, we don't deal with BC years.

	Note that the year component of the Time type from the
Ada.Calendar package is limited to years starting with 1901.

to_holocene_year.adb

1with Ada.Calendar; use Ada.Calendar;
2
3function To_Holocene_Year (T : Time) return Integer is
4begin
5 return 0;
6end To_Holocene_Year;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar; use Ada.Calendar;
 4
 5with To_Holocene_Year;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Holocene_Chk);
10
11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18
19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of events

Goal: create a system to manage a list of events.

Steps:

	Implement the Events package.

	Declare the Event_Item type.

	Declare the Event_Items type.

	Implement the Events.Lists package.

	Declare the Event_List type.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	The Event_Item type (from the Events package) contains the
description of an event.

	This description shall be stored in an access-to-string type.

	The Event_Items type stores a list of events.

	This will be used later to represent multiple events for a specific
date.

	You shall use a vector for this type.

	The Events.Lists package contains the subprograms that are used
in the test application.

	The Event_List type (from the Events.Lists package) maps
a list of events to a specific date.

	You must use the Event_Items type for the list of events.

	You shall use the Time type from the Ada.Calendar
package for the dates.

	Since we expect the events to be ordered by the date, you shall
use ordered maps for the Event_List type.

	Procedure Add adds an event into the list of events for a
specific date.

	Procedure Display must display all events for each date (ordered
by date) using the following format:

<event_date #1>
 <description of item #1a>
 <description of item #1b>
<event_date #2>
 <description of item #2a>
 <description of item #2b>

	You should use the auxiliary Date_Image function —
available in the body of the Events.Lists package — to
display the date in the YYYY-MM-DD format.

Remarks:

	Let's briefly illustrate the expected output of this system.

	Consider the following example:

with Ada.Calendar;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

with Events.Lists; use Events.Lists;

procedure Test is
 EL : Event_List;
begin
 EL.Add (Time_Of (2019, 4, 16),
 "Item #2");
 EL.Add (Time_Of (2019, 4, 15),
 "Item #1");
 EL.Add (Time_Of (2019, 4, 16),
 "Item #3");
 EL.Display;
end Test;

	The expected output of the Test procedure must be:

EVENTS LIST
- 2019-04-15
 - Item #1
- 2019-04-16
 - Item #2
 - Item #3

events.ads

1package Events is
2
3 type Event_Item is null record;
4
5 type Event_Items is null record;
6
7end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Events.Lists is
 4
 5 type Event_List is tagged private;
 6
 7 procedure Add (Events : in out Event_List;
 8 Event_Time : Time;
 9 Event : String);
10
11 procedure Display (Events : Event_List);
12
13private
14
15 type Event_List is tagged null record;
16
17end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 begin
10 null;
11 end Add;
12
13 function Date_Image (T : Time) return String is
14 Date_Img : constant String := Image (T);
15 begin
16 return Date_Img (1 .. 10);
17 end;
18
19 procedure Display (Events : Event_List) is
20 T : Time;
21 begin
22 Put_Line ("EVENTS LIST");
23 -- You should use Date_Image (T) here!
24 end Display;
25
26end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5
 6with Events.Lists; use Events.Lists;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Event_List_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28
29begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36
37 Check (Test_Case_Index'Value (Argument (1)));
38end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Holocene_calendar

Standard library: Strings

Concatenation

Goal: implement functions to concatenate an array of unbounded strings.

Steps:

	Implement the Str_Concat package.

	Implement the Concat function for Unbounded_String.

	Implement the Concat function for String.

Requirements:

	The first Concat function receives an unconstrained array of
unbounded strings and returns the concatenation of those strings as an
unbounded string.

	The second Concat function has the same parameters, but
returns a standard string (String type).

	Both Concat functions have the following parameters:

	An unconstrained array of Unbounded_String strings
(Unbounded_Strings type).

	Trim_Str, a Boolean parameter indicating whether each
unbounded string must be trimmed.

	Add_Whitespace, a Boolean parameter indicating whether a
whitespace shall be added between each unbounded string and the next
one.

	No whitespace shall be added after the last string of the array.

Remarks:

	You can use the Trim function from the
Ada.Strings.Unbounded package.

str_concat.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2
 3package Str_Concat is
 4
 5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
 6
 7 function Concat (USA : Unbounded_Strings;
 8 Trim_Str : Boolean;
 9 Add_Whitespace : Boolean) return Unbounded_String;
10
11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;
13 Add_Whitespace : Boolean) return String;
14
15end Str_Concat;

str_concat.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3package body Str_Concat is
 4
 5 function Concat (USA : Unbounded_Strings;
 6 Trim_Str : Boolean;
 7 Add_Whitespace : Boolean) return Unbounded_String is
 8 begin
 9 return "";
10 end Concat;
11
12 function Concat (USA : Unbounded_Strings;
13 Trim_Str : Boolean;
14 Add_Whitespace : Boolean) return String is
15 begin
16 return "";
17 end Concat;
18
19end Str_Concat;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 4
 5with Str_Concat; use Str_Concat;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,
12 Concat_Single_Element);
13
14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54
55begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62
63 Check (Test_Case_Index'Value (Argument (1)));
64end Main;

List of events

Goal: create a system to manage a list of events.

Steps:

	Implement the Events package.

	Declare the Event_Item subtype.

	Implement the Events.Lists package.

	Adapt the Add procedure.

	Adapt the Display procedure.

Requirements:

	The Event_Item type (from the Events package) contains the
description of an event.

	This description is declared as a subtype of unbounded string.

	Procedure Add adds an event into the list of events for a
specific date.

	The declaration of E needs to be adapted to use unbounded
strings.

	Procedure Display must display all events for each date (ordered
by date) using the following format:

	The arguments to Put_Line need to be adapted to use unbounded
strings.

Remarks:

	We use the lab on the list of events from the previous chapter
(Standard library: Dates & Times) as a starting point.

events.ads

 1with Ada.Containers.Vectors;
 2
 3package Events is
 4
 5 -- subtype Event_Item is
 6
 7 package Event_Item_Containers is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11
12 subtype Event_Items is Event_Item_Containers.Vector;
13
14end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 6
 7with Events;
 8with Events.Lists; use Events.Lists;
 9
10procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14
15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;
36 end Check;
37
38begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45
46 Check (Test_Case_Index'Value (Argument (1)));
47end Main;

Footnotes

Standard library: Numerics

Decibel Factor

Goal: implement functions to convert from Decibel values to factors and
vice-versa.

Steps:

	Implement the Decibels package.

	Implement the To_Decibel function.

	Implement the To_Factor function.

Requirements:

	The subtypes Decibel and Factor are based on a
floating-point type.

	Function To_Decibel converts a multiplication factor (or ratio)
to decibels.

	For the implementation, use \(20 * log_{10}(F)\), where F is
the factor/ratio.

	Function To_Factor converts a value in decibels to a
multiplication factor (or ratio).

	For the implementation, use \(10^{D/20}\), where D is the value
in Decibel.

Remarks:

	The Decibel[#1] is used to
express the ratio of two values on a logarithmic scale.

	For example, an increase of 6 dB corresponds roughly to a
multiplication by two (or an increase by 100 % of the original
value).

	You can find the functions that you'll need for the calculation in the
Ada.Numerics.Elementary_Functions package.

decibels.ads

 1package Decibels is
 2
 3 subtype Decibel is Float;
 4 subtype Factor is Float;
 5
 6 function To_Decibel (F : Factor) return Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor;
 9
10end Decibels;

decibels.adb

 1package body Decibels is
 2
 3 function To_Decibel (F : Factor) return Decibel is
 4 begin
 5 return 0.0;
 6 end To_Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor is
 9 begin
10 return 0.0;
11 end To_Factor;
12
13end Decibels;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Decibels; use Decibels;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Db_Chk,
 9 Factor_Chk);
10
11 procedure Check (TC : Test_Case_Index; V : Float) is
12
13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15
16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24
25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 2 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52end Main;

Root-Mean-Square

Goal: implement a function to calculate the root-mean-square of a sequence
of values.

Steps:

	Implement the Signals package.

	Implement the Rms function.

Requirements:

	Subtype Sig_Value is based on a floating-point type.

	Type Signal is an unconstrained array of Sig_Value
elements.

	Function Rms calculates the RMS of a sequence of values stored in
an array of type Signal.

	See the remarks below for a description of the RMS calculation.

Remarks:

	The root-mean-square[#2]
(RMS) value is an important information associated with sequences of
values.

	It's used, for example, as a measurement for signal processing.

	It is calculated by:

	Creating a sequence \(S\) with the square of each value of
an input sequence \(S_{in}\).

	Calculating the mean value \(M\) of the sequence \(S\).

	Calculating the square-root \(R\) of \(M\).

	You can optimize the algorithm above by combining steps #1 and #2
into a single step.

signals.ads

1package Signals is
2
3 subtype Sig_Value is Float;
4
5 type Signal is array (Natural range <>) of Sig_Value;
6
7 function Rms (S : Signal) return Sig_Value;
8
9end Signals;

signals.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Signals is
 4
 5 function Rms (S : Signal) return Sig_Value is
 6 begin
 7 return 0.0;
 8 end;
 9
10end Signals;

signals-std.ads

 1package Signals.Std is
 2
 3 Sample_Rate : Float := 8000.0;
 4
 5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
 6
 7 function Generate_Square (N : Positive) return Signal;
 8
 9 function Generate_Triangular (N : Positive) return Signal;
10
11end Signals.Std;

signals-std.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 3
 4package body Signals.Std is
 5
 6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
 7 S : Signal (0 .. N - 1);
 8 begin
 9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12
13 return S;
14 end;
15
16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21
22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32
33 return S;
34 end;
35
36end Signals.Std;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Signals; use Signals;
 5with Signals.Std; use Signals.Std;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15
16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44
45 Check (Test_Case_Index'Value (Argument (1)));
46end Main;

Rotation

Goal: use complex numbers to calculate the positions of an object in a
circle after rotation.

Steps:

	Implement the Rotation package.

	Implement the Rotation function.

Requirements:

	Type Complex_Points is an unconstrained array of complex values.

	Function Rotation returns a list of positions (represented by
the Complex_Points type) when dividing a circle in N
equal slices.

	See the remarks below for a more detailed explanation.

	You must use functions from Ada.Numerics.Complex_Types to
implement Rotation.

	Subtype Angle is based on a floating-point type.

	Type Angles is an unconstrained array of angles.

	Function To_Angles returns a list of angles based on an input
list of positions.

Remarks:

	Complex numbers are particularly useful in computer graphics to simplify
the calculation of rotations.

	For example, let's assume you've drawn an object on your screen on
position (1.0, 0.0).

	Now, you want to move this object in a circular path — i.e.
make it rotate around position (0.0, 0.0) on your screen.

	You could use sine and cosine functions to calculate each
position of the path.

	However, you could also calculate the positions using complex
numbers.

	In this exercise, you'll use complex numbers to calculate the positions
of an object that starts on zero degrees — on position (1.0, 0.0)
— and rotates around (0.0, 0.0) for N slices of a circle.

	For example, if we divide the circle in four slices, the object's
path will consist of following points / positions:

Point #1: (1.0, 0.0)
Point #2: (0.0, 1.0)
Point #3: (-1.0, 0.0)
Point #4: (0.0, -1.0)
Point #5: (1.0, 0.0)

	As expected, point #5 is equal to the starting point (point #1),
since the object rotates around (0.0, 0.0) and returns to the
starting point.

	We can also describe this path in terms of angles. The following
list presents the angles for the path on a four-sliced circle:

Point #1: 0.00 degrees
Point #2: 90.00 degrees
Point #3: 180.00 degrees
Point #4: -90.00 degrees (= 270 degrees)
Point #5: 0.00 degrees

	To rotate a complex number simply multiply it by a unit vector
whose arg is the radian angle to be rotated:
\(Z = e^\frac{2 \pi}{N}\)

rotation.ads

 1with Ada.Numerics.Complex_Types;
 2use Ada.Numerics.Complex_Types;
 3
 4package Rotation is
 5
 6 type Complex_Points is array (Positive range <>) of Complex;
 7
 8 function Rotation (N : Positive) return Complex_Points;
 9
10end Rotation;

rotation.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3package body Rotation is
 4
 5 function Rotation (N : Positive) return Complex_Points is
 6 C : Complex_Points (1 .. 1) := (others => (0.0, 0.0));
 7 begin
 8 return C;
 9 end;
10
11end Rotation;

angles.ads

 1with Rotation; use Rotation;
 2
 3package Angles is
 4
 5 subtype Angle is Float;
 6
 7 type Angles is array (Positive range <>) of Angle;
 8
 9 function To_Angles (C : Complex_Points) return Angles;
10
11end Angles;

angles.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
 3
 4package body Angles is
 5
 6 function To_Angles (C : Complex_Points) return Angles is
 7 begin
 8 return A : Angles (C'Range) do
 9 for I in A'Range loop
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14
15end Angles;

rotation-tests.ads

1package Rotation.Tests is
2
3 procedure Test_Rotation (N : Positive);
4
5 procedure Test_Angles (N : Positive);
6
7end Rotation.Tests;

rotation-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3with Ada.Numerics; use Ada.Numerics;
 4
 5with Angles; use Angles;
 6
 7package body Rotation.Tests is
 8
 9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11
12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15
16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25
26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28
29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39
40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;
50 end Test_Angles;
51
52end Rotation.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Rotation.Tests; use Rotation.Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Rotation_Chk,
 9 Angles_Chk);
10
11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Decibel

[#2]
https://en.wikipedia.org/wiki/Root_mean_square

Solutions

Imperative Language

Hello World

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4begin
5 Put_Line ("Hello World!");
6end Main;

Greetings

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Greet (Name : String) is
 7 begin
 8 Put_Line ("Hello " & Name & "!");
 9 end Greet;
10
11begin
12 if Argument_Count < 1 then
13 Put_Line ("ERROR: missing arguments! Exiting...");
14 return;
15 elsif Argument_Count > 1 then
16 Put_Line ("Ignoring additional arguments...");
17 end if;
18
19 Greet (Argument (1));
20end Main;

Positive Or Negative

classify_number.ads

1procedure Classify_Number (X : Integer);

classify_number.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Classify_Number (X : Integer) is
 4begin
 5 if X > 0 then
 6 Put_Line ("Positive");
 7 elsif X < 0 then
 8 Put_Line ("Negative");
 9 else
10 Put_Line ("Zero");
11 end if;
12end Classify_Number;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Classify_Number;
 5
 6procedure Main is
 7 A : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17
18 Classify_Number (A);
19end Main;

Numbers

display_numbers.ads

1procedure Display_Numbers (A, B : Integer);

display_numbers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_Numbers (A, B : Integer) is
 4 X, Y : Integer;
 5begin
 6 if A <= B then
 7 X := A;
 8 Y := B;
 9 else
10 X := B;
11 Y := A;
12 end if;
13
14 for I in X .. Y loop
15 Put_Line (Integer'Image (I));
16 end loop;
17end Display_Numbers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Numbers;
 5
 6procedure Main is
 7 A, B : Integer;
 8begin
 9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18
19 Display_Numbers (A, B);
20end Main;

Subprograms

Subtract Procedure

subtract.ads

1procedure Subtract (A, B : Integer;
2 Result : out Integer);

subtract.adb

1procedure Subtract (A, B : Integer;
2 Result : out Integer) is
3begin
4 Result := A - B;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Subtract Function

subtract.ads

1function Subtract (A, B : Integer) return Integer;

subtract.adb

1function Subtract (A, B : Integer) return Integer is
2begin
3 return A - B;
4end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Equality function

is_equal.ads

1function Is_Equal (A, B : Integer) return Boolean;

is_equal.adb

1function Is_Equal (A, B : Integer) return Boolean is
2begin
3 return A = B;
4end Is_Equal;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Is_Equal;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Equal_Chk,
 9 Inequal_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24
25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40
41begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48
49 Check (Test_Case_Index'Value (Argument (1)));
50end Main;

States

display_state.ads

1procedure Display_State (State : Integer);

display_state.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_State (State : Integer) is
 4begin
 5 case State is
 6 when 0 =>
 7 Put_Line ("Off");
 8 when 1 =>
 9 Put_Line ("On: Simple Processing");
10 when 2 =>
11 Put_Line ("On: Advanced Processing");
12 when others =>
13 null;
14 end case;
15end Display_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Display_State (State);
19end Main;

States #2

get_state.ads

1function Get_State (State : Integer) return String;

get_state.adb

1function Get_State (State : Integer) return String is
2begin
3 return (case State is
4 when 0 => "Off",
5 when 1 => "On: Simple Processing",
6 when 2 => "On: Advanced Processing",
7 when others => "");
8end Get_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Get_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Put_Line (Get_State (State));
19end Main;

States #3

is_on.ads

1function Is_On (State : Integer) return Boolean;

is_on.adb

1function Is_On (State : Integer) return Boolean is
2begin
3 return not (State = 0);
4end Is_On;

display_on_off.ads

1procedure Display_On_Off (State : Integer);

display_on_off.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Is_On;
3
4procedure Display_On_Off (State : Integer) is
5begin
6 Put_Line (if Is_On (State) then "On" else "Off");
7end Display_On_Off;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_On_Off;
 5with Is_On;
 6
 7procedure Main is
 8 State : Integer;
 9begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16
17 State := Integer'Value (Argument (1));
18
19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21end Main;

States #4

set_next.ads

1procedure Set_Next (State : in out Integer);

set_next.adb

1procedure Set_Next (State : in out Integer) is
2begin
3 State := (if State < 2 then State + 1 else 0);
4end Set_Next;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Set_Next;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20end Main;

Modular Programming

Months

months.ads

 1package Months is
 2
 3 Jan : constant String := "January";
 4 Feb : constant String := "February";
 5 Mar : constant String := "March";
 6 Apr : constant String := "April";
 7 May : constant String := "May";
 8 Jun : constant String := "June";
 9 Jul : constant String := "July";
10 Aug : constant String := "August";
11 Sep : constant String := "September";
12 Oct : constant String := "October";
13 Nov : constant String := "November";
14 Dec : constant String := "December";
15
16 procedure Display_Months;
17
18end Months;

months.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Months is
 4
 5 procedure Display_Months is
 6 begin
 7 Put_Line ("Months:");
 8 Put_Line ("- " & Jan);
 9 Put_Line ("- " & Feb);
10 Put_Line ("- " & Mar);
11 Put_Line ("- " & Apr);
12 Put_Line ("- " & May);
13 Put_Line ("- " & Jun);
14 Put_Line ("- " & Jul);
15 Put_Line ("- " & Aug);
16 Put_Line ("- " & Sep);
17 Put_Line ("- " & Oct);
18 Put_Line ("- " & Nov);
19 Put_Line ("- " & Dec);
20 end Display_Months;
21
22end Months;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Months; use Months;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Months_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18
19begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26
27 Check (Test_Case_Index'Value (Argument (1)));
28end Main;

Operations

operations.ads

 1package Operations is
 2
 3 function Add (A, B : Integer) return Integer;
 4
 5 function Subtract (A, B : Integer) return Integer;
 6
 7 function Multiply (A, B : Integer) return Integer;
 8
 9 function Divide (A, B : Integer) return Integer;
10
11end Operations;

operations.adb

 1package body Operations is
 2
 3 function Add (A, B : Integer) return Integer is
 4 begin
 5 return A + B;
 6 end Add;
 7
 8 function Subtract (A, B : Integer) return Integer is
 9 begin
10 return A - B;
11 end Subtract;
12
13 function Multiply (A, B : Integer) return Integer is
14 begin
15 return A * B;
16 end Multiply;
17
18 function Divide (A, B : Integer) return Integer is
19 begin
20 return A / B;
21 end Divide;
22
23end Operations;

operations-test.ads

1package Operations.Test is
2
3 procedure Display (A, B : Integer);
4
5end Operations.Test;

operations-test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Operations.Test is
 4
 5 procedure Display (A, B : Integer) is
 6 A_Str : constant String := Integer'Image (A);
 7 B_Str : constant String := Integer'Image (B);
 8 begin
 9 Put_Line ("Operations:");
10 Put_Line (A_Str & " + " & B_Str & " = "
11 & Integer'Image (Add (A, B))
12 & ",");
13 Put_Line (A_Str & " - " & B_Str & " = "
14 & Integer'Image (Subtract (A, B))
15 & ",");
16 Put_Line (A_Str & " * " & B_Str & " = "
17 & Integer'Image (Multiply (A, B))
18 & ",");
19 Put_Line (A_Str & " / " & B_Str & " = "
20 & Integer'Image (Divide (A, B))
21 & ",");
22 end Display;
23
24end Operations.Test;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Operations;
 5with Operations.Test; use Operations.Test;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30
31begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38
39 Check (Test_Case_Index'Value (Argument (1)));
40end Main;

Strongly typed language

Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25end Color_Types;

color_types.adb

 1package body Color_Types is
 2
 3 function To_Integer (C : HTML_Color) return Integer is
 4 begin
 5 case C is
 6 when Salmon => return 16#FA8072#;
 7 when Firebrick => return 16#B22222#;
 8 when Red => return 16#FF0000#;
 9 when Darkred => return 16#8B0000#;
10 when Lime => return 16#00FF00#;
11 when Forestgreen => return 16#228B22#;
12 when Green => return 16#008000#;
13 when Darkgreen => return 16#006400#;
14 when Blue => return 16#0000FF#;
15 when Mediumblue => return 16#0000CD#;
16 when Darkblue => return 16#00008B#;
17 end case;
18
19 end To_Integer;
20
21 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
22 begin
23 case C is
24 when Red => return Red;
25 when Green => return Green;
26 when Blue => return Blue;
27 end case;
28 end To_HTML_Color;
29
30end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Integer_Text_IO;
 4
 5with Color_Types; use Color_Types;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 1,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Integers

int_types.ads

 1package Int_Types is
 2
 3 type I_100 is range 0 .. 100;
 4
 5 type U_100 is mod 101;
 6
 7 function To_I_100 (V : U_100) return I_100;
 8
 9 function To_U_100 (V : I_100) return U_100;
10
11 type D_50 is new I_100 range 10 .. 50;
12
13 subtype S_50 is I_100 range 10 .. 50;
14
15 function To_D_50 (V : I_100) return D_50;
16
17 function To_S_50 (V : I_100) return S_50;
18
19 function To_I_100 (V : D_50) return I_100;
20
21end Int_Types;

int_types.adb

 1package body Int_Types is
 2
 3 function To_I_100 (V : U_100) return I_100 is
 4 begin
 5 return I_100 (V);
 6 end To_I_100;
 7
 8 function To_U_100 (V : I_100) return U_100 is
 9 begin
10 return U_100 (V);
11 end To_U_100;
12
13 function To_D_50 (V : I_100) return D_50 is
14 Min : constant I_100 := I_100 (D_50'First);
15 Max : constant I_100 := I_100 (D_50'Last);
16 begin
17 if V > Max then
18 return D_50'Last;
19 elsif V < Min then
20 return D_50'First;
21 else
22 return D_50 (V);
23 end if;
24 end To_D_50;
25
26 function To_S_50 (V : I_100) return S_50 is
27 begin
28 if V > S_50'Last then
29 return S_50'Last;
30 elsif V < S_50'First then
31 return S_50'First;
32 else
33 return V;
34 end if;
35 end To_S_50;
36
37 function To_I_100 (V : D_50) return I_100 is
38 begin
39 return I_100 (V);
40 end To_I_100;
41
42end Int_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Int_Types; use Int_Types;
 5
 6procedure Main is
 7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
 8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
 9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
 10
 11 use I_100_IO;
 12 use U_100_IO;
 13 use D_50_IO;
 14
 15 type Test_Case_Index is
 16 (I_100_Range,
 17 U_100_Range,
 18 U_100_Wraparound,
 19 U_100_To_I_100,
 20 I_100_To_U_100,
 21 D_50_Range,
 22 S_50_Range,
 23 I_100_To_D_50,
 24 I_100_To_S_50,
 25 D_50_To_I_100,
 26 S_50_To_I_100);
 27
 28 procedure Check (TC : Test_Case_Index) is
 29 begin
 30 I_100_IO.Default_Width := 1;
 31 U_100_IO.Default_Width := 1;
 32 D_50_IO.Default_Width := 1;
 33
 34 case TC is
 35 when I_100_Range =>
 36 Put (I_100'First);
 37 New_Line;
 38 Put (I_100'Last);
 39 New_Line;
 40 when U_100_Range =>
 41 Put (U_100'First);
 42 New_Line;
 43 Put (U_100'Last);
 44 New_Line;
 45 when U_100_Wraparound =>
 46 Put (U_100'First - 1);
 47 New_Line;
 48 Put (U_100'Last + 1);
 49 New_Line;
 50 when U_100_To_I_100 =>
 51 for I in U_100'Range loop
 52 I_100_IO.Put (To_I_100 (I));
 53 New_Line;
 54 end loop;
 55 when I_100_To_U_100 =>
 56 for I in I_100'Range loop
 57 Put (To_U_100 (I));
 58 New_Line;
 59 end loop;
 60 when D_50_Range =>
 61 Put (D_50'First);
 62 New_Line;
 63 Put (D_50'Last);
 64 New_Line;
 65 when S_50_Range =>
 66 Put (S_50'First);
 67 New_Line;
 68 Put (S_50'Last);
 69 New_Line;
 70 when I_100_To_D_50 =>
 71 for I in I_100'Range loop
 72 Put (To_D_50 (I));
 73 New_Line;
 74 end loop;
 75 when I_100_To_S_50 =>
 76 for I in I_100'Range loop
 77 Put (To_S_50 (I));
 78 New_Line;
 79 end loop;
 80 when D_50_To_I_100 =>
 81 for I in D_50'Range loop
 82 Put (To_I_100 (I));
 83 New_Line;
 84 end loop;
 85 when S_50_To_I_100 =>
 86 for I in S_50'Range loop
 87 Put (I);
 88 New_Line;
 89 end loop;
 90 end case;
 91 end Check;
 92
 93begin
 94 if Argument_Count < 1 then
 95 Put_Line ("ERROR: missing arguments! Exiting...");
 96 return;
 97 elsif Argument_Count > 1 then
 98 Put_Line ("Ignoring additional arguments...");
 99 end if;
100
101 Check (Test_Case_Index'Value (Argument (1)));
102end Main;

Temperatures

temperature_types.ads

 1package Temperature_Types is
 2
 3 type Celsius is digits 6 range -273.15 .. 5504.85;
 4
 5 type Int_Celsius is range -273 .. 5505;
 6
 7 function To_Celsius (T : Int_Celsius) return Celsius;
 8
 9 function To_Int_Celsius (T : Celsius) return Int_Celsius;
10
11 type Kelvin is digits 6 range 0.0 .. 5778.00;
12
13 function To_Celsius (T : Kelvin) return Celsius;
14
15 function To_Kelvin (T : Celsius) return Kelvin;
16
17end Temperature_Types;

temperature_types.adb

 1package body Temperature_Types is
 2
 3 function To_Celsius (T : Int_Celsius) return Celsius is
 4 Min : constant Float := Float (Celsius'First);
 5 Max : constant Float := Float (Celsius'Last);
 6
 7 F : constant Float := Float (T);
 8 begin
 9 if F > Max then
10 return Celsius (Max);
11 elsif F < Min then
12 return Celsius (Min);
13 else
14 return Celsius (F);
15 end if;
16 end To_Celsius;
17
18 function To_Int_Celsius (T : Celsius) return Int_Celsius is
19 begin
20 return Int_Celsius (T);
21 end To_Int_Celsius;
22
23 function To_Celsius (T : Kelvin) return Celsius is
24 F : constant Float := Float (T);
25 begin
26 return Celsius (F - 273.15);
27 end To_Celsius;
28
29 function To_Kelvin (T : Celsius) return Kelvin is
30 F : constant Float := Float (T);
31 begin
32 return Kelvin (F + 273.15);
33 end To_Kelvin;
34
35end Temperature_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Temperature_Types; use Temperature_Types;
 5
 6procedure Main is
 7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
 8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
 9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10
11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14
15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21
22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27
28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62
63begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70
71 Check (Test_Case_Index'Value (Argument (1)));
72end Main;

Records

Directions

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northeast,
 8 East,
 9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14
15 function To_Direction (N: Angle_Mod) return Direction;
16
17 type Ext_Angle is record
18 Angle_Elem : Angle_Mod;
19 Direction_Elem : Direction;
20 end record;
21
22 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
23
24 procedure Display (N : Ext_Angle);
25
26end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return North;
18 when 1 .. 89 => return Northeast;
19 when 90 => return East;
20 when 91 .. 179 => return Southeast;
21 when 180 => return South;
22 when 181 .. 269 => return Southwest;
23 when 270 => return West;
24 when 271 .. 359 => return Northwest;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Directions; use Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25 subtype Int_Color is Integer range 0 .. 255;
26
27 type RGB is record
28 Red : Int_Color;
29 Green : Int_Color;
30 Blue : Int_Color;
31 end record;
32
33 function To_RGB (C : HTML_Color) return RGB;
34
35 function Image (C : RGB) return String;
36
37end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_Integer (C : HTML_Color) return Integer is
 6 begin
 7 case C is
 8 when Salmon => return 16#FA8072#;
 9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20
21 end To_Integer;
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;
30 end To_HTML_Color;
31
32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 case C is
35 when Salmon => return (16#FA#, 16#80#, 16#72#);
36 when Firebrick => return (16#B2#, 16#22#, 16#22#);
37 when Red => return (16#FF#, 16#00#, 16#00#);
38 when Darkred => return (16#8B#, 16#00#, 16#00#);
39 when Lime => return (16#00#, 16#FF#, 16#00#);
40 when Forestgreen => return (16#22#, 16#8B#, 16#22#);
41 when Green => return (16#00#, 16#80#, 16#00#);
42 when Darkgreen => return (16#00#, 16#64#, 16#00#);
43 when Blue => return (16#00#, 16#00#, 16#FF#);
44 when Mediumblue => return (16#00#, 16#00#, 16#CD#);
45 when Darkblue => return (16#00#, 16#00#, 16#8B#);
46 end case;
47
48 end To_RGB;
49
50 function Image (C : RGB) return String is
51 subtype Str_Range is Integer range 1 .. 10;
52 SR : String (Str_Range);
53 SG : String (Str_Range);
54 SB : String (Str_Range);
55 begin
56 Ada.Integer_Text_IO.Put (To => SR,
57 Item => C.Red,
58 Base => 16);
59 Ada.Integer_Text_IO.Put (To => SG,
60 Item => C.Green,
61 Base => 16);
62 Ada.Integer_Text_IO.Put (To => SB,
63 Item => C.Blue,
64 Base => 16);
65 return ("(Red => " & SR
66 & ", Green => " & SG
67 & ", Blue => " & SB
68 &")");
69 end Image;
70
71end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_To_RGB);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");
17 end loop;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Inventory

inventory_pkg.ads

 1package Inventory_Pkg is
 2
 3 type Item_Name is
 4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
 5
 6 function To_String (I : Item_Name) return String;
 7
 8 type Item is record
 9 Name : Item_Name;
10 Quantity : Natural;
11 Price : Float;
12 end record;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item;
17
18 procedure Add (Assets : in out Float;
19 I : Item);
20
21end Inventory_Pkg;

inventory_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Inventory_Pkg is
 4
 5 function To_String (I : Item_Name) return String is
 6 begin
 7 case I is
 8 when Ballpoint_Pen => return "Ballpoint Pen";
 9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19
20 return (Name => Name,
21 Quantity => Quantity,
22 Price => Price);
23 end Init;
24
25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 Assets := Assets + Float (I.Quantity) * I.Price;
29 end Add;
30
31end Inventory_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Inventory_Pkg; use Inventory_Pkg;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42);
 9
10 type Test_Case_Index is
11 (Inventory_Chk);
12
13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15
16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23
24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27
28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38
39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42
43 I := Init (Feather_Quill_Pen, 2, 40.0);
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48
49begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56
57 Check (Test_Case_Index'Value (Argument (1)));
58end Main;

Arrays

Constrained Array

constrained_arrays.ads

 1package Constrained_Arrays is
 2
 3 type My_Index is range 1 .. 10;
 4
 5 type My_Array is array (My_Index) of Integer;
 6
 7 function Init return My_Array;
 8
 9 procedure Double (A : in out My_Array);
10
11 function First_Elem (A : My_Array) return Integer;
12
13 function Last_Elem (A : My_Array) return Integer;
14
15 function Length (A : My_Array) return Integer;
16
17 A : My_Array := (1, 2, others => 42);
18
19end Constrained_Arrays;

constrained_arrays.adb

 1package body Constrained_Arrays is
 2
 3 function Init return My_Array is
 4 A : My_Array;
 5 begin
 6 for I in My_Array'Range loop
 7 A (I) := Integer (I);
 8 end loop;
 9
10 return A;
11 end Init;
12
13 procedure Double (A : in out My_Array) is
14 begin
15 for I in A'Range loop
16 A (I) := A (I) * 2;
17 end loop;
18 end Double;
19
20 function First_Elem (A : My_Array) return Integer is
21 begin
22 return A (A'First);
23 end First_Elem;
24
25 function Last_Elem (A : My_Array) return Integer is
26 begin
27 return A (A'Last);
28 end Last_Elem;
29
30 function Length (A : My_Array) return Integer is
31 begin
32 return A'Length;
33 end Length;
34
35end Constrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Constrained_Arrays; use Constrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Range_Chk,
 9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19
20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26
27 procedure Local_Init (A : in out My_Array) is
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60
61begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68
69 Check (Test_Case_Index'Value (Argument (1)));
70end Main;

Colors: Lookup-Table

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;
23
24 function To_RGB (C : HTML_Color) return RGB;
25
26 function Image (C : RGB) return String;
27
28 type HTML_Color_RGB is array (HTML_Color) of RGB;
29
30 To_RGB_Lookup_Table : constant HTML_Color_RGB
31 := (Salmon => (16#FA#, 16#80#, 16#72#),
32 Firebrick => (16#B2#, 16#22#, 16#22#),
33 Red => (16#FF#, 16#00#, 16#00#),
34 Darkred => (16#8B#, 16#00#, 16#00#),
35 Lime => (16#00#, 16#FF#, 16#00#),
36 Forestgreen => (16#22#, 16#8B#, 16#22#),
37 Green => (16#00#, 16#80#, 16#00#),
38 Darkgreen => (16#00#, 16#64#, 16#00#),
39 Blue => (16#00#, 16#00#, 16#FF#),
40 Mediumblue => (16#00#, 16#00#, 16#CD#),
41 Darkblue => (16#00#, 16#00#, 16#8B#));
42
43end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2package body Color_Types is
 3
 4 function To_RGB (C : HTML_Color) return RGB is
 5 begin
 6 return To_RGB_Lookup_Table (C);
 7 end To_RGB;
 8
 9 function Image (C : RGB) return String is
10 subtype Str_Range is Integer range 1 .. 10;
11 SR : String (Str_Range);
12 SG : String (Str_Range);
13 SB : String (Str_Range);
14 begin
15 Ada.Integer_Text_IO.Put (To => SR,
16 Item => C.Red,
17 Base => 16);
18 Ada.Integer_Text_IO.Put (To => SG,
19 Item => C.Green,
20 Base => 16);
21 Ada.Integer_Text_IO.Put (To => SB,
22 Item => C.Blue,
23 Base => 16);
24 return ("(Red => " & SR
25 & ", Green => " & SG
26 & ", Blue => " & SB
27 &")");
28 end Image;
29
30end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Color_Table_Chk,
 9 HTML_Color_To_Integer_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26
27begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34
35 Check (Test_Case_Index'Value (Argument (1)));
36end Main;

Unconstrained Array

unconstrained_arrays.ads

 1package Unconstrained_Arrays is
 2
 3 type My_Array is array (Positive range <>) of Integer;
 4
 5 procedure Init (A : in out My_Array);
 6
 7 function Init (I, L : Positive) return My_Array;
 8
 9 procedure Double (A : in out My_Array);
10
11 function Diff_Prev_Elem (A : My_Array) return My_Array;
12
13end Unconstrained_Arrays;

unconstrained_arrays.adb

 1package body Unconstrained_Arrays is
 2
 3 procedure Init (A : in out My_Array) is
 4 Y : Natural := A'Last;
 5 begin
 6 for I in A'Range loop
 7 A (I) := Y;
 8 Y := Y - 1;
 9 end loop;
10 end Init;
11
12 function Init (I, L : Positive) return My_Array is
13 A : My_Array (I .. I + L - 1);
14 begin
15 Init (A);
16 return A;
17 end Init;
18
19 procedure Double (A : in out My_Array) is
20 begin
21 for I in A'Range loop
22 A (I) := A (I) * 2;
23 end loop;
24 end Double;
25
26 function Diff_Prev_Elem (A : My_Array) return My_Array is
27 A_Out : My_Array (A'Range);
28 begin
29 A_Out (A'First) := 0;
30 for I in A'First + 1 .. A'Last loop
31 A_Out (I) := A (I) - A (I - 1);
32 end loop;
33
34 return A_Out;
35 end Diff_Prev_Elem;
36
37end Unconstrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Unconstrained_Arrays; use Unconstrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Init_Chk,
 9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17
18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24
25 procedure Local_Init (A : in out My_Array) is
26 begin
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;
29
30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Product info

product_info_pkg.ads

 1package Product_Info_Pkg is
 2
 3 subtype Quantity is Natural;
 4
 5 subtype Currency is Float;
 6
 7 type Product_Info is record
 8 Units : Quantity;
 9 Price : Currency;
10 end record;
11
12 type Product_Infos is array (Positive range <>) of Product_Info;
13
14 type Currency_Array is array (Positive range <>) of Currency;
15
16 procedure Total (P : Product_Infos;
17 Tot : out Currency_Array);
18
19 function Total (P : Product_Infos) return Currency_Array;
20
21 function Total (P : Product_Infos) return Currency;
22
23end Product_Info_Pkg;

product_info_pkg.adb

 1package body Product_Info_Pkg is
 2
 3 -- Get total for single product
 4 function Total (P : Product_Info) return Currency is
 5 (Currency (P.Units) * P.Price);
 6
 7 procedure Total (P : Product_Infos;
 8 Tot : out Currency_Array) is
 9 begin
10 for I in P'Range loop
11 Tot (I) := Total (P (I));
12 end loop;
13 end Total;
14
15 function Total (P : Product_Infos) return Currency_Array
16 is
17 Tot : Currency_Array (P'Range);
18 begin
19 Total (P, Tot);
20 return Tot;
21 end Total;
22
23 function Total (P : Product_Infos) return Currency
24 is
25 Tot : Currency := 0.0;
26 begin
27 for I in P'Range loop
28 Tot := Tot + Total (P (I));
29 end loop;
30 return Tot;
31 end Total;
32
33end Product_Info_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Product_Info_Pkg; use Product_Info_Pkg;
 5
 6procedure Main is
 7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
 8
 9 type Test_Case_Index is
10 (Total_Func_Chk,
11 Total_Proc_Chk,
12 Total_Value_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16
17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20
21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28
29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37
38 begin
39 Currency_IO.Default_Fore := 1;
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42
43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

String_10

strings_10.ads

1package Strings_10 is
2
3 subtype String_10 is String (1 .. 10);
4
5 -- Using "type String_10 is..." is possible, too.
6
7 function To_String_10 (S : String) return String_10;
8
9end Strings_10;

strings_10.adb

 1package body Strings_10 is
 2
 3 function To_String_10 (S : String) return String_10 is
 4 S_Out : String_10;
 5 begin
 6 for I in String_10'First .. Integer'Min (String_10'Last, S'Last) loop
 7 S_Out (I) := S (I);
 8 end loop;
 9
10 for I in Integer'Min (String_10'Last + 1, S'Last + 1) .. String_10'Last loop
11 S_Out (I) := ' ';
12 end loop;
13
14 return S_Out;
15 end To_String_10;
16
17end Strings_10;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Strings_10; use Strings_10;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (String_10_Long_Chk,
 9 String_10_Short_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15
16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of Names

names_ages.ads

 1package Names_Ages is
 2
 3 Max_People : constant Positive := 10;
 4
 5 subtype Name_Type is String (1 .. 50);
 6
 7 type Age_Type is new Natural;
 8
 9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13
14 type People_Array is array (Positive range <>) of Person;
15
16 type People is record
17 People_A : People_Array (1 .. Max_People);
18 Last_Valid : Natural;
19 end record;
20
21 procedure Reset (P : in out People);
22
23 procedure Add (P : in out People;
24 Name : String);
25
26 function Get (P : People;
27 Name : String) return Age_Type;
28
29 procedure Update (P : in out People;
30 Name : String;
31 Age : Age_Type);
32
33 procedure Display (P : People);
34
35end Names_Ages;

names_ages.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 4
 5package body Names_Ages is
 6
 7 function To_Name_Type (S : String) return Name_Type is
 8 S_Out : Name_Type := (others => ' ');
 9 begin
10 for I in 1 .. Integer'Min (S'Last, Name_Type'Last) loop
11 S_Out (I) := S (I);
12 end loop;
13
14 return S_Out;
15 end To_Name_Type;
16
17 procedure Init (P : in out Person;
18 Name : String) is
19 begin
20 P.Name := To_Name_Type (Name);
21 P.Age := 0;
22 end Init;
23
24 function Match (P : Person;
25 Name : String) return Boolean is
26 begin
27 return P.Name = To_Name_Type (Name);
28 end Match;
29
30 function Get (P : Person) return Age_Type is
31 begin
32 return P.Age;
33 end Get;
34
35 procedure Update (P : in out Person;
36 Age : Age_Type) is
37 begin
38 P.Age := Age;
39 end Update;
40
41 procedure Display (P : Person) is
42 begin
43 Put_Line ("NAME: " & Trim (P.Name, Right));
44 Put_Line ("AGE: " & Age_Type'Image (P.Age));
45 end Display;
46
47 procedure Reset (P : in out People) is
48 begin
49 P.Last_Valid := 0;
50 end Reset;
51
52 procedure Add (P : in out People;
53 Name : String) is
54 begin
55 P.Last_Valid := P.Last_Valid + 1;
56 Init (P.People_A (P.Last_Valid), Name);
57 end Add;
58
59 function Get (P : People;
60 Name : String) return Age_Type is
61 begin
62 for I in P.People_A'First .. P.Last_Valid loop
63 if Match (P.People_A (I), Name) then
64 return Get (P.People_A (I));
65 end if;
66 end loop;
67
68 return 0;
69 end Get;
70
71 procedure Update (P : in out People;
72 Name : String;
73 Age : Age_Type) is
74 begin
75 for I in P.People_A'First .. P.Last_Valid loop
76 if Match (P.People_A (I), Name) then
77 Update (P.People_A (I), Age);
78 end if;
79 end loop;
80 end Update;
81
82 procedure Display (P : People) is
83 begin
84 Put_Line ("LIST OF NAMES:");
85 for I in P.People_A'First .. P.Last_Valid loop
86 Display (P.People_A (I));
87 end loop;
88 end Display;
89
90end Names_Ages;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Names_Ages; use Names_Ages;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Names_Ages_Chk,
 9 Get_Age_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34
35begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42
43 Check (Test_Case_Index'Value (Argument (1)));
44end Main;

More About Types

Aggregate Initialization

aggregates.ads

 1package Aggregates is
 2
 3 type Rec is record
 4 W : Integer := 10;
 5 X : Integer := 11;
 6 Y : Integer := 12;
 7 Z : Integer := 13;
 8 end record;
 9
10 type Int_Arr is array (1 .. 20) of Integer;
11
12 procedure Init (R : out Rec);
13
14 procedure Init_Some (A : out Int_Arr);
15
16 procedure Init (A : out Int_Arr);
17
18end Aggregates;

aggregates.adb

 1package body Aggregates is
 2
 3 procedure Init (R : out Rec) is
 4 begin
 5 R := (X => 100,
 6 Y => 200,
 7 others => <>);
 8 end Init;
 9
10 procedure Init_Some (A : out Int_Arr) is
11 begin
12 A := (1 .. 5 => 99,
13 others => 100);
14 end Init_Some;
15
16 procedure Init (A : out Int_Arr) is
17 begin
18 A := (others => 5);
19 end Init;
20
21end Aggregates;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Aggregates; use Aggregates;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42)
 9 with Unreferenced;
10
11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53
54begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");
60 end if;
61
62 Check (Test_Case_Index'Value (Argument (1)));
63end Main;

Versioning

versioning.ads

 1package Versioning is
 2
 3 type Version is record
 4 Major : Natural;
 5 Minor : Natural;
 6 Maintenance : Natural;
 7 end record;
 8
 9 function Convert (V : Version) return String;
10
11 function Convert (V : Version) return Float;
12
13end Versioning;

versioning.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3
 4package body Versioning is
 5
 6 function Image_Trim (N : Natural) return String is
 7 S_N : constant String := Trim (Natural'Image (N), Left);
 8 begin
 9 return S_N;
10 end Image_Trim;
11
12 function Convert (V : Version) return String is
13 S_Major : constant String := Image_Trim (V.Major);
14 S_Minor : constant String := Image_Trim (V.Minor);
15 S_Maint : constant String := Image_Trim (V.Maintenance);
16 begin
17 return (S_Major & "." & S_Minor & "." & S_Maint);
18 end Convert;
19
20 function Convert (V : Version) return Float is
21 begin
22 return Float (V.Major) + (Float (V.Minor) / 10.0);
23 end Convert;
24
25end Versioning;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Versioning; use Versioning;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Ver_String_Chk,
 9 Ver_Float_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21
22begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29
30 Check (Test_Case_Index'Value (Argument (1)));
31end Main;

Simple todo list

todo_lists.ads

 1package Todo_Lists is
 2
 3 type Todo_Item is access String;
 4
 5 type Todo_Items is array (Positive range <>) of Todo_Item;
 6
 7 type Todo_List (Max_Len : Natural) is record
 8 Items : Todo_Items (1 .. Max_Len);
 9 Last : Natural := 0;
10 end record;
11
12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14
15 procedure Display (Todos : Todo_List);
16
17end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 if Todos.Last < Todos.Items'Last then
 9 Todos.Last := Todos.Last + 1;
10 Todos.Items (Todos.Last) := new String'(Item);
11 else
12 Put_Line ("ERROR: list is full!");
13 end if;
14 end Add;
15
16 procedure Display (Todos : Todo_List) is
17 begin
18 Put_Line ("TO-DO LIST");
19 for I in Todos.Items'First .. Todos.Last loop
20 Put_Line (Todos.Items (I).all);
21 end loop;
22 end Display;
23
24end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Price list

price_lists.ads

 1package Price_Lists is
 2
 3 type Price_Type is delta 0.01 digits 12;
 4
 5 type Price_List_Array is array (Positive range <>) of Price_Type;
 6
 7 type Price_List (Max : Positive) is record
 8 List : Price_List_Array (1 .. Max);
 9 Last : Natural := 0;
10 end record;
11
12 type Price_Result (Ok : Boolean) is record
13 case Ok is
14 when False =>
15 null;
16 when True =>
17 Price : Price_Type;
18 end case;
19 end record;
20
21 procedure Reset (Prices : in out Price_List);
22
23 procedure Add (Prices : in out Price_List;
24 Item : Price_Type);
25
26 function Get (Prices : Price_List;
27 Idx : Positive) return Price_Result;
28
29 procedure Display (Prices : Price_List);
30
31end Price_Lists;

price_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Price_Lists is
 4
 5 procedure Reset (Prices : in out Price_List) is
 6 begin
 7 Prices.Last := 0;
 8 end Reset;
 9
10 procedure Add (Prices : in out Price_List;
11 Item : Price_Type) is
12 begin
13 if Prices.Last < Prices.List'Last then
14 Prices.Last := Prices.Last + 1;
15 Prices.List (Prices.Last) := Item;
16 else
17 Put_Line ("ERROR: list is full!");
18 end if;
19 end Add;
20
21 function Get (Prices : Price_List;
22 Idx : Positive) return Price_Result is
23 begin
24 if (Idx >= Prices.List'First and then
25 Idx <= Prices.Last) then
26 return Price_Result'(Ok => True,
27 Price => Prices.List (Idx));
28 else
29 return Price_Result'(Ok => False);
30 end if;
31 end Get;
32
33 procedure Display (Prices : Price_List) is
34 begin
35 Put_Line ("PRICE LIST");
36 for I in Prices.List'First .. Prices.Last loop
37 Put_Line (Price_Type'Image (Prices.List (I)));
38 end loop;
39 end Display;
40
41end Price_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Price_Lists; use Price_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Price_Type_Chk,
 9 Price_List_Chk,
10 Price_List_Get_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14
15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29
30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47
48 end Get_Display;
49
50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68
69begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76
77 Check (Test_Case_Index'Value (Argument (1)));
78end Main;

Privacy

Directions

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northwest,
 8 West,
 9 Southwest,
10 South,
11 Southeast,
12 East);
13
14 function To_Direction (N : Angle_Mod) return Direction;
15
16 type Ext_Angle is private;
17
18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19
20 procedure Display (N : Ext_Angle);
21
22private
23
24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28
29end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

test_directions.adb

 1with Directions; use Directions;
 2
 3procedure Test_Directions is
 4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;
 5
 6 All_Directions : constant Ext_Angle_Array (1 .. 6)
 7 := (To_Ext_Angle (0),
 8 To_Ext_Angle (45),
 9 To_Ext_Angle (90),
10 To_Ext_Angle (91),
11 To_Ext_Angle (180),
12 To_Ext_Angle (270));
13
14begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18
19end Test_Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Limited Strings

limited_strings.ads

 1package Limited_Strings is
 2
 3 type Lim_String is limited private;
 4
 5 function Init (S : String) return Lim_String;
 6
 7 function Init (Max : Positive) return Lim_String;
 8
 9 procedure Put_Line (LS : Lim_String);
10
11 procedure Copy (From : Lim_String;
12 To : in out Lim_String);
13
14 function "=" (Ref, Dut : Lim_String) return Boolean;
15
16private
17
18 type Lim_String is access String;
19
20end Limited_Strings;

limited_strings.adb

 1with Ada.Text_IO;
 2
 3package body Limited_Strings
 4is
 5
 6 function Init (S : String) return Lim_String is
 7 LS : constant Lim_String := new String'(S);
 8 begin
 9 return Ls;
10 end Init;
11
12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18
19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23
24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28
29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 To (To'First .. Min_Last) := From (To'First .. Min_Last);
34 To (Min_Last + 1 .. To'Last) := (others => '_');
35 end;
36
37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 for I in Dut'First .. Min_Last loop
41 if Dut (I) /= Ref (I) then
42 return False;
43 end if;
44 end loop;
45
46 return True;
47 end;
48
49end Limited_Strings;

check_lim_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Limited_Strings; use Limited_Strings;
 4
 5procedure Check_Lim_String is
 6 S : constant String := "----------";
 7 S1 : constant Lim_String := Init ("Hello World");
 8 S2 : constant Lim_String := Init (30);
 9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16
17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22
23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26
27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32
33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36
37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42end Check_Lim_String;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Check_Lim_String;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Lim_String_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Generics

Display Array

display_array.ads

1generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function Image (E : T_Element) return String;
6procedure Display_Array (Header : String;
7 A : T_Array);

display_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_Array (Header : String;
 4 A : T_Array) is
 5begin
 6 Put_Line (Header);
 7 for I in A'Range loop
 8 Put_Line (T_Range'Image (I) & ": " & Image (A (I)));
 9 end loop;
10end Display_Array;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Array;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Array_Chk,
 8 Point_Array_Chk);
 9
10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12
13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,
16 T_Array => Int_Array,
17 Image => Integer'Image);
18
19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23
24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29
30 type Point_Array is array (Natural range <>) of Point;
31
32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37
38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43
44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49
50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Average of Array of Float

average.ads

1generic
2 type T_Range is range <>;
3 type T_Element is digits <>;
4 type T_Array is array (T_Range range <>) of T_Element;
5function Average (A : T_Array) return T_Element;

average.adb

1function Average (A : T_Array) return T_Element is
2 Acc : Float := 0.0;
3begin
4 for I in A'Range loop
5 Acc := Acc + Float (A (I));
6 end loop;
7
8 return T_Element (Acc / Float (A'Length));
9end Average;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Average;
 5
 6procedure Main is
 7 type Test_Case_Index is (Float_Array_Chk,
 8 Digits_7_Float_Array_Chk);
 9
10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12
13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17
18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22
23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25
26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28
29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33
34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39
40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;
48 end Check;
49
50begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57
58 Check (Test_Case_Index'Value (Argument (1)));
59end Main;

Average of Array of Any Type

average.ads

1generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function To_Float (E : T_Element) return Float is <>;
6function Average (A : T_Array) return Float;

average.adb

1function Average (A : T_Array) return Float is
2 Acc : Float := 0.0;
3begin
4 for I in A'Range loop
5 Acc := Acc + To_Float (A (I));
6 end loop;
7
8 return Acc / Float (A'Length);
9end Average;

test_item.ads

1procedure Test_Item;

test_item.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Average;
 4
 5procedure Test_Item is
 6 package F_IO is new Ada.Text_IO.Float_IO (Float);
 7
 8 type Amount is delta 0.01 digits 12;
 9
10 type Item is record
11 Quantity : Natural;
12 Price : Amount;
13 end record;
14
15 type Item_Array is
16 array (Positive range <>) of Item;
17
18 function Get_Total (I : Item) return Float is
19 (Float (I.Quantity) * Float (I.Price));
20
21 function Get_Price (I : Item) return Float is
22 (Float (I.Price));
23
24 function Average_Total is new
25 Average (T_Range => Positive,
26 T_Element => Item,
27 T_Array => Item_Array,
28 To_Float => Get_Total);
29
30 function Average_Price is new
31 Average (T_Range => Positive,
32 T_Element => Item,
33 T_Array => Item_Array,
34 To_Float => Get_Price);
35
36 A : constant Item_Array (1 .. 4)
37 := ((Quantity => 5, Price => 10.00),
38 (Quantity => 80, Price => 2.50),
39 (Quantity => 40, Price => 5.00),
40 (Quantity => 20, Price => 12.50));
41
42begin
43 Put ("Average per item & quantity: ");
44 F_IO.Put (Average_Total (A), 3, 2, 0);
45 New_Line;
46
47 Put ("Average price: ");
48 F_IO.Put (Average_Price (A), 3, 2, 0);
49 New_Line;
50end Test_Item;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Item;
 5
 6procedure Main is
 7 type Test_Case_Index is (Item_Array_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Generic list

gen_list.ads

 1generic
 2 type Item is private;
 3 type Items is array (Positive range <>) of Item;
 4 Name : String;
 5 List_Array : in out Items;
 6 Last : in out Natural;
 7 with procedure Put (I : Item) is <>;
 8package Gen_List is
 9
10 procedure Init;
11
12 procedure Add (I : Item;
13 Status : out Boolean);
14
15 procedure Display;
16
17end Gen_List;

gen_list.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_List is
 4
 5 procedure Init is
 6 begin
 7 Last := List_Array'First - 1;
 8 end Init;
 9
10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 Status := Last < List_Array'Last;
14
15 if Status then
16 Last := Last + 1;
17 List_Array (Last) := I;
18 end if;
19 end Add;
20
21 procedure Display is
22 begin
23 Put_Line (Name);
24 for I in List_Array'First .. Last loop
25 Put (List_Array (I));
26 New_Line;
27 end loop;
28 end Display;
29
30end Gen_List;

test_int.ads

1procedure Test_Int;

test_int.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_List;
 4
 5procedure Test_Int is
 6
 7 procedure Put (I : Integer) is
 8 begin
 9 Ada.Text_IO.Put (Integer'Image (I));
10 end Put;
11
12 type Integer_Array is array (Positive range <>) of Integer;
13
14 A : Integer_Array (1 .. 3);
15 L : Natural;
16
17 package Int_List is new
18 Gen_List (Item => Integer,
19 Items => Integer_Array,
20 Name => "List of integers",
21 List_Array => A,
22 Last => L);
23
24 Success : Boolean;
25
26 procedure Display_Add_Success (Success : Boolean) is
27 begin
28 if Success then
29 Put_Line ("Added item successfully!");
30 else
31 Put_Line ("Couldn't add item!");
32 end if;
33
34 end Display_Add_Success;
35
36begin
37 Int_List.Init;
38
39 Int_List.Add (2, Success);
40 Display_Add_Success (Success);
41
42 Int_List.Add (5, Success);
43 Display_Add_Success (Success);
44
45 Int_List.Add (7, Success);
46 Display_Add_Success (Success);
47
48 Int_List.Add (8, Success);
49 Display_Add_Success (Success);
50
51 Int_List.Display;
52end Test_Int;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Int;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Exceptions

Uninitialized Value

options.ads

 1package Options is
 2
 3 type Option is (Uninitialized,
 4 Option_1,
 5 Option_2,
 6 Option_3);
 7
 8 Uninitialized_Value : exception;
 9
10 function Image (O : Option) return String;
11
12end Options;

options.adb

 1package body Options is
 2
 3 function Image (O : Option) return String is
 4 begin
 5 case O is
 6 when Uninitialized =>
 7 raise Uninitialized_Value with "Uninitialized value detected!";
 8 when others =>
 9 return Option'Image (O);
10 end case;
11 end Image;
12
13end Options;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Options; use Options;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Options_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20
21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Numerical Exception

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.adb

 1with Tests; use Tests;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Ada.Exceptions; use Ada.Exceptions;
 5
 6procedure Check_Exception (ID : Test_ID) is
 7begin
 8 Num_Exception_Test (ID);
 9exception
10 when Constraint_Error =>
11 Put_Line ("Constraint_Error detected!");
12 when E : others =>
13 Put_Line (Exception_Message (E));
14end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Re-raising Exceptions

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception, Another_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.ads

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID);

check_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Check_Exception (ID : Test_ID) is
 5begin
 6 Num_Exception_Test (ID);
 7exception
 8 when Constraint_Error =>
 9 Put_Line ("Constraint_Error detected!");
10 raise;
11 when E : others =>
12 Put_Line (Exception_Message (E));
13 raise Another_Exception;
14end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Tasking

Display Service

display_services.ads

1package Display_Services is
2
3 task type Display_Service is
4 entry Display (S : String);
5 entry Display (I : Integer);
6 end Display_Service;
7
8end Display_Services;

display_services.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Display_Services is
 4
 5 task body Display_Service is
 6 begin
 7 loop
 8 select
 9 accept Display (S : String) do
10 Put_Line (S);
11 end Display;
12 or
13 accept Display (I : Integer) do
14 Put_Line (Integer'Image (I));
15 end Display;
16 or
17 terminate;
18 end select;
19 end loop;
20 end Display_Service;
21
22end Display_Services;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Services; use Display_Services;
 5
 6procedure Main is
 7 type Test_Case_Index is (Display_Service_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22
23begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30
31 Check (Test_Case_Index'Value (Argument (1)));
32end Main;

Event Manager

event_managers.ads

 1with Ada.Real_Time; use Ada.Real_Time;
 2
 3package Event_Managers is
 4
 5 task type Event_Manager is
 6 entry Start (ID : Natural);
 7 entry Event (T : Time);
 8 end Event_Manager;
 9
10end Event_Managers;

event_managers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Event_Managers is
 4
 5 task body Event_Manager is
 6 Event_ID : Natural := 0;
 7 Event_Delay : Time;
 8 begin
 9 accept Start (ID : Natural) do
10 Event_ID := ID;
11 end Start;
12
13 accept Event (T : Time) do
14 Event_Delay := T;
15 end Event;
16
17 delay until Event_Delay;
18
19 Put_Line ("Event #" & Natural'Image (Event_ID));
20 end Event_Manager;
21
22end Event_Managers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Event_Managers; use Event_Managers;
 5with Ada.Real_Time; use Ada.Real_Time;
 6
 7procedure Main is
 8 type Test_Case_Index is (Event_Manager_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Generic Protected Queue

gen_queues.ads

 1generic
 2 type Queue_Index is mod <>;
 3 type T is private;
 4package Gen_Queues is
 5
 6 type Queue_Array is array (Queue_Index) of T;
 7
 8 protected type Queue is
 9 function Empty return Boolean;
10 function Full return Boolean;
11 entry Push (V : T);
12 entry Pop (V : out T);
13 private
14 N : Natural := 0;
15 Idx : Queue_Index := Queue_Array'First;
16 A : Queue_Array;
17 end Queue;
18
19end Gen_Queues;

gen_queues.adb

 1package body Gen_Queues is
 2
 3 protected body Queue is
 4
 5 function Empty return Boolean is
 6 (N = 0);
 7
 8 function Full return Boolean is
 9 (N = A'Length);
10
11 entry Push (V : T) when not Full is
12 begin
13 A (Idx) := V;
14
15 Idx := Idx + 1;
16 N := N + 1;
17 end Push;
18
19 entry Pop (V : out T) when not Empty is
20 begin
21 N := N - 1;
22
23 V := A (Idx - Queue_Index (N) - 1);
24 end Pop;
25
26 end Queue;
27
28end Gen_Queues;

queue_tests.ads

1package Queue_Tests is
2
3 procedure Simple_Test;
4
5 procedure Concurrent_Test;
6
7end Queue_Tests;

queue_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_Queues;
 4
 5package body Queue_Tests is
 6
 7 Max : constant := 10;
 8 type Queue_Mod is mod Max;
 9
10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12
13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21
22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27
28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30
31 Q_I : Queues_Integer.Queue;
32
33 task T_Producer;
34 task T_Consumer;
35
36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44
45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59
60end Queue_Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Queue_Tests; use Queue_Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is (Simple_Queue_Chk,
 8 Concurrent_Queue_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Simple_Queue_Chk =>
14 Simple_Test;
15 when Concurrent_Queue_Chk =>
16 Concurrent_Test;
17 end case;
18 end Check;
19
20begin
21 if Argument_Count < 1 then
22 Put_Line ("ERROR: missing arguments! Exiting...");
23 return;
24 elsif Argument_Count > 1 then
25 Put_Line ("Ignoring additional arguments...");
26 end if;
27
28 Check (Test_Case_Index'Value (Argument (1)));
29end Main;

Design by contracts

Price Range

prices.ads

 1package Prices is
 2
 3 type Amount is delta 10.0 ** (-2) digits 12;
 4
 5 -- subtype Price is Amount range 0.0 .. Amount'Last;
 6
 7 subtype Price is Amount
 8 with Static_Predicate => Price >= 0.0;
 9
10end Prices;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Prices; use Prices;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Price_Range_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19
20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Pythagorean Theorem: Predicate

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record
11 with Dynamic_Predicate => H * H = C1 * C1 + C2 * C2;
12
13 function Init (H, C1, C2 : Length) return Right_Triangle is
14 ((H, C1, C2));
15
16end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Precondition

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Pre => H * H = C1 * C1 + C2 * C2;
15
16end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Postcondition

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Post => (Init'Result.H * Init'Result.H
15 = Init'Result.C1 * Init'Result.C1
16 + Init'Result.C2 * Init'Result.C2);
17
18end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Type Invariant

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is private
 6 with Type_Invariant => Check (Right_Triangle);
 7
 8 function Check (T : Right_Triangle) return Boolean;
 9
10 function Init (H, C1, C2 : Length) return Right_Triangle;
11
12private
13
14 type Right_Triangle is record
15 H : Length := 0;
16 -- Hypotenuse
17 C1, C2 : Length := 0;
18 -- Catheti / legs
19 end record;
20
21 function Init (H, C1, C2 : Length) return Right_Triangle is
22 ((H, C1, C2));
23
24 function Check (T : Right_Triangle) return Boolean is
25 (T.H * T.H = T.C1 * T.C1 + T.C2 * T.C2);
26
27end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Primary Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 function Image (I : Int_Color) return String;
19
20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25
26 function To_RGB (C : HTML_Color) return RGB;
27
28 function Image (C : RGB) return String;
29
30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31
32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44
45 subtype HTML_RGB_Color is HTML_Color
46 with Static_Predicate => HTML_RGB_Color in Red | Green | Blue;
47
48 function To_Int_Color (C : HTML_Color;
49 S : HTML_RGB_Color) return Int_Color;
50 -- Convert to hexadecimal value for the selected RGB component S
51
52end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_RGB (C : HTML_Color) return RGB is
 6 begin
 7 return To_RGB_Lookup_Table (C);
 8 end To_RGB;
 9
10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 C_RGB : constant RGB := To_RGB (C);
13 begin
14 case S is
15 when Red => return C_RGB.Red;
16 when Green => return C_RGB.Green;
17 when Blue => return C_RGB.Blue;
18 end case;
19 end To_Int_Color;
20
21 function Image (I : Int_Color) return String is
22 subtype Str_Range is Integer range 1 .. 10;
23 S : String (Str_Range);
24 begin
25 Ada.Integer_Text_IO.Put (To => S,
26 Item => I,
27 Base => 16);
28 return S;
29 end Image;
30
31 function Image (C : RGB) return String is
32 begin
33 return ("(Red => " & Image (C.Red)
34 & ", Green => " & Image (C.Green)
35 & ", Blue => " & Image (C.Blue)
36 &")");
37 end Image;
38
39end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_Red_Chk,
 9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22
23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Object-oriented programming

Simple type extension

type_extensions.ads

 1package Type_Extensions is
 2
 3 type T_Float is tagged record
 4 F : Float;
 5 end record;
 6
 7 function Init (F : Float) return T_Float;
 8
 9 function Init (I : Integer) return T_Float;
10
11 function Image (T : T_Float) return String;
12
13 type T_Mixed is new T_Float with record
14 I : Integer;
15 end record;
16
17 function Init (F : Float) return T_Mixed;
18
19 function Init (I : Integer) return T_Mixed;
20
21 function Image (T : T_Mixed) return String;
22
23end Type_Extensions;

type_extensions.adb

 1package body Type_Extensions is
 2
 3 function Init (F : Float) return T_Float is
 4 begin
 5 return ((F => F));
 6 end Init;
 7
 8 function Init (I : Integer) return T_Float is
 9 begin
10 return ((F => Float (I)));
11 end Init;
12
13 function Init (F : Float) return T_Mixed is
14 begin
15 return ((F => F,
16 I => Integer (F)));
17 end Init;
18
19 function Init (I : Integer) return T_Mixed is
20 begin
21 return ((F => Float (I),
22 I => I));
23 end Init;
24
25 function Image (T : T_Float) return String is
26 begin
27 return "{ F => " & Float'Image (T.F) & " }";
28 end Image;
29
30 function Image (T : T_Mixed) return String is
31 begin
32 return "{ F => " & Float'Image (T.F)
33 & ", I => " & Integer'Image (T.I) & " }";
34 end Image;
35
36end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 type Member is tagged record
10 Start : Year_Number;
11 end record;
12
13 type Member_Access is access Member'Class;
14
15 function Get_Status (M : Member) return String;
16
17 function Get_Price (M : Member;
18 P : Amount) return Amount;
19
20 type Full_Member is new Member with record
21 Discount : Percentage;
22 end record;
23
24 function Get_Status (M : Full_Member) return String;
25
26 function Get_Price (M : Full_Member;
27 P : Amount) return Amount;
28
29end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("Associate Member");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("Full Member");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (P);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (P * (1.0 - M.Discount));
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6
 7 type Member_Due_Amount is record
 8 Member : Member_Access;
 9 Due_Amount : Amount;
10 end record;
11
12 function Get_Price (MA : Member_Due_Amount) return Amount is
13 begin
14 return MA.Member.Get_Price (MA.Due_Amount);
15 end Get_Price;
16
17 type Member_Due_Amounts is array (Positive range <>) of Member_Due_Amount;
18
19 DB : constant Member_Due_Amounts (1 .. 4)
20 := ((Member => new Member'(Start => 2010),
21 Due_Amount => 250.0),
22 (Member => new Full_Member'(Start => 1998,
23 Discount => 0.1),
24 Due_Amount => 160.0),
25 (Member => new Full_Member'(Start => 1987,
26 Discount => 0.2),
27 Due_Amount => 400.0),
28 (Member => new Member'(Start => 2013),
29 Due_Amount => 110.0));
30 begin
31 for I in DB'Range loop
32 Put_Line ("Member #" & Positive'Image (I));
33 Put_Line ("Status: " & DB (I).Member.Get_Status);
34 Put_Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
35 Put_Line ("Due Amount: " & Amount'Image (Get_Price (DB (I))));
36 Put_Line ("--------");
37 end loop;
38 end Simple_Test;
39
40end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Standard library: Containers

Simple todo list

todo_lists.ads

 1with Ada.Containers.Vectors;
 2
 3package Todo_Lists is
 4
 5 type Todo_Item is access String;
 6
 7 package Todo_List_Pkg is new Ada.Containers.Vectors
 8 (Index_Type => Natural,
 9 Element_Type => Todo_Item);
10
11 subtype Todo_List is Todo_List_Pkg.Vector;
12
13 procedure Add (Todos : in out Todo_List;
14 Item : String);
15
16 procedure Display (Todos : Todo_List);
17
18end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 Todos.Append (new String'(Item));
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 Put_Line ("TO-DO LIST");
14 for T of Todos loop
15 Put_Line (T.all);
16 end loop;
17 end Display;
18
19end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

List of unique integers

ops.ads

 1with Ada.Containers.Ordered_Sets;
 2
 3package Ops is
 4
 5 type Int_Array is array (Positive range <>) of Integer;
 6
 7 package Integer_Sets is new Ada.Containers.Ordered_Sets
 8 (Element_Type => Integer);
 9
10 subtype Int_Set is Integer_Sets.Set;
11
12 function Get_Unique (A : Int_Array) return Int_Set;
13
14 function Get_Unique (A : Int_Array) return Int_Array;
15
16end Ops;

ops.adb

 1package body Ops is
 2
 3 function Get_Unique (A : Int_Array) return Int_Set is
 4 S : Int_Set;
 5 begin
 6 for E of A loop
 7 S.Include (E);
 8 end loop;
 9
10 return S;
11 end Get_Unique;
12
13 function Get_Unique (A : Int_Array) return Int_Array is
14 S : constant Int_Set := Get_Unique (A);
15 AR : Int_Array (1 .. Positive (S.Length));
16 I : Positive := 1;
17 begin
18 for E of S loop
19 AR (I) := E;
20 I := I + 1;
21 end loop;
22
23 return AR;
24 end Get_Unique;
25
26end Ops;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Ops; use Ops;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Get_Unique_Set_Chk,
 9 Get_Unique_Array_Chk);
10
11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13
14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21
22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29
30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51end Main;

Standard library: Dates & Times

Holocene calendar

to_holocene_year.adb

1with Ada.Calendar; use Ada.Calendar;
2
3function To_Holocene_Year (T : Time) return Integer is
4begin
5 return Year (T) + 10_000;
6end To_Holocene_Year;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar; use Ada.Calendar;
 4
 5with To_Holocene_Year;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Holocene_Chk);
10
11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18
19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of events

events.ads

 1with Ada.Containers.Vectors;
 2
 3package Events is
 4
 5 type Event_Item is access String;
 6
 7 package Event_Item_Containers is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11
12 subtype Event_Items is Event_Item_Containers.Vector;
13
14end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5
 6with Events.Lists; use Events.Lists;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Event_List_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28
29begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36
37 Check (Test_Case_Index'Value (Argument (1)));
38end Main;

Standard library: Strings

Concatenation

str_concat.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2
 3package Str_Concat is
 4
 5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
 6
 7 function Concat (USA : Unbounded_Strings;
 8 Trim_Str : Boolean;
 9 Add_Whitespace : Boolean) return Unbounded_String;
10
11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;
13 Add_Whitespace : Boolean) return String;
14
15end Str_Concat;

str_concat.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3package body Str_Concat is
 4
 5 function Concat (USA : Unbounded_Strings;
 6 Trim_Str : Boolean;
 7 Add_Whitespace : Boolean) return Unbounded_String is
 8
 9 function Retrieve (USA : Unbounded_Strings;
10 Trim_Str : Boolean;
11 Index : Positive) return Unbounded_String is
12 US_Internal : Unbounded_String := USA (Index);
13 begin
14 if Trim_Str then
15 US_Internal := Trim (US_Internal, Both);
16 end if;
17 return US_Internal;
18 end Retrieve;
19
20 US : Unbounded_String := To_Unbounded_String ("");
21 begin
22 for I in USA'First .. USA'Last - 1 loop
23 US := US & Retrieve (USA, Trim_Str, I);
24 if Add_Whitespace then
25 US := US & " ";
26 end if;
27 end loop;
28 US := US & Retrieve (USA, Trim_Str, USA'Last);
29
30 return US;
31 end Concat;
32
33 function Concat (USA : Unbounded_Strings;
34 Trim_Str : Boolean;
35 Add_Whitespace : Boolean) return String is
36 begin
37 return To_String (Concat (USA, Trim_Str, Add_Whitespace));
38 end Concat;
39
40end Str_Concat;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 4
 5with Str_Concat; use Str_Concat;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,
12 Concat_Single_Element);
13
14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54
55begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62
63 Check (Test_Case_Index'Value (Argument (1)));
64end Main;

List of events

events.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2with Ada.Containers.Vectors;
 3
 4package Events is
 5
 6 subtype Event_Item is Unbounded_String;
 7
 8 package Event_Item_Containers is new
 9 Ada.Containers.Vectors
10 (Index_Type => Positive,
11 Element_Type => Event_Item);
12
13 subtype Event_Items is Event_Item_Containers.Vector;
14
15end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := To_Unbounded_String (Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & To_String (I));
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 6
 7with Events;
 8with Events.Lists; use Events.Lists;
 9
10procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14
15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;
36 end Check;
37
38begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45
46 Check (Test_Case_Index'Value (Argument (1)));
47end Main;

Standard library: Numerics

Decibel Factor

decibels.ads

 1package Decibels is
 2
 3 subtype Decibel is Float;
 4 subtype Factor is Float;
 5
 6 function To_Decibel (F : Factor) return Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor;
 9
10end Decibels;

decibels.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Decibels is
 4
 5 function To_Decibel (F : Factor) return Decibel is
 6 begin
 7 return 20.0 * Log (F, 10.0);
 8 end To_Decibel;
 9
10 function To_Factor (D : Decibel) return Factor is
11 begin
12 return 10.0 ** (D / 20.0);
13 end To_Factor;
14
15end Decibels;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Decibels; use Decibels;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Db_Chk,
 9 Factor_Chk);
10
11 procedure Check (TC : Test_Case_Index; V : Float) is
12
13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15
16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24
25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 2 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52end Main;

Root-Mean-Square

signals.ads

1package Signals is
2
3 subtype Sig_Value is Float;
4
5 type Signal is array (Natural range <>) of Sig_Value;
6
7 function Rms (S : Signal) return Sig_Value;
8
9end Signals;

signals.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Signals is
 4
 5 function Rms (S : Signal) return Sig_Value is
 6 Acc : Float := 0.0;
 7 begin
 8 for V of S loop
 9 Acc := Acc + V * V;
10 end loop;
11
12 return Sqrt (Acc / Float (S'Length));
13 end;
14
15end Signals;

signals-std.ads

 1package Signals.Std is
 2
 3 Sample_Rate : Float := 8000.0;
 4
 5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
 6
 7 function Generate_Square (N : Positive) return Signal;
 8
 9 function Generate_Triangular (N : Positive) return Signal;
10
11end Signals.Std;

signals-std.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 3
 4package body Signals.Std is
 5
 6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
 7 S : Signal (0 .. N - 1);
 8 begin
 9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12
13 return S;
14 end;
15
16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21
22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32
33 return S;
34 end;
35
36end Signals.Std;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Signals; use Signals;
 5with Signals.Std; use Signals.Std;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15
16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44
45 Check (Test_Case_Index'Value (Argument (1)));
46end Main;

Rotation

rotation.ads

 1with Ada.Numerics.Complex_Types;
 2use Ada.Numerics.Complex_Types;
 3
 4package Rotation is
 5
 6 type Complex_Points is array (Positive range <>) of Complex;
 7
 8 function Rotation (N : Positive) return Complex_Points;
 9
10end Rotation;

rotation.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3package body Rotation is
 4
 5 function Rotation (N : Positive) return Complex_Points is
 6 C_Angle : constant Complex :=
 7 Compose_From_Polar (1.0, 2.0 * Pi / Float (N));
 8 begin
 9 return C : Complex_Points (1 .. N + 1) do
10 C (1) := Compose_From_Cartesian (1.0, 0.0);
11
12 for I in C'First + 1 .. C'Last loop
13 C (I) := C (I - 1) * C_Angle;
14 end loop;
15 end return;
16 end;
17
18end Rotation;

angles.ads

 1with Rotation; use Rotation;
 2
 3package Angles is
 4
 5 subtype Angle is Float;
 6
 7 type Angles is array (Positive range <>) of Angle;
 8
 9 function To_Angles (C : Complex_Points) return Angles;
10
11end Angles;

angles.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
 3
 4package body Angles is
 5
 6 function To_Angles (C : Complex_Points) return Angles is
 7 begin
 8 return A : Angles (C'Range) do
 9 for I in A'Range loop
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14
15end Angles;

rotation-tests.ads

1package Rotation.Tests is
2
3 procedure Test_Rotation (N : Positive);
4
5 procedure Test_Angles (N : Positive);
6
7end Rotation.Tests;

rotation-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3with Ada.Numerics; use Ada.Numerics;
 4
 5with Angles; use Angles;
 6
 7package body Rotation.Tests is
 8
 9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11
12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15
16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25
26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28
29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39
40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;
50 end Test_Angles;
51
52end Rotation.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Rotation.Tests; use Rotation.Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Rotation_Chk,
 9 Angles_Chk);
10
11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30end Main;

Footnotes

Bug Free Coding with SPARK Ada

Release 2024-03

Mar 30, 2024

Copyright © 2018 – 2022, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: ../../_images/ccheart_black.png]

Workshop project: Learn to write maintainable bug-free code with SPARK Ada.

This document was written by Robert Tice.

Note

The code examples in this course use an 80-column limit, which is a
typical limit for Ada code. Note that, on devices with a small screen
size, some code examples might be difficult to read.

Contents:

	Let's Build a Stack
	Background

	Input Format

	Constraints

	Output Format

	Sample Input

	Sample Output

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

Let's Build a Stack

In this lab we will build a stack data structure and use the SPARK provers to
find the errors in the below implementation.

Background

So, what is a stack?

A stack is like a pile of dishes...

[image: ../../../_images/pile_of_dishes.png]

	The pile starts out empty.

	You add (push) a new plate (data) to the stack by placing
it on the top of the pile.

	To get plates (data) out, you take the one off the top of the pile
(pop).

	Out stack has a maximum height (size) of 9 dishes

Pushing items onto the stack

Here's what should happen if we pushed the string MLH onto the stack.

[image: ../../../_images/push_1.png]
[image: ../../../_images/push_2.png]
[image: ../../../_images/push_3.png]
[image: ../../../_images/push_4.png]
[image: ../../../_images/push_5.png]

The list starts out empty. Each time we push a character onto the stack,
Last increments by 1.

Popping items from the stack

Here's what should happen if we popped 2 characters off our stack & then
clear it.

[image: ../../../_images/pop_1.png]
[image: ../../../_images/pop_2.png]
[image: ../../../_images/pop_3.png]
[image: ../../../_images/pop_4.png]

Note that pop and clear don't unset the Storage array's
elements, they just change the value of Last.

Input Format

N inputs will be read from stdin/console as inputs, C to the stack.

Constraints

1 <= N <= 1000

C is any character. Characters d and p will be special characters corresponding
to the below commands:

p => Pops a character off the stack

d => Prints the current characters in the stack

Output Format

If the stack currently has the characters "M", "L", and "H" then the program
should print the stack like this:

[M, L, H]

Sample Input

M L H d p d p d p d

Sample Output

[M, L, H]
[M, L]
[M]
[]

stack.ads

 1package Stack with SPARK_Mode => On is
 2
 3 procedure Push (V : Character)
 4 with Pre => not Full,
 5 Post => Size = Size'Old + 1;
 6
 7 procedure Pop (V : out Character)
 8 with Pre => not Empty,
 9 Post => Size = Size'Old - 1;
10
11 procedure Clear
12 with Post => Size = 0;
13
14 function Top return Character
15 with Post => Top'Result = Tab(Last);
16
17 Max_Size : constant := 9;
18 -- The stack size.
19
20 Last : Integer range 0 .. Max_Size := 0;
21 -- Indicates the top of the stack. When 0 the stack is empty.
22
23 Tab : array (1 .. Max_Size) of Character;
24 -- The stack. We push and pop pointers to Values.
25
26 function Full return Boolean is (Last = Max_Size);
27
28 function Empty return Boolean is (Last < 1);
29
30 function Size return Integer is (Last);
31
32end Stack;

stack.adb

 1package body Stack with SPARK_Mode => On is
 2
 3 -----------
 4 -- Clear --
 5 -----------
 6
 7 procedure Clear
 8 is
 9 begin
10 Last := Tab'First;
11 end Clear;
12
13 ----------
14 -- Push --
15 ----------
16
17 procedure Push (V : Character)
18 is
19 begin
20 Tab (Last) := V;
21 end Push;
22
23 ---------
24 -- Pop --
25 ---------
26
27 procedure Pop (V : out Character)
28 is
29 begin
30 Last := Last - 1;
31 V := Tab (Last);
32 end Pop;
33
34 ---------
35 -- Top --
36 ---------
37
38 function Top return Character
39 is
40 begin
41 return Tab (1);
42 end Top;
43
44end Stack;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Stack; use Stack;
 4
 5procedure Main with SPARK_Mode => Off
 6is
 7
 8 -----------
 9 -- Debug --
10 -----------
11
12 procedure Debug
13 is
14 begin
15
16 if not Stack.Empty then
17
18 Put ("[");
19 for I in Stack.Tab'First .. Stack.Size - 1 loop
20 Put (Stack.Tab (I) & ", ");
21 end loop;
22 Put_Line (Stack.Tab (Stack.Size) & "]");
23 else
24 Put_Line ("[]");
25 end if;
26
27 end Debug;
28
29 S : Character;
30
31begin
32
33 ----------
34 -- Main --
35 ----------
36
37 for Arg in 1 .. Argument_Count loop
38 if Argument (Arg)'Length /= 1 then
39 Put_Line (Argument (Arg) & " is an invalid input to the stack.");
40 else
41 S := Argument (Arg)(Argument (Arg)'First);
42
43 if S = 'd' then
44 Debug;
45 elsif S = 'p' then
46 if not Stack.Empty then
47 Stack.Pop (S);
48 else
49 Put_Line ("Nothing to Pop, Stack is empty!");
50 end if;
51 else
52 if not Stack.Full then
53 Stack.Push (S);
54 else
55 Put_Line ("Could not push '" & S & "', Stack is full!");
56 end if;
57 end if;
58 end if;
59
60 end loop;
61
62end Main;

Footnotes

Index

About learn.adacore.com

Learn.adacore.com is an interactive learning platform designed to teach the Ada and SPARK programming languages. With courses featuring hands-on labs and easy to understand code snippets, you will have the opportunity to see, understand and experiment with the language capabilities.

About Ada/SPARK

The Ada programming language was designed from its inception to be used in applications where safety and security are of the utmost importance. Its feature set and programming paradigms, by design, allow software developers to develop applications more effectively and efficiently. It encourages a “think first, code later” principle which produces more readable, reliable, and maintainable software.

The SPARK programming language is a formally verifiable subset of the Ada language which allows developers to mathematically prove program correctness through static means. This is accomplished by exploiting the strengths of the Ada syntax while eliminating the features of the language that introduce ambiguity and non-deterministic behavior. The language put together with a verification toolset and a design methodology ensures the development and deployment of low-defect software for high reliability applications.

About AdaCore

Founded in 1994, AdaCore is the leading provider of commercial and open-source software solutions for Ada, a state-of-the-art programming language designed for large, long-lived applications where safety, security, and reliability are critical. AdaCore is committed to being an active member of the software development community providing the GNAT Ada compiler and SPARK formal methods technologies as open-source projects to the world to advocate their use in the future of safe and reliable computing. Visit the AdaCore website[#1] for more information.

Footnotes

[#1]
https://www.adacore.com

 [image: Cover image]

Arrays

Constrained Array

Goal: declare a constrained array and implement operations on it.

Steps:

	Implement the Constrained_Arrays package.

	Declare the range type My_Index.

	Declare the array type My_Array.

	Declare and implement the Init function.

	Declare and implement the Double procedure.

	Declare and implement the First_Elem function.

	Declare and implement the Last_Elem function.

	Declare and implement the Length function.

	Declare the object A of My_Array type.

Requirements:

	Range type My_Index has a range from 1 to 10.

	My_Array is a constrained array of Integer type.

	It must make use of the My_Index type.

	It is therefore limited to 10 elements.

	Function Init returns an array where each element is initialized
with the corresponding index.

	Procedure Double doubles the value of each element of an array.

	Function First_Elem returns the first element of the array.

	Function Last_Elem returns the last element of the array.

	Function Length returns the length of the array.

	Object A of My_Array type is initialized with:

	the values 1 and 2 for the first two elements, and

	42 for all other elements.

constrained_arrays.ads

 1package Constrained_Arrays is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5 -- type My_Index is [...]
 6 --
 7 -- type My_Array is [...]
 8 --
 9 -- function Init ...
10 --
11 -- procedure Double ...
12 --
13 -- function First_Elem ...
14 --
15 -- function Last_Elem ...
16 --
17 -- function Length ...
18 --
19 -- A : ...
20
21end Constrained_Arrays;

constrained_arrays.adb

1package body Constrained_Arrays is
2
3 -- Create the implementation of the subprograms!
4 --
5
6end Constrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Constrained_Arrays; use Constrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Range_Chk,
 9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19
20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26
27 procedure Local_Init (A : in out My_Array) is
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60
61begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68
69 Check (Test_Case_Index'Value (Argument (1)));
70end Main;

Colors: Lookup-Table

Goal: rewrite a package to represent HTML colors in RGB format using a
lookup table.

Steps:

	Implement the Color_Types package.

	Declare the array type HTML_Color_RGB.

	Declare the To_RGB_Lookup_Table object and initialize it.

	Adapt the implementation of the To_RGB function.

Requirements:

	Array type HTML_Color_RGB is used for the table.

	The To_RGB_Lookup_Table object of HTML_Color_RGB type
contains the lookup table.

	This table must be implemented as an array of constant values.

	The implementation of the To_RGB function must use the
To_RGB_Lookup_Table object.

Remarks:

	This exercise is based on the HTML colors exercise from a previous lab
(Records).

	In the previous implementation, you could use a case statement to
implement the To_RGB function. Here, you must rewrite the
function using a look-up table.

	The implementation of the To_RGB function below includes the
case statement as commented-out code. You can use this as your
starting point: you just need to copy it and convert the case
statement to an array declaration.

	Don't use a case statement to implement the To_RGB function.
Instead, write code that accesses To_RGB_Lookup_Table to get
the correct value.

	The following table contains the HTML colors and the corresponding value
in hexadecimal form for each color element:

	Color

	Red

	Green

	Blue

	Salmon

	#FA

	#80

	#72

	Firebrick

	#B2

	#22

	#22

	Red

	#FF

	#00

	#00

	Darkred

	#8B

	#00

	#00

	Lime

	#00

	#FF

	#00

	Forestgreen

	#22

	#8B

	#22

	Green

	#00

	#80

	#00

	Darkgreen

	#00

	#64

	#00

	Blue

	#00

	#00

	#FF

	Mediumblue

	#00

	#00

	#CD

	Darkblue

	#00

	#00

	#8B

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;
23
24 function To_RGB (C : HTML_Color) return RGB;
25
26 function Image (C : RGB) return String;
27
28 -- Declare array type for lookup table here:
29 --
30 -- type HTML_Color_RGB is ...
31
32 -- Declare lookup table here:
33 --
34 -- To_RGB_Lookup_Table : ...
35
36end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2package body Color_Types is
 3
 4 function To_RGB (C : HTML_Color) return RGB is
 5 begin
 6 -- Implement To_RGB using To_RGB_Lookup_Table
 7 return (0, 0, 0);
 8
 9 -- Use the code below from the previous version of the To_RGB
10 -- function to declare the To_RGB_Lookup_Table:
11 --
12 -- case C is
13 -- when Salmon => return (16#FA#, 16#80#, 16#72#);
14 -- when Firebrick => return (16#B2#, 16#22#, 16#22#);
15 -- when Red => return (16#FF#, 16#00#, 16#00#);
16 -- when Darkred => return (16#8B#, 16#00#, 16#00#);
17 -- when Lime => return (16#00#, 16#FF#, 16#00#);
18 -- when Forestgreen => return (16#22#, 16#8B#, 16#22#);
19 -- when Green => return (16#00#, 16#80#, 16#00#);
20 -- when Darkgreen => return (16#00#, 16#64#, 16#00#);
21 -- when Blue => return (16#00#, 16#00#, 16#FF#);
22 -- when Mediumblue => return (16#00#, 16#00#, 16#CD#);
23 -- when Darkblue => return (16#00#, 16#00#, 16#8B#);
24 -- end case;
25
26 end To_RGB;
27
28 function Image (C : RGB) return String is
29 subtype Str_Range is Integer range 1 .. 10;
30 SR : String (Str_Range);
31 SG : String (Str_Range);
32 SB : String (Str_Range);
33 begin
34 Ada.Integer_Text_IO.Put (To => SR,
35 Item => C.Red,
36 Base => 16);
37 Ada.Integer_Text_IO.Put (To => SG,
38 Item => C.Green,
39 Base => 16);
40 Ada.Integer_Text_IO.Put (To => SB,
41 Item => C.Blue,
42 Base => 16);
43 return ("(Red => " & SR
44 & ", Green => " & SG
45 & ", Blue => " & SB
46 &")");
47 end Image;
48
49end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Color_Table_Chk,
 9 HTML_Color_To_Integer_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26
27begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34
35 Check (Test_Case_Index'Value (Argument (1)));
36end Main;

Unconstrained Array

Goal: declare an unconstrained array and implement operations on it.

Steps:

	Implement the Unconstrained_Arrays package.

	Declare the My_Array type.

	Declare and implement the Init procedure.

	Declare and implement the Init function.

	Declare and implement the Double procedure.

	Declare and implement the Diff_Prev_Elem function.

Requirements:

	My_Array is an unconstrained array (with a Positive range)
of Integer elements.

	Procedure Init initializes each element with the index starting
with the last one.

	For example, for an array of 3 elements where the index of the first
element is 1 (My_Array (1 .. 3)), the values of these elements
after a call to Init must be (3, 2, 1).

	Function Init returns an array based on the length L and
start index I provided to the Init function.

	I indicates the index of the first element of the array.

	L indicates the length of the array.

	Both I and L must be positive.

	This is its declaration:
function Init (I, L : Positive) return My_Array;.

	You must initialize the elements of the array in the same manner
as for the Init procedure described above.

	Procedure Double doubles each element of an array.

	Function Diff_Prev_Elem returns — for each element of an
input array A — an array with the difference between an
element of array A and the previous element.

	For the first element, the difference must be zero.

	For example:

	INPUT: (2, 5, 15)

	RETURN of Diff_Prev_Elem: (0, 3, 10), where

	0 is the constant difference for the first element;

	5 - 2 = 3 is the difference between the second and the
first elements of the input array;

	15 - 5 = 10 is the difference between the third and
the second elements of the input array.

Remarks:

	For an array A, you can retrieve the index of the last element with
the attribute 'Last.

	For example: Y : Positive := A'Last;

	This can be useful during the implementation of procedure Init.

	For the implementation of the Init function, you can call the
Init procedure to initialize the elements. By doing this, you avoid
code duplication.

	Some hints about attributes:

	You can use the range attribute (A'Range) to retrieve the
range of an array A.

	You can also use the range attribute in the declaration of another array
(e.g.: B : My_Array (A'Range)).

	Alternatively, you can use the A'First and A'Last
attributes in an array declaration.

unconstrained_arrays.ads

 1package Unconstrained_Arrays is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5 -- type My_Array is ...;
 6 --
 7 -- procedure Init ...;
 8
 9 function Init (I, L : Positive) return My_Array;
10
11 -- procedure Double ...;
12 --
13 -- function Diff_Prev_Elem ...;
14
15end Unconstrained_Arrays;

unconstrained_arrays.adb

 1package body Unconstrained_Arrays is
 2
 3 -- Implement the subprograms:
 4 --
 5
 6 -- procedure Init is...
 7
 8 -- function Init (L : Positive) return My_Array is...
 9
10 -- procedure Double ... is...
11
12 -- function Diff_Prev_Elem ... is...
13
14end Unconstrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Unconstrained_Arrays; use Unconstrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Init_Chk,
 9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17
18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24
25 procedure Local_Init (A : in out My_Array) is
26 begin
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;
29
30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Product info

Goal: create a system to keep track of quantities and prices of products.

Steps:

	Implement the Product_Info_Pkg package.

	Declare the array type Product_Infos.

	Declare the array type Currency_Array.

	Implement the Total procedure.

	Implement the Total function returning an array of
Currency_Array type.

	Implement the Total function returning a single value of
Currency type.

Requirements:

	Quantity of an individual product is represented by the Quantity
subtype.

	Price of an individual product is represented by the Currency
subtype.

	Record type Product_Info deals with information for various
products.

	Array type Product_Infos is used to represent a list of products.

	Array type Currency_Array is used to represent a list of total
values of individual products (see more details below).

	Procedure Total receives an input array of products.

	It outputs an array with the total value of each product using the
Currency_Array type.

	The total value of an individual product is calculated by
multiplying the quantity for this product by its price.

	Function Total returns an array of Currency_Array type.

	This function has the same purpose as the procedure Total.

	The difference is that the function returns an array instead of
providing this array as an output parameter.

	The second function Total returns a single value of
Currency type.

	This function receives an array of products.

	It returns a single value corresponding to the total value for all
products in the system.

Remarks:

	You can use Currency (Q) to convert from an element Q of
Quantity type to the Currency type.

	As you might remember, Ada requires an explicit conversion in
calculations where variables of both integer and floating-point
types are used.

	In our case, the Quantity subtype is based on the
Integer type and the Currency subtype is based on the
Float type, so a conversion is necessary in calculations
using those types.

product_info_pkg.ads

 1package Product_Info_Pkg is
 2
 3 subtype Quantity is Natural;
 4
 5 subtype Currency is Float;
 6
 7 type Product_Info is record
 8 Units : Quantity;
 9 Price : Currency;
10 end record;
11
12 -- Complete the type declarations:
13 --
14 -- type Product_Infos is ...
15 --
16 -- type Currency_Array is ...
17
18 procedure Total (P : Product_Infos;
19 Tot : out Currency_Array);
20
21 function Total (P : Product_Infos) return Currency_Array;
22
23 function Total (P : Product_Infos) return Currency;
24
25end Product_Info_Pkg;

product_info_pkg.adb

 1package body Product_Info_Pkg is
 2
 3 -- Complete the subprogram implementations:
 4 --
 5
 6 -- procedure Total (P : Product_Infos;
 7 -- Tot : out Currency_Array) is ...
 8
 9 -- function Total (P : Product_Infos) return Currency_Array is ...
10
11 -- function Total (P : Product_Infos) return Currency is ...
12
13end Product_Info_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Product_Info_Pkg; use Product_Info_Pkg;
 5
 6procedure Main is
 7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
 8
 9 type Test_Case_Index is
10 (Total_Func_Chk,
11 Total_Proc_Chk,
12 Total_Value_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16
17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20
21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28
29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37
38 begin
39 Currency_IO.Default_Fore := 1;
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42
43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

String_10

Goal: work with constrained string types.

Steps:

	Implement the Strings_10 package.

	Declare the String_10 type.

	Implement the To_String_10 function.

Requirements:

	The constrained string type String_10 is an array of ten
characters.

	Function To_String_10 returns constrained strings of
String_10 type based on an input parameter of String type.

	For strings that are more than 10 characters, omit everything
after the 11th character.

	For strings that are fewer than 10 characters, pad the string
with ' ' characters until it is 10 characters.

Remarks:

	Declaring String_10 as a subtype of String is the easiest
way.

	You may declare it as a new type as well. However, this requires some
adaptations in the Main test procedure.

	You can use Integer'Min to calculate the minimum of two integer
values.

strings_10.ads

 1package Strings_10 is
 2
 3 -- Complete the type and subprogram declarations:
 4 --
 5
 6 -- subtype String_10 is ...;
 7
 8 -- Using "type String_10 is..." is possible, too. However, it
 9 -- requires a custom Put_Line procedure that is called in Main:
10 -- procedure Put_Line (S : String_10);
11
12 -- function To_String_10 ...;
13
14end Strings_10;

strings_10.adb

1package body Strings_10 is
2
3 -- Complete the subprogram declaration and implementation:
4 --
5 -- function To_String_10 ... is
6
7end Strings_10;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Strings_10; use Strings_10;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (String_10_Long_Chk,
 9 String_10_Short_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15
16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of Names

Goal: create a system for a list of names and ages.

Steps:

	Implement the Names_Ages package.

	Declare the People_Array array type.

	Complete the declaration of the People record type with the
People_A element of People_Array type.

	Implement the Add procedure.

	Implement the Reset procedure.

	Implement the Get function.

	Implement the Update procedure.

	Implement the Display procedure.

Requirements:

	Each person is represented by the Person type, which is a record
containing the name and the age of that person.

	People_Array is an unconstrained array of Person type
with a positive range.

	The Max_People constant is set to 10.

	Record type People contains:

	The People_A element of People_Array type.

	This array must be constrained by the Max_People constant.

	Procedure Add adds a person to the list.

	By default, the age of this person is set to zero in this procedure.

	Procedure Reset resets the list.

	Function Get retrieves the age of a person from the list.

	Procedure Update updates the age of a person in the list.

	Procedure Display shows the complete list using the following
format:

	The first line must be LIST OF NAMES:. It is followed by the
name and age of each person in the next lines.

	For each person on the list, the procedure must display the
information in the following format:

NAME: XXXX
AGE: YY

Remarks:

	In the implementation of procedure Add, you may use an index to
indicate the last valid position in the array — see
Last_Valid in the code below.

	In the implementation of procedure Display, you should use the
Trim function from the Ada.Strings.Fixed package to format
the person's name — for example: Trim (P.Name, Right).

	You may need the Integer'Min (A, B) and the
Integer'Max (A, B) functions to get the minimum and maximum
values in a comparison between two integer values A and B.

	Fixed-length strings can be initialized with whitespaces using
the others syntax. For example:
S : String_10 := (others => ' ');

	You may implement additional subprograms to deal with other types
declared in the Names_Ages package below, such as the
Name_Type and the Person type.

	For example, a function To_Name_Type to convert from
String to Name_Type might be useful.

	Take a moment to reflect on which additional subprograms could be
useful as well.

names_ages.ads

 1package Names_Ages is
 2
 3 Max_People : constant Positive := 10;
 4
 5 subtype Name_Type is String (1 .. 50);
 6
 7 type Age_Type is new Natural;
 8
 9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13
14 -- Add type declaration for People_Array record:
15 --
16 -- type People_Array is ...;
17
18 -- Replace type declaration for People record. You may use the
19 -- following template:
20 --
21 -- type People is record
22 -- People_A : People_Array ...;
23 -- Last_Valid : Natural;
24 -- end record;
25 --
26 type People is null record;
27
28 procedure Reset (P : in out People);
29
30 procedure Add (P : in out People;
31 Name : String);
32
33 function Get (P : People;
34 Name : String) return Age_Type;
35
36 procedure Update (P : in out People;
37 Name : String;
38 Age : Age_Type);
39
40 procedure Display (P : People);
41
42end Names_Ages;

names_ages.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 4
 5package body Names_Ages is
 6
 7 procedure Reset (P : in out People) is
 8 begin
 9 null;
10 end Reset;
11
12 procedure Add (P : in out People;
13 Name : String) is
14 begin
15 null;
16 end Add;
17
18 function Get (P : People;
19 Name : String) return Age_Type is
20 begin
21 return 0;
22 end Get;
23
24 procedure Update (P : in out People;
25 Name : String;
26 Age : Age_Type) is
27 begin
28 null;
29 end Update;
30
31 procedure Display (P : People) is
32 begin
33 null;
34 end Display;
35
36end Names_Ages;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Names_Ages; use Names_Ages;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Names_Ages_Chk,
 9 Get_Age_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34
35begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42
43 Check (Test_Case_Index'Value (Argument (1)));
44end Main;

Footnotes

Design by contracts

Price Range

Goal: use predicates to indicate the correct range of prices.

Steps:

	Complete the Prices package.

	Rewrite the type declaration of Price.

Requirements:

	Type Price must use a predicate instead of a range.

Remarks:

	As discussed in the course, ranges are a form of contract.

	For example, the subtype Price below indicates that a value
of this subtype must always be positive:

subtype Price is Amount range 0.0 .. Amount'Last;

	Interestingly, you can replace ranges by predicates, which is the
goal of this exercise.

prices.ads

1package Prices is
2
3 type Amount is delta 10.0 ** (-2) digits 12;
4
5 subtype Price is Amount range 0.0 .. Amount'Last;
6
7end Prices;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Prices; use Prices;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Price_Range_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19
20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Pythagorean Theorem: Predicate

Goal: use the Pythagorean theorem as a predicate.

Steps:

	Complete the Triangles package.

	Add a predicate to the Right_Triangle type.

Requirements:

	The Right_Triangle type must use the Pythagorean theorem as a
predicate to ensure that its components are consistent.

Remarks:

	As you probably remember, the
Pythagoras' theorem[#1]
states that the square of the hypotenuse of a right triangle is equal to
the sum of the squares of the other two sides.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Precondition

Goal: use the Pythagorean theorem as a precondition.

Steps:

	Complete the Triangles package.

	Add a precondition to the Init function.

Requirements:

	The Init function must use the Pythagorean theorem as a
precondition to ensure that the input values are consistent.

Remarks:

	In this exercise, you'll work again with the Right_Triangle type.

	This time, your job is to use a precondition instead of a
predicate.

	The precondition is applied to the Init function, not to the
Right_Triangle type.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Postcondition

Goal: use the Pythagorean theorem as a postcondition.

Steps:

	Complete the Triangles package.

	Add a postcondition to the Init function.

Requirements:

	The Init function must use the Pythagorean theorem as a
postcondition to ensure that the returned object is consistent.

Remarks:

	In this exercise, you'll work again with the Triangles package.

	This time, your job is to apply a postcondition instead of a
precondition to the Init function.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2));
14
15end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Type Invariant

Goal: use the Pythagorean theorem as a type invariant.

Steps:

	Complete the Triangles package.

	Add a type invariant to the Right_Triangle type.

Requirements:

	Right_Triangle is a private type.

	It must use the Pythagorean theorem as a type invariant to ensure
that its encapsulated components are consistent.

Remarks:

	In this exercise, Right_Triangle is declared as a private type.

	In this case, we use a type invariant for Right_Triangle to
check the Pythagorean theorem.

	As a bonus, after completing the exercise, you may analyze the effect
that default values have on type invariants.

	For example, the declaration of Right_Triangle uses zero as
the default values of the three triangle lengths.

	If you replace those default values with Length'Last, you'll
get different results.

	Make sure you understand why this is happening.

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is private;
 6
 7 function Init (H, C1, C2 : Length) return Right_Triangle;
 8
 9private
10
11 type Right_Triangle is record
12 H : Length := 0;
13 -- Hypotenuse
14 C1, C2 : Length := 0;
15 -- Catheti / legs
16 end record;
17
18 function Init (H, C1, C2 : Length) return Right_Triangle is
19 ((H, C1, C2));
20
21end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Primary Color

Goal: extend a package for HTML colors so that it can handle primary
colors.

Steps:

	Complete the Color_Types package.

	Declare the HTML_RGB_Color subtype.

	Implement the To_Int_Color function.

Requirements:

	The HTML_Color type is an enumeration that contains a list of
HTML colors.

	The To_RGB_Lookup_Table array implements a lookup-table to
convert the colors into a hexadecimal value using RGB color components
(i.e. Red, Green and Blue)

	Function To_Int_Color extracts one of the RGB components of an
HTML color and returns its hexadecimal value.

	The function has two parameters:

	First parameter is the HTML color (HTML_Color type).

	Second parameter indicates which RGB component is to be extracted
from the HTML color (HTML_RGB_Color subtype).

	For example, if we call To_Int_Color (Salmon, Red), the
function returns #FA,

	This is the hexadecimal value of the red component of the
Salmon color.

	You can find further remarks below about this color as an
example.

	The HTML_RGB_Color subtype is limited to the primary RGB colors
components (i.e. Red, Green and Blue).

	This subtype is used to select the RGB component in calls to
To_Int_Color.

	You must use a predicate in the type declaration.

Remarks:

	In this exercise, we reuse the code of the Colors: Lookup-Table
exercise from the Arrays labs.

	These are the hexadecimal values of the colors that we used in the
original exercise:

	Color

	Value

	Salmon

	#FA8072

	Firebrick

	#B22222

	Red

	#FF0000

	Darkred

	#8B0000

	Lime

	#00FF00

	Forestgreen

	#228B22

	Green

	#008000

	Darkgreen

	#006400

	Blue

	#0000FF

	Mediumblue

	#0000CD

	Darkblue

	#00008B

	You can extract the hexadecimal value of each primary color by splitting
the values from the table above into three hexadecimal values with two
digits each.

	For example, the hexadecimal value of Salmon is #FA8072,
where:

	the first part of this hexadecimal value (#FA) corresponds
to the red component,

	the second part (#80) corresponds to the green component, and

	the last part (#72) corresponds to the blue component.

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 function Image (I : Int_Color) return String;
19
20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25
26 function To_RGB (C : HTML_Color) return RGB;
27
28 function Image (C : RGB) return String;
29
30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31
32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44
45 subtype HTML_RGB_Color is HTML_Color;
46
47 function To_Int_Color (C : HTML_Color;
48 S : HTML_RGB_Color) return Int_Color;
49 -- Convert to hexadecimal value for the selected RGB component S
50
51end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_RGB (C : HTML_Color) return RGB is
 6 begin
 7 return To_RGB_Lookup_Table (C);
 8 end To_RGB;
 9
10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 begin
13 -- Implement function!
14 return 0;
15 end To_Int_Color;
16
17 function Image (I : Int_Color) return String is
18 subtype Str_Range is Integer range 1 .. 10;
19 S : String (Str_Range);
20 begin
21 Ada.Integer_Text_IO.Put (To => S,
22 Item => I,
23 Base => 16);
24 return S;
25 end Image;
26
27 function Image (C : RGB) return String is
28 begin
29 return ("(Red => " & Image (C.Red)
30 & ", Green => " & Image (C.Green)
31 & ", Blue => " & Image (C.Blue)
32 &")");
33 end Image;
34
35end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_Red_Chk,
 9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22
23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Pythagorean_theorem

Exceptions

Uninitialized Value

Goal: implement an enumeration to avoid the use of uninitialized values.

Steps:

	Implement the Options package.

	Declare the Option enumeration type.

	Declare the Uninitialized_Value exception.

	Implement the Image function.

Requirements:

	Enumeration Option contains:

	the Uninitialized value, and

	the actual options:

	Option_1,

	Option_2,

	Option_3.

	Function Image returns a string for the Option type.

	In case the argument to Image is Uninitialized, the
function must raise the Uninitialized_Value exception.

Remarks:

	In this exercise, we employ exceptions as a mechanism to avoid the use
of uninitialized values for a certain type.

options.ads

1package Options is
2
3 -- Declare the Option enumeration type!
4 type Option is null record;
5
6 function Image (O : Option) return String;
7
8end Options;

options.adb

1package body Options is
2
3 function Image (O : Option) return String is
4 begin
5 return "";
6 end Image;
7
8end Options;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Options; use Options;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Options_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20
21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Numerical Exception

Goal: handle numerical exceptions in a test procedure.

Steps:

	Add exception handling to the Check_Exception procedure.

Requirements:

	The test procedure Num_Exception_Test from the Tests
package below must be used in the implementation of
Check_Exception.

	The Check_Exception procedure must be extended to handle
exceptions as follows:

	If the exception raised by Num_Exception_Test is
Constraint_Error, the procedure must display the message
"Constraint_Error detected!" to the user.

	Otherwise, it must display the message associated with the
exception.

Remarks:

	You can use the Exception_Message function to retrieve the
message associated with an exception.

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.adb

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID) is
4begin
5 Num_Exception_Test (ID);
6end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Re-raising Exceptions

Goal: make use of exception re-raising in a test procedure.

Steps:

	Declare new exception: Another_Exception.

	Add exception re-raise to the Check_Exception procedure.

Requirements:

	Exception Another_Exception must be declared in the Tests
package.

	Procedure Check_Exception must be extended to re-raise any
exception. When an exception is detected, the procedure must:

	display a user message (as implemented in the previous exercise),
and then

	Raise or re-raise exception depending on the exception that is
being handled:

	In case of Constraint_Error exception, re-raise the
exception.

	In all other cases, raise Another_Exception.

Remarks:

	In this exercise, you should extend the implementation of the
Check_Exception procedure from the previous exercise.

	Naturally, you can use the code for the Check_Exception
procedure from the previous exercise as a starting point.

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.ads

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID);

check_exception.adb

1procedure Check_Exception (ID : Test_ID) is
2begin
3 Num_Exception_Test (ID);
4end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Footnotes

Generics

Display Array

Goal: create a generic procedure that displays the elements of an array.

Steps:

	Implement the generic procedure Display_Array.

Requirements:

	Generic procedure Display_Array displays the elements of an
array.

	It uses the following scheme:

	First, it displays a header.

	Then, it displays the elements of the array.

	When displaying the elements, it must:

	use one line per element, and

	include the corresponding index of the array.

	This is the expected format:

<HEADER>
<index #1>: <element #1>
<index #2>: <element #2>
...

	For example:

	For the following code:

procedure Test is
 A : Int_Array (1 .. 2) := (1, 5);
begin
 Display_Int_Array ("Elements of A", A);;
end Test;

	The output is:

Elements of A
 1: 1
 2: 5

	These are the formal parameters of the procedure:

	a range type T_Range for the the array;

	a formal type T_Element for the elements of the array;

	This type must be declared in such a way that it can be mapped to
any type in the instantiation — including record types.

	an array type T_Array using the T_Range and
T_Element types;

	a function Image that converts a variable of T_Element
type to a String.

display_array.ads

1generic
2procedure Display_Array (Header : String;
3 A : T_Array);

display_array.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_Array (Header : String;
4 A : T_Array) is
5begin
6 null;
7end Display_Array;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Array;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Array_Chk,
 8 Point_Array_Chk);
 9
10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12
13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,
16 T_Array => Int_Array,
17 Image => Integer'Image);
18
19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23
24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29
30 type Point_Array is array (Natural range <>) of Point;
31
32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37
38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43
44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49
50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Average of Array of Float

Goal: create a generic function that calculates the average of an array
of floating-point elements.

Steps:

	Declare and implement the generic function Average.

Requirements:

	Generic function Average calculates the average of an array
containing floating-point values of arbitrary precision.

	Generic function Average must contain the following formal
parameters:

	a range type T_Range for the array;

	a formal type T_Element that can be mapped to floating-point
types of arbitrary precision;

	an array type T_Array using T_Range and
T_Element;

Remarks:

	You should use the Float type for the accumulator.

average.ads

1generic
2function Average (A : T_Array) return T_Element;

average.adb

1function Average (A : T_Array) return T_Element is
2begin
3 return 0.0;
4end Average;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Average;
 5
 6procedure Main is
 7 type Test_Case_Index is (Float_Array_Chk,
 8 Digits_7_Float_Array_Chk);
 9
10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12
13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17
18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22
23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25
26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28
29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33
34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39
40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;
48 end Check;
49
50begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57
58 Check (Test_Case_Index'Value (Argument (1)));
59end Main;

Average of Array of Any Type

Goal: create a generic function that calculates the average of an array
of elements of any arbitrary type.

Steps:

	Declare and implement the generic function Average.

	Implement the test procedure Test_Item.

	Declare the F_IO package.

	Implement the Get_Total function for the Item type.

	Implement the Get_Price function for the Item type.

	Declare the Average_Total function.

	Declare the Average_Price function.

Requirements:

	Generic function Average calculates the average of an array
containing elements of any arbitrary type.

	Generic function Average has the same formal parameters as in the
previous exercise, except for:

	T_Element, which is now a formal type that can be mapped to
any arbitrary type.

	To_Float, which is an additional formal parameter.

	To_Float is a function that converts the arbitrary element
of T_Element type to the Float type.

	Procedure Test_Item is used to test the generic Average
procedure for a record type (Item).

	Record type Item contains the Quantity and
Price components.

	The following functions have to implemented to be used for the formal
To_Float function parameter:

	For the Decimal type, the function is pretty straightforward:
it simply returns the floating-point value converted from the
decimal type.

	For the Item type, two functions must be created to convert
to floating-point type:

	Get_Total, which returns the multiplication of the
quantity and the price components of the Item type;

	Get_Price, which returns just the price.

	The generic function Average must be instantiated as follows:

	For the Item type, you must:

	declare the Average_Total function (as an instance of
Average) using the Get_Total for the
To_Float parameter;

	declare the Average_Price function (as an instance of
Average) using the Get_Price for the
To_Float parameter.

	You must use the Put procedure from Ada.Text_IO.Float_IO.

	The generic standard package Ada.Text_IO.Float_IO must be
instantiated as F_IO in the test procedures.

	This is the specification of the Put procedure, as described
in the appendix A.10.9 of the Ada Reference Manual:

procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

	This is the expected format when calling Put from
Float_IO:

	Function

	Fore

	Aft

	Exp

	Test_Item

	3

	2

	0

Remarks:

	In this exercise, you'll abstract the Average function from the
previous exercises a step further.

	In this case, the function shall be able to calculate the average of
any arbitrary type — including arrays containing elements of
record types.

	Since record types can be composed by many components of different
types, we need to provide a way to indicate which component (or
components) of the record will be used when calculating the average
of the array.

	This problem is solved by specifying a To_Float function as a
formal parameter, which converts the arbitrary element of
T_Element type to the Float type.

	In the implementation of the Average function, we use the
To_Float function and calculate the average using a
floating-point variable.

average.ads

1generic
2function Average (A : T_Array) return Float;

average.adb

1function Average (A : T_Array) return Float is
2begin
3 null;
4end Average;

test_item.ads

1procedure Test_Item;

test_item.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Average;
 4
 5procedure Test_Item is
 6 type Amount is delta 0.01 digits 12;
 7
 8 type Item is record
 9 Quantity : Natural;
10 Price : Amount;
11 end record;
12
13 type Item_Array is
14 array (Positive range <>) of Item;
15
16 A : constant Item_Array (1 .. 4)
17 := ((Quantity => 5, Price => 10.00),
18 (Quantity => 80, Price => 2.50),
19 (Quantity => 40, Price => 5.00),
20 (Quantity => 20, Price => 12.50));
21
22begin
23 Put ("Average per item & quantity: ");
24 F_IO.Put (Average_Total (A));
25 New_Line;
26
27 Put ("Average price: ");
28 F_IO.Put (Average_Price (A));
29 New_Line;
30end Test_Item;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Item;
 5
 6procedure Main is
 7 type Test_Case_Index is (Item_Array_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Generic list

Goal: create a system based on a generic list to add and displays elements.

Steps:

	Declare and implement the generic package Gen_List.

	Implement the Init procedure.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	Generic package Gen_List must have the following subprograms:

	Procedure Init initializes the list.

	Procedure Add adds an item to the list.

	This procedure must contain a Status output parameter
that is set to False when the list was full — i.e.
if the procedure failed while trying to add the item;

	Procedure Display displays the complete list.

	This includes the name of the list and its elements —
using one line per element.

	This is the expected format:

<NAME>
<element #1>
<element #2>
...

	Generic package Gen_List has these formal parameters:

	an arbitrary formal type Item;

	an unconstrained array type Items of Item element with
positive range;

	the Name parameter containing the name of the list;

	This must be a formal input object of String type.

	It must be used in the Display procedure.

	an actual array List_Array to store the list;

	This must be a formal in out object of Items type.

	the variable Last to store the index of the last element;

	This must be a formal in out object of Natural
type.

	a procedure Put for the Item type.

	This procedure is used in the Display procedure to display
individual elements of the list.

	The test procedure Test_Int is used to test a list of
elements of Integer type.

	For both test procedures, you must:

	add missing type declarations;

	declare and implement a Put procedure for individual elements
of the list;

	declare instances of the Gen_List package.

	For the Test_Int procedure, declare the
Int_List package.

Remarks:

	In previous labs, you've been implementing lists for a variety of types.

	The List of Names exercise from the Arrays labs is an
example.

	In this exercise, you have to abstract those implementations to
create the generic Gen_List package.

gen_list.ads

 1generic
 2package Gen_List is
 3
 4 procedure Init;
 5
 6 procedure Add (I : Item;
 7 Status : out Boolean);
 8
 9 procedure Display;
10
11end Gen_List;

gen_list.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_List is
 4
 5 procedure Init is
 6 begin
 7 null;
 8 end Init;
 9
10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 null;
14 end Add;
15
16 procedure Display is
17 begin
18 null;
19 end Display;
20
21end Gen_List;

test_int.ads

1procedure Test_Int;

test_int.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_List;
 4
 5procedure Test_Int is
 6
 7 type Integer_Array is array (Positive range <>) of Integer;
 8
 9 A : Integer_Array (1 .. 3);
10 L : Natural;
11
12 Success : Boolean;
13
14 procedure Display_Add_Success (Success : Boolean) is
15 begin
16 if Success then
17 Put_Line ("Added item successfully!");
18 else
19 Put_Line ("Couldn't add item!");
20 end if;
21
22 end Display_Add_Success;
23
24begin
25 Int_List.Init;
26
27 Int_List.Add (2, Success);
28 Display_Add_Success (Success);
29
30 Int_List.Add (5, Success);
31 Display_Add_Success (Success);
32
33 Int_List.Add (7, Success);
34 Display_Add_Success (Success);
35
36 Int_List.Add (8, Success);
37 Display_Add_Success (Success);
38
39 Int_List.Display;
40end Test_Int;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Int;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Footnotes

Imperative language

For the exercises below (except for the first one), don't worry about the
details of the Main procedure. You should just focus on implementing the
application in the subprogram specified by the exercise.

Hello World

Goal: create a "Hello World!" application.

Steps:

	Complete the Main procedure.

Requirements:

	The application must display the message "Hello World!".

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4begin
5 -- Implement the application here!
6 null;
7end Main;

Greetings

Goal: create an application that greets a person.

Steps:

	Complete the Greet procedure.

Requirements:

	Given an input string <name>, procedure Greet must display
the message "Hello <name>!".

	For example, if the name is "John", it displays the message
"Hello John!".

Remarks:

	You can use the concatenation operator (&).

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Greet (Name : String) is
 7 begin
 8 -- Implement the application here!
 9 null;
10 end Greet;
11
12begin
13 if Argument_Count < 1 then
14 Put_Line ("ERROR: missing arguments! Exiting...");
15 return;
16 elsif Argument_Count > 1 then
17 Put_Line ("Ignoring additional arguments...");
18 end if;
19
20 Greet (Argument (1));
21end Main;

Positive Or Negative

Goal: create an application that classifies integer numbers.

Steps:

	Complete the Classify_Number procedure.

Requirements:

	Given an integer number X, procedure Classify_Number must
classify X as positive, negative or zero and display the result:

	If X > 0, it displays Positive.

	If X < 0, it displays Negative.

	If X = 0, it displays Zero.

classify_number.ads

1procedure Classify_Number (X : Integer);

classify_number.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Classify_Number (X : Integer) is
4begin
5 -- Implement the application here!
6 null;
7end Classify_Number;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Classify_Number;
 5
 6procedure Main is
 7 A : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17
18 Classify_Number (A);
19end Main;

Numbers

Goal: create an application that displays numbers in a specific order.

Steps:

	Complete the Display_Numbers procedure.

Requirements:

	Given two integer numbers, Display_Numbers displays all numbers
in the range starting with the smallest number.

display_numbers.ads

1procedure Display_Numbers (A, B : Integer);

display_numbers.adb

1procedure Display_Numbers (A, B : Integer) is
2begin
3 -- Implement the application here!
4 null;
5end Display_Numbers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Numbers;
 5
 6procedure Main is
 7 A, B : Integer;
 8begin
 9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18
19 Display_Numbers (A, B);
20end Main;

Footnotes

Modular Programming

Months

Goal: create a package to display the months of the year.

Steps:

	Convert the Months procedure below to a package.

	Create the specification and body of the Months package.

Requirements:

	Months must contain the declaration of strings for each month of
the year, which are stored in three-character constants based on the
month's name.

	For example, the string "January" is stored in the constant
Jan. These strings are then used by the Display_Months
procedure, which is also part of the Months package.

Remarks:

	The goal of this exercise is to create the Months package.

	In the code below, Months is declared as a procedure.

	Therefore, we need to convert it into a real package.

	You have to modify the procedure declaration and implementation in
the code below, so that it becomes a package specification and a
package body.

months.ads

1-- Create specification for Months package, which includes
2-- the declaration of the Display_Months procedure.
3--
4procedure Months;

months.adb

 1-- Create body of Months package, which includes
 2-- the implementation of the Display_Months procedure.
 3--
 4procedure Months is
 5
 6 procedure Display_Months is
 7 begin
 8 Put_Line ("Months:");
 9 Put_Line ("- " & Jan);
10 Put_Line ("- " & Feb);
11 Put_Line ("- " & Mar);
12 Put_Line ("- " & Apr);
13 Put_Line ("- " & May);
14 Put_Line ("- " & Jun);
15 Put_Line ("- " & Jul);
16 Put_Line ("- " & Aug);
17 Put_Line ("- " & Sep);
18 Put_Line ("- " & Oct);
19 Put_Line ("- " & Nov);
20 Put_Line ("- " & Dec);
21 end Display_Months;
22
23begin
24 null;
25end Months;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Months; use Months;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Months_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18
19begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26
27 Check (Test_Case_Index'Value (Argument (1)));
28end Main;

Operations

Goal: create a package to perform basic mathematical operations.

Steps:

	Implement the Operations package.

	Declare and implement the Add function.

	Declare and implement the Subtract function.

	Declare and implement the Multiply: function.

	Declare and implement the Divide function.

	Implement the Operations.Test package

	Declare and implement the Display procedure.

Requirements:

	Package Operations contains functions for each of the four
basic mathematical operations for parameters of Integer type:

	Function Add performs the addition of A and B
and returns the result;

	Function Subtract performs the subtraction of A and
B and returns the result;

	Function Multiply performs the multiplication of A and
B and returns the result;

	Function Divide performs the division of A and
B and returns the result.

	Package Operations.Test contains the test environment:

	Procedure Display must use the functions from
the parent (Operations) package as indicated by the template
in the code below.

operations.ads

1package Operations is
2
3 -- Create specification for Operations package, including the
4 -- declaration of the functions mentioned above.
5 --
6
7end Operations;

operations.adb

1package body Operations is
2
3 -- Create body of Operations package.
4 --
5
6end Operations;

operations-test.ads

1package Operations.Test is
2
3 -- Create specification for Operations package, including the
4 -- declaration of the Display procedure:
5 --
6 -- procedure Display (A, B : Integer);
7 --
8
9end Operations.Test;

operations-test.adb

 1package body Operations.Test is
 2
 3 -- Implement body of Operations.Test package.
 4 --
 5
 6 procedure Display (A, B : Integer) is
 7 A_Str : constant String := Integer'Image (A);
 8 B_Str : constant String := Integer'Image (B);
 9 begin
10 Put_Line ("Operations:");
11 Put_Line (A_Str & " + " & B_Str & " = "
12 & Integer'Image (Add (A, B))
13 & ",");
14 -- Use the line above as a template and add the rest of the
15 -- implementation for Subtract, Multiply and Divide.
16 end Display;
17
18end Operations.Test;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Operations;
 5with Operations.Test; use Operations.Test;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30
31begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38
39 Check (Test_Case_Index'Value (Argument (1)));
40end Main;

Footnotes

More About Types

Aggregate Initialization

Goal: initialize records and arrays using aggregates.

Steps:

	Implement the Aggregates package.

	Create the record type Rec.

	Create the array type Int_Arr.

	Implement the Init procedure that outputs a record of
Rec type.

	Implement the Init_Some procedure.

	Implement the Init procedure that outputs an array of
Int_Arr type.

Requirements:

	Record type Rec has four components of Integer type. These
are the components with the corresponding default values:

	W = 10

	X = 11

	Y = 12

	Z = 13

	Array type Int_Arr has 20 elements of Integer type (with
indices ranging from 1 to 20).

	The first Init procedure outputs a record of Rec type
where:

	X is initialized with 100,

	Y is initialized with 200, and

	the remaining elements use their default values.

	Procedure Init_Some outputs an array of Int_Arr type
where:

	the first five elements are initialized with the value 99, and

	the remaining elements are initialized with the value 100.

	The second Init procedure outputs an array of Int_Arr type
where:

	all elements are initialized with the value 5.

aggregates.ads

 1package Aggregates is
 2
 3 -- type Rec is ...;
 4
 5 -- type Int_Arr is ...;
 6
 7 procedure Init;
 8
 9 -- procedure Init_Some ...;
10
11 -- procedure Init ...;
12
13end Aggregates;

aggregates.adb

1package body Aggregates is
2
3 procedure Init is null;
4
5end Aggregates;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Aggregates; use Aggregates;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42)
 9 with Unreferenced;
10
11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53
54begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");
60 end if;
61
62 Check (Test_Case_Index'Value (Argument (1)));
63end Main;

Versioning

Goal: implement a simple package for source-code versioning.

Steps:

	Implement the Versioning package.

	Declare the record type Version.

	Implement the Convert function that returns a string.

	Implement the Convert function that returns a floating-point
number.

Requirements:

	Record type Version has the following components of
Natural type:

	Major,

	Minor, and

	Maintenance.

	The first Convert function returns a string containing the
version number.

	The second Convert function returns a floating-point value.

	For this floating-point value:

	the number before the decimal point must correspond to the major
number, and

	the number after the decimal point must correspond to the minor
number.

	the maintenance number is ignored.

	For example, version "1.3.5" is converted to the floating-point
value 1.3.

	An obvious limitation of this function is that it can only handle
one-digit numbers for the minor component.

	For example, we cannot convert version "1.10.0" to a reasonable
value with the approach described above. The result of the call
Convert ((1, 10, 0)) is therefore unspecified.

	For the scope of this exercise, only version numbers with
one-digit components are checked.

Remarks:

	We use overloading for the Convert functions.

	For the function Convert that returns a string, you can make use
of the Image_Trim function, as indicated in the source-code below
— see package body of Versioning.

versioning.ads

1package Versioning is
2
3 -- type Version is record...
4
5 -- function Convert ...
6
7 -- function Convert
8
9end Versioning;

versioning.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3
 4package body Versioning is
 5
 6 function Image_Trim (N : Natural) return String is
 7 S_N : constant String := Trim (Natural'Image (N), Left);
 8 begin
 9 return S_N;
10 end Image_Trim;
11
12 -- function Convert ...
13 -- S_Major : constant String := Image_Trim (V.Major);
14 -- S_Minor : constant String := Image_Trim (V.Minor);
15 -- S_Maint : constant String := Image_Trim (V.Maintenance);
16 -- begin
17 -- end Convert;
18
19 -- function Convert ...
20 -- begin
21 -- end Convert;
22
23end Versioning;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Versioning; use Versioning;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Ver_String_Chk,
 9 Ver_Float_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21
22begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29
30 Check (Test_Case_Index'Value (Argument (1)));
31end Main;

Simple todo list

Goal: implement a simple to-do list system.

Steps:

	Implement the Todo_Lists package.

	Declare the Todo_Item type.

	Declare the Todo_List type.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	Todo_Item type is used to store a to-do item.

	It should be implemented as an access type to strings.

	Todo_Items type is an array of to-do items.

	It should be implemented as an unconstrained array with positive
range.

	Todo_List type is the container for all to-do items.

	This record type must have a discriminant for the maximum number of
elements of the list.

	In order to store the to-do items, it must contain a component named
Items of Todo_Items type.

	Don't forget to keep track of the last element added to the
list!

	You should declare a Last component in the record.

	Procedure Add adds items (of Todo_Item type) to the list
(of Todo_List type).

	This requires allocating a string for the access type.

	An item can only be added to the list if the list isn't full yet
— see next point for details on error handling.

	Since the number of items that can be stored on the list is limited,
the list might eventually become full in a call to Add.

	You must write code in the implementation of the Add
procedure that verifies this condition.

	If the procedure detects that the list is full, it must display the
following message: "ERROR: list is full!".

	Procedure Display is used to display all to-do items.

	The header (first line) must be TO-DO LIST.

	It must display one item per line.

Remarks:

	We use access types and unconstrained arrays in the implementation of
the Todo_Lists package.

todo_lists.ads

 1package Todo_Lists is
 2
 3 -- Replace by actual type declaration
 4 type Todo_Item is null record;
 5
 6 -- Replace by actual type declaration
 7 type Todo_Items is null record;
 8
 9 -- Replace by actual type declaration
10 type Todo_List is null record;
11
12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14
15 procedure Display (Todos : Todo_List);
16
17end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 Put_Line ("ERROR: list is full!");
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 null;
14 end Display;
15
16end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Price list

Goal: implement a list containing prices

Steps:

	Implement the Price_Lists package.

	Declare the Price_Type type.

	Declare the Price_List record.

	Implement the Reset procedure.

	Implement the Add procedure.

	Implement the Get function.

	Implement the Display procedure.

Requirements:

	Price_Type is a decimal fixed-point data type with a delta
of two digits (e.g. 0.01) and twelve digits in total.

	Price_List is a record type that contains the price list.

	This record type must have a discriminant for the maximum number of
elements of the list.

	Procedure Reset resets the list.

	Procedure Add adds a price to the list.

	You should keep track of the last element added to the list.

	Function Get retrieves a price from the list using an index.

	This function returns a record instance of Price_Result type.

	Price_Result is a variant record containing:

	the Boolean component Ok, and

	the component Price (of Price_Type).

	The returned value of Price_Result type is one of the
following:

	If the index specified in a call to Get contains a valid
(initialized) price, then

	Ok is set to True, and

	the Price component contains the price for that index.

	Otherwise:

	Ok is set to False, and

	the Price component is not available.

	Procedure Display shows all prices from the list.

	The header (first line) must be PRICE LIST.

	The remaining lines contain one price per line.

	For example:

	For the following code:

procedure Test is
 L : Price_List (10);
begin
 Reset (L);
 Add (L, 1.45);
 Add (L, 2.37);
 Display (L);
end Test;

	The output is:

PRICE LIST
 1.45
 2.37

Remarks:

	To implement the package, you'll use the following features of the Ada
language:

	decimal fixed-point types;

	records with discriminants;

	dynamically-sized record types;

	variant records.

	For record type Price_List, you may use an unconstrained array as a
component of the record and use the discriminant in the component
declaration.

price_lists.ads

 1package Price_Lists is
 2
 3 -- Replace by actual type declaration
 4 type Price_Type is new Float;
 5
 6 -- Replace by actual type declaration
 7 type Price_List is null record;
 8
 9 -- Replace by actual type declaration
10 type Price_Result is null record;
11
12 procedure Reset (Prices : in out Price_List);
13
14 procedure Add (Prices : in out Price_List;
15 Item : Price_Type);
16
17 function Get (Prices : Price_List;
18 Idx : Positive) return Price_Result;
19
20 procedure Display (Prices : Price_List);
21
22end Price_Lists;

price_lists.adb

 1package body Price_Lists is
 2
 3 procedure Reset (Prices : in out Price_List) is
 4 begin
 5 null;
 6 end Reset;
 7
 8 procedure Add (Prices : in out Price_List;
 9 Item : Price_Type) is
10 begin
11 null;
12 end Add;
13
14 function Get (Prices : Price_List;
15 Idx : Positive) return Price_Result is
16 begin
17 null;
18 end Get;
19
20 procedure Display (Prices : Price_List) is
21 begin
22 null;
23 end Display;
24
25end Price_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Price_Lists; use Price_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Price_Type_Chk,
 9 Price_List_Chk,
10 Price_List_Get_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14
15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29
30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47
48 end Get_Display;
49
50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68
69begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76
77 Check (Test_Case_Index'Value (Argument (1)));
78end Main;

Footnotes

Object-oriented programming

Simple type extension

Goal: work with type extensions using record types containing numeric
components.

Steps:

	Implement the Type_Extensions package.

	Declare the record type T_Float.

	Declare the record type T_Mixed

	Implement the Init function for the T_Float type with
a floating-point input parameter.

	Implement the Init function for the T_Float type with
an integer input parameter.

	Implement the Image function for the T_Float type.

	Implement the Init function for the T_Mixed type with
a floating-point input parameter.

	Implement the Init function for the T_Mixed type with
an integer input parameter.

	Implement the Image function for the T_Mixed type.

Requirements:

	Record type T_Float contains the following component:

	F, a floating-point type.

	Record type T_Mixed is derived from the T_Float type.

	T_Mixed extends T_Float with the following component:

	I, an integer component.

	Both components must be numerically synchronized:

	For example, if the floating-point component contains the value
2.0, the value of the integer component must be 2.

	In order to simplify the implementation, you can simply use
Integer (F) to convert a floating-point variable F
to integer.

	Function Init returns an object of the corresponding type
(T_Float or T_Mixed).

	For each type, two versions of Init must be declared:

	one with a floating-point input parameter,

	another with an integer input parameter.

	The parameter to Init is used to initialize the record
components.

	Function Image returns a string for the components of the
record type.

	In case of the Image function for the T_Float
type, the string must have the format
"{ F => <float value> }".

	For example, the call Image (T_Float'(Init (8.0))))
should return the string "{ F => 8.00000E+00 }".

	In case of the Image function for the T_Mixed
type, the string must have the format
"{ F => <float value>, I => <integer value> }".

	For example, the call Image (T_Mixed'(Init (8.0))))
should return the string
"{ F => 8.00000E+00, I => 8 }".

type_extensions.ads

 1package Type_Extensions is
 2
 3 -- Create declaration of T_Float type!
 4 type T_Float is null record;
 5
 6 -- function Init ...
 7
 8 -- function Image ...
 9
10 -- Create declaration of T_Mixed type!
11 type T_Mixed is null record;
12
13end Type_Extensions;

type_extensions.adb

1package body Type_Extensions is
2
3end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

Goal: create an online store for the members of an association.

Steps:

	Implement the Online_Store package.

	Declare the Member type.

	Declare the Full_Member type.

	Implement the Get_Status function for the Member type.

	Implement the Get_Price function for the Member type.

	Implement the Get_Status function for the Full_Member
type.

	Implement the Get_Price function for the Full_Member
type.

	Implement the Online_Store.Tests child package.

	Implement the Simple_Test procedure.

Requirements:

	Package Online_Store implements an online store application for
the members of an association.

	In this association, members can have one of the following status:

	associate member, or

	full member.

	Function Get_Price returns the correct price of an item.

	Associate members must pay the full price when they buy items
from the online store.

	Full members can get a discount.

	The discount rate can be different for each full member —
depending on factors that are irrelevant for this exercise.

	Package Online_Store has following types:

	Percentage type, which represents a percentage ranging from
0.0 to 1.0.

	Member type for associate members containing following
components:

	Start, which indicates the starting year of the
membership.

	This information is common for both associate and full
members.

	You can use the Year_Number type from the standard
Ada.Calendar package for this component.

	Full_Member type for full members.

	This type must extend the Member type above.

	It contains the following additional component:

	Discount, which indicates the discount rate that the
full member gets in the online store.

	This component must be of Percentage type.

	For the Member and Full_Member types, you must implement
the following functions:

	Get_Status, which returns a string with the membership
status.

	The string must be "Associate Member" or
"Full Member", respectively.

	Get_Price, which returns the adapted price of an item
— indicating the actual due amount.

	For example, for a full member with a 10% discount rate, the
actual due amount of an item with a price of 100.00 is 90.00.

	Associated members don't get a discount, so they always pay the
full price.

	Procedure Simple_Test (from the Online_Store.Tests
package) is used for testing.

	Based on a list of members that bought on the online store and the
corresponding full price of the item, Simple_Test must
display information about each member and the actual due amount
after discounts.

	Information about the members must be displayed in the following
format:

Member # <number>
Status: <status>
Since: <year>
Due Amount: <value>

	For this exercise, Simple_Test must use the following list:

	#

	Membership status

	Start (year)

	Discount

	Full Price

	1

	Associate

	2010

	N/A

	250.00

	2

	Full

	1998

	10.0 %

	160.00

	3

	Full

	1987

	20.0 %

	400.00

	4

	Associate

	2013

	N/A

	110.00

	In order to pass the tests, the information displayed by a call to
Simple_Test must conform to the format described above.

	You can find another example in the remarks below.

Remarks:

	In previous labs, we could have implemented a simplified version of the
system described above by simply using an enumeration type to specify
the membership status. For example:

type Member_Status is (Associate_Member, Full_Member);

	In this case, the Get_Price function would then evaluate the
membership status and adapt the item price — assuming a fixed
discount rate for all full members. This could be the corresponding
function declaration:

type Amount is delta 10.0**(-2) digits 10;

function Get_Price (M : Member_Status;
 P : Amount) return Amount;

	In this exercise, however, we'll use type extension to represent the
membership status in our application.

	For the procedure Simple_Test, let's consider the following list
of members as an example:

	#

	Membership status

	Start (year)

	Discount

	Full Price

	1

	Associate

	2002

	N/A

	100.00

	2

	Full

	2005

	10.0 %

	100.00

	For this list, the test procedure displays the following information
(in this exact format):

Member # 1
Status: Associate Member
Since: 2002
Due Amount: 100.00

Member # 2
Status: Full Member
Since: 2005
Due Amount: 90.00

	Here, although both members had the same full price (as indicated by
the last column), member #2 gets a reduced due amount of 90.00
because of the full membership status.

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 -- Create declaration of Member type!
10 --
11 -- You can use Year_Number from Ada.Calendar for the membership
12 -- starting year.
13 --
14 type Member is null record;
15
16 function Get_Status (M : Member) return String;
17
18 function Get_Price (M : Member;
19 P : Amount) return Amount;
20
21 -- Create declaration of Full_Member type!
22 --
23 -- Use the Percentage type for storing the membership discount.
24 --
25 type Full_Member is null record;
26
27 function Get_Status (M : Full_Member) return String;
28
29 function Get_Price (M : Full_Member;
30 P : Amount) return Amount;
31
32end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (0.0);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (0.0);
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6 begin
 7 null;
 8 end Simple_Test;
 9
10end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Footnotes

Privacy

Directions

Goal: create a package that handles directions and geometric angles using
a previous implementation.

Steps:

	Fix the implementation of the Test_Directions procedure.

Requirements:

	The implementation of the Test_Directions procedure must compile
correctly.

Remarks:

	This exercise is based on the Directions exercise from the
Records labs.

	In this version, however, Ext_Angle is a private type.

	In the implementation of the Test_Directions procedure below, the
Ada developer tried to initialize All_Directions — an array
of Ext_Angle type — with aggregates.

	Since we now have a private type, the compiler complains about this
initialization.

	To fix the implementation of the Test_Directions procedure, you
should use the appropriate function from the Directions package.

	The initialization of All_Directions in the code below contains a
consistency error where the angle doesn't match the assessed direction.

	See if you can spot this error!

	This kind of errors can happen when record components that have
correlated information are initialized individually without
consistency checks — using private types helps to avoid the
problem by requiring initialization routines that can enforce
consistency.

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northwest,
 8 West,
 9 Southwest,
10 South,
11 Southeast,
12 East);
13
14 function To_Direction (N : Angle_Mod) return Direction;
15
16 type Ext_Angle is private;
17
18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19
20 procedure Display (N : Ext_Angle);
21
22private
23
24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28
29end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

test_directions.adb

 1with Directions; use Directions;
 2
 3procedure Test_Directions is
 4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;
 5
 6 All_Directions : constant Ext_Angle_Array (1 .. 6)
 7 := ((0, East),
 8 (45, Northwest),
 9 (90, North),
10 (91, North),
11 (180, West),
12 (270, South));
13
14begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18
19end Test_Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Limited Strings

Goal: work with limited private types.

Steps:

	Implement the Limited_Strings package.

	Implement the Copy function.

	Implement the = operator.

Requirements:

	For both Copy and =, the two parameters may refer to
strings with different lengths. We'll limit the implementation to just
take the minimum length:

	In case of copying the string "Hello World" to a string with 5
characters, the copied string is "Hello":

 S1 : constant Lim_String := Init ("Hello World");
 S2 : Lim_String := Init (5);
begin
 Copy (From => S1, To => S2);
 Put_Line (S2); -- This displays "Hello".

	When comparing "Hello World" to "Hello", the = operator
indicates that these strings are equivalent:

 S1 : constant Lim_String := Init ("Hello World");
 S2 : constant Lim_String := Init ("Hello");
begin
 if S1 = S2 then
 -- True => This branch gets selected.

	When copying from a short string to a longer string, the remaining
characters of the longer string must be initialized with underscores
(_). For example:

 S1 : constant Lim_String := Init ("Hello");
 S2 : Lim_String := Init (10);
begin
 Copy (From => S1, To => S2);
 Put_Line (S2); -- This displays "Hello_____".

Remarks:

	As we've discussed in the course:

	Variables of limited types have the following limitations:

	they cannot be assigned to;

	they don't have an equality operator (=).

	We can, however, define our own, custom subprograms to circumvent
these limitations:

	In order to copy instances of a limited type, we can define a
custom Copy procedure.

	In order to compare instances of a limited type, we can define an
= operator.

	You can use the Min_Last constant — which is already
declared in the implementation of these subprograms — in
the code you write.

	Some details about the Limited_Strings package:

	The Lim_String type acts as a container for strings.

	In the the private part, Lim_String is declared as an
access type to a String.

	There are two versions of the Init function that initializes
an object of Lim_String type:

	The first one takes another string.

	The second one receives the number of characters for a string
container.

	Procedure Put_Line displays object of Lim_String type.

	The design and implementation of the Limited_Strings package
is very simplistic.

	A good design would have better handling of access types, for
example.

limited_strings.ads

 1package Limited_Strings is
 2
 3 type Lim_String is limited private;
 4
 5 function Init (S : String) return Lim_String;
 6
 7 function Init (Max : Positive) return Lim_String;
 8
 9 procedure Put_Line (LS : Lim_String);
10
11 procedure Copy (From : Lim_String;
12 To : in out Lim_String);
13
14 function "=" (Ref, Dut : Lim_String) return Boolean;
15
16private
17
18 type Lim_String is access String;
19
20end Limited_Strings;

limited_strings.adb

 1with Ada.Text_IO;
 2
 3package body Limited_Strings
 4is
 5
 6 function Init (S : String) return Lim_String is
 7 LS : constant Lim_String := new String'(S);
 8 begin
 9 return Ls;
10 end Init;
11
12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18
19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23
24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28
29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 -- Complete the implementation!
34 null;
35 end;
36
37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 -- Complete the implementation!
41 return True;
42 end;
43
44end Limited_Strings;

check_lim_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Limited_Strings; use Limited_Strings;
 4
 5procedure Check_Lim_String is
 6 S : constant String := "----------";
 7 S1 : constant Lim_String := Init ("Hello World");
 8 S2 : constant Lim_String := Init (30);
 9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16
17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22
23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26
27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32
33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36
37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42end Check_Lim_String;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Check_Lim_String;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Lim_String_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Bonus exercise

In previous labs, we had many source-code snippets containing records that
could be declared private. The source-code for the exercise above
(Directions) is an example: we've modified the type declaration of
Ext_Angle, so that the record is now private. Encapsulating the
record components — by declaring record components in the private
part — makes the code safer. Also, because many of the code snippets
weren't making use of record components directly (but handling record
types via the API instead), they continue to work fine after these
modifications.

This exercise doesn't contain any source-code. In fact, the goal here is
to modify previous labs, so that the record declarations are made private.
You can look into those labs, modify the type declarations, and recompile
the code. The corresponding test-cases must still pass.

If no other changes are needed apart from changes in the declaration, then that
indicates we have used good programming techniques in the original code. On the
other hand, if further changes are needed, then you should investigate why this
is the case.

Also note that, in some cases, you can move support types into the private
part of the specification without affecting its compilation. This is the case,
for example, for the People_Array type of the List of Names lab
mentioned below. You should, in fact, keep only relevant types and subprograms
in the public part and move all support declarations to the private part of the
specification whenever possible.

Below, you find the selected labs that you can work on, including changes
that you should make. In case you don't have a working version of the
source-code of previous labs, you can look into the corresponding solutions.

Colors

Chapter: Records

Steps:

	Change declaration of RGB type to private.

Requirements:

	Implementation must compile correctly and test cases must pass.

List of Names

Chapter: Arrays

Steps:

	Change declaration of Person and People types to
limited private.

	Move type declaration of People_Array to private part.

Requirements:

	Implementation must compile correctly and test cases must pass.

Price List

Chapter: More About Types

Steps:

	Change declaration of Price_List type to limited private.

Requirements:

	Implementation must compile correctly and test cases must pass.

Footnotes

Records

Directions

Goal: create a package that handles directions and geometric angles.

Steps:

	Implement the Directions package.

	Declare the Ext_Angle record.

	Implement the Display procedure.

	Implement the To_Ext_Angle function.

Requirements:

	Record Ext_Angle stores information about the extended angle
(see remark about extended angles below).

	Procedure Display displays information about the extended angle.

	You should use the implementation that has been commented out (see
code below) as a starting point.

	Function To_Ext_Angle converts a simple angle value to an
extended angle (Ext_Angle type).

Remarks:

	We make use of the algorithm implemented in the Check_Direction
procedure (chapter on imperative language).

	For the sake of this exercise, we use the concept of extended angles.
This includes the actual geometric angle and the corresponding direction
(North, South, Northwest, and so on).

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northeast,
 8 East,
 9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14
15 function To_Direction (N: Angle_Mod) return Direction;
16
17 -- Include type declaration for Ext_Angle record type:
18 --
19 -- NOTE: Use the Angle_Mod and Direction types declared above!
20 --
21 -- type Ext_Angle is [...]
22 --
23
24 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
25
26 procedure Display (N : Ext_Angle);
27
28end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 -- Uncomment the code below and fill the missing elements
 8 --
 9 -- Put_Line ("Angle: "
10 -- & Angle_Mod'Image (____)
11 -- & " => "
12 -- & Direction'Image (____)
13 -- & ".");
14 null;
15 end Display;
16
17 function To_Direction (N : Angle_Mod) return Direction is
18 begin
19 case N is
20 when 0 => return North;
21 when 1 .. 89 => return Northeast;
22 when 90 => return East;
23 when 91 .. 179 => return Southeast;
24 when 180 => return South;
25 when 181 .. 269 => return Southwest;
26 when 270 => return West;
27 when 271 .. 359 => return Northwest;
28 end case;
29 end To_Direction;
30
31 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
32 begin
33 -- Implement the conversion from Angle_Mod to Ext_Angle here!
34 --
35 -- Hint: you can use a return statement and an aggregate.
36 --
37 null;
38 end To_Ext_Angle;
39
40end Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Directions; use Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Colors

Goal: create a package to represent HTML colors in RGB format using the
hexadecimal form.

Steps:

	Implement the Color_Types package.

	Declare the RGB record.

	Implement the To_RGB function.

	Implement the Image function for the RGB type.

Requirements:

	The following table contains the HTML colors and the corresponding value
in hexadecimal form for each color element:

	Color

	Red

	Green

	Blue

	Salmon

	#FA

	#80

	#72

	Firebrick

	#B2

	#22

	#22

	Red

	#FF

	#00

	#00

	Darkred

	#8B

	#00

	#00

	Lime

	#00

	#FF

	#00

	Forestgreen

	#22

	#8B

	#22

	Green

	#00

	#80

	#00

	Darkgreen

	#00

	#64

	#00

	Blue

	#00

	#00

	#FF

	Mediumblue

	#00

	#00

	#CD

	Darkblue

	#00

	#00

	#8B

	The hexadecimal information of each HTML color can be mapped to three
color elements: red, green and blue.

	Each color element has a value between 0 and 255, or 00 and
FF in hexadecimal.

	For example, for the color salmon, the hexadecimal value of the
color elements are:

	red = FA,

	green = 80, and

	blue = 72.

	Record RGB stores information about HTML colors in RGB format, so
that we can retrieve the individual color elements.

	Function To_RGB converts from the HTML_Color enumeration
to the RGB type based on the information from the table above.

	Function Image returns a string representation of the RGB
type in this format:

	"(Red => 16#..#, Green => 16#...#, Blue => 16#...#)"

Remarks:

	We use the exercise on HTML colors from the previous lab on
Strongly typed language as a starting point.

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25 subtype Int_Color is Integer range 0 .. 255;
26
27 -- Replace type declaration for RGB record below
28 --
29 -- - NOTE: Use the Int_Color type declared above!
30 --
31 -- type RGB is [...]
32 --
33 type RGB is null record;
34
35 function To_RGB (C : HTML_Color) return RGB;
36
37 function Image (C : RGB) return String;
38
39end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_Integer (C : HTML_Color) return Integer is
 6 begin
 7 case C is
 8 when Salmon => return 16#FA8072#;
 9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20
21 end To_Integer;
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;
30 end To_HTML_Color;
31
32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 -- Implement the conversion from HTML_Color to RGB here!
35 --
36 return (null record);
37 end To_RGB;
38
39 function Image (C : RGB) return String is
40 subtype Str_Range is Integer range 1 .. 10;
41 SR : String (Str_Range);
42 SG : String (Str_Range);
43 SB : String (Str_Range);
44 begin
45 -- Replace argument in the calls to Put below
46 -- with the missing elements (red, green, blue)
47 -- from the RGB record
48 --
49 Ada.Integer_Text_IO.Put (To => SR,
50 Item => 0, -- REPLACE!
51 Base => 16);
52 Ada.Integer_Text_IO.Put (To => SG,
53 Item => 0, -- REPLACE!
54 Base => 16);
55 Ada.Integer_Text_IO.Put (To => SB,
56 Item => 0, -- REPLACE!
57 Base => 16);
58 return ("(Red => " & SR
59 & ", Green => " & SG
60 & ", Blue => " & SB
61 &")");
62 end Image;
63
64end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_To_RGB);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");
17 end loop;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Inventory

Goal: create a simplified inventory system for a store to enter items and
keep track of assets.

Steps:

	Implement the Inventory_Pkg package.

	Declare the Item record.

	Implement the Init function.

	Implement the Add procedure.

Requirements:

	Record Item collects information about products from the store.

	To keep it simple, this record only contains the name, quantity and
price of each item.

	The record components are:

	Name of Item_Name type;

	Quantity of Natural type;

	Price of Float type.

	Function Init returns an initialized item (of Item type).

	Function Init must also display the item name by calling the
To_String function for the Item_Name type.

	This is already implemented in the code below.

	Procedure Add adds an item to the assets.

	Since we want to keep track of the assets, the implementation must
accumulate the total value of each item's inventory, the result of
multiplying the item quantity and its price.

inventory_pkg.ads

 1package Inventory_Pkg is
 2
 3 type Item_Name is
 4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
 5
 6 function To_String (I : Item_Name) return String;
 7
 8 -- Replace type declaration for Item record:
 9 --
10 type Item is null record;
11
12 function Init (Name : Item_Name;
13 Quantity : Natural;
14 Price : Float) return Item;
15
16 procedure Add (Assets : in out Float;
17 I : Item);
18
19end Inventory_Pkg;

inventory_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Inventory_Pkg is
 4
 5 function To_String (I : Item_Name) return String is
 6 begin
 7 case I is
 8 when Ballpoint_Pen => return "Ballpoint Pen";
 9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19
20 -- Replace return statement with the actual record initialization!
21 --
22 return (null record);
23 end Init;
24
25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 -- Implement the function that adds an item to the inventory here!
29 --
30 null;
31 end Add;
32
33end Inventory_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Inventory_Pkg; use Inventory_Pkg;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42);
 9
10 type Test_Case_Index is
11 (Inventory_Chk);
12
13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15
16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23
24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27
28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38
39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42
43 I := Init (Feather_Quill_Pen, 2, 40.0);
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48
49begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56
57 Check (Test_Case_Index'Value (Argument (1)));
58end Main;

Footnotes

Solutions

Imperative Language

Hello World

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Main is
4begin
5 Put_Line ("Hello World!");
6end Main;

Greetings

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4procedure Main is
 5
 6 procedure Greet (Name : String) is
 7 begin
 8 Put_Line ("Hello " & Name & "!");
 9 end Greet;
10
11begin
12 if Argument_Count < 1 then
13 Put_Line ("ERROR: missing arguments! Exiting...");
14 return;
15 elsif Argument_Count > 1 then
16 Put_Line ("Ignoring additional arguments...");
17 end if;
18
19 Greet (Argument (1));
20end Main;

Positive Or Negative

classify_number.ads

1procedure Classify_Number (X : Integer);

classify_number.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Classify_Number (X : Integer) is
 4begin
 5 if X > 0 then
 6 Put_Line ("Positive");
 7 elsif X < 0 then
 8 Put_Line ("Negative");
 9 else
10 Put_Line ("Zero");
11 end if;
12end Classify_Number;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Classify_Number;
 5
 6procedure Main is
 7 A : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17
18 Classify_Number (A);
19end Main;

Numbers

display_numbers.ads

1procedure Display_Numbers (A, B : Integer);

display_numbers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_Numbers (A, B : Integer) is
 4 X, Y : Integer;
 5begin
 6 if A <= B then
 7 X := A;
 8 Y := B;
 9 else
10 X := B;
11 Y := A;
12 end if;
13
14 for I in X .. Y loop
15 Put_Line (Integer'Image (I));
16 end loop;
17end Display_Numbers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Numbers;
 5
 6procedure Main is
 7 A, B : Integer;
 8begin
 9 if Argument_Count < 2 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 2 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 A := Integer'Value (Argument (1));
17 B := Integer'Value (Argument (2));
18
19 Display_Numbers (A, B);
20end Main;

Subprograms

Subtract Procedure

subtract.ads

1procedure Subtract (A, B : Integer;
2 Result : out Integer);

subtract.adb

1procedure Subtract (A, B : Integer;
2 Result : out Integer) is
3begin
4 Result := A - B;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Subtract Function

subtract.ads

1function Subtract (A, B : Integer) return Integer;

subtract.adb

1function Subtract (A, B : Integer) return Integer is
2begin
3 return A - B;
4end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Equality function

is_equal.ads

1function Is_Equal (A, B : Integer) return Boolean;

is_equal.adb

1function Is_Equal (A, B : Integer) return Boolean is
2begin
3 return A = B;
4end Is_Equal;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Is_Equal;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Equal_Chk,
 9 Inequal_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24
25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40
41begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48
49 Check (Test_Case_Index'Value (Argument (1)));
50end Main;

States

display_state.ads

1procedure Display_State (State : Integer);

display_state.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_State (State : Integer) is
 4begin
 5 case State is
 6 when 0 =>
 7 Put_Line ("Off");
 8 when 1 =>
 9 Put_Line ("On: Simple Processing");
10 when 2 =>
11 Put_Line ("On: Advanced Processing");
12 when others =>
13 null;
14 end case;
15end Display_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Display_State (State);
19end Main;

States #2

get_state.ads

1function Get_State (State : Integer) return String;

get_state.adb

1function Get_State (State : Integer) return String is
2begin
3 return (case State is
4 when 0 => "Off",
5 when 1 => "On: Simple Processing",
6 when 2 => "On: Advanced Processing",
7 when others => "");
8end Get_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Get_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Put_Line (Get_State (State));
19end Main;

States #3

is_on.ads

1function Is_On (State : Integer) return Boolean;

is_on.adb

1function Is_On (State : Integer) return Boolean is
2begin
3 return not (State = 0);
4end Is_On;

display_on_off.ads

1procedure Display_On_Off (State : Integer);

display_on_off.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Is_On;
3
4procedure Display_On_Off (State : Integer) is
5begin
6 Put_Line (if Is_On (State) then "On" else "Off");
7end Display_On_Off;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_On_Off;
 5with Is_On;
 6
 7procedure Main is
 8 State : Integer;
 9begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16
17 State := Integer'Value (Argument (1));
18
19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21end Main;

States #4

set_next.ads

1procedure Set_Next (State : in out Integer);

set_next.adb

1procedure Set_Next (State : in out Integer) is
2begin
3 State := (if State < 2 then State + 1 else 0);
4end Set_Next;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Set_Next;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20end Main;

Modular Programming

Months

months.ads

 1package Months is
 2
 3 Jan : constant String := "January";
 4 Feb : constant String := "February";
 5 Mar : constant String := "March";
 6 Apr : constant String := "April";
 7 May : constant String := "May";
 8 Jun : constant String := "June";
 9 Jul : constant String := "July";
10 Aug : constant String := "August";
11 Sep : constant String := "September";
12 Oct : constant String := "October";
13 Nov : constant String := "November";
14 Dec : constant String := "December";
15
16 procedure Display_Months;
17
18end Months;

months.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Months is
 4
 5 procedure Display_Months is
 6 begin
 7 Put_Line ("Months:");
 8 Put_Line ("- " & Jan);
 9 Put_Line ("- " & Feb);
10 Put_Line ("- " & Mar);
11 Put_Line ("- " & Apr);
12 Put_Line ("- " & May);
13 Put_Line ("- " & Jun);
14 Put_Line ("- " & Jul);
15 Put_Line ("- " & Aug);
16 Put_Line ("- " & Sep);
17 Put_Line ("- " & Oct);
18 Put_Line ("- " & Nov);
19 Put_Line ("- " & Dec);
20 end Display_Months;
21
22end Months;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Months; use Months;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Months_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Months_Chk =>
15 Display_Months;
16 end case;
17 end Check;
18
19begin
20 if Argument_Count < 1 then
21 Put_Line ("ERROR: missing arguments! Exiting...");
22 return;
23 elsif Argument_Count > 1 then
24 Put_Line ("Ignoring additional arguments...");
25 end if;
26
27 Check (Test_Case_Index'Value (Argument (1)));
28end Main;

Operations

operations.ads

 1package Operations is
 2
 3 function Add (A, B : Integer) return Integer;
 4
 5 function Subtract (A, B : Integer) return Integer;
 6
 7 function Multiply (A, B : Integer) return Integer;
 8
 9 function Divide (A, B : Integer) return Integer;
10
11end Operations;

operations.adb

 1package body Operations is
 2
 3 function Add (A, B : Integer) return Integer is
 4 begin
 5 return A + B;
 6 end Add;
 7
 8 function Subtract (A, B : Integer) return Integer is
 9 begin
10 return A - B;
11 end Subtract;
12
13 function Multiply (A, B : Integer) return Integer is
14 begin
15 return A * B;
16 end Multiply;
17
18 function Divide (A, B : Integer) return Integer is
19 begin
20 return A / B;
21 end Divide;
22
23end Operations;

operations-test.ads

1package Operations.Test is
2
3 procedure Display (A, B : Integer);
4
5end Operations.Test;

operations-test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Operations.Test is
 4
 5 procedure Display (A, B : Integer) is
 6 A_Str : constant String := Integer'Image (A);
 7 B_Str : constant String := Integer'Image (B);
 8 begin
 9 Put_Line ("Operations:");
10 Put_Line (A_Str & " + " & B_Str & " = "
11 & Integer'Image (Add (A, B))
12 & ",");
13 Put_Line (A_Str & " - " & B_Str & " = "
14 & Integer'Image (Subtract (A, B))
15 & ",");
16 Put_Line (A_Str & " * " & B_Str & " = "
17 & Integer'Image (Multiply (A, B))
18 & ",");
19 Put_Line (A_Str & " / " & B_Str & " = "
20 & Integer'Image (Divide (A, B))
21 & ",");
22 end Display;
23
24end Operations.Test;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Operations;
 5with Operations.Test; use Operations.Test;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Operations_Chk,
11 Operations_Display_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when Operations_Chk =>
17 Put_Line ("Add (100, 2) = "
18 & Integer'Image (Operations.Add (100, 2)));
19 Put_Line ("Subtract (100, 2) = "
20 & Integer'Image (Operations.Subtract (100, 2)));
21 Put_Line ("Multiply (100, 2) = "
22 & Integer'Image (Operations.Multiply (100, 2)));
23 Put_Line ("Divide (100, 2) = "
24 & Integer'Image (Operations.Divide (100, 2)));
25 when Operations_Display_Chk =>
26 Display (10, 5);
27 Display (1, 2);
28 end case;
29 end Check;
30
31begin
32 if Argument_Count < 1 then
33 Put_Line ("ERROR: missing arguments! Exiting...");
34 return;
35 elsif Argument_Count > 1 then
36 Put_Line ("Ignoring additional arguments...");
37 end if;
38
39 Check (Test_Case_Index'Value (Argument (1)));
40end Main;

Strongly typed language

Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25end Color_Types;

color_types.adb

 1package body Color_Types is
 2
 3 function To_Integer (C : HTML_Color) return Integer is
 4 begin
 5 case C is
 6 when Salmon => return 16#FA8072#;
 7 when Firebrick => return 16#B22222#;
 8 when Red => return 16#FF0000#;
 9 when Darkred => return 16#8B0000#;
10 when Lime => return 16#00FF00#;
11 when Forestgreen => return 16#228B22#;
12 when Green => return 16#008000#;
13 when Darkgreen => return 16#006400#;
14 when Blue => return 16#0000FF#;
15 when Mediumblue => return 16#0000CD#;
16 when Darkblue => return 16#00008B#;
17 end case;
18
19 end To_Integer;
20
21 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
22 begin
23 case C is
24 when Red => return Red;
25 when Green => return Green;
26 when Blue => return Blue;
27 end case;
28 end To_HTML_Color;
29
30end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Integer_Text_IO;
 4
 5with Color_Types; use Color_Types;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 1,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Integers

int_types.ads

 1package Int_Types is
 2
 3 type I_100 is range 0 .. 100;
 4
 5 type U_100 is mod 101;
 6
 7 function To_I_100 (V : U_100) return I_100;
 8
 9 function To_U_100 (V : I_100) return U_100;
10
11 type D_50 is new I_100 range 10 .. 50;
12
13 subtype S_50 is I_100 range 10 .. 50;
14
15 function To_D_50 (V : I_100) return D_50;
16
17 function To_S_50 (V : I_100) return S_50;
18
19 function To_I_100 (V : D_50) return I_100;
20
21end Int_Types;

int_types.adb

 1package body Int_Types is
 2
 3 function To_I_100 (V : U_100) return I_100 is
 4 begin
 5 return I_100 (V);
 6 end To_I_100;
 7
 8 function To_U_100 (V : I_100) return U_100 is
 9 begin
10 return U_100 (V);
11 end To_U_100;
12
13 function To_D_50 (V : I_100) return D_50 is
14 Min : constant I_100 := I_100 (D_50'First);
15 Max : constant I_100 := I_100 (D_50'Last);
16 begin
17 if V > Max then
18 return D_50'Last;
19 elsif V < Min then
20 return D_50'First;
21 else
22 return D_50 (V);
23 end if;
24 end To_D_50;
25
26 function To_S_50 (V : I_100) return S_50 is
27 begin
28 if V > S_50'Last then
29 return S_50'Last;
30 elsif V < S_50'First then
31 return S_50'First;
32 else
33 return V;
34 end if;
35 end To_S_50;
36
37 function To_I_100 (V : D_50) return I_100 is
38 begin
39 return I_100 (V);
40 end To_I_100;
41
42end Int_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Int_Types; use Int_Types;
 5
 6procedure Main is
 7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
 8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
 9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
 10
 11 use I_100_IO;
 12 use U_100_IO;
 13 use D_50_IO;
 14
 15 type Test_Case_Index is
 16 (I_100_Range,
 17 U_100_Range,
 18 U_100_Wraparound,
 19 U_100_To_I_100,
 20 I_100_To_U_100,
 21 D_50_Range,
 22 S_50_Range,
 23 I_100_To_D_50,
 24 I_100_To_S_50,
 25 D_50_To_I_100,
 26 S_50_To_I_100);
 27
 28 procedure Check (TC : Test_Case_Index) is
 29 begin
 30 I_100_IO.Default_Width := 1;
 31 U_100_IO.Default_Width := 1;
 32 D_50_IO.Default_Width := 1;
 33
 34 case TC is
 35 when I_100_Range =>
 36 Put (I_100'First);
 37 New_Line;
 38 Put (I_100'Last);
 39 New_Line;
 40 when U_100_Range =>
 41 Put (U_100'First);
 42 New_Line;
 43 Put (U_100'Last);
 44 New_Line;
 45 when U_100_Wraparound =>
 46 Put (U_100'First - 1);
 47 New_Line;
 48 Put (U_100'Last + 1);
 49 New_Line;
 50 when U_100_To_I_100 =>
 51 for I in U_100'Range loop
 52 I_100_IO.Put (To_I_100 (I));
 53 New_Line;
 54 end loop;
 55 when I_100_To_U_100 =>
 56 for I in I_100'Range loop
 57 Put (To_U_100 (I));
 58 New_Line;
 59 end loop;
 60 when D_50_Range =>
 61 Put (D_50'First);
 62 New_Line;
 63 Put (D_50'Last);
 64 New_Line;
 65 when S_50_Range =>
 66 Put (S_50'First);
 67 New_Line;
 68 Put (S_50'Last);
 69 New_Line;
 70 when I_100_To_D_50 =>
 71 for I in I_100'Range loop
 72 Put (To_D_50 (I));
 73 New_Line;
 74 end loop;
 75 when I_100_To_S_50 =>
 76 for I in I_100'Range loop
 77 Put (To_S_50 (I));
 78 New_Line;
 79 end loop;
 80 when D_50_To_I_100 =>
 81 for I in D_50'Range loop
 82 Put (To_I_100 (I));
 83 New_Line;
 84 end loop;
 85 when S_50_To_I_100 =>
 86 for I in S_50'Range loop
 87 Put (I);
 88 New_Line;
 89 end loop;
 90 end case;
 91 end Check;
 92
 93begin
 94 if Argument_Count < 1 then
 95 Put_Line ("ERROR: missing arguments! Exiting...");
 96 return;
 97 elsif Argument_Count > 1 then
 98 Put_Line ("Ignoring additional arguments...");
 99 end if;
100
101 Check (Test_Case_Index'Value (Argument (1)));
102end Main;

Temperatures

temperature_types.ads

 1package Temperature_Types is
 2
 3 type Celsius is digits 6 range -273.15 .. 5504.85;
 4
 5 type Int_Celsius is range -273 .. 5505;
 6
 7 function To_Celsius (T : Int_Celsius) return Celsius;
 8
 9 function To_Int_Celsius (T : Celsius) return Int_Celsius;
10
11 type Kelvin is digits 6 range 0.0 .. 5778.00;
12
13 function To_Celsius (T : Kelvin) return Celsius;
14
15 function To_Kelvin (T : Celsius) return Kelvin;
16
17end Temperature_Types;

temperature_types.adb

 1package body Temperature_Types is
 2
 3 function To_Celsius (T : Int_Celsius) return Celsius is
 4 Min : constant Float := Float (Celsius'First);
 5 Max : constant Float := Float (Celsius'Last);
 6
 7 F : constant Float := Float (T);
 8 begin
 9 if F > Max then
10 return Celsius (Max);
11 elsif F < Min then
12 return Celsius (Min);
13 else
14 return Celsius (F);
15 end if;
16 end To_Celsius;
17
18 function To_Int_Celsius (T : Celsius) return Int_Celsius is
19 begin
20 return Int_Celsius (T);
21 end To_Int_Celsius;
22
23 function To_Celsius (T : Kelvin) return Celsius is
24 F : constant Float := Float (T);
25 begin
26 return Celsius (F - 273.15);
27 end To_Celsius;
28
29 function To_Kelvin (T : Celsius) return Kelvin is
30 F : constant Float := Float (T);
31 begin
32 return Kelvin (F + 273.15);
33 end To_Kelvin;
34
35end Temperature_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Temperature_Types; use Temperature_Types;
 5
 6procedure Main is
 7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
 8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
 9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10
11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14
15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21
22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27
28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62
63begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70
71 Check (Test_Case_Index'Value (Argument (1)));
72end Main;

Records

Directions

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northeast,
 8 East,
 9 Southeast,
10 South,
11 Southwest,
12 West,
13 Northwest);
14
15 function To_Direction (N: Angle_Mod) return Direction;
16
17 type Ext_Angle is record
18 Angle_Elem : Angle_Mod;
19 Direction_Elem : Direction;
20 end record;
21
22 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
23
24 procedure Display (N : Ext_Angle);
25
26end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return North;
18 when 1 .. 89 => return Northeast;
19 when 90 => return East;
20 when 91 .. 179 => return Southeast;
21 when 180 => return South;
22 when 181 .. 269 => return Southwest;
23 when 270 => return West;
24 when 271 .. 359 => return Northwest;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Directions; use Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Display (To_Ext_Angle (0));
15 Display (To_Ext_Angle (30));
16 Display (To_Ext_Angle (45));
17 Display (To_Ext_Angle (90));
18 Display (To_Ext_Angle (91));
19 Display (To_Ext_Angle (120));
20 Display (To_Ext_Angle (180));
21 Display (To_Ext_Angle (250));
22 Display (To_Ext_Angle (270));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 function To_Integer (C : HTML_Color) return Integer;
17
18 type Basic_HTML_Color is
19 (Red,
20 Green,
21 Blue);
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color;
24
25 subtype Int_Color is Integer range 0 .. 255;
26
27 type RGB is record
28 Red : Int_Color;
29 Green : Int_Color;
30 Blue : Int_Color;
31 end record;
32
33 function To_RGB (C : HTML_Color) return RGB;
34
35 function Image (C : RGB) return String;
36
37end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_Integer (C : HTML_Color) return Integer is
 6 begin
 7 case C is
 8 when Salmon => return 16#FA8072#;
 9 when Firebrick => return 16#B22222#;
10 when Red => return 16#FF0000#;
11 when Darkred => return 16#8B0000#;
12 when Lime => return 16#00FF00#;
13 when Forestgreen => return 16#228B22#;
14 when Green => return 16#008000#;
15 when Darkgreen => return 16#006400#;
16 when Blue => return 16#0000FF#;
17 when Mediumblue => return 16#0000CD#;
18 when Darkblue => return 16#00008B#;
19 end case;
20
21 end To_Integer;
22
23 function To_HTML_Color (C : Basic_HTML_Color) return HTML_Color is
24 begin
25 case C is
26 when Red => return Red;
27 when Green => return Green;
28 when Blue => return Blue;
29 end case;
30 end To_HTML_Color;
31
32 function To_RGB (C : HTML_Color) return RGB is
33 begin
34 case C is
35 when Salmon => return (16#FA#, 16#80#, 16#72#);
36 when Firebrick => return (16#B2#, 16#22#, 16#22#);
37 when Red => return (16#FF#, 16#00#, 16#00#);
38 when Darkred => return (16#8B#, 16#00#, 16#00#);
39 when Lime => return (16#00#, 16#FF#, 16#00#);
40 when Forestgreen => return (16#22#, 16#8B#, 16#22#);
41 when Green => return (16#00#, 16#80#, 16#00#);
42 when Darkgreen => return (16#00#, 16#64#, 16#00#);
43 when Blue => return (16#00#, 16#00#, 16#FF#);
44 when Mediumblue => return (16#00#, 16#00#, 16#CD#);
45 when Darkblue => return (16#00#, 16#00#, 16#8B#);
46 end case;
47
48 end To_RGB;
49
50 function Image (C : RGB) return String is
51 subtype Str_Range is Integer range 1 .. 10;
52 SR : String (Str_Range);
53 SG : String (Str_Range);
54 SB : String (Str_Range);
55 begin
56 Ada.Integer_Text_IO.Put (To => SR,
57 Item => C.Red,
58 Base => 16);
59 Ada.Integer_Text_IO.Put (To => SG,
60 Item => C.Green,
61 Base => 16);
62 Ada.Integer_Text_IO.Put (To => SB,
63 Item => C.Blue,
64 Base => 16);
65 return ("(Red => " & SR
66 & ", Green => " & SG
67 & ", Blue => " & SB
68 &")");
69 end Image;
70
71end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_To_RGB);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when HTML_Color_To_RGB =>
14 for I in HTML_Color'Range loop
15 Put_Line (HTML_Color'Image (I) & " => "
16 & Image (To_RGB (I)) & ".");
17 end loop;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Inventory

inventory_pkg.ads

 1package Inventory_Pkg is
 2
 3 type Item_Name is
 4 (Ballpoint_Pen, Oil_Based_Pen_Marker, Feather_Quill_Pen);
 5
 6 function To_String (I : Item_Name) return String;
 7
 8 type Item is record
 9 Name : Item_Name;
10 Quantity : Natural;
11 Price : Float;
12 end record;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item;
17
18 procedure Add (Assets : in out Float;
19 I : Item);
20
21end Inventory_Pkg;

inventory_pkg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Inventory_Pkg is
 4
 5 function To_String (I : Item_Name) return String is
 6 begin
 7 case I is
 8 when Ballpoint_Pen => return "Ballpoint Pen";
 9 when Oil_Based_Pen_Marker => return "Oil-based Pen Marker";
10 when Feather_Quill_Pen => return "Feather Quill Pen";
11 end case;
12 end To_String;
13
14 function Init (Name : Item_Name;
15 Quantity : Natural;
16 Price : Float) return Item is
17 begin
18 Put_Line ("Item: " & To_String (Name) & ".");
19
20 return (Name => Name,
21 Quantity => Quantity,
22 Price => Price);
23 end Init;
24
25 procedure Add (Assets : in out Float;
26 I : Item) is
27 begin
28 Assets := Assets + Float (I.Quantity) * I.Price;
29 end Add;
30
31end Inventory_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Inventory_Pkg; use Inventory_Pkg;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42);
 9
10 type Test_Case_Index is
11 (Inventory_Chk);
12
13 procedure Display (Assets : Float) is
14 package F_IO is new Ada.Text_IO.Float_IO (Float);
15
16 use F_IO;
17 begin
18 Put ("Assets: $");
19 Put (Assets, 1, 2, 0);
20 Put (".");
21 New_Line;
22 end Display;
23
24 procedure Check (TC : Test_Case_Index) is
25 I : Item;
26 Assets : Float := 0.0;
27
28 -- Please ignore the following three lines!
29 pragma Warnings (Off, "default initialization");
30 for Assets'Address use F'Address;
31 pragma Warnings (On, "default initialization");
32 begin
33 case TC is
34 when Inventory_Chk =>
35 I := Init (Ballpoint_Pen, 185, 0.15);
36 Add (Assets, I);
37 Display (Assets);
38
39 I := Init (Oil_Based_Pen_Marker, 100, 9.0);
40 Add (Assets, I);
41 Display (Assets);
42
43 I := Init (Feather_Quill_Pen, 2, 40.0);
44 Add (Assets, I);
45 Display (Assets);
46 end case;
47 end Check;
48
49begin
50 if Argument_Count < 1 then
51 Put_Line ("ERROR: missing arguments! Exiting...");
52 return;
53 elsif Argument_Count > 1 then
54 Put_Line ("Ignoring additional arguments...");
55 end if;
56
57 Check (Test_Case_Index'Value (Argument (1)));
58end Main;

Arrays

Constrained Array

constrained_arrays.ads

 1package Constrained_Arrays is
 2
 3 type My_Index is range 1 .. 10;
 4
 5 type My_Array is array (My_Index) of Integer;
 6
 7 function Init return My_Array;
 8
 9 procedure Double (A : in out My_Array);
10
11 function First_Elem (A : My_Array) return Integer;
12
13 function Last_Elem (A : My_Array) return Integer;
14
15 function Length (A : My_Array) return Integer;
16
17 A : My_Array := (1, 2, others => 42);
18
19end Constrained_Arrays;

constrained_arrays.adb

 1package body Constrained_Arrays is
 2
 3 function Init return My_Array is
 4 A : My_Array;
 5 begin
 6 for I in My_Array'Range loop
 7 A (I) := Integer (I);
 8 end loop;
 9
10 return A;
11 end Init;
12
13 procedure Double (A : in out My_Array) is
14 begin
15 for I in A'Range loop
16 A (I) := A (I) * 2;
17 end loop;
18 end Double;
19
20 function First_Elem (A : My_Array) return Integer is
21 begin
22 return A (A'First);
23 end First_Elem;
24
25 function Last_Elem (A : My_Array) return Integer is
26 begin
27 return A (A'Last);
28 end Last_Elem;
29
30 function Length (A : My_Array) return Integer is
31 begin
32 return A'Length;
33 end Length;
34
35end Constrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Constrained_Arrays; use Constrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Range_Chk,
 9 Array_Range_Chk,
10 A_Obj_Chk,
11 Init_Chk,
12 Double_Chk,
13 First_Elem_Chk,
14 Last_Elem_Chk,
15 Length_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 AA : My_Array;
19
20 procedure Display (A : My_Array) is
21 begin
22 for I in A'Range loop
23 Put_Line (Integer'Image (A (I)));
24 end loop;
25 end Display;
26
27 procedure Local_Init (A : in out My_Array) is
28 begin
29 A := (100, 90, 80, 10, 20, 30, 40, 60, 50, 70);
30 end Local_Init;
31 begin
32 case TC is
33 when Range_Chk =>
34 for I in My_Index loop
35 Put_Line (My_Index'Image (I));
36 end loop;
37 when Array_Range_Chk =>
38 for I in My_Array'Range loop
39 Put_Line (My_Index'Image (I));
40 end loop;
41 when A_Obj_Chk =>
42 Display (A);
43 when Init_Chk =>
44 AA := Init;
45 Display (AA);
46 when Double_Chk =>
47 Local_Init (AA);
48 Double (AA);
49 Display (AA);
50 when First_Elem_Chk =>
51 Local_Init (AA);
52 Put_Line (Integer'Image (First_Elem (AA)));
53 when Last_Elem_Chk =>
54 Local_Init (AA);
55 Put_Line (Integer'Image (Last_Elem (AA)));
56 when Length_Chk =>
57 Put_Line (Integer'Image (Length (AA)));
58 end case;
59 end Check;
60
61begin
62 if Argument_Count < 1 then
63 Put_Line ("ERROR: missing arguments! Exiting...");
64 return;
65 elsif Argument_Count > 1 then
66 Put_Line ("Ignoring additional arguments...");
67 end if;
68
69 Check (Test_Case_Index'Value (Argument (1)));
70end Main;

Colors: Lookup-Table

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 type RGB is record
19 Red : Int_Color;
20 Green : Int_Color;
21 Blue : Int_Color;
22 end record;
23
24 function To_RGB (C : HTML_Color) return RGB;
25
26 function Image (C : RGB) return String;
27
28 type HTML_Color_RGB is array (HTML_Color) of RGB;
29
30 To_RGB_Lookup_Table : constant HTML_Color_RGB
31 := (Salmon => (16#FA#, 16#80#, 16#72#),
32 Firebrick => (16#B2#, 16#22#, 16#22#),
33 Red => (16#FF#, 16#00#, 16#00#),
34 Darkred => (16#8B#, 16#00#, 16#00#),
35 Lime => (16#00#, 16#FF#, 16#00#),
36 Forestgreen => (16#22#, 16#8B#, 16#22#),
37 Green => (16#00#, 16#80#, 16#00#),
38 Darkgreen => (16#00#, 16#64#, 16#00#),
39 Blue => (16#00#, 16#00#, 16#FF#),
40 Mediumblue => (16#00#, 16#00#, 16#CD#),
41 Darkblue => (16#00#, 16#00#, 16#8B#));
42
43end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2package body Color_Types is
 3
 4 function To_RGB (C : HTML_Color) return RGB is
 5 begin
 6 return To_RGB_Lookup_Table (C);
 7 end To_RGB;
 8
 9 function Image (C : RGB) return String is
10 subtype Str_Range is Integer range 1 .. 10;
11 SR : String (Str_Range);
12 SG : String (Str_Range);
13 SB : String (Str_Range);
14 begin
15 Ada.Integer_Text_IO.Put (To => SR,
16 Item => C.Red,
17 Base => 16);
18 Ada.Integer_Text_IO.Put (To => SG,
19 Item => C.Green,
20 Base => 16);
21 Ada.Integer_Text_IO.Put (To => SB,
22 Item => C.Blue,
23 Base => 16);
24 return ("(Red => " & SR
25 & ", Green => " & SG
26 & ", Blue => " & SB
27 &")");
28 end Image;
29
30end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Color_Table_Chk,
 9 HTML_Color_To_Integer_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 begin
13 case TC is
14 when Color_Table_Chk =>
15 Put_Line ("Size of HTML_Color_RGB: "
16 & Integer'Image (HTML_Color_RGB'Length));
17 Put_Line ("Firebrick: "
18 & Image (To_RGB_Lookup_Table (Firebrick)));
19 when HTML_Color_To_Integer_Chk =>
20 for I in HTML_Color'Range loop
21 Put_Line (HTML_Color'Image (I) & " => "
22 & Image (To_RGB (I)) & ".");
23 end loop;
24 end case;
25 end Check;
26
27begin
28 if Argument_Count < 1 then
29 Put_Line ("ERROR: missing arguments! Exiting...");
30 return;
31 elsif Argument_Count > 1 then
32 Put_Line ("Ignoring additional arguments...");
33 end if;
34
35 Check (Test_Case_Index'Value (Argument (1)));
36end Main;

Unconstrained Array

unconstrained_arrays.ads

 1package Unconstrained_Arrays is
 2
 3 type My_Array is array (Positive range <>) of Integer;
 4
 5 procedure Init (A : in out My_Array);
 6
 7 function Init (I, L : Positive) return My_Array;
 8
 9 procedure Double (A : in out My_Array);
10
11 function Diff_Prev_Elem (A : My_Array) return My_Array;
12
13end Unconstrained_Arrays;

unconstrained_arrays.adb

 1package body Unconstrained_Arrays is
 2
 3 procedure Init (A : in out My_Array) is
 4 Y : Natural := A'Last;
 5 begin
 6 for I in A'Range loop
 7 A (I) := Y;
 8 Y := Y - 1;
 9 end loop;
10 end Init;
11
12 function Init (I, L : Positive) return My_Array is
13 A : My_Array (I .. I + L - 1);
14 begin
15 Init (A);
16 return A;
17 end Init;
18
19 procedure Double (A : in out My_Array) is
20 begin
21 for I in A'Range loop
22 A (I) := A (I) * 2;
23 end loop;
24 end Double;
25
26 function Diff_Prev_Elem (A : My_Array) return My_Array is
27 A_Out : My_Array (A'Range);
28 begin
29 A_Out (A'First) := 0;
30 for I in A'First + 1 .. A'Last loop
31 A_Out (I) := A (I) - A (I - 1);
32 end loop;
33
34 return A_Out;
35 end Diff_Prev_Elem;
36
37end Unconstrained_Arrays;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Unconstrained_Arrays; use Unconstrained_Arrays;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Init_Chk,
 9 Init_Proc_Chk,
10 Double_Chk,
11 Diff_Prev_Chk,
12 Diff_Prev_Single_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 AA : My_Array (1 .. 5);
16 AB : My_Array (5 .. 9);
17
18 procedure Display (A : My_Array) is
19 begin
20 for I in A'Range loop
21 Put_Line (Integer'Image (A (I)));
22 end loop;
23 end Display;
24
25 procedure Local_Init (A : in out My_Array) is
26 begin
27 A := (1, 2, 5, 10, -10);
28 end Local_Init;
29
30 begin
31 case TC is
32 when Init_Chk =>
33 AA := Init (AA'First, AA'Length);
34 AB := Init (AB'First, AB'Length);
35 Display (AA);
36 Display (AB);
37 when Init_Proc_Chk =>
38 Init (AA);
39 Init (AB);
40 Display (AA);
41 Display (AB);
42 when Double_Chk =>
43 Local_Init (AB);
44 Double (AB);
45 Display (AB);
46 when Diff_Prev_Chk =>
47 Local_Init (AB);
48 AB := Diff_Prev_Elem (AB);
49 Display (AB);
50 when Diff_Prev_Single_Chk =>
51 declare
52 A1 : My_Array (1 .. 1) := (1 => 42);
53 begin
54 A1 := Diff_Prev_Elem (A1);
55 Display (A1);
56 end;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Product info

product_info_pkg.ads

 1package Product_Info_Pkg is
 2
 3 subtype Quantity is Natural;
 4
 5 subtype Currency is Float;
 6
 7 type Product_Info is record
 8 Units : Quantity;
 9 Price : Currency;
10 end record;
11
12 type Product_Infos is array (Positive range <>) of Product_Info;
13
14 type Currency_Array is array (Positive range <>) of Currency;
15
16 procedure Total (P : Product_Infos;
17 Tot : out Currency_Array);
18
19 function Total (P : Product_Infos) return Currency_Array;
20
21 function Total (P : Product_Infos) return Currency;
22
23end Product_Info_Pkg;

product_info_pkg.adb

 1package body Product_Info_Pkg is
 2
 3 -- Get total for single product
 4 function Total (P : Product_Info) return Currency is
 5 (Currency (P.Units) * P.Price);
 6
 7 procedure Total (P : Product_Infos;
 8 Tot : out Currency_Array) is
 9 begin
10 for I in P'Range loop
11 Tot (I) := Total (P (I));
12 end loop;
13 end Total;
14
15 function Total (P : Product_Infos) return Currency_Array
16 is
17 Tot : Currency_Array (P'Range);
18 begin
19 Total (P, Tot);
20 return Tot;
21 end Total;
22
23 function Total (P : Product_Infos) return Currency
24 is
25 Tot : Currency := 0.0;
26 begin
27 for I in P'Range loop
28 Tot := Tot + Total (P (I));
29 end loop;
30 return Tot;
31 end Total;
32
33end Product_Info_Pkg;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Product_Info_Pkg; use Product_Info_Pkg;
 5
 6procedure Main is
 7 package Currency_IO is new Ada.Text_IO.Float_IO (Currency);
 8
 9 type Test_Case_Index is
10 (Total_Func_Chk,
11 Total_Proc_Chk,
12 Total_Value_Chk);
13
14 procedure Check (TC : Test_Case_Index) is
15 subtype Test_Range is Positive range 1 .. 5;
16
17 P : Product_Infos (Test_Range);
18 Tots : Currency_Array (Test_Range);
19 Tot : Currency;
20
21 procedure Display (Tots : Currency_Array) is
22 begin
23 for I in Tots'Range loop
24 Currency_IO.Put (Tots (I));
25 New_Line;
26 end loop;
27 end Display;
28
29 procedure Local_Init (P : in out Product_Infos) is
30 begin
31 P := ((1, 0.5),
32 (2, 10.0),
33 (5, 40.0),
34 (10, 10.0),
35 (10, 20.0));
36 end Local_Init;
37
38 begin
39 Currency_IO.Default_Fore := 1;
40 Currency_IO.Default_Aft := 2;
41 Currency_IO.Default_Exp := 0;
42
43 case TC is
44 when Total_Func_Chk =>
45 Local_Init (P);
46 Tots := Total (P);
47 Display (Tots);
48 when Total_Proc_Chk =>
49 Local_Init (P);
50 Total (P, Tots);
51 Display (Tots);
52 when Total_Value_Chk =>
53 Local_Init (P);
54 Tot := Total (P);
55 Currency_IO.Put (Tot);
56 New_Line;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

String_10

strings_10.ads

1package Strings_10 is
2
3 subtype String_10 is String (1 .. 10);
4
5 -- Using "type String_10 is..." is possible, too.
6
7 function To_String_10 (S : String) return String_10;
8
9end Strings_10;

strings_10.adb

 1package body Strings_10 is
 2
 3 function To_String_10 (S : String) return String_10 is
 4 S_Out : String_10;
 5 begin
 6 for I in String_10'First .. Integer'Min (String_10'Last, S'Last) loop
 7 S_Out (I) := S (I);
 8 end loop;
 9
10 for I in Integer'Min (String_10'Last + 1, S'Last + 1) .. String_10'Last loop
11 S_Out (I) := ' ';
12 end loop;
13
14 return S_Out;
15 end To_String_10;
16
17end Strings_10;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Strings_10; use Strings_10;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (String_10_Long_Chk,
 9 String_10_Short_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 SL : constant String := "And this is a long string just for testing...";
13 SS : constant String := "Hey!";
14 S_10 : String_10;
15
16 begin
17 case TC is
18 when String_10_Long_Chk =>
19 S_10 := To_String_10 (SL);
20 Put_Line (String (S_10));
21 when String_10_Short_Chk =>
22 S_10 := (others => ' ');
23 S_10 := To_String_10 (SS);
24 Put_Line (String (S_10));
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of Names

names_ages.ads

 1package Names_Ages is
 2
 3 Max_People : constant Positive := 10;
 4
 5 subtype Name_Type is String (1 .. 50);
 6
 7 type Age_Type is new Natural;
 8
 9 type Person is record
10 Name : Name_Type;
11 Age : Age_Type;
12 end record;
13
14 type People_Array is array (Positive range <>) of Person;
15
16 type People is record
17 People_A : People_Array (1 .. Max_People);
18 Last_Valid : Natural;
19 end record;
20
21 procedure Reset (P : in out People);
22
23 procedure Add (P : in out People;
24 Name : String);
25
26 function Get (P : People;
27 Name : String) return Age_Type;
28
29 procedure Update (P : in out People;
30 Name : String;
31 Age : Age_Type);
32
33 procedure Display (P : People);
34
35end Names_Ages;

names_ages.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Strings; use Ada.Strings;
 3with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 4
 5package body Names_Ages is
 6
 7 function To_Name_Type (S : String) return Name_Type is
 8 S_Out : Name_Type := (others => ' ');
 9 begin
10 for I in 1 .. Integer'Min (S'Last, Name_Type'Last) loop
11 S_Out (I) := S (I);
12 end loop;
13
14 return S_Out;
15 end To_Name_Type;
16
17 procedure Init (P : in out Person;
18 Name : String) is
19 begin
20 P.Name := To_Name_Type (Name);
21 P.Age := 0;
22 end Init;
23
24 function Match (P : Person;
25 Name : String) return Boolean is
26 begin
27 return P.Name = To_Name_Type (Name);
28 end Match;
29
30 function Get (P : Person) return Age_Type is
31 begin
32 return P.Age;
33 end Get;
34
35 procedure Update (P : in out Person;
36 Age : Age_Type) is
37 begin
38 P.Age := Age;
39 end Update;
40
41 procedure Display (P : Person) is
42 begin
43 Put_Line ("NAME: " & Trim (P.Name, Right));
44 Put_Line ("AGE: " & Age_Type'Image (P.Age));
45 end Display;
46
47 procedure Reset (P : in out People) is
48 begin
49 P.Last_Valid := 0;
50 end Reset;
51
52 procedure Add (P : in out People;
53 Name : String) is
54 begin
55 P.Last_Valid := P.Last_Valid + 1;
56 Init (P.People_A (P.Last_Valid), Name);
57 end Add;
58
59 function Get (P : People;
60 Name : String) return Age_Type is
61 begin
62 for I in P.People_A'First .. P.Last_Valid loop
63 if Match (P.People_A (I), Name) then
64 return Get (P.People_A (I));
65 end if;
66 end loop;
67
68 return 0;
69 end Get;
70
71 procedure Update (P : in out People;
72 Name : String;
73 Age : Age_Type) is
74 begin
75 for I in P.People_A'First .. P.Last_Valid loop
76 if Match (P.People_A (I), Name) then
77 Update (P.People_A (I), Age);
78 end if;
79 end loop;
80 end Update;
81
82 procedure Display (P : People) is
83 begin
84 Put_Line ("LIST OF NAMES:");
85 for I in P.People_A'First .. P.Last_Valid loop
86 Display (P.People_A (I));
87 end loop;
88 end Display;
89
90end Names_Ages;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Names_Ages; use Names_Ages;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Names_Ages_Chk,
 9 Get_Age_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 P : People;
13 begin
14 case TC is
15 when Names_Ages_Chk =>
16 Reset (P);
17 Add (P, "John");
18 Add (P, "Patricia");
19 Add (P, "Josh");
20 Display (P);
21 Update (P, "John", 18);
22 Update (P, "Patricia", 35);
23 Update (P, "Josh", 53);
24 Display (P);
25 when Get_Age_Chk =>
26 Reset (P);
27 Add (P, "Peter");
28 Update (P, "Peter", 45);
29 Put_Line ("Peter is "
30 & Age_Type'Image (Get (P, "Peter"))
31 & " years old.");
32 end case;
33 end Check;
34
35begin
36 if Argument_Count < 1 then
37 Ada.Text_IO.Put_Line ("ERROR: missing arguments! Exiting...");
38 return;
39 elsif Argument_Count > 1 then
40 Ada.Text_IO.Put_Line ("Ignoring additional arguments...");
41 end if;
42
43 Check (Test_Case_Index'Value (Argument (1)));
44end Main;

More About Types

Aggregate Initialization

aggregates.ads

 1package Aggregates is
 2
 3 type Rec is record
 4 W : Integer := 10;
 5 X : Integer := 11;
 6 Y : Integer := 12;
 7 Z : Integer := 13;
 8 end record;
 9
10 type Int_Arr is array (1 .. 20) of Integer;
11
12 procedure Init (R : out Rec);
13
14 procedure Init_Some (A : out Int_Arr);
15
16 procedure Init (A : out Int_Arr);
17
18end Aggregates;

aggregates.adb

 1package body Aggregates is
 2
 3 procedure Init (R : out Rec) is
 4 begin
 5 R := (X => 100,
 6 Y => 200,
 7 others => <>);
 8 end Init;
 9
10 procedure Init_Some (A : out Int_Arr) is
11 begin
12 A := (1 .. 5 => 99,
13 others => 100);
14 end Init_Some;
15
16 procedure Init (A : out Int_Arr) is
17 begin
18 A := (others => 5);
19 end Init;
20
21end Aggregates;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Aggregates; use Aggregates;
 5
 6procedure Main is
 7 -- Remark: the following line is not relevant.
 8 F : array (1 .. 10) of Float := (others => 42.42)
 9 with Unreferenced;
10
11 type Test_Case_Index is
12 (Default_Rec_Chk,
13 Init_Rec_Chk,
14 Init_Some_Arr_Chk,
15 Init_Arr_Chk);
16
17 procedure Check (TC : Test_Case_Index) is
18 A : Int_Arr;
19 R : Rec;
20 DR : constant Rec := (others => <>);
21 begin
22 case TC is
23 when Default_Rec_Chk =>
24 R := DR;
25 Put_Line ("Record Default:");
26 Put_Line ("W => " & Integer'Image (R.W));
27 Put_Line ("X => " & Integer'Image (R.X));
28 Put_Line ("Y => " & Integer'Image (R.Y));
29 Put_Line ("Z => " & Integer'Image (R.Z));
30 when Init_Rec_Chk =>
31 Init (R);
32 Put_Line ("Record Init:");
33 Put_Line ("W => " & Integer'Image (R.W));
34 Put_Line ("X => " & Integer'Image (R.X));
35 Put_Line ("Y => " & Integer'Image (R.Y));
36 Put_Line ("Z => " & Integer'Image (R.Z));
37 when Init_Some_Arr_Chk =>
38 Init_Some (A);
39 Put_Line ("Array Init_Some:");
40 for I in A'Range loop
41 Put_Line (Integer'Image (I) & " "
42 & Integer'Image (A (I)));
43 end loop;
44 when Init_Arr_Chk =>
45 Init (A);
46 Put_Line ("Array Init:");
47 for I in A'Range loop
48 Put_Line (Integer'Image (I) & " "
49 & Integer'Image (A (I)));
50 end loop;
51 end case;
52 end Check;
53
54begin
55 if Argument_Count < 1 then
56 Put_Line ("ERROR: missing arguments! Exiting...");
57 return;
58 elsif Argument_Count > 1 then
59 Put_Line ("Ignoring additional arguments...");
60 end if;
61
62 Check (Test_Case_Index'Value (Argument (1)));
63end Main;

Versioning

versioning.ads

 1package Versioning is
 2
 3 type Version is record
 4 Major : Natural;
 5 Minor : Natural;
 6 Maintenance : Natural;
 7 end record;
 8
 9 function Convert (V : Version) return String;
10
11 function Convert (V : Version) return Float;
12
13end Versioning;

versioning.adb

 1with Ada.Strings; use Ada.Strings;
 2with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 3
 4package body Versioning is
 5
 6 function Image_Trim (N : Natural) return String is
 7 S_N : constant String := Trim (Natural'Image (N), Left);
 8 begin
 9 return S_N;
10 end Image_Trim;
11
12 function Convert (V : Version) return String is
13 S_Major : constant String := Image_Trim (V.Major);
14 S_Minor : constant String := Image_Trim (V.Minor);
15 S_Maint : constant String := Image_Trim (V.Maintenance);
16 begin
17 return (S_Major & "." & S_Minor & "." & S_Maint);
18 end Convert;
19
20 function Convert (V : Version) return Float is
21 begin
22 return Float (V.Major) + (Float (V.Minor) / 10.0);
23 end Convert;
24
25end Versioning;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Versioning; use Versioning;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Ver_String_Chk,
 9 Ver_Float_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 V : constant Version := (1, 3, 23);
13 begin
14 case TC is
15 when Ver_String_Chk =>
16 Put_Line (Convert (V));
17 when Ver_Float_Chk =>
18 Put_Line (Float'Image (Convert (V)));
19 end case;
20 end Check;
21
22begin
23 if Argument_Count < 1 then
24 Put_Line ("ERROR: missing arguments! Exiting...");
25 return;
26 elsif Argument_Count > 1 then
27 Put_Line ("Ignoring additional arguments...");
28 end if;
29
30 Check (Test_Case_Index'Value (Argument (1)));
31end Main;

Simple todo list

todo_lists.ads

 1package Todo_Lists is
 2
 3 type Todo_Item is access String;
 4
 5 type Todo_Items is array (Positive range <>) of Todo_Item;
 6
 7 type Todo_List (Max_Len : Natural) is record
 8 Items : Todo_Items (1 .. Max_Len);
 9 Last : Natural := 0;
10 end record;
11
12 procedure Add (Todos : in out Todo_List;
13 Item : String);
14
15 procedure Display (Todos : Todo_List);
16
17end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 if Todos.Last < Todos.Items'Last then
 9 Todos.Last := Todos.Last + 1;
10 Todos.Items (Todos.Last) := new String'(Item);
11 else
12 Put_Line ("ERROR: list is full!");
13 end if;
14 end Add;
15
16 procedure Display (Todos : Todo_List) is
17 begin
18 Put_Line ("TO-DO LIST");
19 for I in Todos.Items'First .. Todos.Last loop
20 Put_Line (Todos.Items (I).all);
21 end loop;
22 end Display;
23
24end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List (10);
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Price list

price_lists.ads

 1package Price_Lists is
 2
 3 type Price_Type is delta 0.01 digits 12;
 4
 5 type Price_List_Array is array (Positive range <>) of Price_Type;
 6
 7 type Price_List (Max : Positive) is record
 8 List : Price_List_Array (1 .. Max);
 9 Last : Natural := 0;
10 end record;
11
12 type Price_Result (Ok : Boolean) is record
13 case Ok is
14 when False =>
15 null;
16 when True =>
17 Price : Price_Type;
18 end case;
19 end record;
20
21 procedure Reset (Prices : in out Price_List);
22
23 procedure Add (Prices : in out Price_List;
24 Item : Price_Type);
25
26 function Get (Prices : Price_List;
27 Idx : Positive) return Price_Result;
28
29 procedure Display (Prices : Price_List);
30
31end Price_Lists;

price_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Price_Lists is
 4
 5 procedure Reset (Prices : in out Price_List) is
 6 begin
 7 Prices.Last := 0;
 8 end Reset;
 9
10 procedure Add (Prices : in out Price_List;
11 Item : Price_Type) is
12 begin
13 if Prices.Last < Prices.List'Last then
14 Prices.Last := Prices.Last + 1;
15 Prices.List (Prices.Last) := Item;
16 else
17 Put_Line ("ERROR: list is full!");
18 end if;
19 end Add;
20
21 function Get (Prices : Price_List;
22 Idx : Positive) return Price_Result is
23 begin
24 if (Idx >= Prices.List'First and then
25 Idx <= Prices.Last) then
26 return Price_Result'(Ok => True,
27 Price => Prices.List (Idx));
28 else
29 return Price_Result'(Ok => False);
30 end if;
31 end Get;
32
33 procedure Display (Prices : Price_List) is
34 begin
35 Put_Line ("PRICE LIST");
36 for I in Prices.List'First .. Prices.Last loop
37 Put_Line (Price_Type'Image (Prices.List (I)));
38 end loop;
39 end Display;
40
41end Price_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Price_Lists; use Price_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Price_Type_Chk,
 9 Price_List_Chk,
10 Price_List_Get_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 L : Price_List (10);
14
15 procedure Local_Init_List is
16 begin
17 Reset (L);
18 Add (L, 1.45);
19 Add (L, 2.37);
20 Add (L, 3.21);
21 Add (L, 4.14);
22 Add (L, 5.22);
23 Add (L, 6.69);
24 Add (L, 7.77);
25 Add (L, 8.14);
26 Add (L, 9.99);
27 Add (L, 10.01);
28 end Local_Init_List;
29
30 procedure Get_Display (Idx : Positive) is
31 R : constant Price_Result := Get (L, Idx);
32 begin
33 Put_Line ("Attempt Get # " & Positive'Image (Idx));
34 if R.Ok then
35 Put_Line ("Element # " & Positive'Image (Idx)
36 & " => " & Price_Type'Image (R.Price));
37 else
38 declare
39 begin
40 Put_Line ("Element # " & Positive'Image (Idx)
41 & " => " & Price_Type'Image (R.Price));
42 exception
43 when others =>
44 Put_Line ("Element not available (as expected)");
45 end;
46 end if;
47
48 end Get_Display;
49
50 begin
51 case TC is
52 when Price_Type_Chk =>
53 Put_Line ("The delta value of Price_Type is "
54 & Price_Type'Image (Price_Type'Delta) & ";");
55 Put_Line ("The minimum value of Price_Type is "
56 & Price_Type'Image (Price_Type'First) & ";");
57 Put_Line ("The maximum value of Price_Type is "
58 & Price_Type'Image (Price_Type'Last) & ";");
59 when Price_List_Chk =>
60 Local_Init_List;
61 Display (L);
62 when Price_List_Get_Chk =>
63 Local_Init_List;
64 Get_Display (5);
65 Get_Display (40);
66 end case;
67 end Check;
68
69begin
70 if Argument_Count < 1 then
71 Put_Line ("ERROR: missing arguments! Exiting...");
72 return;
73 elsif Argument_Count > 1 then
74 Put_Line ("Ignoring additional arguments...");
75 end if;
76
77 Check (Test_Case_Index'Value (Argument (1)));
78end Main;

Privacy

Directions

directions.ads

 1package Directions is
 2
 3 type Angle_Mod is mod 360;
 4
 5 type Direction is
 6 (North,
 7 Northwest,
 8 West,
 9 Southwest,
10 South,
11 Southeast,
12 East);
13
14 function To_Direction (N : Angle_Mod) return Direction;
15
16 type Ext_Angle is private;
17
18 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle;
19
20 procedure Display (N : Ext_Angle);
21
22private
23
24 type Ext_Angle is record
25 Angle_Elem : Angle_Mod;
26 Direction_Elem : Direction;
27 end record;
28
29end Directions;

directions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Directions is
 4
 5 procedure Display (N : Ext_Angle) is
 6 begin
 7 Put_Line ("Angle: "
 8 & Angle_Mod'Image (N.Angle_Elem)
 9 & " => "
10 & Direction'Image (N.Direction_Elem)
11 & ".");
12 end Display;
13
14 function To_Direction (N : Angle_Mod) return Direction is
15 begin
16 case N is
17 when 0 => return East;
18 when 1 .. 89 => return Northwest;
19 when 90 => return North;
20 when 91 .. 179 => return Northwest;
21 when 180 => return West;
22 when 181 .. 269 => return Southwest;
23 when 270 => return South;
24 when 271 .. 359 => return Southeast;
25 end case;
26 end To_Direction;
27
28 function To_Ext_Angle (N : Angle_Mod) return Ext_Angle is
29 begin
30 return (Angle_Elem => N,
31 Direction_Elem => To_Direction (N));
32 end To_Ext_Angle;
33
34end Directions;

test_directions.adb

 1with Directions; use Directions;
 2
 3procedure Test_Directions is
 4 type Ext_Angle_Array is array (Positive range <>) of Ext_Angle;
 5
 6 All_Directions : constant Ext_Angle_Array (1 .. 6)
 7 := (To_Ext_Angle (0),
 8 To_Ext_Angle (45),
 9 To_Ext_Angle (90),
10 To_Ext_Angle (91),
11 To_Ext_Angle (180),
12 To_Ext_Angle (270));
13
14begin
15 for I in All_Directions'Range loop
16 Display (All_Directions (I));
17 end loop;
18
19end Test_Directions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Directions;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Direction_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Direction_Chk =>
14 Test_Directions;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Limited Strings

limited_strings.ads

 1package Limited_Strings is
 2
 3 type Lim_String is limited private;
 4
 5 function Init (S : String) return Lim_String;
 6
 7 function Init (Max : Positive) return Lim_String;
 8
 9 procedure Put_Line (LS : Lim_String);
10
11 procedure Copy (From : Lim_String;
12 To : in out Lim_String);
13
14 function "=" (Ref, Dut : Lim_String) return Boolean;
15
16private
17
18 type Lim_String is access String;
19
20end Limited_Strings;

limited_strings.adb

 1with Ada.Text_IO;
 2
 3package body Limited_Strings
 4is
 5
 6 function Init (S : String) return Lim_String is
 7 LS : constant Lim_String := new String'(S);
 8 begin
 9 return Ls;
10 end Init;
11
12 function Init (Max : Positive) return Lim_String is
13 LS : constant Lim_String := new String (1 .. Max);
14 begin
15 LS.all := (others => '_');
16 return LS;
17 end Init;
18
19 procedure Put_Line (LS : Lim_String) is
20 begin
21 Ada.Text_IO.Put_Line (LS.all);
22 end Put_Line;
23
24 function Get_Min_Last (A, B : Lim_String) return Positive is
25 begin
26 return Positive'Min (A'Last, B'Last);
27 end Get_Min_Last;
28
29 procedure Copy (From : Lim_String;
30 To : in out Lim_String) is
31 Min_Last : constant Positive := Get_Min_Last (From, To);
32 begin
33 To (To'First .. Min_Last) := From (To'First .. Min_Last);
34 To (Min_Last + 1 .. To'Last) := (others => '_');
35 end;
36
37 function "=" (Ref, Dut : Lim_String) return Boolean is
38 Min_Last : constant Positive := Get_Min_Last (Ref, Dut);
39 begin
40 for I in Dut'First .. Min_Last loop
41 if Dut (I) /= Ref (I) then
42 return False;
43 end if;
44 end loop;
45
46 return True;
47 end;
48
49end Limited_Strings;

check_lim_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Limited_Strings; use Limited_Strings;
 4
 5procedure Check_Lim_String is
 6 S : constant String := "----------";
 7 S1 : constant Lim_String := Init ("Hello World");
 8 S2 : constant Lim_String := Init (30);
 9 S3 : Lim_String := Init (5);
10 S4 : Lim_String := Init (S & S & S);
11begin
12 Put ("S1 => ");
13 Put_Line (S1);
14 Put ("S2 => ");
15 Put_Line (S2);
16
17 if S1 = S2 then
18 Put_Line ("S1 is equal to S2.");
19 else
20 Put_Line ("S1 isn't equal to S2.");
21 end if;
22
23 Copy (From => S1, To => S3);
24 Put ("S3 => ");
25 Put_Line (S3);
26
27 if S1 = S3 then
28 Put_Line ("S1 is equal to S3.");
29 else
30 Put_Line ("S1 isn't equal to S3.");
31 end if;
32
33 Copy (From => S1, To => S4);
34 Put ("S4 => ");
35 Put_Line (S4);
36
37 if S1 = S4 then
38 Put_Line ("S1 is equal to S4.");
39 else
40 Put_Line ("S1 isn't equal to S4.");
41 end if;
42end Check_Lim_String;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Check_Lim_String;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Lim_String_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Lim_String_Chk =>
14 Check_Lim_String;
15 end case;
16 end Check;
17
18begin
19 if Argument_Count < 1 then
20 Put_Line ("ERROR: missing arguments! Exiting...");
21 return;
22 elsif Argument_Count > 1 then
23 Put_Line ("Ignoring additional arguments...");
24 end if;
25
26 Check (Test_Case_Index'Value (Argument (1)));
27end Main;

Generics

Display Array

display_array.ads

1generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function Image (E : T_Element) return String;
6procedure Display_Array (Header : String;
7 A : T_Array);

display_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Display_Array (Header : String;
 4 A : T_Array) is
 5begin
 6 Put_Line (Header);
 7 for I in A'Range loop
 8 Put_Line (T_Range'Image (I) & ": " & Image (A (I)));
 9 end loop;
10end Display_Array;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Array;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Array_Chk,
 8 Point_Array_Chk);
 9
10 procedure Test_Int_Array is
11 type Int_Array is array (Positive range <>) of Integer;
12
13 procedure Display_Int_Array is new
14 Display_Array (T_Range => Positive,
15 T_Element => Integer,
16 T_Array => Int_Array,
17 Image => Integer'Image);
18
19 A : constant Int_Array (1 .. 5) := (1, 2, 5, 7, 10);
20 begin
21 Display_Int_Array ("Integers", A);
22 end Test_Int_Array;
23
24 procedure Test_Point_Array is
25 type Point is record
26 X : Float;
27 Y : Float;
28 end record;
29
30 type Point_Array is array (Natural range <>) of Point;
31
32 function Image (P : Point) return String is
33 begin
34 return "(" & Float'Image (P.X)
35 & ", " & Float'Image (P.Y) & ")";
36 end Image;
37
38 procedure Display_Point_Array is new
39 Display_Array (T_Range => Natural,
40 T_Element => Point,
41 T_Array => Point_Array,
42 Image => Image);
43
44 A : constant Point_Array (0 .. 3) := ((1.0, 0.5), (2.0, -0.5),
45 (5.0, 2.0), (-0.5, 2.0));
46 begin
47 Display_Point_Array ("Points", A);
48 end Test_Point_Array;
49
50 procedure Check (TC : Test_Case_Index) is
51 begin
52 case TC is
53 when Int_Array_Chk =>
54 Test_Int_Array;
55 when Point_Array_Chk =>
56 Test_Point_Array;
57 end case;
58 end Check;
59
60begin
61 if Argument_Count < 1 then
62 Put_Line ("ERROR: missing arguments! Exiting...");
63 return;
64 elsif Argument_Count > 1 then
65 Put_Line ("Ignoring additional arguments...");
66 end if;
67
68 Check (Test_Case_Index'Value (Argument (1)));
69end Main;

Average of Array of Float

average.ads

1generic
2 type T_Range is range <>;
3 type T_Element is digits <>;
4 type T_Array is array (T_Range range <>) of T_Element;
5function Average (A : T_Array) return T_Element;

average.adb

1function Average (A : T_Array) return T_Element is
2 Acc : Float := 0.0;
3begin
4 for I in A'Range loop
5 Acc := Acc + Float (A (I));
6 end loop;
7
8 return T_Element (Acc / Float (A'Length));
9end Average;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Average;
 5
 6procedure Main is
 7 type Test_Case_Index is (Float_Array_Chk,
 8 Digits_7_Float_Array_Chk);
 9
10 procedure Test_Float_Array is
11 type Float_Array is array (Positive range <>) of Float;
12
13 function Average_Float is new
14 Average (T_Range => Positive,
15 T_Element => Float,
16 T_Array => Float_Array);
17
18 A : constant Float_Array (1 .. 5) := (1.0, 3.0, 5.0, 7.5, -12.5);
19 begin
20 Put_Line ("Average: " & Float'Image (Average_Float (A)));
21 end Test_Float_Array;
22
23 procedure Test_Digits_7_Float_Array is
24 type Custom_Float is digits 7 range 0.0 .. 1.0;
25
26 type Float_Array is
27 array (Integer range <>) of Custom_Float;
28
29 function Average_Float is new
30 Average (T_Range => Integer,
31 T_Element => Custom_Float,
32 T_Array => Float_Array);
33
34 A : constant Float_Array (-1 .. 3) := (0.5, 0.0, 1.0, 0.6, 0.5);
35 begin
36 Put_Line ("Average: "
37 & Custom_Float'Image (Average_Float (A)));
38 end Test_Digits_7_Float_Array;
39
40 procedure Check (TC : Test_Case_Index) is
41 begin
42 case TC is
43 when Float_Array_Chk =>
44 Test_Float_Array;
45 when Digits_7_Float_Array_Chk =>
46 Test_Digits_7_Float_Array;
47 end case;
48 end Check;
49
50begin
51 if Argument_Count < 1 then
52 Put_Line ("ERROR: missing arguments! Exiting...");
53 return;
54 elsif Argument_Count > 1 then
55 Put_Line ("Ignoring additional arguments...");
56 end if;
57
58 Check (Test_Case_Index'Value (Argument (1)));
59end Main;

Average of Array of Any Type

average.ads

1generic
2 type T_Range is range <>;
3 type T_Element is private;
4 type T_Array is array (T_Range range <>) of T_Element;
5 with function To_Float (E : T_Element) return Float is <>;
6function Average (A : T_Array) return Float;

average.adb

1function Average (A : T_Array) return Float is
2 Acc : Float := 0.0;
3begin
4 for I in A'Range loop
5 Acc := Acc + To_Float (A (I));
6 end loop;
7
8 return Acc / Float (A'Length);
9end Average;

test_item.ads

1procedure Test_Item;

test_item.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Average;
 4
 5procedure Test_Item is
 6 package F_IO is new Ada.Text_IO.Float_IO (Float);
 7
 8 type Amount is delta 0.01 digits 12;
 9
10 type Item is record
11 Quantity : Natural;
12 Price : Amount;
13 end record;
14
15 type Item_Array is
16 array (Positive range <>) of Item;
17
18 function Get_Total (I : Item) return Float is
19 (Float (I.Quantity) * Float (I.Price));
20
21 function Get_Price (I : Item) return Float is
22 (Float (I.Price));
23
24 function Average_Total is new
25 Average (T_Range => Positive,
26 T_Element => Item,
27 T_Array => Item_Array,
28 To_Float => Get_Total);
29
30 function Average_Price is new
31 Average (T_Range => Positive,
32 T_Element => Item,
33 T_Array => Item_Array,
34 To_Float => Get_Price);
35
36 A : constant Item_Array (1 .. 4)
37 := ((Quantity => 5, Price => 10.00),
38 (Quantity => 80, Price => 2.50),
39 (Quantity => 40, Price => 5.00),
40 (Quantity => 20, Price => 12.50));
41
42begin
43 Put ("Average per item & quantity: ");
44 F_IO.Put (Average_Total (A), 3, 2, 0);
45 New_Line;
46
47 Put ("Average price: ");
48 F_IO.Put (Average_Price (A), 3, 2, 0);
49 New_Line;
50end Test_Item;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Item;
 5
 6procedure Main is
 7 type Test_Case_Index is (Item_Array_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Item_Array_Chk =>
13 Test_Item;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Generic list

gen_list.ads

 1generic
 2 type Item is private;
 3 type Items is array (Positive range <>) of Item;
 4 Name : String;
 5 List_Array : in out Items;
 6 Last : in out Natural;
 7 with procedure Put (I : Item) is <>;
 8package Gen_List is
 9
10 procedure Init;
11
12 procedure Add (I : Item;
13 Status : out Boolean);
14
15 procedure Display;
16
17end Gen_List;

gen_list.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_List is
 4
 5 procedure Init is
 6 begin
 7 Last := List_Array'First - 1;
 8 end Init;
 9
10 procedure Add (I : Item;
11 Status : out Boolean) is
12 begin
13 Status := Last < List_Array'Last;
14
15 if Status then
16 Last := Last + 1;
17 List_Array (Last) := I;
18 end if;
19 end Add;
20
21 procedure Display is
22 begin
23 Put_Line (Name);
24 for I in List_Array'First .. Last loop
25 Put (List_Array (I));
26 New_Line;
27 end loop;
28 end Display;
29
30end Gen_List;

test_int.ads

1procedure Test_Int;

test_int.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_List;
 4
 5procedure Test_Int is
 6
 7 procedure Put (I : Integer) is
 8 begin
 9 Ada.Text_IO.Put (Integer'Image (I));
10 end Put;
11
12 type Integer_Array is array (Positive range <>) of Integer;
13
14 A : Integer_Array (1 .. 3);
15 L : Natural;
16
17 package Int_List is new
18 Gen_List (Item => Integer,
19 Items => Integer_Array,
20 Name => "List of integers",
21 List_Array => A,
22 Last => L);
23
24 Success : Boolean;
25
26 procedure Display_Add_Success (Success : Boolean) is
27 begin
28 if Success then
29 Put_Line ("Added item successfully!");
30 else
31 Put_Line ("Couldn't add item!");
32 end if;
33
34 end Display_Add_Success;
35
36begin
37 Int_List.Init;
38
39 Int_List.Add (2, Success);
40 Display_Add_Success (Success);
41
42 Int_List.Add (5, Success);
43 Display_Add_Success (Success);
44
45 Int_List.Add (7, Success);
46 Display_Add_Success (Success);
47
48 Int_List.Add (8, Success);
49 Display_Add_Success (Success);
50
51 Int_List.Display;
52end Test_Int;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Test_Int;
 5
 6procedure Main is
 7 type Test_Case_Index is (Int_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 begin
11 case TC is
12 when Int_Chk =>
13 Test_Int;
14 end case;
15 end Check;
16
17begin
18 if Argument_Count < 1 then
19 Put_Line ("ERROR: missing arguments! Exiting...");
20 return;
21 elsif Argument_Count > 1 then
22 Put_Line ("Ignoring additional arguments...");
23 end if;
24
25 Check (Test_Case_Index'Value (Argument (1)));
26end Main;

Exceptions

Uninitialized Value

options.ads

 1package Options is
 2
 3 type Option is (Uninitialized,
 4 Option_1,
 5 Option_2,
 6 Option_3);
 7
 8 Uninitialized_Value : exception;
 9
10 function Image (O : Option) return String;
11
12end Options;

options.adb

 1package body Options is
 2
 3 function Image (O : Option) return String is
 4 begin
 5 case O is
 6 when Uninitialized =>
 7 raise Uninitialized_Value with "Uninitialized value detected!";
 8 when others =>
 9 return Option'Image (O);
10 end case;
11 end Image;
12
13end Options;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Options; use Options;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Options_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Check (O : Option) is
14 begin
15 Put_Line (Image (O));
16 exception
17 when E : Uninitialized_Value =>
18 Put_Line (Exception_Message (E));
19 end Check;
20
21 begin
22 case TC is
23 when Options_Chk =>
24 for O in Option loop
25 Check (O);
26 end loop;
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

Numerical Exception

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.adb

 1with Tests; use Tests;
 2
 3with Ada.Text_IO; use Ada.Text_IO;
 4with Ada.Exceptions; use Ada.Exceptions;
 5
 6procedure Check_Exception (ID : Test_ID) is
 7begin
 8 Num_Exception_Test (ID);
 9exception
10 when Constraint_Error =>
11 Put_Line ("Constraint_Error detected!");
12 when E : others =>
13 Put_Line (Exception_Message (E));
14end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Re-raising Exceptions

tests.ads

1package Tests is
2
3 type Test_ID is (Test_1, Test_2);
4
5 Custom_Exception, Another_Exception : exception;
6
7 procedure Num_Exception_Test (ID : Test_ID);
8
9end Tests;

tests.adb

 1package body Tests is
 2
 3 pragma Warnings (Off, "variable ""C"" is assigned but never read");
 4
 5 procedure Num_Exception_Test (ID : Test_ID) is
 6 A, B, C : Integer;
 7 begin
 8 case ID is
 9 when Test_1 =>
10 A := Integer'Last;
11 B := Integer'Last;
12 C := A + B;
13 when Test_2 =>
14 raise Custom_Exception with "Custom_Exception raised!";
15 end case;
16 end Num_Exception_Test;
17
18 pragma Warnings (On, "variable ""C"" is assigned but never read");
19
20end Tests;

check_exception.ads

1with Tests; use Tests;
2
3procedure Check_Exception (ID : Test_ID);

check_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Check_Exception (ID : Test_ID) is
 5begin
 6 Num_Exception_Test (ID);
 7exception
 8 when Constraint_Error =>
 9 Put_Line ("Constraint_Error detected!");
10 raise;
11 when E : others =>
12 Put_Line (Exception_Message (E));
13 raise Another_Exception;
14end Check_Exception;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Exceptions; use Ada.Exceptions;
 4
 5with Tests; use Tests;
 6with Check_Exception;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Exception_1_Chk,
11 Exception_2_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 procedure Check_Handle_Exception (ID : Test_ID) is
16 begin
17 Check_Exception (ID);
18 exception
19 when Constraint_Error =>
20 Put_Line ("Constraint_Error"
21 & " (raised by Check_Exception) detected!");
22 when E : others =>
23 Put_Line (Exception_Name (E)
24 & " (raised by Check_Exception) detected!");
25 end Check_Handle_Exception;
26
27 begin
28 case TC is
29 when Exception_1_Chk =>
30 Check_Handle_Exception (Test_1);
31 when Exception_2_Chk =>
32 Check_Handle_Exception (Test_2);
33 end case;
34 end Check;
35
36begin
37 if Argument_Count < 1 then
38 Put_Line ("ERROR: missing arguments! Exiting...");
39 return;
40 elsif Argument_Count > 1 then
41 Put_Line ("Ignoring additional arguments...");
42 end if;
43
44 Check (Test_Case_Index'Value (Argument (1)));
45end Main;

Tasking

Display Service

display_services.ads

1package Display_Services is
2
3 task type Display_Service is
4 entry Display (S : String);
5 entry Display (I : Integer);
6 end Display_Service;
7
8end Display_Services;

display_services.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Display_Services is
 4
 5 task body Display_Service is
 6 begin
 7 loop
 8 select
 9 accept Display (S : String) do
10 Put_Line (S);
11 end Display;
12 or
13 accept Display (I : Integer) do
14 Put_Line (Integer'Image (I));
15 end Display;
16 or
17 terminate;
18 end select;
19 end loop;
20 end Display_Service;
21
22end Display_Services;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Services; use Display_Services;
 5
 6procedure Main is
 7 type Test_Case_Index is (Display_Service_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22
23begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30
31 Check (Test_Case_Index'Value (Argument (1)));
32end Main;

Event Manager

event_managers.ads

 1with Ada.Real_Time; use Ada.Real_Time;
 2
 3package Event_Managers is
 4
 5 task type Event_Manager is
 6 entry Start (ID : Natural);
 7 entry Event (T : Time);
 8 end Event_Manager;
 9
10end Event_Managers;

event_managers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Event_Managers is
 4
 5 task body Event_Manager is
 6 Event_ID : Natural := 0;
 7 Event_Delay : Time;
 8 begin
 9 accept Start (ID : Natural) do
10 Event_ID := ID;
11 end Start;
12
13 accept Event (T : Time) do
14 Event_Delay := T;
15 end Event;
16
17 delay until Event_Delay;
18
19 Put_Line ("Event #" & Natural'Image (Event_ID));
20 end Event_Manager;
21
22end Event_Managers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Event_Managers; use Event_Managers;
 5with Ada.Real_Time; use Ada.Real_Time;
 6
 7procedure Main is
 8 type Test_Case_Index is (Event_Manager_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Generic Protected Queue

gen_queues.ads

 1generic
 2 type Queue_Index is mod <>;
 3 type T is private;
 4package Gen_Queues is
 5
 6 type Queue_Array is array (Queue_Index) of T;
 7
 8 protected type Queue is
 9 function Empty return Boolean;
10 function Full return Boolean;
11 entry Push (V : T);
12 entry Pop (V : out T);
13 private
14 N : Natural := 0;
15 Idx : Queue_Index := Queue_Array'First;
16 A : Queue_Array;
17 end Queue;
18
19end Gen_Queues;

gen_queues.adb

 1package body Gen_Queues is
 2
 3 protected body Queue is
 4
 5 function Empty return Boolean is
 6 (N = 0);
 7
 8 function Full return Boolean is
 9 (N = A'Length);
10
11 entry Push (V : T) when not Full is
12 begin
13 A (Idx) := V;
14
15 Idx := Idx + 1;
16 N := N + 1;
17 end Push;
18
19 entry Pop (V : out T) when not Empty is
20 begin
21 N := N - 1;
22
23 V := A (Idx - Queue_Index (N) - 1);
24 end Pop;
25
26 end Queue;
27
28end Gen_Queues;

queue_tests.ads

1package Queue_Tests is
2
3 procedure Simple_Test;
4
5 procedure Concurrent_Test;
6
7end Queue_Tests;

queue_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_Queues;
 4
 5package body Queue_Tests is
 6
 7 Max : constant := 10;
 8 type Queue_Mod is mod Max;
 9
10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12
13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21
22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27
28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30
31 Q_I : Queues_Integer.Queue;
32
33 task T_Producer;
34 task T_Consumer;
35
36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44
45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59
60end Queue_Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Queue_Tests; use Queue_Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is (Simple_Queue_Chk,
 8 Concurrent_Queue_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 begin
12 case TC is
13 when Simple_Queue_Chk =>
14 Simple_Test;
15 when Concurrent_Queue_Chk =>
16 Concurrent_Test;
17 end case;
18 end Check;
19
20begin
21 if Argument_Count < 1 then
22 Put_Line ("ERROR: missing arguments! Exiting...");
23 return;
24 elsif Argument_Count > 1 then
25 Put_Line ("Ignoring additional arguments...");
26 end if;
27
28 Check (Test_Case_Index'Value (Argument (1)));
29end Main;

Design by contracts

Price Range

prices.ads

 1package Prices is
 2
 3 type Amount is delta 10.0 ** (-2) digits 12;
 4
 5 -- subtype Price is Amount range 0.0 .. Amount'Last;
 6
 7 subtype Price is Amount
 8 with Static_Predicate => Price >= 0.0;
 9
10end Prices;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Prices; use Prices;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Price_Range_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_Range (A : Amount) is
15 P : constant Price := A;
16 begin
17 Put_Line ("Price: " & Price'Image (P));
18 end Check_Range;
19
20 begin
21 case TC is
22 when Price_Range_Chk =>
23 Check_Range (-2.0);
24 end case;
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Pythagorean Theorem: Predicate

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record
11 with Dynamic_Predicate => H * H = C1 * C1 + C2 * C2;
12
13 function Init (H, C1, C2 : Length) return Right_Triangle is
14 ((H, C1, C2));
15
16end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Precondition

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Pre => H * H = C1 * C1 + C2 * C2;
15
16end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Postcondition

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is record
 6 H : Length := 0;
 7 -- Hypotenuse
 8 C1, C2 : Length := 0;
 9 -- Catheti / legs
10 end record;
11
12 function Init (H, C1, C2 : Length) return Right_Triangle is
13 ((H, C1, C2))
14 with Post => (Init'Result.H * Init'Result.H
15 = Init'Result.C1 * Init'Result.C1
16 + Init'Result.C2 * Init'Result.C2);
17
18end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Pythagorean Theorem: Type Invariant

triangles.ads

 1package Triangles is
 2
 3 subtype Length is Integer;
 4
 5 type Right_Triangle is private
 6 with Type_Invariant => Check (Right_Triangle);
 7
 8 function Check (T : Right_Triangle) return Boolean;
 9
10 function Init (H, C1, C2 : Length) return Right_Triangle;
11
12private
13
14 type Right_Triangle is record
15 H : Length := 0;
16 -- Hypotenuse
17 C1, C2 : Length := 0;
18 -- Catheti / legs
19 end record;
20
21 function Init (H, C1, C2 : Length) return Right_Triangle is
22 ((H, C1, C2));
23
24 function Check (T : Right_Triangle) return Boolean is
25 (T.H * T.H = T.C1 * T.C1 + T.C2 * T.C2);
26
27end Triangles;

triangles-io.ads

1package Triangles.IO is
2
3 function Image (T : Right_Triangle) return String;
4
5end Triangles.IO;

triangles-io.adb

1package body Triangles.IO is
2
3 function Image (T : Right_Triangle) return String is
4 ("(" & Length'Image (T.H)
5 & ", " & Length'Image (T.C1)
6 & ", " & Length'Image (T.C2)
7 & ")");
8
9end Triangles.IO;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with System.Assertions; use System.Assertions;
 4
 5with Triangles; use Triangles;
 6with Triangles.IO; use Triangles.IO;
 7
 8procedure Main is
 9
10 type Test_Case_Index is
11 (Triangle_8_6_Pass_Chk,
12 Triangle_8_6_Fail_Chk,
13 Triangle_10_24_Pass_Chk,
14 Triangle_10_24_Fail_Chk,
15 Triangle_18_24_Pass_Chk,
16 Triangle_18_24_Fail_Chk);
17
18 procedure Check (TC : Test_Case_Index) is
19
20 procedure Check_Triangle (H, C1, C2 : Length) is
21 T : Right_Triangle;
22 begin
23 T := Init (H, C1, C2);
24 Put_Line (Image (T));
25 exception
26 when Constraint_Error =>
27 Put_Line ("Constraint_Error detected (NOT as expected).");
28 when Assert_Failure =>
29 Put_Line ("Assert_Failure detected (as expected).");
30 end Check_Triangle;
31
32 begin
33 case TC is
34 when Triangle_8_6_Pass_Chk => Check_Triangle (10, 8, 6);
35 when Triangle_8_6_Fail_Chk => Check_Triangle (12, 8, 6);
36 when Triangle_10_24_Pass_Chk => Check_Triangle (26, 10, 24);
37 when Triangle_10_24_Fail_Chk => Check_Triangle (12, 10, 24);
38 when Triangle_18_24_Pass_Chk => Check_Triangle (30, 18, 24);
39 when Triangle_18_24_Fail_Chk => Check_Triangle (32, 18, 24);
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 1 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 1 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)));
52end Main;

Primary Colors

color_types.ads

 1package Color_Types is
 2
 3 type HTML_Color is
 4 (Salmon,
 5 Firebrick,
 6 Red,
 7 Darkred,
 8 Lime,
 9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15
16 subtype Int_Color is Integer range 0 .. 255;
17
18 function Image (I : Int_Color) return String;
19
20 type RGB is record
21 Red : Int_Color;
22 Green : Int_Color;
23 Blue : Int_Color;
24 end record;
25
26 function To_RGB (C : HTML_Color) return RGB;
27
28 function Image (C : RGB) return String;
29
30 type HTML_Color_RGB_Array is array (HTML_Color) of RGB;
31
32 To_RGB_Lookup_Table : constant HTML_Color_RGB_Array
33 := (Salmon => (16#FA#, 16#80#, 16#72#),
34 Firebrick => (16#B2#, 16#22#, 16#22#),
35 Red => (16#FF#, 16#00#, 16#00#),
36 Darkred => (16#8B#, 16#00#, 16#00#),
37 Lime => (16#00#, 16#FF#, 16#00#),
38 Forestgreen => (16#22#, 16#8B#, 16#22#),
39 Green => (16#00#, 16#80#, 16#00#),
40 Darkgreen => (16#00#, 16#64#, 16#00#),
41 Blue => (16#00#, 16#00#, 16#FF#),
42 Mediumblue => (16#00#, 16#00#, 16#CD#),
43 Darkblue => (16#00#, 16#00#, 16#8B#));
44
45 subtype HTML_RGB_Color is HTML_Color
46 with Static_Predicate => HTML_RGB_Color in Red | Green | Blue;
47
48 function To_Int_Color (C : HTML_Color;
49 S : HTML_RGB_Color) return Int_Color;
50 -- Convert to hexadecimal value for the selected RGB component S
51
52end Color_Types;

color_types.adb

 1with Ada.Integer_Text_IO;
 2
 3package body Color_Types is
 4
 5 function To_RGB (C : HTML_Color) return RGB is
 6 begin
 7 return To_RGB_Lookup_Table (C);
 8 end To_RGB;
 9
10 function To_Int_Color (C : HTML_Color;
11 S : HTML_RGB_Color) return Int_Color is
12 C_RGB : constant RGB := To_RGB (C);
13 begin
14 case S is
15 when Red => return C_RGB.Red;
16 when Green => return C_RGB.Green;
17 when Blue => return C_RGB.Blue;
18 end case;
19 end To_Int_Color;
20
21 function Image (I : Int_Color) return String is
22 subtype Str_Range is Integer range 1 .. 10;
23 S : String (Str_Range);
24 begin
25 Ada.Integer_Text_IO.Put (To => S,
26 Item => I,
27 Base => 16);
28 return S;
29 end Image;
30
31 function Image (C : RGB) return String is
32 begin
33 return ("(Red => " & Image (C.Red)
34 & ", Green => " & Image (C.Green)
35 & ", Blue => " & Image (C.Blue)
36 &")");
37 end Image;
38
39end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Color_Types; use Color_Types;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (HTML_Color_Red_Chk,
 9 HTML_Color_Green_Chk,
10 HTML_Color_Blue_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13
14 procedure Check_HTML_Colors (S : HTML_RGB_Color) is
15 begin
16 Put_Line ("Selected: " & HTML_RGB_Color'Image (S));
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I) & " => "
19 & Image (To_Int_Color (I, S)) & ".");
20 end loop;
21 end Check_HTML_Colors;
22
23 begin
24 case TC is
25 when HTML_Color_Red_Chk =>
26 Check_HTML_Colors (Red);
27 when HTML_Color_Green_Chk =>
28 Check_HTML_Colors (Green);
29 when HTML_Color_Blue_Chk =>
30 Check_HTML_Colors (Blue);
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Object-oriented programming

Simple type extension

type_extensions.ads

 1package Type_Extensions is
 2
 3 type T_Float is tagged record
 4 F : Float;
 5 end record;
 6
 7 function Init (F : Float) return T_Float;
 8
 9 function Init (I : Integer) return T_Float;
10
11 function Image (T : T_Float) return String;
12
13 type T_Mixed is new T_Float with record
14 I : Integer;
15 end record;
16
17 function Init (F : Float) return T_Mixed;
18
19 function Init (I : Integer) return T_Mixed;
20
21 function Image (T : T_Mixed) return String;
22
23end Type_Extensions;

type_extensions.adb

 1package body Type_Extensions is
 2
 3 function Init (F : Float) return T_Float is
 4 begin
 5 return ((F => F));
 6 end Init;
 7
 8 function Init (I : Integer) return T_Float is
 9 begin
10 return ((F => Float (I)));
11 end Init;
12
13 function Init (F : Float) return T_Mixed is
14 begin
15 return ((F => F,
16 I => Integer (F)));
17 end Init;
18
19 function Init (I : Integer) return T_Mixed is
20 begin
21 return ((F => Float (I),
22 I => I));
23 end Init;
24
25 function Image (T : T_Float) return String is
26 begin
27 return "{ F => " & Float'Image (T.F) & " }";
28 end Image;
29
30 function Image (T : T_Mixed) return String is
31 begin
32 return "{ F => " & Float'Image (T.F)
33 & ", I => " & Integer'Image (T.I) & " }";
34 end Image;
35
36end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 type Member is tagged record
10 Start : Year_Number;
11 end record;
12
13 type Member_Access is access Member'Class;
14
15 function Get_Status (M : Member) return String;
16
17 function Get_Price (M : Member;
18 P : Amount) return Amount;
19
20 type Full_Member is new Member with record
21 Discount : Percentage;
22 end record;
23
24 function Get_Status (M : Full_Member) return String;
25
26 function Get_Price (M : Full_Member;
27 P : Amount) return Amount;
28
29end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("Associate Member");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("Full Member");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (P);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (P * (1.0 - M.Discount));
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6
 7 type Member_Due_Amount is record
 8 Member : Member_Access;
 9 Due_Amount : Amount;
10 end record;
11
12 function Get_Price (MA : Member_Due_Amount) return Amount is
13 begin
14 return MA.Member.Get_Price (MA.Due_Amount);
15 end Get_Price;
16
17 type Member_Due_Amounts is array (Positive range <>) of Member_Due_Amount;
18
19 DB : constant Member_Due_Amounts (1 .. 4)
20 := ((Member => new Member'(Start => 2010),
21 Due_Amount => 250.0),
22 (Member => new Full_Member'(Start => 1998,
23 Discount => 0.1),
24 Due_Amount => 160.0),
25 (Member => new Full_Member'(Start => 1987,
26 Discount => 0.2),
27 Due_Amount => 400.0),
28 (Member => new Member'(Start => 2013),
29 Due_Amount => 110.0));
30 begin
31 for I in DB'Range loop
32 Put_Line ("Member #" & Positive'Image (I));
33 Put_Line ("Status: " & DB (I).Member.Get_Status);
34 Put_Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
35 Put_Line ("Due Amount: " & Amount'Image (Get_Price (DB (I))));
36 Put_Line ("--------");
37 end loop;
38 end Simple_Test;
39
40end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Standard library: Containers

Simple todo list

todo_lists.ads

 1with Ada.Containers.Vectors;
 2
 3package Todo_Lists is
 4
 5 type Todo_Item is access String;
 6
 7 package Todo_List_Pkg is new Ada.Containers.Vectors
 8 (Index_Type => Natural,
 9 Element_Type => Todo_Item);
10
11 subtype Todo_List is Todo_List_Pkg.Vector;
12
13 procedure Add (Todos : in out Todo_List;
14 Item : String);
15
16 procedure Display (Todos : Todo_List);
17
18end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 Todos.Append (new String'(Item));
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 Put_Line ("TO-DO LIST");
14 for T of Todos loop
15 Put_Line (T.all);
16 end loop;
17 end Display;
18
19end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

List of unique integers

ops.ads

 1with Ada.Containers.Ordered_Sets;
 2
 3package Ops is
 4
 5 type Int_Array is array (Positive range <>) of Integer;
 6
 7 package Integer_Sets is new Ada.Containers.Ordered_Sets
 8 (Element_Type => Integer);
 9
10 subtype Int_Set is Integer_Sets.Set;
11
12 function Get_Unique (A : Int_Array) return Int_Set;
13
14 function Get_Unique (A : Int_Array) return Int_Array;
15
16end Ops;

ops.adb

 1package body Ops is
 2
 3 function Get_Unique (A : Int_Array) return Int_Set is
 4 S : Int_Set;
 5 begin
 6 for E of A loop
 7 S.Include (E);
 8 end loop;
 9
10 return S;
11 end Get_Unique;
12
13 function Get_Unique (A : Int_Array) return Int_Array is
14 S : constant Int_Set := Get_Unique (A);
15 AR : Int_Array (1 .. Positive (S.Length));
16 I : Positive := 1;
17 begin
18 for E of S loop
19 AR (I) := E;
20 I := I + 1;
21 end loop;
22
23 return AR;
24 end Get_Unique;
25
26end Ops;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Ops; use Ops;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Get_Unique_Set_Chk,
 9 Get_Unique_Array_Chk);
10
11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13
14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21
22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29
30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51end Main;

Standard library: Dates & Times

Holocene calendar

to_holocene_year.adb

1with Ada.Calendar; use Ada.Calendar;
2
3function To_Holocene_Year (T : Time) return Integer is
4begin
5 return Year (T) + 10_000;
6end To_Holocene_Year;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar; use Ada.Calendar;
 4
 5with To_Holocene_Year;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Holocene_Chk);
10
11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18
19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of events

events.ads

 1with Ada.Containers.Vectors;
 2
 3package Events is
 4
 5 type Event_Item is access String;
 6
 7 package Event_Item_Containers is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11
12 subtype Event_Items is Event_Item_Containers.Vector;
13
14end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5
 6with Events.Lists; use Events.Lists;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Event_List_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28
29begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36
37 Check (Test_Case_Index'Value (Argument (1)));
38end Main;

Standard library: Strings

Concatenation

str_concat.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2
 3package Str_Concat is
 4
 5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
 6
 7 function Concat (USA : Unbounded_Strings;
 8 Trim_Str : Boolean;
 9 Add_Whitespace : Boolean) return Unbounded_String;
10
11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;
13 Add_Whitespace : Boolean) return String;
14
15end Str_Concat;

str_concat.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3package body Str_Concat is
 4
 5 function Concat (USA : Unbounded_Strings;
 6 Trim_Str : Boolean;
 7 Add_Whitespace : Boolean) return Unbounded_String is
 8
 9 function Retrieve (USA : Unbounded_Strings;
10 Trim_Str : Boolean;
11 Index : Positive) return Unbounded_String is
12 US_Internal : Unbounded_String := USA (Index);
13 begin
14 if Trim_Str then
15 US_Internal := Trim (US_Internal, Both);
16 end if;
17 return US_Internal;
18 end Retrieve;
19
20 US : Unbounded_String := To_Unbounded_String ("");
21 begin
22 for I in USA'First .. USA'Last - 1 loop
23 US := US & Retrieve (USA, Trim_Str, I);
24 if Add_Whitespace then
25 US := US & " ";
26 end if;
27 end loop;
28 US := US & Retrieve (USA, Trim_Str, USA'Last);
29
30 return US;
31 end Concat;
32
33 function Concat (USA : Unbounded_Strings;
34 Trim_Str : Boolean;
35 Add_Whitespace : Boolean) return String is
36 begin
37 return To_String (Concat (USA, Trim_Str, Add_Whitespace));
38 end Concat;
39
40end Str_Concat;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 4
 5with Str_Concat; use Str_Concat;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,
12 Concat_Single_Element);
13
14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54
55begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62
63 Check (Test_Case_Index'Value (Argument (1)));
64end Main;

List of events

events.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2with Ada.Containers.Vectors;
 3
 4package Events is
 5
 6 subtype Event_Item is Unbounded_String;
 7
 8 package Event_Item_Containers is new
 9 Ada.Containers.Vectors
10 (Index_Type => Positive,
11 Element_Type => Event_Item);
12
13 subtype Event_Items is Event_Item_Containers.Vector;
14
15end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := To_Unbounded_String (Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & To_String (I));
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 6
 7with Events;
 8with Events.Lists; use Events.Lists;
 9
10procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14
15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;
36 end Check;
37
38begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45
46 Check (Test_Case_Index'Value (Argument (1)));
47end Main;

Standard library: Numerics

Decibel Factor

decibels.ads

 1package Decibels is
 2
 3 subtype Decibel is Float;
 4 subtype Factor is Float;
 5
 6 function To_Decibel (F : Factor) return Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor;
 9
10end Decibels;

decibels.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Decibels is
 4
 5 function To_Decibel (F : Factor) return Decibel is
 6 begin
 7 return 20.0 * Log (F, 10.0);
 8 end To_Decibel;
 9
10 function To_Factor (D : Decibel) return Factor is
11 begin
12 return 10.0 ** (D / 20.0);
13 end To_Factor;
14
15end Decibels;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Decibels; use Decibels;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Db_Chk,
 9 Factor_Chk);
10
11 procedure Check (TC : Test_Case_Index; V : Float) is
12
13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15
16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24
25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 2 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52end Main;

Root-Mean-Square

signals.ads

1package Signals is
2
3 subtype Sig_Value is Float;
4
5 type Signal is array (Natural range <>) of Sig_Value;
6
7 function Rms (S : Signal) return Sig_Value;
8
9end Signals;

signals.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Signals is
 4
 5 function Rms (S : Signal) return Sig_Value is
 6 Acc : Float := 0.0;
 7 begin
 8 for V of S loop
 9 Acc := Acc + V * V;
10 end loop;
11
12 return Sqrt (Acc / Float (S'Length));
13 end;
14
15end Signals;

signals-std.ads

 1package Signals.Std is
 2
 3 Sample_Rate : Float := 8000.0;
 4
 5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
 6
 7 function Generate_Square (N : Positive) return Signal;
 8
 9 function Generate_Triangular (N : Positive) return Signal;
10
11end Signals.Std;

signals-std.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 3
 4package body Signals.Std is
 5
 6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
 7 S : Signal (0 .. N - 1);
 8 begin
 9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12
13 return S;
14 end;
15
16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21
22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32
33 return S;
34 end;
35
36end Signals.Std;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Signals; use Signals;
 5with Signals.Std; use Signals.Std;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15
16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44
45 Check (Test_Case_Index'Value (Argument (1)));
46end Main;

Rotation

rotation.ads

 1with Ada.Numerics.Complex_Types;
 2use Ada.Numerics.Complex_Types;
 3
 4package Rotation is
 5
 6 type Complex_Points is array (Positive range <>) of Complex;
 7
 8 function Rotation (N : Positive) return Complex_Points;
 9
10end Rotation;

rotation.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3package body Rotation is
 4
 5 function Rotation (N : Positive) return Complex_Points is
 6 C_Angle : constant Complex :=
 7 Compose_From_Polar (1.0, 2.0 * Pi / Float (N));
 8 begin
 9 return C : Complex_Points (1 .. N + 1) do
10 C (1) := Compose_From_Cartesian (1.0, 0.0);
11
12 for I in C'First + 1 .. C'Last loop
13 C (I) := C (I - 1) * C_Angle;
14 end loop;
15 end return;
16 end;
17
18end Rotation;

angles.ads

 1with Rotation; use Rotation;
 2
 3package Angles is
 4
 5 subtype Angle is Float;
 6
 7 type Angles is array (Positive range <>) of Angle;
 8
 9 function To_Angles (C : Complex_Points) return Angles;
10
11end Angles;

angles.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
 3
 4package body Angles is
 5
 6 function To_Angles (C : Complex_Points) return Angles is
 7 begin
 8 return A : Angles (C'Range) do
 9 for I in A'Range loop
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14
15end Angles;

rotation-tests.ads

1package Rotation.Tests is
2
3 procedure Test_Rotation (N : Positive);
4
5 procedure Test_Angles (N : Positive);
6
7end Rotation.Tests;

rotation-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3with Ada.Numerics; use Ada.Numerics;
 4
 5with Angles; use Angles;
 6
 7package body Rotation.Tests is
 8
 9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11
12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15
16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25
26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28
29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39
40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;
50 end Test_Angles;
51
52end Rotation.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Rotation.Tests; use Rotation.Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Rotation_Chk,
 9 Angles_Chk);
10
11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30end Main;

Footnotes

Standard library: Containers

Simple todo list

Goal: implement a simple to-do list system using vectors.

Steps:

	Implement the Todo_Lists package.

	Declare the Todo_Item type.

	Declare the Todo_List type.

	Implement the Add procedure.

	Implement the Display procedure.

	Todo_Item type is used to store to-do items.

	It should be implemented as an access type to strings.

	Todo_List type is the container for all to-do items.

	It should be implemented as a vector.

	Procedure Add adds items (of Todo_Item type) to the list
(of Todo_List type).

	This requires allocating a string for the access type.

	Procedure Display is used to display all to-do items.

	It must display one item per line.

Remarks:

	This exercise is based on the Simple todo list exercise from the
More About Types.

	Your goal is to rewrite that exercise using vectors instead of
arrays.

	You may reuse the code you've already implemented as a starting
point.

todo_lists.ads

 1package Todo_Lists is
 2
 3 type Todo_Item is access String;
 4
 5 type Todo_List is null record;
 6
 7 procedure Add (Todos : in out Todo_List;
 8 Item : String);
 9
10 procedure Display (Todos : Todo_List);
11
12end Todo_Lists;

todo_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Todo_Lists is
 4
 5 procedure Add (Todos : in out Todo_List;
 6 Item : String) is
 7 begin
 8 null;
 9 end Add;
10
11 procedure Display (Todos : Todo_List) is
12 begin
13 Put_Line ("TO-DO LIST");
14 end Display;
15
16end Todo_Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Todo_Lists; use Todo_Lists;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Todo_List_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 T : Todo_List;
12 begin
13 case TC is
14 when Todo_List_Chk =>
15 Add (T, "Buy milk");
16 Add (T, "Buy tea");
17 Add (T, "Buy present");
18 Add (T, "Buy tickets");
19 Add (T, "Pay electricity bill");
20 Add (T, "Schedule dentist appointment");
21 Add (T, "Call sister");
22 Add (T, "Revise spreasheet");
23 Add (T, "Edit entry page");
24 Add (T, "Select new design");
25 Add (T, "Create upgrade plan");
26 Display (T);
27 end case;
28 end Check;
29
30begin
31 if Argument_Count < 1 then
32 Put_Line ("ERROR: missing arguments! Exiting...");
33 return;
34 elsif Argument_Count > 1 then
35 Put_Line ("Ignoring additional arguments...");
36 end if;
37
38 Check (Test_Case_Index'Value (Argument (1)));
39end Main;

List of unique integers

Goal: create function that removes duplicates from and orders a collection
of elements.

Steps:

	Implement package Ops.

	Declare the Int_Array type.

	Declare the Integer_Sets type.

	Implement the Get_Unique function that returns a set.

	Implement the Get_Unique function that returns an array of
integer values.

Requirements:

	The Int_Array type is an unconstrained array of positive range.

	The Integer_Sets package is an instantiation of the
Ordered_Sets package for the Integer type.

	The Get_Unique function must remove duplicates from an input
array of integer values and order the elements.

	For example:

	if the input array contains (7, 7, 1)

	the function must return (1, 7).

	You must implement this function by using sets from the
Ordered_Sets package.

	Get_Unique must be implemented in two versions:

	one version that returns a set — Set type from the
Ordered_Sets package.

	one version that returns an array of integer values —
Int_Array type.

Remarks:

	Sets — as the one found in the generic Ordered_Sets package
— are useful for quickly and easily creating an algorithm that
removes duplicates from a list of elements.

ops.ads

 1with Ada.Containers.Ordered_Sets;
 2
 3package Ops is
 4
 5 -- type Int_Array is ...
 6
 7 -- package Integer_Sets is ...
 8
 9 subtype Int_Set is Integer_Sets.Set;
10
11 function Get_Unique (A : Int_Array) return Int_Set;
12
13 function Get_Unique (A : Int_Array) return Int_Array;
14
15end Ops;

ops.adb

 1package body Ops is
 2
 3 function Get_Unique (A : Int_Array) return Int_Set is
 4 begin
 5 null;
 6 end Get_Unique;
 7
 8 function Get_Unique (A : Int_Array) return Int_Array is
 9 begin
10 null;
11 end Get_Unique;
12
13end Ops;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Ops; use Ops;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Get_Unique_Set_Chk,
 9 Get_Unique_Array_Chk);
10
11 procedure Check (TC : Test_Case_Index;
12 A : Int_Array) is
13
14 procedure Display_Unique_Set (A : Int_Array) is
15 S : constant Int_Set := Get_Unique (A);
16 begin
17 for E of S loop
18 Put_Line (Integer'Image (E));
19 end loop;
20 end Display_Unique_Set;
21
22 procedure Display_Unique_Array (A : Int_Array) is
23 AU : constant Int_Array := Get_Unique (A);
24 begin
25 for E of AU loop
26 Put_Line (Integer'Image (E));
27 end loop;
28 end Display_Unique_Array;
29
30 begin
31 case TC is
32 when Get_Unique_Set_Chk => Display_Unique_Set (A);
33 when Get_Unique_Array_Chk => Display_Unique_Array (A);
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 3 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 else
42 declare
43 A : Int_Array (1 .. Argument_Count - 1);
44 begin
45 for I in A'Range loop
46 A (I) := Integer'Value (Argument (1 + I));
47 end loop;
48 Check (Test_Case_Index'Value (Argument (1)), A);
49 end;
50 end if;
51end Main;

Footnotes

Standard library: Dates & Times

Holocene calendar

Goal: create a function that returns the year in the Holocene calendar.

Steps:

	Implement the To_Holocene_Year function.

Requirements:

	The To_Holocene_Year extracts the year from a time object
(Time type) and returns the corresponding year for the
Holocene calendar[#1].

	For positive (AD) years, the Holocene year is calculated by adding
10,000 to the year number.

Remarks:

	In this exercise, we don't deal with BC years.

	Note that the year component of the Time type from the
Ada.Calendar package is limited to years starting with 1901.

to_holocene_year.adb

1with Ada.Calendar; use Ada.Calendar;
2
3function To_Holocene_Year (T : Time) return Integer is
4begin
5 return 0;
6end To_Holocene_Year;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar; use Ada.Calendar;
 4
 5with To_Holocene_Year;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Holocene_Chk);
10
11 procedure Display_Holocene_Year (Y : Year_Number) is
12 HY : Integer;
13 begin
14 HY := To_Holocene_Year (Time_Of (Y, 1, 1));
15 Put_Line ("Year (Gregorian): " & Year_Number'Image (Y));
16 Put_Line ("Year (Holocene): " & Integer'Image (HY));
17 end Display_Holocene_Year;
18
19 procedure Check (TC : Test_Case_Index) is
20 begin
21 case TC is
22 when Holocene_Chk =>
23 Display_Holocene_Year (2012);
24 Display_Holocene_Year (2020);
25 end case;
26 end Check;
27
28begin
29 if Argument_Count < 1 then
30 Put_Line ("ERROR: missing arguments! Exiting...");
31 return;
32 elsif Argument_Count > 1 then
33 Put_Line ("Ignoring additional arguments...");
34 end if;
35
36 Check (Test_Case_Index'Value (Argument (1)));
37end Main;

List of events

Goal: create a system to manage a list of events.

Steps:

	Implement the Events package.

	Declare the Event_Item type.

	Declare the Event_Items type.

	Implement the Events.Lists package.

	Declare the Event_List type.

	Implement the Add procedure.

	Implement the Display procedure.

Requirements:

	The Event_Item type (from the Events package) contains the
description of an event.

	This description shall be stored in an access-to-string type.

	The Event_Items type stores a list of events.

	This will be used later to represent multiple events for a specific
date.

	You shall use a vector for this type.

	The Events.Lists package contains the subprograms that are used
in the test application.

	The Event_List type (from the Events.Lists package) maps
a list of events to a specific date.

	You must use the Event_Items type for the list of events.

	You shall use the Time type from the Ada.Calendar
package for the dates.

	Since we expect the events to be ordered by the date, you shall
use ordered maps for the Event_List type.

	Procedure Add adds an event into the list of events for a
specific date.

	Procedure Display must display all events for each date (ordered
by date) using the following format:

<event_date #1>
 <description of item #1a>
 <description of item #1b>
<event_date #2>
 <description of item #2a>
 <description of item #2b>

	You should use the auxiliary Date_Image function —
available in the body of the Events.Lists package — to
display the date in the YYYY-MM-DD format.

Remarks:

	Let's briefly illustrate the expected output of this system.

	Consider the following example:

with Ada.Calendar;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;

with Events.Lists; use Events.Lists;

procedure Test is
 EL : Event_List;
begin
 EL.Add (Time_Of (2019, 4, 16),
 "Item #2");
 EL.Add (Time_Of (2019, 4, 15),
 "Item #1");
 EL.Add (Time_Of (2019, 4, 16),
 "Item #3");
 EL.Display;
end Test;

	The expected output of the Test procedure must be:

EVENTS LIST
- 2019-04-15
 - Item #1
- 2019-04-16
 - Item #2
 - Item #3

events.ads

1package Events is
2
3 type Event_Item is null record;
4
5 type Event_Items is null record;
6
7end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Events.Lists is
 4
 5 type Event_List is tagged private;
 6
 7 procedure Add (Events : in out Event_List;
 8 Event_Time : Time;
 9 Event : String);
10
11 procedure Display (Events : Event_List);
12
13private
14
15 type Event_List is tagged null record;
16
17end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 begin
10 null;
11 end Add;
12
13 function Date_Image (T : Time) return String is
14 Date_Img : constant String := Image (T);
15 begin
16 return Date_Img (1 .. 10);
17 end;
18
19 procedure Display (Events : Event_List) is
20 T : Time;
21 begin
22 Put_Line ("EVENTS LIST");
23 -- You should use Date_Image (T) here!
24 end Display;
25
26end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5
 6with Events.Lists; use Events.Lists;
 7
 8procedure Main is
 9 type Test_Case_Index is
10 (Event_List_Chk);
11
12 procedure Check (TC : Test_Case_Index) is
13 EL : Event_List;
14 begin
15 case TC is
16 when Event_List_Chk =>
17 EL.Add (Time_Of (2018, 2, 16),
18 "Final check");
19 EL.Add (Time_Of (2018, 2, 16),
20 "Release");
21 EL.Add (Time_Of (2018, 12, 3),
22 "Brother's birthday");
23 EL.Add (Time_Of (2018, 1, 1),
24 "New Year's Day");
25 EL.Display;
26 end case;
27 end Check;
28
29begin
30 if Argument_Count < 1 then
31 Put_Line ("ERROR: missing arguments! Exiting...");
32 return;
33 elsif Argument_Count > 1 then
34 Put_Line ("Ignoring additional arguments...");
35 end if;
36
37 Check (Test_Case_Index'Value (Argument (1)));
38end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Holocene_calendar

Standard library: Numerics

Decibel Factor

Goal: implement functions to convert from Decibel values to factors and
vice-versa.

Steps:

	Implement the Decibels package.

	Implement the To_Decibel function.

	Implement the To_Factor function.

Requirements:

	The subtypes Decibel and Factor are based on a
floating-point type.

	Function To_Decibel converts a multiplication factor (or ratio)
to decibels.

	For the implementation, use \(20 * log_{10}(F)\), where F is
the factor/ratio.

	Function To_Factor converts a value in decibels to a
multiplication factor (or ratio).

	For the implementation, use \(10^{D/20}\), where D is the value
in Decibel.

Remarks:

	The Decibel[#1] is used to
express the ratio of two values on a logarithmic scale.

	For example, an increase of 6 dB corresponds roughly to a
multiplication by two (or an increase by 100 % of the original
value).

	You can find the functions that you'll need for the calculation in the
Ada.Numerics.Elementary_Functions package.

decibels.ads

 1package Decibels is
 2
 3 subtype Decibel is Float;
 4 subtype Factor is Float;
 5
 6 function To_Decibel (F : Factor) return Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor;
 9
10end Decibels;

decibels.adb

 1package body Decibels is
 2
 3 function To_Decibel (F : Factor) return Decibel is
 4 begin
 5 return 0.0;
 6 end To_Decibel;
 7
 8 function To_Factor (D : Decibel) return Factor is
 9 begin
10 return 0.0;
11 end To_Factor;
12
13end Decibels;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Decibels; use Decibels;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Db_Chk,
 9 Factor_Chk);
10
11 procedure Check (TC : Test_Case_Index; V : Float) is
12
13 package F_IO is new Ada.Text_IO.Float_IO (Factor);
14 package D_IO is new Ada.Text_IO.Float_IO (Decibel);
15
16 procedure Put_Decibel_Cnvt (D : Decibel) is
17 F : constant Factor := To_Factor (D);
18 begin
19 D_IO.Put (D, 0, 2, 0);
20 Put (" dB => Factor of ");
21 F_IO.Put (F, 0, 2, 0);
22 New_Line;
23 end;
24
25 procedure Put_Factor_Cnvt (F : Factor) is
26 D : constant Decibel := To_Decibel (F);
27 begin
28 Put ("Factor of ");
29 F_IO.Put (F, 0, 2, 0);
30 Put (" => ");
31 D_IO.Put (D, 0, 2, 0);
32 Put_Line (" dB");
33 end;
34 begin
35 case TC is
36 when Db_Chk =>
37 Put_Decibel_Cnvt (Decibel (V));
38 when Factor_Chk =>
39 Put_Factor_Cnvt (Factor (V));
40 end case;
41 end Check;
42
43begin
44 if Argument_Count < 2 then
45 Put_Line ("ERROR: missing arguments! Exiting...");
46 return;
47 elsif Argument_Count > 2 then
48 Put_Line ("Ignoring additional arguments...");
49 end if;
50
51 Check (Test_Case_Index'Value (Argument (1)), Float'Value (Argument (2)));
52end Main;

Root-Mean-Square

Goal: implement a function to calculate the root-mean-square of a sequence
of values.

Steps:

	Implement the Signals package.

	Implement the Rms function.

Requirements:

	Subtype Sig_Value is based on a floating-point type.

	Type Signal is an unconstrained array of Sig_Value
elements.

	Function Rms calculates the RMS of a sequence of values stored in
an array of type Signal.

	See the remarks below for a description of the RMS calculation.

Remarks:

	The root-mean-square[#2]
(RMS) value is an important information associated with sequences of
values.

	It's used, for example, as a measurement for signal processing.

	It is calculated by:

	Creating a sequence \(S\) with the square of each value of
an input sequence \(S_{in}\).

	Calculating the mean value \(M\) of the sequence \(S\).

	Calculating the square-root \(R\) of \(M\).

	You can optimize the algorithm above by combining steps #1 and #2
into a single step.

signals.ads

1package Signals is
2
3 subtype Sig_Value is Float;
4
5 type Signal is array (Natural range <>) of Sig_Value;
6
7 function Rms (S : Signal) return Sig_Value;
8
9end Signals;

signals.adb

 1with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 2
 3package body Signals is
 4
 5 function Rms (S : Signal) return Sig_Value is
 6 begin
 7 return 0.0;
 8 end;
 9
10end Signals;

signals-std.ads

 1package Signals.Std is
 2
 3 Sample_Rate : Float := 8000.0;
 4
 5 function Generate_Sine (N : Positive; Freq : Float) return Signal;
 6
 7 function Generate_Square (N : Positive) return Signal;
 8
 9 function Generate_Triangular (N : Positive) return Signal;
10
11end Signals.Std;

signals-std.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
 3
 4package body Signals.Std is
 5
 6 function Generate_Sine (N : Positive; Freq : Float) return Signal is
 7 S : Signal (0 .. N - 1);
 8 begin
 9 for I in S'First .. S'Last loop
10 S (I) := 1.0 * Sin (2.0 * Pi * (Freq * Float (I) / Sample_Rate));
11 end loop;
12
13 return S;
14 end;
15
16 function Generate_Square (N : Positive) return Signal is
17 S : constant Signal (0 .. N - 1) := (others => 1.0);
18 begin
19 return S;
20 end;
21
22 function Generate_Triangular (N : Positive) return Signal is
23 S : Signal (0 .. N - 1);
24 S_Half : constant Natural := S'Last / 2;
25 begin
26 for I in S'First .. S_Half loop
27 S (I) := 1.0 * (Float (I) / Float (S_Half));
28 end loop;
29 for I in S_Half .. S'Last loop
30 S (I) := 1.0 - (1.0 * (Float (I - S_Half) / Float (S_Half)));
31 end loop;
32
33 return S;
34 end;
35
36end Signals.Std;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Signals; use Signals;
 5with Signals.Std; use Signals.Std;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Sine_Signal_Chk,
10 Square_Signal_Chk,
11 Triangular_Signal_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 package Sig_IO is new Ada.Text_IO.Float_IO (Sig_Value);
15
16 N : constant Positive := 1024;
17 S_Si : constant Signal := Generate_Sine (N, 440.0);
18 S_Sq : constant Signal := Generate_Square (N);
19 S_Tr : constant Signal := Generate_Triangular (N + 1);
20 begin
21 case TC is
22 when Sine_Signal_Chk =>
23 Put ("RMS of Sine Signal: ");
24 Sig_IO.Put (Rms (S_Si), 0, 2, 0);
25 New_Line;
26 when Square_Signal_Chk =>
27 Put ("RMS of Square Signal: ");
28 Sig_IO.Put (Rms (S_Sq), 0, 2, 0);
29 New_Line;
30 when Triangular_Signal_Chk =>
31 Put ("RMS of Triangular Signal: ");
32 Sig_IO.Put (Rms (S_Tr), 0, 2, 0);
33 New_Line;
34 end case;
35 end Check;
36
37begin
38 if Argument_Count < 1 then
39 Put_Line ("ERROR: missing arguments! Exiting...");
40 return;
41 elsif Argument_Count > 1 then
42 Put_Line ("Ignoring additional arguments...");
43 end if;
44
45 Check (Test_Case_Index'Value (Argument (1)));
46end Main;

Rotation

Goal: use complex numbers to calculate the positions of an object in a
circle after rotation.

Steps:

	Implement the Rotation package.

	Implement the Rotation function.

Requirements:

	Type Complex_Points is an unconstrained array of complex values.

	Function Rotation returns a list of positions (represented by
the Complex_Points type) when dividing a circle in N
equal slices.

	See the remarks below for a more detailed explanation.

	You must use functions from Ada.Numerics.Complex_Types to
implement Rotation.

	Subtype Angle is based on a floating-point type.

	Type Angles is an unconstrained array of angles.

	Function To_Angles returns a list of angles based on an input
list of positions.

Remarks:

	Complex numbers are particularly useful in computer graphics to simplify
the calculation of rotations.

	For example, let's assume you've drawn an object on your screen on
position (1.0, 0.0).

	Now, you want to move this object in a circular path — i.e.
make it rotate around position (0.0, 0.0) on your screen.

	You could use sine and cosine functions to calculate each
position of the path.

	However, you could also calculate the positions using complex
numbers.

	In this exercise, you'll use complex numbers to calculate the positions
of an object that starts on zero degrees — on position (1.0, 0.0)
— and rotates around (0.0, 0.0) for N slices of a circle.

	For example, if we divide the circle in four slices, the object's
path will consist of following points / positions:

Point #1: (1.0, 0.0)
Point #2: (0.0, 1.0)
Point #3: (-1.0, 0.0)
Point #4: (0.0, -1.0)
Point #5: (1.0, 0.0)

	As expected, point #5 is equal to the starting point (point #1),
since the object rotates around (0.0, 0.0) and returns to the
starting point.

	We can also describe this path in terms of angles. The following
list presents the angles for the path on a four-sliced circle:

Point #1: 0.00 degrees
Point #2: 90.00 degrees
Point #3: 180.00 degrees
Point #4: -90.00 degrees (= 270 degrees)
Point #5: 0.00 degrees

	To rotate a complex number simply multiply it by a unit vector
whose arg is the radian angle to be rotated:
\(Z = e^\frac{2 \pi}{N}\)

rotation.ads

 1with Ada.Numerics.Complex_Types;
 2use Ada.Numerics.Complex_Types;
 3
 4package Rotation is
 5
 6 type Complex_Points is array (Positive range <>) of Complex;
 7
 8 function Rotation (N : Positive) return Complex_Points;
 9
10end Rotation;

rotation.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3package body Rotation is
 4
 5 function Rotation (N : Positive) return Complex_Points is
 6 C : Complex_Points (1 .. 1) := (others => (0.0, 0.0));
 7 begin
 8 return C;
 9 end;
10
11end Rotation;

angles.ads

 1with Rotation; use Rotation;
 2
 3package Angles is
 4
 5 subtype Angle is Float;
 6
 7 type Angles is array (Positive range <>) of Angle;
 8
 9 function To_Angles (C : Complex_Points) return Angles;
10
11end Angles;

angles.adb

 1with Ada.Numerics; use Ada.Numerics;
 2with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
 3
 4package body Angles is
 5
 6 function To_Angles (C : Complex_Points) return Angles is
 7 begin
 8 return A : Angles (C'Range) do
 9 for I in A'Range loop
10 A (I) := Argument (C (I)) / Pi * 180.0;
11 end loop;
12 end return;
13 end To_Angles;
14
15end Angles;

rotation-tests.ads

1package Rotation.Tests is
2
3 procedure Test_Rotation (N : Positive);
4
5 procedure Test_Angles (N : Positive);
6
7end Rotation.Tests;

rotation-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3with Ada.Numerics; use Ada.Numerics;
 4
 5with Angles; use Angles;
 6
 7package body Rotation.Tests is
 8
 9 package C_IO is new Ada.Text_IO.Complex_IO (Complex_Types);
10 package F_IO is new Ada.Text_IO.Float_IO (Float);
11
12 --
13 -- Adapt value due to floating-point inaccuracies
14 --
15
16 function Adapt (C : Complex) return Complex is
17 function Check_Zero (F : Float) return Float is
18 (if F <= 0.0 and F >= -0.01 then 0.0 else F);
19 begin
20 return C_Out : Complex := C do
21 C_Out.Re := Check_Zero (C_Out.Re);
22 C_Out.Im := Check_Zero (C_Out.Im);
23 end return;
24 end Adapt;
25
26 function Adapt (A : Angle) return Angle is
27 (if A <= -179.99 and A >= -180.01 then 180.0 else A);
28
29 procedure Test_Rotation (N : Positive) is
30 C : constant Complex_Points := Rotation (N);
31 begin
32 Put_Line ("---- Points for " & Positive'Image (N) & " slices ----");
33 for V of C loop
34 Put ("Point: ");
35 C_IO.Put (Adapt (V), 0, 1, 0);
36 New_Line;
37 end loop;
38 end Test_Rotation;
39
40 procedure Test_Angles (N : Positive) is
41 C : constant Complex_Points := Rotation (N);
42 A : constant Angles.Angles := To_Angles (C);
43 begin
44 Put_Line ("---- Angles for " & Positive'Image (N) & " slices ----");
45 for V of A loop
46 Put ("Angle: ");
47 F_IO.Put (Adapt (V), 0, 2, 0);
48 Put_Line (" degrees");
49 end loop;
50 end Test_Angles;
51
52end Rotation.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Rotation.Tests; use Rotation.Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Rotation_Chk,
 9 Angles_Chk);
10
11 procedure Check (TC : Test_Case_Index; N : Positive) is
12 begin
13 case TC is
14 when Rotation_Chk =>
15 Test_Rotation (N);
16 when Angles_Chk =>
17 Test_Angles (N);
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 2 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 2 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)), Positive'Value (Argument (2)));
30end Main;

Footnotes

[#1]
https://en.wikipedia.org/wiki/Decibel

[#2]
https://en.wikipedia.org/wiki/Root_mean_square

Standard library: Strings

Concatenation

Goal: implement functions to concatenate an array of unbounded strings.

Steps:

	Implement the Str_Concat package.

	Implement the Concat function for Unbounded_String.

	Implement the Concat function for String.

Requirements:

	The first Concat function receives an unconstrained array of
unbounded strings and returns the concatenation of those strings as an
unbounded string.

	The second Concat function has the same parameters, but
returns a standard string (String type).

	Both Concat functions have the following parameters:

	An unconstrained array of Unbounded_String strings
(Unbounded_Strings type).

	Trim_Str, a Boolean parameter indicating whether each
unbounded string must be trimmed.

	Add_Whitespace, a Boolean parameter indicating whether a
whitespace shall be added between each unbounded string and the next
one.

	No whitespace shall be added after the last string of the array.

Remarks:

	You can use the Trim function from the
Ada.Strings.Unbounded package.

str_concat.ads

 1with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 2
 3package Str_Concat is
 4
 5 type Unbounded_Strings is array (Positive range <>) of Unbounded_String;
 6
 7 function Concat (USA : Unbounded_Strings;
 8 Trim_Str : Boolean;
 9 Add_Whitespace : Boolean) return Unbounded_String;
10
11 function Concat (USA : Unbounded_Strings;
12 Trim_Str : Boolean;
13 Add_Whitespace : Boolean) return String;
14
15end Str_Concat;

str_concat.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3package body Str_Concat is
 4
 5 function Concat (USA : Unbounded_Strings;
 6 Trim_Str : Boolean;
 7 Add_Whitespace : Boolean) return Unbounded_String is
 8 begin
 9 return "";
10 end Concat;
11
12 function Concat (USA : Unbounded_Strings;
13 Trim_Str : Boolean;
14 Add_Whitespace : Boolean) return String is
15 begin
16 return "";
17 end Concat;
18
19end Str_Concat;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 4
 5with Str_Concat; use Str_Concat;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (Unbounded_Concat_No_Trim_No_WS_Chk,
10 Unbounded_Concat_Trim_No_WS_Chk,
11 String_Concat_Trim_WS_Chk,
12 Concat_Single_Element);
13
14 procedure Check (TC : Test_Case_Index) is
15 begin
16 case TC is
17 when Unbounded_Concat_No_Trim_No_WS_Chk =>
18 declare
19 S : constant Unbounded_Strings := (
20 To_Unbounded_String ("Hello"),
21 To_Unbounded_String (" World"),
22 To_Unbounded_String ("!"));
23 begin
24 Put_Line (To_String (Concat (S, False, False)));
25 end;
26 when Unbounded_Concat_Trim_No_WS_Chk =>
27 declare
28 S : constant Unbounded_Strings := (
29 To_Unbounded_String (" This "),
30 To_Unbounded_String (" _is_ "),
31 To_Unbounded_String (" a "),
32 To_Unbounded_String (" _check "));
33 begin
34 Put_Line (To_String (Concat (S, True, False)));
35 end;
36 when String_Concat_Trim_WS_Chk =>
37 declare
38 S : constant Unbounded_Strings := (
39 To_Unbounded_String (" This "),
40 To_Unbounded_String (" is a "),
41 To_Unbounded_String (" test. "));
42 begin
43 Put_Line (Concat (S, True, True));
44 end;
45 when Concat_Single_Element =>
46 declare
47 S : constant Unbounded_Strings := (
48 1 => To_Unbounded_String (" Hi "));
49 begin
50 Put_Line (Concat (S, True, True));
51 end;
52 end case;
53 end Check;
54
55begin
56 if Argument_Count < 1 then
57 Put_Line ("ERROR: missing arguments! Exiting...");
58 return;
59 elsif Argument_Count > 1 then
60 Put_Line ("Ignoring additional arguments...");
61 end if;
62
63 Check (Test_Case_Index'Value (Argument (1)));
64end Main;

List of events

Goal: create a system to manage a list of events.

Steps:

	Implement the Events package.

	Declare the Event_Item subtype.

	Implement the Events.Lists package.

	Adapt the Add procedure.

	Adapt the Display procedure.

Requirements:

	The Event_Item type (from the Events package) contains the
description of an event.

	This description is declared as a subtype of unbounded string.

	Procedure Add adds an event into the list of events for a
specific date.

	The declaration of E needs to be adapted to use unbounded
strings.

	Procedure Display must display all events for each date (ordered
by date) using the following format:

	The arguments to Put_Line need to be adapted to use unbounded
strings.

Remarks:

	We use the lab on the list of events from the previous chapter
(Standard library: Dates & Times) as a starting point.

events.ads

 1with Ada.Containers.Vectors;
 2
 3package Events is
 4
 5 -- subtype Event_Item is
 6
 7 package Event_Item_Containers is new
 8 Ada.Containers.Vectors
 9 (Index_Type => Positive,
10 Element_Type => Event_Item);
11
12 subtype Event_Items is Event_Item_Containers.Vector;
13
14end Events;

events-lists.ads

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Containers.Ordered_Maps;
 3
 4package Events.Lists is
 5
 6 type Event_List is tagged private;
 7
 8 procedure Add (Events : in out Event_List;
 9 Event_Time : Time;
10 Event : String);
11
12 procedure Display (Events : Event_List);
13
14private
15
16 package Event_Time_Item_Containers is new
17 Ada.Containers.Ordered_Maps
18 (Key_Type => Time,
19 Element_Type => Event_Items,
20 "=" => Event_Item_Containers."=");
21
22 type Event_List is new Event_Time_Item_Containers.Map with null record;
23
24end Events.Lists;

events-lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 3
 4package body Events.Lists is
 5
 6 procedure Add (Events : in out Event_List;
 7 Event_Time : Time;
 8 Event : String) is
 9 use Event_Item_Containers;
10 E : constant Event_Item := new String'(Event);
11 begin
12 if not Events.Contains (Event_Time) then
13 Events.Include (Event_Time, Empty_Vector);
14 end if;
15 Events (Event_Time).Append (E);
16 end Add;
17
18 function Date_Image (T : Time) return String is
19 Date_Img : constant String := Image (T);
20 begin
21 return Date_Img (1 .. 10);
22 end;
23
24 procedure Display (Events : Event_List) is
25 use Event_Time_Item_Containers;
26 T : Time;
27 begin
28 Put_Line ("EVENTS LIST");
29 for C in Events.Iterate loop
30 T := Key (C);
31 Put_Line ("- " & Date_Image (T));
32 for I of Events (C) loop
33 Put_Line (" - " & I.all);
34 end loop;
35 end loop;
36 end Display;
37
38end Events.Lists;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Calendar;
 4with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
 5with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
 6
 7with Events;
 8with Events.Lists; use Events.Lists;
 9
10procedure Main is
11 type Test_Case_Index is
12 (Unbounded_String_Chk,
13 Event_List_Chk);
14
15 procedure Check (TC : Test_Case_Index) is
16 EL : Event_List;
17 begin
18 case TC is
19 when Unbounded_String_Chk =>
20 declare
21 S : constant Events.Event_Item := To_Unbounded_String ("Checked");
22 begin
23 Put_Line (To_String (S));
24 end;
25 when Event_List_Chk =>
26 EL.Add (Time_Of (2018, 2, 16),
27 "Final check");
28 EL.Add (Time_Of (2018, 2, 16),
29 "Release");
30 EL.Add (Time_Of (2018, 12, 3),
31 "Brother's birthday");
32 EL.Add (Time_Of (2018, 1, 1),
33 "New Year's Day");
34 EL.Display;
35 end case;
36 end Check;
37
38begin
39 if Argument_Count < 1 then
40 Put_Line ("ERROR: missing arguments! Exiting...");
41 return;
42 elsif Argument_Count > 1 then
43 Put_Line ("Ignoring additional arguments...");
44 end if;
45
46 Check (Test_Case_Index'Value (Argument (1)));
47end Main;

Footnotes

Strongly typed language

Colors

Goal: create a package to represent HTML colors in hexadecimal form and its
corresponding names.

Steps:

	Implement the Color_Types package.

	Declare the HTML_Color enumeration.

	Declare the Basic_HTML_Color enumeration.

	Implement the To_Integer function.

	Implement the To_HTML_Color function.

Requirements:

	Enumeration HTML_Color has the following colors:

	Salmon

	Firebrick

	Red

	Darkred

	Lime

	Forestgreen

	Green

	Darkgreen

	Blue

	Mediumblue

	Darkblue

	Enumeration Basic_HTML_Color has the following colors: Red,
Green, Blue.

	Function To_Integer converts from the HTML_Color type to
the HTML color code — as integer values in hexadecimal notation.

	You can find the HTML color codes in the table below.

	Function To_HTML_Color converts from Basic_HTML_Color to
HTML_Color.

	This is the table to convert from an HTML color to a HTML color code in
hexadecimal notation:

	Color

	HTML color code (hexa)

	Salmon

	#FA8072

	Firebrick

	#B22222

	Red

	#FF0000

	Darkred

	#8B0000

	Lime

	#00FF00

	Forestgreen

	#228B22

	Green

	#008000

	Darkgreen

	#006400

	Blue

	#0000FF

	Mediumblue

	#0000CD

	Darkblue

	#00008B

Remarks:

	In order to express the hexadecimal values above in Ada, use the following
syntax: 16#<hex_value># (e.g.: 16#FFFFFF#).

	For function To_Integer, you may use a case for this.

color_types.ads

 1package Color_Types is
 2
 3 -- Include type declaration for HTML_Color!
 4 --
 5 -- type HTML_Color is [...]
 6 --
 7
 8 -- Include function declaration for:
 9 -- function To_Integer (C : HTML_Color) return Integer;
10
11 -- Include type declaration for Basic_HTML_Color!
12 --
13 -- type Basic_HTML_Color is [...]
14 --
15
16 -- Include function declaration for:
17 -- - Basic_HTML_Color => HTML_Color
18 --
19 -- function To_HTML_Color [...];
20 --
21end Color_Types;

color_types.adb

 1package body Color_Types is
 2
 3 -- Implement the conversion from HTML_Color to Integer here!
 4 --
 5 -- function To_Integer (C : HTML_Color) return Integer is
 6 -- begin
 7 -- -- Hint: use 'case' for the HTML colors;
 8 -- -- use 16#...# for the hexadecimal values.
 9 -- end To_Integer;
10
11 -- Implement the conversion from Basic_HTML_Color to HTML_Color here!
12 --
13 -- function To_HTML_Color [...] is
14 --
15end Color_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Ada.Integer_Text_IO;
 4
 5with Color_Types; use Color_Types;
 6
 7procedure Main is
 8 type Test_Case_Index is
 9 (HTML_Color_Range,
10 HTML_Color_To_Integer,
11 Basic_HTML_Color_To_HTML_Color);
12
13 procedure Check (TC : Test_Case_Index) is
14 begin
15 case TC is
16 when HTML_Color_Range =>
17 for I in HTML_Color'Range loop
18 Put_Line (HTML_Color'Image (I));
19 end loop;
20 when HTML_Color_To_Integer =>
21 for I in HTML_Color'Range loop
22 Ada.Integer_Text_IO.Put (Item => To_Integer (I),
23 Width => 6,
24 Base => 16);
25 New_Line;
26 end loop;
27 when Basic_HTML_Color_To_HTML_Color =>
28 for I in Basic_HTML_Color'Range loop
29 Put_Line (HTML_Color'Image (To_HTML_Color (I)));
30 end loop;
31 end case;
32 end Check;
33
34begin
35 if Argument_Count < 1 then
36 Put_Line ("ERROR: missing arguments! Exiting...");
37 return;
38 elsif Argument_Count > 1 then
39 Put_Line ("Ignoring additional arguments...");
40 end if;
41
42 Check (Test_Case_Index'Value (Argument (1)));
43end Main;

Integers

Goal: implement a package with various integer types.

Steps:

	Implement the Int_Types package.

	Declare the integer type I_100.

	Declare the modular type U_100.

	Implement the To_I_100 function to convert from the
U_100 type.

	Implement the To_U_100 function to convert from the
I_100 type.

	Declare the derived type D_50.

	Declare the subtype S_50.

	Implement the To_D_50 function to convert from the
I_100 type.

	Implement the To_S_50 function to convert from the
I_100 type.

	Implement the To_I_100 function to convert from the
D_50 type.

Requirements:

	Types I_100 and U_100 have values between 0 and 100.

	Type I_100 is an integer type.

	Type U_100 is a modular type.

	Function To_I_100 converts from the U_100 type to the
I_100 type.

	Function To_U_100 converts from the I_100 type to the
U_100 type.

	Types D_50 and S_50 have values between 10 and 50 and
use I_100 as a base type.

	D_50 is a derived type.

	S_50 is a subtype.

	Function To_D_50 converts from the I_100 type to the
D_50 type.

	Function To_S_50 converts from the I_100 type to the
S_50 type.

	Functions To_D_50 and To_S_50 saturate the input values if
they are out of range.

	If the input is less than 10 the output should be 10.

	If the input is greater than 50 the output should be 50.

	Function To_I_100 converts from the D_50 type to the
I_100 type.

Remarks:

	For the implementation of functions To_D_50 and To_S_50, you
may use the type attributes D_50'First and D_50'Last:

	D_50'First indicates the minimum value of the D_50 type.

	D_50'Last indicates the maximum value of the D_50 type.

	The same attributes are available for the S_50 type (
S_50'First and S_50'Last).

	We could have implemented a function To_I_100 as well to convert from
S_50 to I_100. However, we skip this here because explicit
conversions are not needed for subtypes.

int_types.ads

 1package Int_Types is
 2
 3 -- Include type declarations for I_100 and U_100!
 4 --
 5 -- type I_100 is [...]
 6 -- type U_100 is [...]
 7 --
 8
 9 function To_I_100 (V : U_100) return I_100;
10
11 function To_U_100 (V : I_100) return U_100;
12
13 -- Include type declarations for D_50 and S_50!
14 --
15 -- [...] D_50 is [...]
16 -- [...] S_50 is [...]
17 --
18
19 function To_D_50 (V : I_100) return D_50;
20
21 function To_S_50 (V : I_100) return S_50;
22
23 function To_I_100 (V : D_50) return I_100;
24
25end Int_Types;

int_types.adb

 1package body Int_Types is
 2
 3 function To_I_100 (V : U_100) return I_100 is
 4 begin
 5 -- Implement the conversion from U_100 to I_100 here!
 6 --
 7 null;
 8 end To_I_100;
 9
10 function To_U_100 (V : I_100) return U_100 is
11 begin
12 -- Implement the conversion from I_100 to U_100 here!
13 --
14 null;
15 end To_U_100;
16
17 function To_D_50 (V : I_100) return D_50 is
18 Min : constant I_100 := I_100 (D_50'First);
19 Max : constant I_100 := I_100 (D_50'Last);
20 begin
21 -- Implement the conversion from I_100 to D_50 here!
22 --
23 -- Hint: using the constants above simplifies the checks needed for
24 -- this function.
25 --
26 null;
27 end To_D_50;
28
29 function To_S_50 (V : I_100) return S_50 is
30 begin
31 -- Implement the conversion from I_100 to S_50 here!
32 --
33 -- Remark: don't forget to verify whether an explicit conversion like
34 -- S_50 (V) is needed.
35 --
36 null;
37 end To_S_50;
38
39 function To_I_100 (V : D_50) return I_100 is
40 begin
41 -- Implement the conversion from I_100 to D_50 here!
42 --
43 -- Remark: don't forget to verify whether an explicit conversion like
44 -- I_100 (V) is needed.
45 --
46 null;
47 end To_I_100;
48
49end Int_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Int_Types; use Int_Types;
 5
 6procedure Main is
 7 package I_100_IO is new Ada.Text_IO.Integer_IO (I_100);
 8 package U_100_IO is new Ada.Text_IO.Modular_IO (U_100);
 9 package D_50_IO is new Ada.Text_IO.Integer_IO (D_50);
 10
 11 use I_100_IO;
 12 use U_100_IO;
 13 use D_50_IO;
 14
 15 type Test_Case_Index is
 16 (I_100_Range,
 17 U_100_Range,
 18 U_100_Wraparound,
 19 U_100_To_I_100,
 20 I_100_To_U_100,
 21 D_50_Range,
 22 S_50_Range,
 23 I_100_To_D_50,
 24 I_100_To_S_50,
 25 D_50_To_I_100,
 26 S_50_To_I_100);
 27
 28 procedure Check (TC : Test_Case_Index) is
 29 begin
 30 I_100_IO.Default_Width := 1;
 31 U_100_IO.Default_Width := 1;
 32 D_50_IO.Default_Width := 1;
 33
 34 case TC is
 35 when I_100_Range =>
 36 Put (I_100'First);
 37 New_Line;
 38 Put (I_100'Last);
 39 New_Line;
 40 when U_100_Range =>
 41 Put (U_100'First);
 42 New_Line;
 43 Put (U_100'Last);
 44 New_Line;
 45 when U_100_Wraparound =>
 46 Put (U_100'First - 1);
 47 New_Line;
 48 Put (U_100'Last + 1);
 49 New_Line;
 50 when U_100_To_I_100 =>
 51 for I in U_100'Range loop
 52 I_100_IO.Put (To_I_100 (I));
 53 New_Line;
 54 end loop;
 55 when I_100_To_U_100 =>
 56 for I in I_100'Range loop
 57 Put (To_U_100 (I));
 58 New_Line;
 59 end loop;
 60 when D_50_Range =>
 61 Put (D_50'First);
 62 New_Line;
 63 Put (D_50'Last);
 64 New_Line;
 65 when S_50_Range =>
 66 Put (S_50'First);
 67 New_Line;
 68 Put (S_50'Last);
 69 New_Line;
 70 when I_100_To_D_50 =>
 71 for I in I_100'Range loop
 72 Put (To_D_50 (I));
 73 New_Line;
 74 end loop;
 75 when I_100_To_S_50 =>
 76 for I in I_100'Range loop
 77 Put (To_S_50 (I));
 78 New_Line;
 79 end loop;
 80 when D_50_To_I_100 =>
 81 for I in D_50'Range loop
 82 Put (To_I_100 (I));
 83 New_Line;
 84 end loop;
 85 when S_50_To_I_100 =>
 86 for I in S_50'Range loop
 87 Put (I);
 88 New_Line;
 89 end loop;
 90 end case;
 91 end Check;
 92
 93begin
 94 if Argument_Count < 1 then
 95 Put_Line ("ERROR: missing arguments! Exiting...");
 96 return;
 97 elsif Argument_Count > 1 then
 98 Put_Line ("Ignoring additional arguments...");
 99 end if;
100
101 Check (Test_Case_Index'Value (Argument (1)));
102end Main;

Temperatures

Goal: create a package to handle temperatures in Celsius and Kelvin.

Steps:

	Implement the Temperature_Types package.

	Declare the Celsius type.

	Declare the Int_Celsius type.

	Implement the To_Celsius function.

	Implement the To_Int_Celsius function.

	Declare the Kelvin type.

	Implement the To_Celsius function to convert from the
Kelvin type.

	Implement the To_Kelvin function.

Requirements:

	The custom floating-point types declared in Temperature_Types
must use a precision of six digits.

	Types Celsius and Int_Celsius are used for temperatures in
Celsius:

	Celsius is a floating-point type with a range between -273.15
and 5504.85.

	Int_Celsius is an integer type with a range between -273 and
5505.

	Functions To_Celsius and To_Int_Celsius are used for type
conversion:

	To_Celsius converts from Int_Celsius to Celsius
type.

	To_Int_Celsius converts from Celsius and
Int_Celsius types:

	Kelvin is a floating-point type for temperatures in Kelvin using
a range between 0.0 and 5778.0.

	The functions To_Celsius and To_Kelvin are used to convert
between temperatures in Kelvin and Celsius.

	In order to convert temperatures in Celsius to Kelvin, you must use
the formula \(K = C + 273.15\), where:

	K is the temperature in Kelvin, and

	C is the temperature in Celsius.

Remarks:

	When implementing the To_Celsius function for the Int_Celsius
type:

	You'll need to check for the minimum and maximum values of the input
values because of the slightly different ranges.

	You may use variables of floating-point type (Float) for
intermediate values.

	For the implementation of the functions To_Celsius and
To_Kelvin (used for converting between Kelvin and
Celsius), you may use a variable of floating-point type
(Float) for intermediate values.

temperature_types.ads

 1package Temperature_Types is
 2
 3 -- Include type declaration for Celsius!
 4 --
 5 -- Celsius is [...];
 6 -- Int_Celsius is [...];
 7 --
 8
 9 function To_Celsius (T : Int_Celsius) return Celsius;
10
11 function To_Int_Celsius (T : Celsius) return Int_Celsius;
12
13 -- Include type declaration for Kelvin!
14 --
15 -- type Kelvin is [...];
16 --
17
18 -- Include function declarations for:
19 -- - Kelvin => Celsius
20 -- - Celsius => Kelvin
21 --
22 -- function To_Celsius [...];
23 -- function To_Kelvin [...];
24 --
25end Temperature_Types;

temperature_types.adb

 1package body Temperature_Types is
 2
 3 function To_Celsius (T : Int_Celsius) return Celsius is
 4 begin
 5 null;
 6 end To_Celsius;
 7
 8 function To_Int_Celsius (T : Celsius) return Int_Celsius is
 9 begin
10 null;
11 end To_Int_Celsius;
12
13 -- Include function implementation for:
14 -- - Kelvin => Celsius
15 -- - Celsius => Kelvin
16 --
17 -- function To_Celsius [...] is
18 -- function To_Kelvin [...] is
19 --
20end Temperature_Types;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Temperature_Types; use Temperature_Types;
 5
 6procedure Main is
 7 package Celsius_IO is new Ada.Text_IO.Float_IO (Celsius);
 8 package Kelvin_IO is new Ada.Text_IO.Float_IO (Kelvin);
 9 package Int_Celsius_IO is new Ada.Text_IO.Integer_IO (Int_Celsius);
10
11 use Celsius_IO;
12 use Kelvin_IO;
13 use Int_Celsius_IO;
14
15 type Test_Case_Index is
16 (Celsius_Range,
17 Celsius_To_Int_Celsius,
18 Int_Celsius_To_Celsius,
19 Kelvin_To_Celsius,
20 Celsius_To_Kelvin);
21
22 procedure Check (TC : Test_Case_Index) is
23 begin
24 Celsius_IO.Default_Fore := 1;
25 Kelvin_IO.Default_Fore := 1;
26 Int_Celsius_IO.Default_Width := 1;
27
28 case TC is
29 when Celsius_Range =>
30 Put (Celsius'First);
31 New_Line;
32 Put (Celsius'Last);
33 New_Line;
34 when Celsius_To_Int_Celsius =>
35 Put (To_Int_Celsius (Celsius'First));
36 New_Line;
37 Put (To_Int_Celsius (0.0));
38 New_Line;
39 Put (To_Int_Celsius (Celsius'Last));
40 New_Line;
41 when Int_Celsius_To_Celsius =>
42 Put (To_Celsius (Int_Celsius'First));
43 New_Line;
44 Put (To_Celsius (0));
45 New_Line;
46 Put (To_Celsius (Int_Celsius'Last));
47 New_Line;
48 when Kelvin_To_Celsius =>
49 Put (To_Celsius (Kelvin'First));
50 New_Line;
51 Put (To_Celsius (0));
52 New_Line;
53 Put (To_Celsius (Kelvin'Last));
54 New_Line;
55 when Celsius_To_Kelvin =>
56 Put (To_Kelvin (Celsius'First));
57 New_Line;
58 Put (To_Kelvin (Celsius'Last));
59 New_Line;
60 end case;
61 end Check;
62
63begin
64 if Argument_Count < 1 then
65 Put_Line ("ERROR: missing arguments! Exiting...");
66 return;
67 elsif Argument_Count > 1 then
68 Put_Line ("Ignoring additional arguments...");
69 end if;
70
71 Check (Test_Case_Index'Value (Argument (1)));
72end Main;

Footnotes

Subprograms

Subtract procedure

Goal: write a procedure that subtracts two numbers.

Steps:

	Complete the procedure Subtract.

Requirements:

	Subtract performs the operation A - B.

subtract.ads

1-- Write the correct parameters for the procedure below.
2procedure Subtract;

subtract.adb

1procedure Subtract is
2begin
3 -- Implement the procedure here.
4 null;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Subtract (10, 1, Result);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Subtract (10, 100, Result);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Subtract (0, 5, Result);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Subtract (0, -5, Result);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Subtract function

Goal: write a function that subtracts two numbers.

Steps:

	Rewrite the Subtract procedure from the previous exercise as a
function.

Requirements:

	Subtract performs the operation A - B and returns the
result.

subtract.ads

1-- Write the correct signature for the function below.
2-- Don't forget to replace the keyword "procedure" by "function."
3procedure Subtract;

subtract.adb

1procedure Subtract is
2begin
3 -- Implement the function here!
4 null;
5end Subtract;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Subtract;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Sub_10_1_Chk,
 9 Sub_10_100_Chk,
10 Sub_0_5_Chk,
11 Sub_0_Minus_5_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14 Result : Integer;
15 begin
16 case TC is
17 when Sub_10_1_Chk =>
18 Result := Subtract (10, 1);
19 Put_Line ("Result: " & Integer'Image (Result));
20 when Sub_10_100_Chk =>
21 Result := Subtract (10, 100);
22 Put_Line ("Result: " & Integer'Image (Result));
23 when Sub_0_5_Chk =>
24 Result := Subtract (0, 5);
25 Put_Line ("Result: " & Integer'Image (Result));
26 when Sub_0_Minus_5_Chk =>
27 Result := Subtract (0, -5);
28 Put_Line ("Result: " & Integer'Image (Result));
29 end case;
30 end Check;
31
32begin
33 if Argument_Count < 1 then
34 Put_Line ("ERROR: missing arguments! Exiting...");
35 return;
36 elsif Argument_Count > 1 then
37 Put_Line ("Ignoring additional arguments...");
38 end if;
39
40 Check (Test_Case_Index'Value (Argument (1)));
41end Main;

Equality function

Goal: write a function that compares two values and returns a flag.

Steps:

	Complete the Is_Equal subprogram.

Requirements:

	Is_Equal returns a flag as a Boolean value.

	The flag must indicate whether the values are equal (flag is
True) or not (flag is False).

is_equal.ads

1-- Write the correct signature for the function below.
2-- Don't forget to replace the keyword "procedure" by "function."
3procedure Is_Equal;

is_equal.adb

1procedure Is_Equal is
2begin
3 -- Implement the function here!
4 null;
5end Is_Equal;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Is_Equal;
 5
 6procedure Main is
 7 type Test_Case_Index is
 8 (Equal_Chk,
 9 Inequal_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12
13 procedure Display_Equal (A, B : Integer;
14 Equal : Boolean) is
15 begin
16 Put (Integer'Image (A));
17 if Equal then
18 Put (" is equal to ");
19 else
20 Put (" isn't equal to ");
21 end if;
22 Put_Line (Integer'Image (B) & ".");
23 end Display_Equal;
24
25 Result : Boolean;
26 begin
27 case TC is
28 when Equal_Chk =>
29 for I in 0 .. 10 loop
30 Result := Is_Equal (I, I);
31 Display_Equal (I, I, Result);
32 end loop;
33 when Inequal_Chk =>
34 for I in 0 .. 10 loop
35 Result := Is_Equal (I, I - 1);
36 Display_Equal (I, I - 1, Result);
37 end loop;
38 end case;
39 end Check;
40
41begin
42 if Argument_Count < 1 then
43 Put_Line ("ERROR: missing arguments! Exiting...");
44 return;
45 elsif Argument_Count > 1 then
46 Put_Line ("Ignoring additional arguments...");
47 end if;
48
49 Check (Test_Case_Index'Value (Argument (1)));
50end Main;

States

Goal: write a procedure that displays the state of a machine.

Steps:

	Complete the procedure Display_State.

Requirements:

	The states can be set according to the following numbers:

	Number

	State

	0

	Off

	1

	On: Simple Processing

	2

	On: Advanced Processing

	The procedure Display_State receives the number corresponding to
a state and displays the state (indicated by the table above) as a user
message.

Remarks:

	You can use a case statement to implement this procedure.

display_state.ads

1procedure Display_State (State : Integer);

display_state.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_State (State : Integer) is
4begin
5 null;
6end Display_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Display_State (State);
19end Main;

States #2

Goal: write a function that returns the state of a machine.

Steps:

	Implement the function Get_State.

Requirements:

	Implement same state machine as in the previous exercise.

	Function Get_State must return the state as a string.

Remarks:

	You can implement a function returning a string by simply using quotes in
a return statement. For example:

get_hello.ads

1function Get_Hello return String;

get_hello.adb

1function Get_Hello return String is
2begin
3 return "Hello";
4end Get_Hello;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Get_Hello;
3
4procedure Main is
5 S : constant String := Get_Hello;
6begin
7 Put_Line (S);
8end Main;

	You can reuse your previous implementation and replace it by a case
expression.

	For values that do not correspond to a state, you can simply
return an empty string ("").

get_state.ads

1function Get_State (State : Integer) return String;

get_state.adb

1function Get_State (State : Integer) return String is
2begin
3 return "";
4end Get_State;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Get_State;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Put_Line (Get_State (State));
19end Main;

States #3

Goal: implement an on/off indicator for a state machine.

Steps:

	Implement the function Is_On.

	Implement the procedure Display_On_Off.

Requirements:

	Implement same state machine as in the previous exercise.

	Function Is_On returns:

	True if the machine is on;

	otherwise, it returns False.

	Procedure Display_On_Off displays the message

	"On" if the machine is on, or

	"Off" otherwise.

	Is_On must be called in the implementation of
Display_On_Off.

Remarks:

	You can implement both subprograms using if expressions.

is_on.ads

1function Is_On (State : Integer) return Boolean;

is_on.adb

1function Is_On (State : Integer) return Boolean is
2begin
3 return False;
4end Is_On;

display_on_off.ads

1procedure Display_On_Off (State : Integer);

display_on_off.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Is_On;
3
4procedure Display_On_Off (State : Integer) is
5begin
6 Put_Line ("");
7end Display_On_Off;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_On_Off;
 5with Is_On;
 6
 7procedure Main is
 8 State : Integer;
 9begin
10 if Argument_Count < 1 then
11 Put_Line ("ERROR: missing arguments! Exiting...");
12 return;
13 elsif Argument_Count > 1 then
14 Put_Line ("Ignoring additional arguments...");
15 end if;
16
17 State := Integer'Value (Argument (1));
18
19 Display_On_Off (State);
20 Put_Line (Boolean'Image (Is_On (State)));
21end Main;

States #4

Goal: implement a procedure to update the state of a machine.

Steps:

	Implement the procedure Set_Next.

Requirements:

	Implement the same state machine as in the previous exercise.

	Procedure Set_Next updates the machine's state with the next one
in a circular manner:

	In most cases, the next state of N is simply the next number
(N + 1).

	However, if the state is the last one (which is 2 for our machine),
the next state must be the first one (in our case: 0).

Remarks:

	You can use an if expression to implement Set_Next.

set_next.ads

1procedure Set_Next (State : in out Integer);

set_next.adb

1procedure Set_Next (State : in out Integer) is
2begin
3 null;
4end Set_Next;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Set_Next;
 5
 6procedure Main is
 7 State : Integer;
 8begin
 9 if Argument_Count < 1 then
10 Put_Line ("ERROR: missing arguments! Exiting...");
11 return;
12 elsif Argument_Count > 1 then
13 Put_Line ("Ignoring additional arguments...");
14 end if;
15
16 State := Integer'Value (Argument (1));
17
18 Set_Next (State);
19 Put_Line (Integer'Image (State));
20end Main;

Footnotes

Tasking

Display Service

Goal: create a simple service that displays messages to the user.

Steps:

	Implement the Display_Services package.

	Declare the task type Display_Service.

	Implement the Display entry for strings.

	Implement the Display entry for integers.

Requirements:

	Task type Display_Service uses the Display entry to
display messages to the user.

	There are two versions of the Display entry:

	One that receives messages as a string parameter.

	One that receives messages as an Integer parameter.

	When a message is received via a Display entry, it must be
displayed immediately to the user.

display_services.ads

1package Display_Services is
2
3end Display_Services;

display_services.adb

1package body Display_Services is
2
3end Display_Services;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Display_Services; use Display_Services;
 5
 6procedure Main is
 7 type Test_Case_Index is (Display_Service_Chk);
 8
 9 procedure Check (TC : Test_Case_Index) is
10 Display : Display_Service;
11 begin
12 case TC is
13 when Display_Service_Chk =>
14 Display.Display ("Hello");
15 delay 0.5;
16 Display.Display ("Hello again");
17 delay 0.5;
18 Display.Display (55);
19 delay 0.5;
20 end case;
21 end Check;
22
23begin
24 if Argument_Count < 1 then
25 Put_Line ("ERROR: missing arguments! Exiting...");
26 return;
27 elsif Argument_Count > 1 then
28 Put_Line ("Ignoring additional arguments...");
29 end if;
30
31 Check (Test_Case_Index'Value (Argument (1)));
32end Main;

Event Manager

Goal: implement a simple event manager.

Steps:

	Implement the Event_Managers package.

	Declare the task type Event_Manager.

	Implement the Start entry.

	Implement the Event entry.

Requirements:

	The event manager has a similar behavior as an alarm

	The sole purpose of this event manager is to display the event ID at
the correct time.

	After the event ID is displayed, the task must finish.

	The event manager (Event_Manager type) must have two entries:

	Start, which starts the event manager with an event ID;

	Event, which delays the task until a certain time and then
displays the event ID as a user message.

	The format of the user message displayed by the event manager is
Event #<event_id>.

	You should use Natural'Image to display the ID (as indicated
in the body of the Event_Managers package below).

Remarks:

	In the Start entry, you can use the Natural type for the
ID.

	In the Event entry, you should use the Time type from the
Ada.Real_Time package for the time parameter.

	Note that the test application below creates an array of event managers
with different delays.

event_managers.ads

1package Event_Managers is
2
3end Event_Managers;

event_managers.adb

1package body Event_Managers is
2
3 -- Don't forget to display the event ID:
4 --
5 -- Put_Line ("Event #" & Natural'Image (Event_ID));
6
7end Event_Managers;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Event_Managers; use Event_Managers;
 5with Ada.Real_Time; use Ada.Real_Time;
 6
 7procedure Main is
 8 type Test_Case_Index is (Event_Manager_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11 Ev_Mng : array (1 .. 5) of Event_Manager;
12 begin
13 case TC is
14 when Event_Manager_Chk =>
15 for I in Ev_Mng'Range loop
16 Ev_Mng (I).Start (I);
17 end loop;
18 Ev_Mng (1).Event (Clock + Seconds (5));
19 Ev_Mng (2).Event (Clock + Seconds (3));
20 Ev_Mng (3).Event (Clock + Seconds (1));
21 Ev_Mng (4).Event (Clock + Seconds (2));
22 Ev_Mng (5).Event (Clock + Seconds (4));
23 end case;
24 end Check;
25
26begin
27 if Argument_Count < 1 then
28 Put_Line ("ERROR: missing arguments! Exiting...");
29 return;
30 elsif Argument_Count > 1 then
31 Put_Line ("Ignoring additional arguments...");
32 end if;
33
34 Check (Test_Case_Index'Value (Argument (1)));
35end Main;

Generic Protected Queue

Goal: create a queue container using a protected type.

Steps:

	Implement the generic package Gen_Queues.

	Declare the protected type Queue.

	Implement the Empty function.

	Implement the Full function.

	Implement the Push entry.

	Implement the Pop entry.

Requirements:

	These are the formal parameters for the generic package
Gen_Queues:

	a formal modular type;

	This modular type should be used by the Queue to declare
an array that stores the elements of the queue.

	The modulus of the modular type must correspond to the maximum
number of elements of the queue.

	the data type of the elements of the queue.

	Select a formal parameter that allows you to store elements of
any data type in the queue.

	These are the operations of the Queue type:

	Function Empty indicates whether the queue is empty.

	Function Full indicates whether the queue is full.

	Entry Push stores an element in the queue.

	Entry Pop removes an element from the queue and returns the
element via output parameter.

Remarks:

	In this exercise, we create a queue container by declaring and
implementing a protected type (Queue) as part of a generic
package (Gen_Queues).

	As a bonus exercise, you can analyze the body of the Queue_Tests
package and understand how the Queue type is used there.

	In particular, the procedure Concurrent_Test implements two
tasks: T_Producer and T_Consumer. They make use of the
queue concurrently.

gen_queues.ads

1package Gen_Queues is
2
3end Gen_Queues;

gen_queues.adb

1package body Gen_Queues is
2
3end Gen_Queues;

queue_tests.ads

1package Queue_Tests is
2
3 procedure Simple_Test;
4
5 procedure Concurrent_Test;
6
7end Queue_Tests;

queue_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Gen_Queues;
 4
 5package body Queue_Tests is
 6
 7 Max : constant := 10;
 8 type Queue_Mod is mod Max;
 9
10 procedure Simple_Test is
11 package Queues_Float is new Gen_Queues (Queue_Mod, Float);
12
13 Q_F : Queues_Float.Queue;
14 V : Float;
15 begin
16 V := 10.0;
17 while not Q_F.Full loop
18 Q_F.Push (V);
19 V := V + 1.5;
20 end loop;
21
22 while not Q_F.Empty loop
23 Q_F.Pop (V);
24 Put_Line ("Value from queue: " & Float'Image (V));
25 end loop;
26 end Simple_Test;
27
28 procedure Concurrent_Test is
29 package Queues_Integer is new Gen_Queues (Queue_Mod, Integer);
30
31 Q_I : Queues_Integer.Queue;
32
33 task T_Producer;
34 task T_Consumer;
35
36 task body T_Producer is
37 V : Integer := 100;
38 begin
39 for I in 1 .. 2 * Max loop
40 Q_I.Push (V);
41 V := V + 1;
42 end loop;
43 end T_Producer;
44
45 task body T_Consumer is
46 V : Integer;
47 begin
48 delay 1.5;
49
50 while not Q_I.Empty loop
51 Q_I.Pop (V);
52 Put_Line ("Value from queue: " & Integer'Image (V));
53 delay 0.2;
54 end loop;
55 end T_Consumer;
56 begin
57 null;
58 end Concurrent_Test;
59
60end Queue_Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Queue_Tests; use Queue_Tests;
 5
 6procedure Main is
 7 type Test_Case_Index is (Simple_Queue_Chk,
 8 Concurrent_Queue_Chk);
 9
10 procedure Check (TC : Test_Case_Index) is
11
12 begin
13 case TC is
14 when Simple_Queue_Chk =>
15 Simple_Test;
16 when Concurrent_Queue_Chk =>
17 Concurrent_Test;
18 end case;
19 end Check;
20
21begin
22 if Argument_Count < 1 then
23 Put_Line ("ERROR: missing arguments! Exiting...");
24 return;
25 elsif Argument_Count > 1 then
26 Put_Line ("Ignoring additional arguments...");
27 end if;
28
29 Check (Test_Case_Index'Value (Argument (1)));
30end Main;

Footnotes

Solutions

Object-oriented programming

Simple type extension

type_extensions.ads

 1package Type_Extensions is
 2
 3 type T_Float is tagged record
 4 F : Float;
 5 end record;
 6
 7 function Init (F : Float) return T_Float;
 8
 9 function Init (I : Integer) return T_Float;
10
11 function Image (T : T_Float) return String;
12
13 type T_Mixed is new T_Float with record
14 I : Integer;
15 end record;
16
17 function Init (F : Float) return T_Mixed;
18
19 function Init (I : Integer) return T_Mixed;
20
21 function Image (T : T_Mixed) return String;
22
23end Type_Extensions;

type_extensions.adb

 1package body Type_Extensions is
 2
 3 function Init (F : Float) return T_Float is
 4 begin
 5 return ((F => F));
 6 end Init;
 7
 8 function Init (I : Integer) return T_Float is
 9 begin
10 return ((F => Float (I)));
11 end Init;
12
13 function Init (F : Float) return T_Mixed is
14 begin
15 return ((F => F,
16 I => Integer (F)));
17 end Init;
18
19 function Init (I : Integer) return T_Mixed is
20 begin
21 return ((F => Float (I),
22 I => I));
23 end Init;
24
25 function Image (T : T_Float) return String is
26 begin
27 return "{ F => " & Float'Image (T.F) & " }";
28 end Image;
29
30 function Image (T : T_Mixed) return String is
31 begin
32 return "{ F => " & Float'Image (T.F)
33 & ", I => " & Integer'Image (T.I) & " }";
34 end Image;
35
36end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 type Member is tagged record
10 Start : Year_Number;
11 end record;
12
13 type Member_Access is access Member'Class;
14
15 function Get_Status (M : Member) return String;
16
17 function Get_Price (M : Member;
18 P : Amount) return Amount;
19
20 type Full_Member is new Member with record
21 Discount : Percentage;
22 end record;
23
24 function Get_Status (M : Full_Member) return String;
25
26 function Get_Price (M : Full_Member;
27 P : Amount) return Amount;
28
29end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("Associate Member");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("Full Member");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (P);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (P * (1.0 - M.Discount));
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6
 7 type Member_Due_Amount is record
 8 Member : Member_Access;
 9 Due_Amount : Amount;
10 end record;
11
12 function Get_Price (MA : Member_Due_Amount) return Amount is
13 begin
14 return MA.Member.Get_Price (MA.Due_Amount);
15 end Get_Price;
16
17 type Member_Due_Amounts is array (Positive range <>) of Member_Due_Amount;
18
19 DB : constant Member_Due_Amounts (1 .. 4)
20 := ((Member => new Member'(Start => 2010),
21 Due_Amount => 250.0),
22 (Member => new Full_Member'(Start => 1998,
23 Discount => 0.1),
24 Due_Amount => 160.0),
25 (Member => new Full_Member'(Start => 1987,
26 Discount => 0.2),
27 Due_Amount => 400.0),
28 (Member => new Member'(Start => 2013),
29 Due_Amount => 110.0));
30 begin
31 for I in DB'Range loop
32 Put_Line ("Member #" & Positive'Image (I));
33 Put_Line ("Status: " & DB (I).Member.Get_Status);
34 Put_Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
35 Put_Line ("Due Amount: " & Amount'Image (Get_Price (DB (I))));
36 Put_Line ("--------");
37 end loop;
38 end Simple_Test;
39
40end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Footnotes

Solutions

Object-oriented programming

Simple type extension

type_extensions.ads

 1package Type_Extensions is
 2
 3 type T_Float is tagged record
 4 F : Float;
 5 end record;
 6
 7 function Init (F : Float) return T_Float;
 8
 9 function Init (I : Integer) return T_Float;
10
11 function Image (T : T_Float) return String;
12
13 type T_Mixed is new T_Float with record
14 I : Integer;
15 end record;
16
17 function Init (F : Float) return T_Mixed;
18
19 function Init (I : Integer) return T_Mixed;
20
21 function Image (T : T_Mixed) return String;
22
23end Type_Extensions;

type_extensions.adb

 1package body Type_Extensions is
 2
 3 function Init (F : Float) return T_Float is
 4 begin
 5 return ((F => F));
 6 end Init;
 7
 8 function Init (I : Integer) return T_Float is
 9 begin
10 return ((F => Float (I)));
11 end Init;
12
13 function Init (F : Float) return T_Mixed is
14 begin
15 return ((F => F,
16 I => Integer (F)));
17 end Init;
18
19 function Init (I : Integer) return T_Mixed is
20 begin
21 return ((F => Float (I),
22 I => I));
23 end Init;
24
25 function Image (T : T_Float) return String is
26 begin
27 return "{ F => " & Float'Image (T.F) & " }";
28 end Image;
29
30 function Image (T : T_Mixed) return String is
31 begin
32 return "{ F => " & Float'Image (T.F)
33 & ", I => " & Integer'Image (T.I) & " }";
34 end Image;
35
36end Type_Extensions;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Type_Extensions; use Type_Extensions;
 5
 6procedure Main is
 7
 8 type Test_Case_Index is
 9 (Type_Extension_Chk);
10
11 procedure Check (TC : Test_Case_Index) is
12 F1, F2 : T_Float;
13 M1, M2 : T_Mixed;
14 begin
15 case TC is
16 when Type_Extension_Chk =>
17 F1 := Init (2.0);
18 F2 := Init (3);
19 M1 := Init (4.0);
20 M2 := Init (5);
21
22 if M2 in T_Float'Class then
23 Put_Line ("T_Mixed is in T_Float'Class as expected");
24 end if;
25
26 Put_Line ("F1: " & Image (F1));
27 Put_Line ("F2: " & Image (F2));
28 Put_Line ("M1: " & Image (M1));
29 Put_Line ("M2: " & Image (M2));
30 end case;
31 end Check;
32
33begin
34 if Argument_Count < 1 then
35 Put_Line ("ERROR: missing arguments! Exiting...");
36 return;
37 elsif Argument_Count > 1 then
38 Put_Line ("Ignoring additional arguments...");
39 end if;
40
41 Check (Test_Case_Index'Value (Argument (1)));
42end Main;

Online Store

online_store.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3package Online_Store is
 4
 5 type Amount is delta 10.0**(-2) digits 10;
 6
 7 subtype Percentage is Amount range 0.0 .. 1.0;
 8
 9 type Member is tagged record
10 Start : Year_Number;
11 end record;
12
13 type Member_Access is access Member'Class;
14
15 function Get_Status (M : Member) return String;
16
17 function Get_Price (M : Member;
18 P : Amount) return Amount;
19
20 type Full_Member is new Member with record
21 Discount : Percentage;
22 end record;
23
24 function Get_Status (M : Full_Member) return String;
25
26 function Get_Price (M : Full_Member;
27 P : Amount) return Amount;
28
29end Online_Store;

online_store.adb

 1package body Online_Store is
 2
 3 function Get_Status (M : Member) return String is
 4 ("Associate Member");
 5
 6 function Get_Status (M : Full_Member) return String is
 7 ("Full Member");
 8
 9 function Get_Price (M : Member;
10 P : Amount) return Amount is (P);
11
12 function Get_Price (M : Full_Member;
13 P : Amount) return Amount is
14 (P * (1.0 - M.Discount));
15
16end Online_Store;

online_store-tests.ads

1package Online_Store.Tests is
2
3 procedure Simple_Test;
4
5end Online_Store.Tests;

online_store-tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Online_Store.Tests is
 4
 5 procedure Simple_Test is
 6
 7 type Member_Due_Amount is record
 8 Member : Member_Access;
 9 Due_Amount : Amount;
10 end record;
11
12 function Get_Price (MA : Member_Due_Amount) return Amount is
13 begin
14 return MA.Member.Get_Price (MA.Due_Amount);
15 end Get_Price;
16
17 type Member_Due_Amounts is array (Positive range <>) of Member_Due_Amount;
18
19 DB : constant Member_Due_Amounts (1 .. 4)
20 := ((Member => new Member'(Start => 2010),
21 Due_Amount => 250.0),
22 (Member => new Full_Member'(Start => 1998,
23 Discount => 0.1),
24 Due_Amount => 160.0),
25 (Member => new Full_Member'(Start => 1987,
26 Discount => 0.2),
27 Due_Amount => 400.0),
28 (Member => new Member'(Start => 2013),
29 Due_Amount => 110.0));
30 begin
31 for I in DB'Range loop
32 Put_Line ("Member #" & Positive'Image (I));
33 Put_Line ("Status: " & DB (I).Member.Get_Status);
34 Put_Line ("Since: " & Year_Number'Image (DB (I).Member.Start));
35 Put_Line ("Due Amount: " & Amount'Image (Get_Price (DB (I))));
36 Put_Line ("--------");
37 end loop;
38 end Simple_Test;
39
40end Online_Store.Tests;

main.adb

 1with Ada.Command_Line; use Ada.Command_Line;
 2with Ada.Text_IO; use Ada.Text_IO;
 3
 4with Online_Store; use Online_Store;
 5with Online_Store.Tests; use Online_Store.Tests;
 6
 7procedure Main is
 8
 9 type Test_Case_Index is
10 (Type_Chk,
11 Unit_Test_Chk);
12
13 procedure Check (TC : Test_Case_Index) is
14
15 function Result_Image (Result : Boolean) return String is
16 (if Result then "OK" else "not OK");
17
18 begin
19 case TC is
20 when Type_Chk =>
21 declare
22 AM : constant Member := (Start => 2002);
23 FM : constant Full_Member := (Start => 1990,
24 Discount => 0.2);
25 begin
26 Put_Line ("Testing Status of Associate Member Type => "
27 & Result_Image (AM.Get_Status = "Associate Member"));
28 Put_Line ("Testing Status of Full Member Type => "
29 & Result_Image (FM.Get_Status = "Full Member"));
30 Put_Line ("Testing Discount of Associate Member Type => "
31 & Result_Image (AM.Get_Price (100.0) = 100.0));
32 Put_Line ("Testing Discount of Full Member Type => "
33 & Result_Image (FM.Get_Price (100.0) = 80.0));
34 end;
35 when Unit_Test_Chk =>
36 Simple_Test;
37 end case;
38 end Check;
39
40begin
41 if Argument_Count < 1 then
42 Put_Line ("ERROR: missing arguments! Exiting...");
43 return;
44 elsif Argument_Count > 1 then
45 Put_Line ("Ignoring additional arguments...");
46 end if;
47
48 Check (Test_Case_Index'Value (Argument (1)));
49end Main;

Footnotes

Training Examples

	Declarations

	Basic Types

	Statements

	Array Types

	Record Types

	Subprograms

	Expressions

	Overloading

	Library Units

	Packages

	Private Types

	Limited Types

	Program Structure

	Visibility

	Access Types

	Genericity

	Inheritance

	Polymorphism

	Exceptions

	Elaboration

	Subprogram Contracts

	Type Contracts

	Low Level Programming

	Tasking

Footnotes

Declarations

Identifiers Comments And Pragmas

identifiers_comments_and_pragmas.ads

 1package Identifiers_Comments_And_Pragmas is
 2
 3 Spaceperson : Integer;
 4 --SPACEPERSON : integer; -- identifier is a duplicate
 5 Space_Person : Integer;
 6 --Null : integer := 0; -- identifier is a reserved word
 7 pragma Unreferenced (Spaceperson);
 8 pragma Unreferenced (Space_Person);
 9
10end Identifiers_Comments_And_Pragmas;

Numeric Literals

numeric_literals.ads

1package Numeric_Literals is
2
3 Simple_Integer : constant := 3;
4 Decimal_Number : constant := 0.25;
5 Using_Separator : constant := 1_000_000.0;
6 Octal : constant := 8#33#;
7 Hexadecimal : constant := 16#AAAA#;
8
9end Numeric_Literals;

Object Declarations

object_declarations.ads

1with Ada.Calendar; use Ada.Calendar;
2package Object_Declarations is
3 A : Integer := 0;
4 B, C : Time := Clock;
5 D : Integer := A + 1;
6end Object_Declarations;

Named Numbers

named_numbers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Named_Numbers is
 3 Universal_Third : constant := 1.0 / 3.0;
 4 Float_Third : constant Float := 1.0 / 3.0;
 5 Float_Value : Float;
 6 Long_Float_Value : Long_Float;
 7 Long_Long_Float_Value : Long_Long_Float;
 8begin
 9 Float_Value := Universal_Third;
10 Long_Float_Value := Universal_Third;
11 Long_Long_Float_Value := Universal_Third;
12 Put_Line (Float'Image (Float_Value));
13 Put_Line (Long_Float'Image (Long_Float_Value));
14 Put_Line (Long_Long_Float'Image (Long_Long_Float_Value));
15 Float_Value := Float_Third;
16 Long_Float_Value := Long_Float (Float_Third);
17 Long_Long_Float_Value := Long_Long_Float (Float_Third);
18 Put_Line (Float'Image (Float_Value));
19 Put_Line (Long_Float'Image (Long_Float_Value));
20 Put_Line (Long_Long_Float'Image (Long_Long_Float_Value));
21end Named_Numbers;

Scope And Visibility

scope_and_visibility.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Scope_And_Visibility is
 3 Name : Integer;
 4begin
 5 Name := 1;
 6 declare
 7 Name : Float := 2.0;
 8 begin
 9 Name := Name + Float (Scope_And_Visibility.Name);
10 Put_Line (Name'Image);
11 end;
12 Put_Line (Name'Image);
13end Scope_And_Visibility;

Aspect Clauses

aspect_clauses.ads

1package Aspect_Clauses is
2 Eight_Bits : Integer range 0 .. 255 with
3 Size => 8;
4 Object : Integer with
5 Atomic;
6end Aspect_Clauses;

Footnotes

Basic Types

Discrete Numeric Types

discrete_numeric_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Discrete_Numeric_Types is
 3
 4 type Signed_Integer_Type is range -128 .. 127;
 5 Signed_Integer : Signed_Integer_Type := 100;
 6
 7 type Unsigned_Integer_Type is mod 256;
 8 Unsigned_Integer : Unsigned_Integer_Type := 100;
 9
10begin
11
12 Signed_Integer := Signed_Integer_Type'Last;
13 Signed_Integer := Signed_Integer_Type'Succ (Signed_Integer);
14 Put_Line (Signed_Integer'Image);
15
16 Unsigned_Integer := Unsigned_Integer_Type'First;
17 Unsigned_Integer := Unsigned_Integer_Type'Pred (Unsigned_Integer);
18 Put_Line (Unsigned_Integer'Image);
19
20 Unsigned_Integer := Unsigned_Integer_Type (Signed_Integer);
21 Put_Line (Unsigned_Integer'Image);
22
23 Unsigned_Integer := Unsigned_Integer_Type'Mod (Signed_Integer);
24 Put_Line (Unsigned_Integer'Image);
25
26 declare
27 Some_String : constant String :=
28 Unsigned_Integer_Type'Image (Unsigned_Integer);
29 begin
30 Signed_Integer := Signed_Integer_Type'Value (Some_String);
31 Put_Line (Signed_Integer'Image);
32
33 Put_Line (Some_String);
34 end;
35
36end Discrete_Numeric_Types;

Discrete Enumeration Types

discrete_enumeration_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Discrete_Enumeration_Types is
 3
 4 type Colors_Type is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
 5 Color : Colors_Type := Red;
 6
 7 type Traffic_Light_Type is (Red, Yellow, Green);
 8 for Traffic_Light_Type use (1, 2, 4);
 9 Stoplight : Traffic_Light_Type := Red;
10
11 type Roman_Numeral_Digit_Type is ('I', 'V', 'X', 'L', 'C', 'M');
12 Digit : Roman_Numeral_Digit_Type := 'I';
13
14 Flag : Boolean;
15
16 Position : Integer;
17
18begin
19
20 Position := Traffic_Light_Type'Pos (Green);
21 Color := Colors_Type'Val (Position);
22 Stoplight := Traffic_Light_Type'(Red);
23 Digit := Roman_Numeral_Digit_Type'Succ (Digit);
24 Flag := End_Of_Line;
25
26 Put_Line (Position'Image);
27 Put_Line (Color'Image);
28 Put_Line (Flag'Image);
29 Put_Line (Digit'Image);
30 Put_Line (Stoplight'Image);
31
32end Discrete_Enumeration_Types;

Real Types

real_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Real_Types is
 3
 4 Predefined_Floating_Point : constant Float := 0.0;
 5
 6 type Floating_Point_Type is digits 8 range -1.0e10 .. 1.0e10;
 7 Floating_Point : Floating_Point_Type := 1.234e2;
 8
 9begin
10
11 Put_Line (Integer'Image (Floating_Point_Type'Digits));
12 Put_Line (Integer'Image (Floating_Point_Type'Base'Digits));
13 Floating_Point := Floating_Point_Type'Succ (Floating_Point);
14 Put_Line (Floating_Point_Type'Image (Floating_Point));
15 Put_Line (Predefined_Floating_Point'Image);
16
17end Real_Types;

Footnotes

Statements

Assignment Statements

assignment_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Assignment_Statements is
 3
 4 Max_Miles : constant Integer := 20;
 5
 6 type Feet_T is range 0 .. Max_Miles * 5_280;
 7 type Miles_T is range 0 .. Max_Miles;
 8
 9 Feet : constant Feet_T := Feet_T (Line) * 1_000;
10 Miles : Miles_T := 0;
11
12 Index1, Index2 : Miles_T range 1 .. 20;
13
14begin
15
16 -- Miles := Feet / 5_280; -- compile error
17
18 -- Max_Miles := Max_Miles + 1; -- compile error
19
20 Index1 := Miles_T (Max_Miles); -- constraint checking added
21 Index2 := Index1; -- no constraint checking needed
22
23 Put_Line ("Index1 = " & Index1'Image);
24 Put_Line ("Index2 = " & Index2'Image);
25
26 Index1 := 0; -- run-time error
27 Put_Line ("Index1 = " & Index1'Image);
28
29end Assignment_Statements;

Conditional Statements

conditional_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Conditional_Statements is
 3 type Light_T is (Red, Yellow, Green);
 4 A, B : Integer := Integer (Line);
 5 Speed : Integer;
 6 Light : constant Light_T := Light_T'Val (Line);
 7
 8begin
 9 if Light = Red then
10 Speed := 0;
11 elsif Light = Green then
12 Speed := 25;
13 else
14 Speed := 50;
15 end if;
16
17 case Light is
18 when Red => Speed := 0;
19 when Green => Speed := 25;
20 when Yellow => Speed := 50;
21 end case;
22
23 case A is
24 when 1 .. 100 => B := A;
25 when -100 .. -1 => B := -A;
26 when others => A := B;
27 end case;
28
29 Put_Line ("Speed = " & Speed'Image);
30 Put_Line ("Light = " & Light'Image);
31
32end Conditional_Statements;

Loop Statements

loop_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Loop_Statements is
 3 File : File_Type;
 4 Counter : Integer := 0;
 5 type Light_T is (Red, Yellow, Green);
 6begin
 7 loop
 8 if not Is_Open (File) then
 9 exit;
10 end if;
11 Counter := Counter + 1;
12 exit when Is_Open (File);
13 end loop;
14
15 while Is_Open (File) loop
16 Counter := Counter - 1;
17 end loop;
18
19 for Light in Light_T loop
20 Put_Line (Light_T'Image (Light));
21 end loop;
22
23 for Counter in reverse 1 .. 10 loop
24 Put_Line (Integer'Image (Counter));
25 exit when Is_Open (File);
26 end loop;
27end Loop_Statements;

Footnotes

Array Types

Constrained Array Types

constrained_array_types.ads

 1package Constrained_Array_Types is
 2
 3 type Array_Of_Integers_T is array (1 .. 10) of Integer;
 4 type Array_Of_Bits_T is
 5 array (Natural range 0 .. 31) of Boolean;
 6
 7 type Color_T is (Red, Green, Blue);
 8 type Color_Range_T is mod 256;
 9 type Rgb_T is array (Color_T) of Color_Range_T;
10
11 Ten_Integers : Array_Of_Integers_T;
12 One_Word : Array_Of_Bits_T;
13 Color : Rgb_T;
14
15end Constrained_Array_Types;

Unconstrained Array Types

unconstrained_array_types.ads

 1package Unconstrained_Array_Types is
 2
 3 type Index_T is range 1 .. 100;
 4 type List_T is array (Index_T range <>) of Character;
 5 Wrong : List_T (0 .. 10); -- runtime error
 6 Right : List_T (11 .. 20);
 7
 8 type Array_Of_Bits_T is array (Natural range <>) of Boolean;
 9 Bits8 : Array_Of_Bits_T (0 .. 7);
10 Bits16 : Array_Of_Bits_T (1 .. 16);
11
12 type Days_T is (Sun, Mon, Tues, Wed, Thu, Fri, Sat);
13 type Schedule_T is array (Days_T range <>) of Float;
14 Schedule : Schedule_T (Mon .. Fri);
15
16 Name : String (1 .. 10);
17
18 type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
19 type Roman_Number is array (Natural range <>) of Roman_Digit;
20 Orwellian : constant Roman_Number := "MCMLXXXIV";
21
22end Unconstrained_Array_Types;

Attributes

attributes.adb

 1procedure Attributes is
 2
 3 type Array_Of_Bits_T is array (Natural range <>) of Boolean;
 4 Bits8 : Array_Of_Bits_T (0 .. 7);
 5
 6 type Array_Of_Bitstrings_T is
 7 array (Natural range <>, Natural range <>) of Boolean;
 8 Bitstrings : Array_Of_Bitstrings_T (1 .. 10, 0 .. 16);
 9
10 Value : Natural;
11
12begin
13
14 Value := 0;
15 for Index in Bits8'First .. Bits8'Last loop
16 if Bits8 (Index) then
17 Value := Value + 2**(Index - Bits8'First);
18 end if;
19 end loop;
20
21 for String_Index in Bitstrings'Range (1) loop
22 Value := 0;
23 for Bit_Index in Bitstrings'Range (2) loop
24 if Bitstrings (String_Index, Bit_Index) then
25 Value := Value + 2**(Bit_Index - Bitstrings'First (2));
26 end if;
27 end loop;
28 end loop;
29
30end Attributes;

Operations

operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations is
 3
 4 type Boolean_Array_T is array (0 .. 15) of Boolean;
 5 Bool1, Bool2, Bool3 : Boolean_Array_T;
 6
 7 type Integer_Array_T is array (1 .. 100) of Integer;
 8 Int1, Int2 : Integer_Array_T;
 9
10 Str1 : String (1 .. 10) := (others => 'X');
11 Str2 : String (2 .. 9) := (others => '-');
12
13 Flag : Boolean;
14
15begin
16
17 Bool3 := Bool1 or Bool2;
18 Flag := Int1 > Int2;
19 Put_Line (Flag'Image);
20
21 declare
22 Str3 : String := Str1 & Str2;
23 begin
24 Str3
25 (Str3'First .. Str3'First + 1) := "**";
26 Str3 (1 .. 4) := Str1 (1 .. 2) & Str2 (8 .. 9);
27 Put_Line (Str3);
28 end;
29
30 if Int1 (1) in Bool3'Range then
31 Bool3 (Int1 (1)) := Int1 (1) > Int2 (1);
32 Put_Line (Boolean'Image (Bool3 (Int1 (1))));
33 end if;
34
35end Operations;

Operations Added For Ada2012

operations_added_for_ada2012.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations_Added_For_Ada2012 is
 3
 4 type Integer_Array_T is array (1 .. 10) of Integer with
 5 Default_Component_Value => -1;
 6 Int_Array : Integer_Array_T;
 7
 8 type Matrix_T is array (1 .. 3, 1 .. 3) of Integer with
 9 Default_Component_Value => -1;
10 Matrix : Matrix_T;
11
12begin
13
14 for Index in Int_Array'First + 1 .. Int_Array'Last - 1 loop
15 Int_Array (Index) := Index * 10;
16 end loop;
17 for Item of Int_Array loop
18 Put_Line (Integer'Image (Item));
19 end loop;
20
21 for Index1 in Matrix_T'First (1) + 1 .. Matrix'Last (1) loop
22 for Index2 in Matrix_T'First (2) + 1 .. Matrix'Last (2) loop
23 Matrix (Index1, Index2) := Index1 * 100 + Index2;
24 end loop;
25 end loop;
26 for Item of reverse Matrix loop
27 Put_Line (Integer'Image (Item));
28 end loop;
29
30end Operations_Added_For_Ada2012;

Aggregates

aggregates.adb

 1procedure Aggregates is
 2
 3 type Days_T is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 4 type Working_T is array (Days_T) of Float;
 5 Week : Working_T := (others => 0.0);
 6
 7 Start, Finish : Days_T;
 8
 9 type Array_T is array (Days_T range <>) of Boolean;
10 List : Array_T (Mon .. Start) := (others => False);
11
12begin
13
14 Week := (8.0, 8.0, 8.0, 8.0, 8.0, 0.0, 0.0);
15 Week := (Sat => 0.0, Sun => 0.0, Mon .. Fri => 8.0);
16 Week := (Sat | Sun => 0.0, Mon .. Fri => 8.0);
17 -- Compile error
18 -- Week := (8.0, 8.0, 8.0, 8.0, 8.0, Sat => 0.0, Sun => 0.0);
19
20 if Week = (10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 0.0) then
21 null; -- four-day week
22 end if;
23
24 Week := (8.0, others => 0.0);
25 Week := (8.0, others => <>); -- Ada2012: use previously set values
26
27 -- Compile error
28 -- Week := (Week'First .. Start => 0.0, Start .. Finish => 8.0,
29 -- Finish .. Week'Last => 0.0);
30
31end Aggregates;

Footnotes

Record Types

Components Rules

components_rules.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Components_Rules is
 3 type File_T is record
 4 Name : String (1 .. 12);
 5 Mode : File_Mode;
 6 Size : Integer range 0 .. 1_024;
 7 Is_Open : Boolean;
 8 -- Anonymous_Component : array (1 .. 3) of Integer;
 9 -- Constant_Component : constant Integer := 123;
10 -- Self_Reference : File_T;
11 end record;
12 File : File_T;
13begin
14 File.Name := "Filename.txt";
15 File.Mode := In_File;
16 File.Size := 0;
17 File.Is_Open := False;
18 Put_Line (File.Name);
19end Components_Rules;

Operations

operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations is
 3 type Date_T is record
 4 Day : Integer range 1 .. 31;
 5 Month : Positive range 1 .. 12;
 6 Year : Natural range 0 .. 2_099;
 7 end record;
 8 type Personal_Information_T is record
 9 Name : String (1 .. 10);
10 Birthdate : Date_T;
11 end record;
12 type Employee_Information_T is record
13 Number : Positive;
14 Personal_Information : Personal_Information_T;
15 end record;
16 Employee : Employee_Information_T;
17begin
18 Employee.Number := 1_234;
19 Employee.Personal_Information.Name := "Fred Smith";
20 Employee.Personal_Information.Birthdate.Year := 2_020;
21 Put_Line (Employee.Number'Image);
22end Operations;

Aggregates

aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Aggregates is
 3
 4 type Date_T is record
 5 Day : Integer range 1 .. 31;
 6 Month : Positive range 1 .. 12;
 7 Year : Natural range 0 .. 2_099;
 8 end record;
 9 type Personal_Information_T is record
10 Name : String (1 .. 10);
11 Birthdate : Date_T;
12 end record;
13 type Employee_Information_T is record
14 Number : Positive;
15 Personal_Information : Personal_Information_T;
16 end record;
17 Birthdate : Date_T;
18 Personal_Information : Personal_Information_T;
19 Employee : Employee_Information_T;
20begin
21 Birthdate := (25, 12, 2_001);
22 Put_Line
23 (Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
24 Personal_Information := (Name => "Jane Smith", Birthdate => (14, 2, 2_002));
25 Put_Line
26 (Personal_Information.Birthdate.Year'Image &
27 Personal_Information.Birthdate.Month'Image &
28 Personal_Information.Birthdate.Day'Image);
29 Employee := (1_234, Personal_Information => Personal_Information);
30 Put_Line
31 (Employee.Personal_Information.Birthdate.Year'Image &
32 Employee.Personal_Information.Birthdate.Month'Image &
33 Employee.Personal_Information.Birthdate.Day'Image);
34 Birthdate := (Month => 1, others => 2);
35 Put_Line
36 (Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
37end Aggregates;

Default Values

default_values.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Default_Values is
 3
 4 type Complex is record
 5 Real : Float := -1.0;
 6 Imaginary : Float := -1.0;
 7 end record;
 8
 9 Phasor : Complex;
10 I : constant Complex := (0.0, 1.0);
11
12begin
13 Put_Line
14 (Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
15 Put_Line (Float'Image (I.Real) & " " & Float'Image (I.Imaginary) & "i");
16 Phasor := (12.34, others => <>);
17 Put_Line
18 (Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
19end Default_Values;

Variant Records

variant_records.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Variant_Records is
 3 type Person_Tag is (Student, Faculty);
 4 type Person (Tag : Person_Tag) is -- Tag is the discriminant
 5 record
 6 Name : String (1 .. 10); -- Always present
 7 case Tag is
 8 when Student => -- 1st variant
 9 Gpa : Float range 0.0 .. 4.0;
10 Year : Integer range 1 .. 4;
11 when Faculty => -- 2nd variant
12 Pubs : Integer;
13 end case;
14 end record;
15 S : Person (Student) :=
16 (Tag => Student, Name => (others => 'S'), Gpa => 4.0, Year => 4);
17 F : Person (Faculty) :=
18 (Tag => Faculty, Name => (others => 'F'), Pubs => 10);
19begin
20 Put_Line (S.Name & " " & F.Name);
21 Put_Line (S.Gpa'Image);
22 Put_Line (S.Pubs'Image); -- run-time error
23 Put_Line (F.Pubs'Image);
24 Put_Line (F.Year'Image); -- run-time error
25end Variant_Records;

Footnotes

Subprograms

Declarations And Bodies

declarations_and_bodies.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Declarations_And_Bodies is
 3
 4 -- declarations
 5 procedure Swap (A, B : in out Integer);
 6 function Triple (X : Float) return Float;
 7
 8 -- bodies
 9 procedure Swap (A : in out Integer; B : in out Integer) is
10 C : constant Integer := A;
11 begin
12 A := B;
13 B := C;
14 end Swap;
15 function Triple (X : Float) return Float is
16 begin
17 return X * 3.0;
18 end Triple;
19
20 function Factorial (Counter : Natural) return Natural;
21 function Factorial (Counter : Natural) return Natural is
22 begin
23 if Counter = 1 then
24 return 1;
25 else
26 return Counter * Factorial (Counter - 1);
27 end if;
28 end Factorial;
29
30 I1, I2 : Integer := 123;
31
32begin
33 Swap (I1, I2);
34 Put_Line (Float'Image (Triple (12.3)));
35 Put_Line (Natural'Image (Factorial (5)));
36
37end Declarations_And_Bodies;

Parameters

parameters.adb

 1procedure Parameters is
 2
 3 procedure Do_Something (Formal_I : in Integer; Formal_B : out Boolean) is
 4 begin
 5 Formal_B := Formal_I > 0;
 6 end Do_Something;
 7
 8 procedure All_Modes (Number : in Integer;
 9 Value : in out Integer;
10 Result : out Boolean) is
11 begin
12 Value := Value * Number;
13 Result := Value > 0;
14 end All_Modes;
15
16 procedure Defaults (A : Integer := 1;
17 B : Integer := 2;
18 C : Boolean := True;
19 D : Boolean := False) is null;
20
21 type Vector is array (Positive range <>) of Float;
22 procedure Add (Left : in out Vector; Right : Vector) is
23 begin
24 for I in Left'First .. Left'Last loop
25 Left (I) := Left (I) + Right (I);
26 end loop;
27 end Add;
28
29 Actual_I1, Actual_I2 : Integer := 0;
30 Actual_B : Boolean;
31 Actual_V : Vector (1 .. 100);
32
33begin
34 Do_Something (Actual_I1,
35 Formal_B => Actual_B);
36 All_Modes (Actual_I1 + 100, Actual_I2, Actual_B);
37 -- All_Modes (Actual_I1, Actual_I2 + 100, Actual_B); -- compile error
38 Defaults (1, 2, True, False);
39 Defaults;
40 -- Defaults (1, True); -- compile error
41 Defaults (A => 1,
42 D => True);
43 Add (Actual_V (1 .. 10), Actual_V (11 .. 20));
44end Parameters;

Expression Functions

expression_functions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Expression_Functions is
 3
 4 function Square1 (X : Integer) return Integer is (X * 2);
 5 function Square2 (X : Integer) return Integer is
 6 begin
 7 return X * 2;
 8 end Square2;
 9
10 function Square3 (X : Integer) return Integer;
11 function Square3 (X : Integer) return Integer is (X * 2);
12
13 function Square4 (X : Integer) return Integer is (X * 2);
14 -- illegal: Square4 already complete function Square4 (X : Integer) return
15 -- Integer is begin
16 -- return X * 2;
17 -- end Square4;
18
19begin
20 Put_Line (Integer'Image (Square1 (2)));
21 Put_Line (Integer'Image (Square2 (3)));
22 Put_Line (Integer'Image (Square3 (4)));
23 Put_Line (Integer'Image (Square4 (5)));
24end Expression_Functions;

Potential Pitfalls

potential_pitfalls.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Potential_Pitfalls is
 3 Global_I : Integer := 0;
 4 Global_P : Positive := 1;
 5 Global_S : String := "Hello";
 6
 7 procedure Unassigned_Out (A : in Integer; B : out Positive) is
 8 begin
 9 if A > 0 then
10 B := A;
11 end if;
12 end Unassigned_Out;
13
14 function Cause_Side_Effect return Integer is
15 begin
16 Global_I := Global_I + 1;
17 return Global_I;
18 end Cause_Side_Effect;
19
20 procedure Order_Dependent_Code (X, Y : Integer) is
21 begin
22 Put_Line (Integer'Image (X) & " / " & Integer'Image (Y));
23 end Order_Dependent_Code;
24
25 procedure Aliasing (Param : in String;
26 I1 : in out Integer;
27 I2 : in out Integer) is
28 begin
29 Global_S := "World";
30 I1 := I1 * 2;
31 I2 := I2 * 3;
32 Put_Line ("Aliasing string: " & Param);
33 end Aliasing;
34
35begin
36 Unassigned_Out (-1, Global_P);
37 Put_Line ("Global_P = " & Positive'Image (Global_P));
38
39 Order_Dependent_Code (Global_I, Cause_Side_Effect);
40
41 Global_P := Positive'First;
42 -- Aliasing (Global_S, Global_I, Global_I); -- compile error
43 Aliasing (Global_S, Global_I, Global_P);
44 Put_Line ("Global_S: " & Global_S);
45 Put_Line ("Global_P: " & Global_P'Image);
46end Potential_Pitfalls;

Footnotes

Expressions

Subtypes

subtypes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Subtypes is
 3 type Days_T is (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
 4 subtype Weekdays_T is Days_T range Mon .. Fri;
 5
 6 Weekday : Weekdays_T := Mon;
 7 Also_Weekday : Days_T range Mon .. Fri := Tues;
 8 Day : Days_T := Weekday;
 9
10 type Matrix_T is array (Integer range <>, Integer range <>) of Integer;
11 subtype Matrix_3x3_T is Matrix_T (1 .. 3, 1 .. 3);
12 subtype Line_T is String (1 .. 80);
13
14 I : Integer := 1_234;
15 procedure Takes_Positive (P : Positive) is null;
16
17 type Tertiary_Switch is (Off, On, Neither) with
18 Default_Value => Neither;
19 subtype Toggle_Switch is Tertiary_Switch range Off .. On;
20 Safe : Toggle_Switch := Off;
21 -- Implicit : Toggle_Switch; -- compile error: out of range
22
23 pragma Unreferenced (Safe);
24
25begin
26 Also_Weekday := Day; -- runtime error if Day is Sat or Sun
27 Put_Line (Also_Weekday'Image);
28 Day := Weekday; -- always legal
29 I := I - 1;
30 Takes_Positive (I); -- runtime error if I <= 0
31
32 Weekday := Weekdays_T'Last;
33 Day := Days_T'Last;
34
35 Put_Line (Weekdays_T'Image (Weekday) & " / " & Days_T'Image (Day));
36 Put_Line (Days_T'Image (Weekdays_T'Succ (Weekday)));
37 Put_Line (Integer'Image (Matrix_3x3_T'Length (1)));
38 Put_Line (Integer'Image (Line_T'Length (1)));
39end Subtypes;

Membership Tests

membership_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Membership_Tests is
 3 subtype Index_T is Integer range 1 .. 100;
 4 X : constant Integer := Integer (Line);
 5 B : Boolean := X in 1 .. 100;
 6 C : Boolean := not (X in Index_T);
 7 D : Boolean := X not in Index_T;
 8
 9 type Calendar_Days is (Sun, Mon, Tues, Wed, Thur, Fri, Sat);
10 subtype Weekdays is Calendar_Days range Mon .. Fri;
11 Day : Calendar_Days := Calendar_Days'Val (X);
12
13begin
14
15 if Day in Sun | Sat then
16 -- identical expressions
17 B := Day in Mon .. Fri;
18 C := Day in Weekdays;
19 Day := Wed;
20 elsif Day = Mon or Day = Tues then
21 D := D and (B or C);
22 Day := Thur;
23 end if;
24
25 Put_Line (D'Image & " " & B'Image & " " & C'Image);
26 Put_Line (Day'Image);
27
28end Membership_Tests;

Slices

slices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Slices is
 3 procedure Explicit_Indices is
 4 Full_Name : String (1 .. 20) := "Barney Rubble ";
 5 begin
 6 Put_Line (Full_Name);
 7 Full_Name (1 .. 10) := "Betty ";
 8 Put_Line (Full_Name (1 .. 10)); -- first half of name
 9 Put_Line (Full_Name (11 .. 20)); -- second half of name
10 end Explicit_Indices;
11
12 procedure Subtype_Indices is
13 subtype First_Name is Positive range 1 .. 10;
14 subtype Last_Name is Positive range 11 .. 20;
15 Full_Name : String (First_Name'First .. Last_Name'Last) :=
16 "Fred Flintstone";
17 begin
18 Put_Line (Full_Name);
19 Full_Name (First_Name) := "Wilma ";
20 Put_Line (Full_Name (First_Name)); -- first half of name
21 Put_Line (Full_Name (Last_Name)); -- second half of name
22 end Subtype_Indices;
23begin
24 Explicit_Indices;
25 Subtype_Indices;
26end Slices;

Conditional Expressions

conditional_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Conditional_Expressions is
 3
 4 type Months_T is
 5 (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
 6 Year : constant Integer := 2_020;
 7
 8 procedure If_Expression is
 9 Counter : Natural := 5;
10 begin
11 while Counter > 0 loop
12 Put_Line
13 ("Self-destruct in" & Natural'Image (Counter) &
14 (if Counter = 1 then " second" else " seconds"));
15 delay 1.0;
16 Counter := Counter - 1;
17 end loop;
18 Put_Line ("Boom! (goodbye Nostromo)");
19 end If_Expression;
20
21 procedure Case_Expression is
22 Leap_Year : constant Boolean :=
23 (Year mod 4 = 0 and Year mod 100 /= 0) or else (Year mod 400 = 0);
24 begin
25 for M in Months_T loop
26 Put_Line
27 (M'Image & " => " &
28 Integer'Image
29 (case M is when Sep | Apr | Jun | Nov => 30,
30 when Feb => (if Leap_Year then 29 else 28),
31 when others => 31));
32 end loop;
33 end Case_Expression;
34
35begin
36 If_Expression;
37 Case_Expression;
38end Conditional_Expressions;

Quantified Expressions

quantified_expressions.adb

 1with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 2with Ada.Text_IO; use Ada.Text_IO;
 3procedure Quantified_Expressions is
 4 Gen : Generator;
 5 Values : constant array (1 .. 10) of Integer := (others => Random (Gen));
 6
 7 Any_Even : constant Boolean := (for some N of Values => N mod 2 = 0);
 8 All_Odd : constant Boolean := (for all N of reverse Values => N mod 2 = 1);
 9
10 function Is_Sorted return Boolean is
11 (for all K in Values'Range =>
12 K = Values'First or else Values (K - 1) <= Values (K));
13
14 function Duplicate return Boolean is
15 (for some I in Values'Range =>
16 (for some J in I + 1 .. Values'Last => Values (I) = Values (J)));
17
18begin
19 Put_Line ("Any Even: " & Boolean'Image (Any_Even));
20 Put_Line ("All Odd: " & Boolean'Image (All_Odd));
21 Put_Line ("Is_Sorted " & Boolean'Image (Is_Sorted));
22 Put_Line ("Duplicate " & Boolean'Image (Duplicate));
23end Quantified_Expressions;

Footnotes

Overloading

Enumerals And Operators

enumerals_and_operators.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Enumerals_And_Operators is
 3 type Colors_T is (Blue, Yellow, Black, Green, Red);
 4 type Rgb_T is (Red, Green, Blue);
 5 type Stoplight_T is (Green, Yellow, Red);
 6
 7 Color : constant Colors_T := Red;
 8 Rgb : constant Rgb_T := Red;
 9 Light : constant Stoplight_T := Red;
10
11 type Miles_T is digits 6;
12 type Hour_T is digits 6;
13 type Speed_T is digits 6;
14 function "/" (M : Miles_T; H : Hour_T) return Speed_T is
15 (Speed_T (Float (M) / Float (H)));
16 function "*" (Mph : Speed_T; H : Hour_T) return Miles_T is
17 (Miles_T (Float (Mph) * Float (H)));
18
19 M : Miles_T := Miles_T (Col);
20 H : constant Hour_T := Hour_T (Line);
21 Mph : Speed_T;
22
23begin
24 Put_Line (Color'Image & " " & Rgb'Image & " " & Light'Image);
25 Mph := M / H;
26 M := Mph * H;
27 Put_Line (Mph'Image & M'Image);
28
29 Mph := "/" (M => M, H => H);
30 M := "*" (Mph, H);
31 Put_Line (Mph'Image & M'Image);
32end Enumerals_And_Operators;

Call Resolution

call_resolution.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Call_Resolution is
 3 type Colors_T is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
 4 type Rgb_T is (Red, Green, Blue);
 5 function Str (P : Colors_T) return String is (Colors_T'Image (P));
 6 function Str (P : Rgb_T) return String is (Rgb_T'Image (P));
 7 procedure Print (Color : Colors_T) is
 8 begin
 9 Put_Line (Str (Color));
10 end Print;
11 procedure Print (Rgb : Rgb_T) is
12 begin
13 Put_Line (Str (Rgb));
14 end Print;
15 procedure Print (P1 : Colors_T; P2 : Rgb_T) is null;
16
17begin
18 Put_Line (Str (Yellow));
19 -- Put_Line (Str (Red)); -- compile error
20 Print (Orange);
21 Print (Rgb => Red);
22 Print (Color => Blue);
23 Print (Red, Red);
24end Call_Resolution;

Visibility Issues

visibility_issues.adb

 1procedure Visibility_Issues is
 2 procedure Foo (I : Integer) is
 3 procedure Foo (N : Natural) is null;
 4 begin
 5 Foo (I);
 6 end Foo;
 7 -- procedure Foo (N : Natural) is null; -- compile error
 8begin
 9 Foo (1);
10end Visibility_Issues;

User Defined Equality

user_defined_equality.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure User_Defined_Equality is
 3 type Array_T is array (1 .. 10) of Integer;
 4 type List_T is record
 5 List : Array_T;
 6 Count : Integer := 0;
 7 end record;
 8
 9 function "=" (L, R : List_T) return Boolean is
10 begin
11 if L.Count /= R.Count then
12 Put_Line ("Count is off");
13 return False;
14 else
15 for I in 1 .. L.Count loop
16 if L.List (I) /= R.List (I) then
17 Put_Line ("elements don't match");
18 return False;
19 end if;
20 end loop;
21 end if;
22 return True;
23 end "=";
24 L, R : List_T := (List => (others => 1), Count => 3);
25begin
26 Put_Line (Boolean'Image (L = R));
27 L.List (2) := 0;
28 Put_Line (Boolean'Image (L = R));
29 R.Count := 1;
30 Put_Line (Boolean'Image (L = R));
31end User_Defined_Equality;

Composition Of Equality

composition_of_equality.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Composition_Of_Equality is
 3 type My_Integer is range -1_000 .. 1_000;
 4 function "=" (L, R : My_Integer) return Boolean is
 5 (False); -- for illustration purposes
 6 type Record_T is tagged record
 7 Field : My_Integer := 0;
 8 end record;
 9 type Record_List is array (My_Integer range 1 .. 10) of Record_T;
10
11 I1, I2 : constant My_Integer := 0;
12 R1, R2 : constant Record_List := (others => (Field => 0));
13begin
14 -- uses primitive "=" => False
15 Put_Line (Boolean'Image (I1 = I2));
16 -- uses predefined "=" for components=>True
17 Put_Line (Boolean'Image (R1 = R2));
18end Composition_Of_Equality;

Footnotes

Library Units

Library Units

named_common.ads

1package Named_Common is
2 X : Integer; -- valid object for life of application
3 Y : Float; -- valid object for life of application
4end Named_Common;

library_procedure.ads

1procedure Library_Procedure (Parameter : in out Integer);

library_procedure.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Library_Procedure (Parameter : in out Integer) is
 3 -- X is visible to Library_Procedure and Nested_Procedure
 4 X : constant Integer := Parameter;
 5 procedure Nested_Procedure is
 6 -- Y is only visible to Nested_Procedure
 7 Y : constant Integer := X * 2;
 8 begin
 9 Parameter := X * Y;
10 end Nested_Procedure;
11begin
12 Nested_Procedure;
13 Put_Line ("parameter = " & Parameter'Image);
14end Library_Procedure;

main.adb

1with Library_Procedure;
2with Named_Common;
3procedure Main is
4begin
5 Named_Common.X := 123;
6 Library_Procedure (Named_Common.X);
7end Main;

With Clauses

base_types.ads

1with Ada.Text_IO;
2package Base_Types is
3 type Position_T is record
4 Line : Ada.Text_IO.Positive_Count;
5 Column : Ada.Text_IO.Positive_Count;
6 end record;
7end Base_Types;

files.ads

 1-- no need to "with" ada.text_io
 2with Base_Types;
 3package Files is
 4 subtype Name_T is String (1 .. 12);
 5 type File_T is record
 6 Name : Name_T := (others => ' ');
 7 Position : Base_Types.Position_T := (Line => 1, Column => 1);
 8 end record;
 9 function Create (Name : Name_T) return File_T;
10end Files;

files.adb

1package body Files is
2 -- "with" of base_types inherited from spec
3 Default_Position : constant Base_Types.Position_T := (1, 1);
4 function Create (Name : Name_T) return File_T is
5 (Name => Name, Position => Default_Position);
6end Files;

Footnotes

Packages

Declarations

global_data.ads

1package Global_Data is
2 Object : Integer := 100;
3 type Float_T is digits 6;
4end Global_Data;

float_stack.ads

1with Global_Data;
2package Float_Stack is
3 Max : constant Integer := Global_Data.Object;
4 procedure Push (X : in Global_Data.Float_T);
5 function Pop return Global_Data.Float_T;
6end Float_Stack;

float_stack.adb

 1package body Float_Stack is
 2 Local_Object : Global_Data.Float_T;
 3 procedure Not_Exported is null;
 4 procedure Push (X : in Global_Data.Float_T) is
 5 begin
 6 Not_Exported;
 7 Local_Object := X;
 8 end Push;
 9 function Pop return Global_Data.Float_T is (Local_Object);
10end Float_Stack;

Bodies

body_not_allowed.ads

 1package Body_Not_Allowed is
 2 type Real is digits 12;
 3 type Device_Coordinates is record
 4 X, Y : Integer;
 5 end record;
 6 type Normalized_Coordinates is record
 7 X, Y : Real range 0.0 .. 1.0;
 8 end record;
 9 -- nothing to implement, so no body allowed
10end Body_Not_Allowed;

body_required.ads

 1package Body_Required is
 2 subtype Rows is Integer range 1 .. 24;
 3 subtype Columns is Integer range 1 .. 80;
 4 type Position is record
 5 Row : Rows := Rows'First;
 6 Col : Columns := Columns'First;
 7 end record;
 8 -- The following need to be defined in the body
 9 procedure Move_Cursor (To : in Position);
10 procedure Home;
11end Body_Required;

body_required.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Body_Required is
 3 -- This function is not visible outside this package
 4 function Unsigned (Input : Integer) return String is
 5 Str : constant String := Integer'Image (Input);
 6 begin
 7 return Str (2 .. Str'Length);
 8 end Unsigned;
 9 procedure Move_Cursor (To : in Position) is
10 begin
11 Put (ASCII.ESC & "I" & Unsigned(To.Row) & ";" & Unsigned(To.Col) & "H");
12 end Move_Cursor;
13 procedure Home is null; -- not yet implemented
14end Body_Required;

Executable Parts

executable_part.ads

1package Executable_Part is
2 Visible_Seed : Integer;
3 function Number return Float;
4end Executable_Part;

executable_part.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Executable_Part is
 3 Hidden_Seed : Integer;
 4 procedure Initialize (Seed1 : out Integer; Seed2 : out Integer) is
 5 begin
 6 Seed1 := Integer'First;
 7 Seed2 := Integer'Last;
 8 end Initialize;
 9 function Number return Float is (0.0); -- not yet implemented
10begin
11 Put_Line ("Elaborating Executable_Part");
12 Initialize (Visible_Seed, Hidden_Seed);
13end Executable_Part;

force_body.ads

1package Force_Body is
2 pragma Elaborate_Body;
3 Global_Data : array (1 .. 10) of Integer;
4end Force_Body;

force_body.adb

1-- without Elaborate_Body, this is illegal
2with Ada.Text_IO; use Ada.Text_IO;
3package body Force_Body is
4begin
5 Put_Line ("Elaborating Force_Body");
6 for I in Global_Data'Range loop
7 Global_Data (I) := I * 100;
8 end loop;
9end Force_Body;

main.adb

1with Executable_Part;
2with Force_Body;
3procedure Main is
4begin
5 null;
6end Main;

Idioms

constants.ads

1package Constants is
2 Polar_Radius : constant := 20_856_010.51;
3 Equatorial_Radius : constant := 20_926_469.20;
4 Earth_Diameter : constant :=
5 2.0 * ((Polar_Radius + Equatorial_Radius) / 2.0);
6end Constants;

global_data.ads

1package Global_Data is
2 Longitudinal_Velocity : Float := 0.0;
3 Longitudinal_Acceleration : Float := 0.0;
4 Lateral_Velocity : Float := 0.0;
5 Lateral_Acceleration : Float := 0.0;
6 Vertical_Velocity : Float := 0.0;
7 Vertical_Acceleration : Float := 0.0;
8end Global_Data;

related_units.ads

1package Related_Units is
2 type Vector is array (Positive range <>) of Float;
3 function "+" (L, R : Vector) return Vector;
4 function "-" (L, R : Vector) return Vector;
5end Related_Units;

related_units.adb

1package body Related_Units is
2 -- nothing is implemented yet!
3 function "+" (L, R : Vector) return Vector is (L);
4 function "-" (L, R : Vector) return Vector is (L);
5end Related_Units;

stack_abstract_data_machine.ads

1package Stack_Abstract_Data_Machine is
2 procedure Push (X : in Float);
3 procedure Pop (X : out Float);
4 function Empty return Boolean;
5 function Full return Boolean;
6end Stack_Abstract_Data_Machine;

stack_abstract_data_machine.adb

1package body Stack_Abstract_Data_Machine is
2 -- nothing is implemented yet!
3 procedure Push (X : in Float) is null;
4 procedure Pop (X : out Float) is null;
5 function Empty return Boolean is (True);
6 function Full return Boolean is (True);
7end Stack_Abstract_Data_Machine;

Footnotes

Private Types

Implementing Abstract Data Types Via Views

bounded_stack.ads

 1package Bounded_Stack is
 2 Max_Capacity : constant := 100;
 3 type Stack_T is private;
 4 procedure Push (This : in out Stack_T; Item : Integer);
 5 procedure Pop (This : in out Stack_T; Item : out Integer);
 6 function Is_Empty (This : Stack_T) return Boolean;
 7private
 8 type List_T is array (1 .. Max_Capacity) of Integer;
 9 type Stack_T is record
10 List : List_T;
11 Top : Integer range 0 .. Max_Capacity := 0;
12 end record;
13end Bounded_Stack;

bounded_stack.adb

 1package body Bounded_Stack is
 2 procedure Push (This : in out Stack_T; Item : Integer) is
 3 begin
 4 This.Top := This.Top + 1;
 5 This.List (This.Top) := Item;
 6 end Push;
 7 procedure Pop (This : in out Stack_T; Item : out Integer) is
 8 begin
 9 Item := This.List (This.Top);
10 This.Top := This.Top - 1;
11 end Pop;
12 function Is_Empty (This : Stack_T) return Boolean is (This.Top = 0);
13end Bounded_Stack;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Bounded_Stack; use Bounded_Stack;
 3procedure Main is
 4 Stack : Stack_T;
 5 Item : Integer;
 6begin
 7 Push (Stack, 42);
 8 Put_Line (Boolean'Image (Is_Empty (Stack)));
 9 Pop (Stack, Item);
10 --Put_Line (Integer'Image (Stack.Top)); -- compile error
11 Put_Line (Boolean'Image (Is_Empty (Stack)));
12 Put_Line (Item'Image);
13end Main;

Private Part Construction

sets.ads

 1package Sets is
 2 type Set_T is private;
 3 Null_Set : constant Set_T;
 4 type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 5 procedure Add (This : in out Set_T; Day : Days_T);
 6 procedure Remove (This : in out Set_T; Day : Days_T);
 7 function Str (This : Set_T) return String;
 8private
 9 function Length (This : Set_T) return Natural;
10 type Set_T is array (Days_T) of Boolean;
11 Null_Set : constant Set_T := (others => False);
12end Sets;

sets.adb

 1package body Sets is
 2 procedure Add (This : in out Set_T; Day : Days_T) is
 3 begin
 4 This (Day) := True;
 5 end Add;
 6 procedure Remove (This : in out Set_T; Day : Days_T) is null;
 7 function Str (This : Set_T) return String is
 8 Ret_Val : String (1 .. Length (This) * 4) := (others => ' ');
 9 Pos : Natural := 1;
10 begin
11 for D in This'Range loop
12 if This (D) then
13 Ret_Val (Pos .. Pos + 2) := D'Image;
14 Pos := Pos + 4;
15 end if;
16 end loop;
17 return Ret_Val;
18 end Str;
19 function Length (This : Set_T) return Natural is
20 Ret_Val : Natural := 0;
21 begin
22 for D in This'Range loop
23 Ret_Val := Ret_Val + (if This (D) then 1 else 0);
24 end loop;
25 return Ret_Val;
26 end Length;
27end Sets;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Sets; use Sets;
 3procedure Main is
 4 Set : Set_T := Null_Set;
 5begin
 6 Add (Set, Sun);
 7 Add (Set, Sat);
 8 Add (Set, Mon);
 9 Put_Line (Str (Set));
10end Main;

Idioms

complex.ads

 1package Complex is
 2 type Number_T is private;
 3 function Constructor (Real_Part, Imaginary_Part : Float)
 4 return Number_T;
 5 procedure Constructor (This : out Number_T;
 6 Real_Part : Float;
 7 Imaginary_Part : Float);
 8 function Real_Part (This : Number_T) return Float;
 9 function Imaginary_Part (This : Number_T) return Float;
10 function Str (This : Number_T) return String;
11
12private
13 type Number_T is record
14 Real_Part, Imaginary_Part : Float;
15 end record;
16
17 function Constructor (Real_Part, Imaginary_Part : Float)
18 return Number_T is
19 (Real_Part, Imaginary_Part);
20
21 function Real_Part (This : Number_T) return Float is
22 (This.Real_Part);
23 function Imaginary_Part (This : Number_T) return Float is
24 (This.Imaginary_Part);
25end Complex;

complex.adb

 1package body Complex is
 2 procedure Constructor (This : out Number_T;
 3 Real_Part : Float;
 4 Imaginary_Part : Float) is
 5 begin
 6 This := Constructor (Real_Part, Imaginary_Part);
 7 end Constructor;
 8
 9 function Str (This : Number_T) return String is
10 begin
11 return Float'Image (Real_Part (This)) & " " &
12 Float'Image (Imaginary_Part (This)) & "i";
13 end Str;
14end Complex;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Complex; use Complex;
3procedure Main is
4 Number : Number_T := Constructor (1.2, 3.4);
5begin
6 Put_Line (Str (Number));
7 Constructor (Number, 56.7, 8.9);
8 Put_Line (Str (Number));
9end Main;

Footnotes

Limited Types

Declarations

multiprocessor_mutex.ads

 1with Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T) is null;
13 procedure Unlock (This : in out Also_Limited_T) is null;
14end Multiprocessor_Mutex;

Creating Values

multiprocessor_mutex.ads

 1with Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T);
13 procedure Unlock (This : in out Also_Limited_T);
14 function Create (Flag : Interfaces.Unsigned_8;
15 Id : Id_T)
16 return Also_Limited_T;
17end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Also_Limited_T) is null;
 3 procedure Unlock (This : in out Also_Limited_T) is null;
 4 Global_Lock : Also_Limited_T := (Lock => (Flag => 0), Id => "GLOB");
 5 function Create (Flag : Interfaces.Unsigned_8;
 6 Id : Id_T)
 7 return Also_Limited_T is
 8 Local_Lock : Also_Limited_T := (Lock => (Flag => 1), Id => "LOCA");
 9 begin
10 Global_Lock.Lock.Flag := Flag;
11 Local_Lock.Id := Id;
12 -- Compile error
13 -- return Local_Lock;
14 -- Compile error
15 -- return Global_Lock;
16 return (Lock => (Flag => Flag), Id => Id);
17 end Create;
18end Multiprocessor_Mutex;

perform_lock.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Multiprocessor_Mutex; use Multiprocessor_Mutex;
3procedure Perform_Lock is
4 Lock1 : Also_Limited_T := (Lock => (Flag => 2), Id => "LOCK");
5 Lock2 : Also_Limited_T;
6begin
7 -- Lock2 := Create (3, "CREA"); -- illegal
8 Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);
9end Perform_Lock;

Extended Return Statements

multiprocessor_mutex.ads

 1with Interfaces; use Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T);
13 procedure Unlock (This : in out Also_Limited_T);
14 function Create (Id : Id_T) return Also_Limited_T;
15end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Also_Limited_T) is null;
 3 procedure Unlock (This : in out Also_Limited_T) is null;
 4
 5 Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
 6 function Create (Id : Id_T) return Also_Limited_T is
 7 begin
 8 return Ret_Val : Also_Limited_T do
 9 if Global_Lock_Counter = Interfaces.Unsigned_8'Last then
10 return;
11 end if;
12 Global_Lock_Counter := Global_Lock_Counter + 1;
13 Ret_Val.Id := Id;
14 Ret_Val.Lock.Flag := Global_Lock_Counter;
15 end return;
16 end Create;
17end Multiprocessor_Mutex;

perform_lock.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Multiprocessor_Mutex; use Multiprocessor_Mutex;
3procedure Perform_Lock is
4 Lock1 : constant Also_Limited_T := Create ("One ");
5 Lock2 : constant Also_Limited_T := Create ("Two ");
6begin
7 Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);
8 Put_Line (Lock2.Id & Lock2.Lock.Flag'Image);
9end Perform_Lock;

Combining Limited And Private Views

multiprocessor_mutex.ads

 1with Interfaces; use Interfaces;
 2package Multiprocessor_Mutex is
 3 type Limited_T is limited private;
 4 procedure Lock (This : in out Limited_T);
 5 procedure Unlock (This : in out Limited_T);
 6 function Create return Limited_T;
 7private
 8 type Limited_T is limited -- no internal copying allowed
 9 record
10 Flag : Interfaces.Unsigned_8; -- users cannot see this
11 end record;
12end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Limited_T) is null;
 3 procedure Unlock (This : in out Limited_T) is null;
 4
 5 Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
 6 function Create return Limited_T is
 7 begin
 8 return Ret_Val : Limited_T do
 9 Global_Lock_Counter := Global_Lock_Counter + 1;
10 Ret_Val.Flag := Global_Lock_Counter;
11 end return;
12 end Create;
13end Multiprocessor_Mutex;

use_limited_type.ads

 1with Multiprocessor_Mutex; use Multiprocessor_Mutex;
 2package Use_Limited_Type is
 3 type Legal is limited private;
 4 type Also_Legal is limited private;
 5 -- type Not_Legal is private;
 6 -- type Also_Not_Legal is private;
 7private
 8 type Legal is record
 9 S : Limited_T;
10 end record;
11 type Also_Legal is limited record
12 S : Limited_T;
13 end record;
14 -- type Not_Legal is limited record
15 -- S : Limited_T;
16 -- end record;
17 -- type Also_Not_Legal is record
18 -- S : Limited_T;
19 -- end record;
20end Use_Limited_Type;

Footnotes

Program Structure

Limited With Clauses

personnel.ads

 1limited with Department;
 2package Personnel is
 3 type Employee_T is private;
 4 procedure Assign (This : in out Employee_T; Section : in Department.Section_T);
 5private
 6 type Employee_T is record
 7 Name : String (1 .. 10);
 8 Assigned_To : access Department.Section_T;
 9 end record;
10end Personnel;

department.ads

 1limited with Personnel;
 2package Department is
 3 type Section_T is private;
 4 procedure Set_Manager (This : in out Section_T; Who : in Personnel.Employee_T);
 5private
 6 type Section_T is record
 7 Name : String (1 .. 10);
 8 Manager : access Personnel.Employee_T;
 9 end record;
10end Department;

personnel.adb

1with Department;
2package body Personnel is
3 procedure Assign (This : in out Employee_T; Section : in Department.Section_T) is
4 begin
5 This.Assigned_To.all := Section;
6 end Assign;
7end Personnel;

department.adb

1with Personnel;
2package body Department is
3 procedure Set_Manager (This : in out Section_T; Who : in Personnel.Employee_T) is
4 begin
5 This.Manager.all := Who;
6 end Set_Manager;
7end Department;

Hierarchical Library Units

complex.ads

1package Complex is
2 type Number is private;
3 function "+" (Left, Right : Number) return Number;
4 function "-" (Left, Right : Number) return Number;
5private
6 type Number is record
7 Real_Part, Imaginary_Part : Float;
8 end record;
9end Complex;

complex-utils.ads

1package Complex.Utils is
2 function To_String (C : Number) return String;
3end Complex.Utils;

complex-utils.adb

1package body Complex.Utils is
2 -- construction of "number" is visible in the child body
3 function To_String (C : Number) return String is
4 (C.Real_Part'Image & " + i" & C.Imaginary_Part'Image);
5end Complex.Utils;

complex-debug.ads

1package Complex.Debug is
2 -- "with Complex;" not needed for visibility to Number
3 procedure Print (C : Number);
4end Complex.Debug;

complex-debug.adb

1with Ada.Text_IO;
2with Complex.Utils; -- needed for visibility to "To_String"
3package body Complex.Debug is
4 procedure Print (C : Number) is
5 begin
6 -- because of parent visibility, don't need to use "Complex.Utils"
7 Ada.Text_IO.Put_Line (Utils.To_String (C));
8 end Print;
9end Complex.Debug;

complex.adb

1package body Complex is
2 function "+" (Left, Right : Number) return Number is (Left);
3 function "-" (Left, Right : Number) return Number is (Left);
4end Complex;

Visibility Limits

stack.ads

1package Stack is
2 procedure Push (Item : in Integer);
3 procedure Pop (Item : out Integer);
4private
5 Object : array (1 .. 100) of integer;
6 Top : Natural := 0;
7end Stack;

stack-utils.ads

1package Stack.Utils is
2 function Top return Integer;
3private
4 -- Legal here, but not above "private"
5 function Top return Integer is (Object (Stack.Top));
6end Stack.Utils;

stack-child.ads

1package Stack.Child is
2 procedure Misbehave;
3 procedure Reset;
4 function Peek (Index : Natural) return Integer;
5end Stack.Child;

stack-child.adb

 1package body Stack.Child is
 2 procedure Misbehave is
 3 begin
 4 Top := 0;
 5 end Misbehave;
 6
 7 procedure Reset is
 8 begin
 9 Top := 0;
10 end Reset;
11
12 function Peek (Index : Natural) return Integer is (Object (Index));
13end Stack.Child;

stack.adb

1package body Stack is
2 procedure Push (Item : in Integer) is null;
3 procedure Pop (Item : out Integer) is null;
4end Stack;

Private Children

os.ads

1package Os is
2 type File_T is private;
3 function Open (Name : String) return File_T;
4 procedure Write (File : File_T; Str : String);
5 procedure Close (File : File_T);
6private
7 type File_T is new Integer;
8end Os;

os-uart.ads

1private package Os.Uart is
2 type Device_T is private;
3 function Open (Name : String) return Device_T;
4 procedure Write (Device : Device_T; Str : String);
5 procedure Close (Device : Device_T);
6private
7 type Device_T is new Integer;
8end Os.Uart;

os-serial.ads

1private with Os.Uart; -- references only in private section
2private package Os.Serial is
3 type Comport_T is private;
4 procedure Initialize (Comport : in out Comport_T);
5private
6 type Comport_T is record
7 Device : Uart.Device_T;
8 end record;
9end Os.Serial;

os.adb

1package body Os is
2 function Open (Name : String) return File_T is (1);
3 procedure Write (File : File_T; Str : String) is null;
4 procedure Close (File : File_T) is null;
5end Os;

os-uart.adb

1package body Os.Uart is
2 function Open (Name : String) return Device_T is (1);
3 procedure Write (Device : Device_T; Str : String) is null;
4 procedure Close (Device : Device_T) is null;
5end Os.Uart;

os-serial.adb

1package body Os.Serial is
2 procedure Initialize (Comport : in out Comport_T) is null;
3end Os.Serial;

Footnotes

Visibility

Use Clauses

pkg_a.ads

1package Pkg_A is
2 Constant_A : constant := 1;
3 Constant_Aa : constant := 11;
4 Initialized : Boolean := False;
5end Pkg_A;

pkg_b.ads

1package Pkg_B is
2 Constant_B : constant := 20;
3 Constant_Bb : constant := 220;
4 Initialized : Boolean := False;
5end Pkg_B;

pkg_b-child.ads

1package Pkg_B.Child is
2 Constant_Bbb : constant := 222;
3end Pkg_B.Child;

p.ads

 1with Pkg_A; use Pkg_A;
 2with Pkg_B;
 3with Pkg_B.Child;
 4package P is
 5 type Type_1 is range Constant_A .. -- visible without dot-notation
 6 Pkg_B.Constant_B; -- not visible without dot-notation
 7
 8 use Pkg_B;
 9 -- Constant_B is now visible without dot-notation
10 type Type_2 is range Constant_Aa .. Constant_Bb;
11
12 Constant_Bb : Integer := 33; -- Constant_Bb will always be the local version
13 function Bb return Integer is (Constant_Bb);
14
15 function Is_Initialized return Boolean is
16 (Pkg_A.Initialized and Pkg_B.Initialized); -- Dot-notation to resolve ambiguity
17
18 -- we "use" Pkg_B, so Child is directly visible
19 Object : Integer := Child.Constant_Bbb;
20end P;

test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P;
 3procedure Test is
 4 A, B, C : P.Type_2 := P.Type_2'First;
 5begin
 6 -- C := A + B; -- illegal
 7 C := P."+" (A, B); -- legal but not pretty
 8 Put_Line (C'Image);
 9 declare
10 use P; -- make everything visible (including operators)
11 begin
12 C := A + B; -- now legal
13 Put_Line (C'Image);
14 end;
15end Test;

Use Type Clauses

p.ads

1package P is
2 type Int1 is range 0 .. 1_000;
3 type Int2 is range 0 .. 2_000;
4 type Int3 is range 0 .. 3_000;
5 function "+" (Left : Int1; Right : Int3) return Int3;
6 function "+" (Left : Int2; Right : Int3) return Int3;
7end P;

test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P;
 3procedure Test is
 4 A, B, C : P.Int1 := 123;
 5 use type P.Int1;
 6 -- D : Int2; -- "Int2" is not visible
 7 D : P.Int2 := 234;
 8 E : P.Int3 := 345;
 9begin
10 B := A;
11 C := A + B; -- implicit operator is visible
12 Put_Line (C'Image);
13 A := B;
14 E := A + E; -- "used" operator visible
15 Put_Line (E'Image);
16 -- E := D + E; -- illegal: operator not "used"
17 -- E := E + A; -- illegal: no matching operator
18end Test;

p.adb

1package body P is
2 function "+" (Left : Int1; Right : Int3) return Int3 is (Int3'Last);
3 function "+" (Left : Int2; Right : Int3) return Int3 is (Int3'Last);
4end P;

Use All Type Clauses

complex.ads

 1package Complex is
 2 type Number is private;
 3 function "*" (Left, Right : Number) return Number;
 4 function "+" (Left, Right : Number) return Number;
 5 procedure Put (C : Number);
 6 function Make (Real_Part, Imaginary_Part : Float) return Number;
 7 procedure Non_Primitive (X : Integer);
 8private
 9 type Number is record
10 Real_Part : Float;
11 Imaginary_Part : Float;
12 end record;
13end Complex;

demo_use_all_type.adb

 1with Complex;
 2use all type Complex.Number;
 3procedure Demo_Use_All_Type is
 4 A, B, C : Complex.Number;
 5begin
 6 -- "use all type" makes these available
 7 A := Make (Real_Part => 1.0,
 8 Imaginary_Part => 0.0);
 9 B := Make (Real_Part => 1.0,
10 Imaginary_Part => 0.0);
11 C := A + B;
12 Put (C);
13 -- Non_Primitive (0); -- but not this one
14end Demo_Use_All_Type;

demo_use_type.adb

 1with Complex;
 2use type Complex.Number;
 3procedure Demo_Use_Type is
 4 A, B, C : Complex.Number;
 5begin
 6 -- "use type" makes this available
 7 C := A + B;
 8 -- but not these
 9 -- A := Make (Real_Part => 1.0,
10 -- Imaginary_Part => 0.0);
11 -- B := Make (Real_Part => 1.0,
12 -- Imaginary_Part => 0.0);
13 -- Put (C);
14 -- Non_Primitive (0);
15end Demo_Use_Type;

demo_use.adb

 1with Complex; use Complex;
 2procedure Demo_Use is
 3 A, B, C : Complex.Number := (Complex.Make (1.1, 2.2));
 4begin
 5 -- "use" makes all these available
 6 C := A + B;
 7 A := Make (Real_Part => 1.0,
 8 Imaginary_Part => 0.0);
 9 B := Make (Real_Part => 1.0,
10 Imaginary_Part => 0.0);
11 Put (C);
12 Non_Primitive (0);
13end Demo_Use;

complex.adb

1package body Complex is
2 function "*" (Left, Right : Number) return Number is (Left);
3 function "+" (Left, Right : Number) return Number is (Left);
4 procedure Put (C : Number) is null;
5 function Make (Real_Part, Imaginary_Part : Float) return Number is
6 ((Real_Part, Imaginary_Part));
7 procedure Non_Primitive (X : Integer) is null;
8end Complex;

Footnotes

Access Types

Pool Specific Access Types

pool_specific.ads

 1package Pool_Specific is
 2 type Pointed_To_T is new Integer;
 3 type Access_T is access Pointed_To_T;
 4 Object : Access_T := new Pointed_To_T;
 5
 6 type Other_Access_T is access Pointed_To_T;
 7 -- Other_Object : Other_Access_T := Other_Access_T (Object); -- illegal
 8
 9 type String_Access_T is access String;
10end Pool_Specific;

use_pool_specific.adb

 1with Ada.Unchecked_Deallocation;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Pool_Specific; use Pool_Specific;
 4procedure Use_Pool_Specific is
 5 X : Access_T := new Pointed_To_T'(123);
 6 Y : String_Access_T := new String (1 .. 10);
 7
 8 procedure Free is new Ada.Unchecked_Deallocation (Pointed_To_T, Access_T);
 9
10begin
11 Put_Line (Y.all);
12 Y := new String'("String will be long enough to hold this");
13 Put_Line (Y.all);
14 Put_Line (Pointed_To_T'Image (X.all));
15 Free (X);
16 Put_Line (Pointed_To_T'Image (X.all)); -- run-time error
17end Use_Pool_Specific;

General Access Types

general.ads

 1package General is
 2 type Pointed_To_T is new Integer;
 3 type Access_T is access all Pointed_To_T;
 4 Object : Access_T := new Pointed_To_T;
 5
 6 type Other_Access_T is access all Pointed_To_T;
 7 Other_Object : Other_Access_T := Other_Access_T (Object);
 8
 9 Pointed_To : aliased Pointed_To_T := 1_234;
10
11end General;

use_general.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with General; use General;
 3procedure Use_General is
 4begin
 5 Object := Pointed_To'Access;
 6 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
 7 Pointed_To := Pointed_To + 1;
 8 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
 9 Object.all := Object.all * 2;
10 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
11end Use_General;

Access Types

access_types.ads

 1package Access_Types is
 2
 3 type R is record
 4 F1, F2 : Integer;
 5 end record;
 6 type A_Int is access Integer;
 7 type A_String is access all String;
 8 type A_R is access R;
 9
10 V_Int : A_Int := new Integer;
11 V_String : A_String := new String'("abc");
12 V_R : A_R := new R;
13
14 procedure Do_Something;
15
16end Access_Types;

access_types.adb

 1package body Access_Types is
 2
 3 function Local_Access_Example return Integer is
 4 type String_Access is access String; -- only visible here
 5 X : String_Access;
 6 begin
 7 X := new String'("Hello, World");
 8 return X.all'Length;
 9 end Local_Access_Example;
10
11 procedure Do_Something is
12 begin
13 V_Int.all := Local_Access_Example;
14 V_String.all := "cde";
15 V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
16 V_R.all := (0, 0);
17 V_R.F1 := 1; -- similar to V_R.all.F1 := 1;
18 V_Int := null;
19 V_R := null;
20 end Do_Something;
21
22end Access_Types;

Accessibility Checks

accessibility_checks.ads

1package Accessibility_Checks is
2 procedure Proc_Access;
3 procedure Proc_Unchecked_Access;
4end Accessibility_Checks;

accessibility_checks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Accessibility_Checks is
 3
 4 type Recursive_Record_T;
 5 type Global_Access_T is access all Recursive_Record_T;
 6 type Recursive_Record_T is record
 7 Field : Integer;
 8 Next : Global_Access_T := null;
 9 end record;
10 Global_Pointer : Global_Access_T;
11 Global_Object : aliased Recursive_Record_T;
12 procedure Proc_Access is
13 type Local_Access_T is access all Recursive_Record_T;
14 Local_Pointer : Local_Access_T;
15 Local_Object : aliased Recursive_Record_T;
16 begin
17 Global_Pointer := Global_Object'Access;
18 Put_Line (Integer'Image (Global_Pointer.Field));
19 -- Global_Pointer := Local_Object'Access; -- illegal
20 Global_Pointer := Local_Object'Unchecked_Access;
21 Put_Line (Integer'Image (Global_Pointer.Field));
22 Local_Pointer := Global_Object'Access;
23 Put_Line (Integer'Image (Local_Pointer.Field));
24 Local_Pointer := Local_Object'Access;
25 Put_Line (Integer'Image (Local_Pointer.Field));
26 Local_Pointer := Local_Access_T (Global_Pointer);
27 Put_Line (Integer'Image (Local_Pointer.Field));
28 -- Global_Pointer := Global_Access_T (Local_Pointer); -- illegal
29 end Proc_Access;
30
31 procedure Proc_Unchecked_Access is
32 Local_Object : aliased Recursive_Record_T;
33 begin
34 -- Global_Pointer := Local_Object'Access; -- illegal
35 Global_Pointer := Local_Object'Unchecked_Access;
36 end Proc_Unchecked_Access;
37
38end Accessibility_Checks;

Memory Management

memory_management_types.ads

1with Ada.Unchecked_Deallocation;
2package Memory_Management_Types is
3 type Integer_Access_T is access all Integer;
4 procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access_T);
5end Memory_Management_Types;

memory_management_test.adb

 1with Memory_Management_Types; use Memory_Management_Types;
 2with Ada.Exceptions; use Ada.Exceptions;
 3with Ada.Text_IO; use Ada.Text_IO;
 4procedure Memory_Management_Test is
 5
 6 procedure Uninitialized_Pointer is
 7 Object : Integer_Access_T;
 8 begin
 9 Object.all := 123;
10 Put_Line ("Object = " & Integer'Image (Object.all));
11 exception
12 when Err : others =>
13 Put_Line ("Uninitialized_Pointer error: " & Exception_Name (Err));
14 end Uninitialized_Pointer;
15
16 procedure Double_Deallocation is
17 Object : Integer_Access_T;
18 begin
19 Object := new Integer'(123);
20 Put_Line ("Object = " & Integer'Image (Object.all));
21 Free (Object);
22 Free (Object);
23 exception
24 when Err : others =>
25 Put_Line ("Double_Deallocation error: " & Exception_Name (Err));
26 end Double_Deallocation;
27
28 procedure Accessing_Deallocated_Memory is
29 Object : Integer_Access_T;
30 begin
31 Object := new Integer'(123);
32 Put_Line ("Object = " & Integer'Image (Object.all));
33 Free (Object);
34 Put_Line ("Object = " & Integer'Image (Object.all));
35 exception
36 when Err : others =>
37 Put_Line ("Accessing_Deallocated_Memory error: " & Exception_Name (Err));
38 end Accessing_Deallocated_Memory;
39
40 procedure Memory_Leak is
41 Object : Integer_Access_T;
42 begin
43 for Counter in Integer'Range loop
44 Object := new Integer'(Counter);
45 end loop;
46 Put_Line ("Complete");
47 exception
48 when Err : others =>
49 Put_Line ("Memory_Leak error: " & Exception_Name (Err));
50 end Memory_Leak;
51
52begin
53 Uninitialized_Pointer;
54 Double_Deallocation;
55 Accessing_Deallocated_Memory;
56 Memory_Leak;
57end Memory_Management_Test;

Anonymous Access Types

anonymous_access_types.ads

 1package Anonymous_Access_Types is
 2 type Access_T is access all Integer;
 3 Global : Access_T := new Integer'(123);
 4
 5 function F1 (Param : access Integer) return Boolean is (Param = null);
 6 function F2 (Param : access Integer) return Boolean is (F1 (Param));
 7
 8 function F3 (Param : access Integer) return Boolean is
 9 (F1 (Param) -- Param is an anonymous access type
10 or F2 (Global)); -- Global is a named access type
11end Anonymous_Access_Types;

primitives_and_access_type.ads

 1package Primitives_And_Access_Type is
 2 type Root_T is tagged null record;
 3 type Access_Root_T is access all Root_T;
 4 function Primitive_Of_Root (V : access Root_T) return Boolean is (V = null);
 5 function Action_On_Access (V : Access_Root_T) return Boolean is (V = null);
 6 type Child_T is new Root_T with null record;
 7 type Access_Child_T is access all Child_T;
 8 overriding function Primitive_Of_Root (V : access Child_T) return Boolean is
 9 (False);
10 -- Illegal:
11 -- overriding function Action_On_Access (V : access_child_t_t)
12 -- return boolean is (false);
13end Primitives_And_Access_Type;

anonymous_access_modifiers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Anonymous_Access_Types;
 3with Primitives_And_Access_Type;
 4procedure Anonymous_Access_Modifiers is
 5 Global : aliased Primitives_And_Access_Type.Root_T;
 6
 7 type Constant_Access_T is access constant Integer;
 8 type Not_Null_Access_T is not null access Integer;
 9
10 Constant_Access_Object : Constant_Access_T := new Integer'(123);
11 Not_Null_Access_Object : Not_Null_Access_T := new Integer'(345);
12
13begin
14 Put_Line (Boolean'Image (Anonymous_Access_Types.F3 (Not_Null_Access_Object)));
15 Put_Line (Boolean'Image
16 (Primitives_And_Access_Type.Primitive_Of_Root (Global'Access)));
17
18 Put_Line (Integer'Image (Not_Null_Access_Object.all));
19 Not_Null_Access_Object := new Integer'(Constant_Access_Object.all);
20 Put_Line (Integer'Image (Not_Null_Access_Object.all));
21
22 -- Constant_Access_Object.all := Not_Null_Access_Object.all; -- illegal
23 Constant_Access_Object := null; -- legal
24 Put_Line (Boolean'Image (Constant_Access_Object = null));
25end Anonymous_Access_Modifiers;

Footnotes

Genericity

Generic Data

generic_data.ads

 1package Generic_Data is
 2 generic
 3 type Discrete_T is (<>);
 4 type Integer_T is range <>;
 5 type Float_T is digits <>;
 6 type Indefinite_T;
 7 type Tagged_T is tagged;
 8 type Array_T is array (Boolean) of Integer;
 9 type Access_T is access all Integer;
10 type Private_T is private;
11 type Unconstrained_T (<>) is private;
12 package Parameter_Properties is
13 procedure Do_Something (Discrete_Param : Discrete_T;
14 Integer_Param : Integer_T;
15 Float_Param : Float_T;
16 Indefinite_Param : access Indefinite_T;
17 Tagged_Param : Tagged_T;
18 Array_Param : Array_T;
19 Access_Param : Access_T;
20 Private_Param : Private_T;
21 Unconstrained_Param : Unconstrained_T);
22 end Parameter_Properties;
23
24 generic
25 type Item_T is private;
26 type Access_Item_T is access all Item_T;
27 type Index_T is (<>);
28 type Array_T is array (Index_T range <>) of Access_Item_T;
29 package Combination is
30 procedure Add (List : in out Array_T;
31 Index : in Index_T;
32 Item : in Item_T);
33 end Combination;
34end Generic_Data;

generic_instances.ads

 1with Types; use Types;
 2with Generic_Data;
 3package Generic_Instances is
 4 package Parameter_Properties_Instance is new Generic_Data
 5 .Parameter_Properties
 6 (Boolean, Integer, Float, Indefinite_T => Hidden_T,
 7 Tagged_T => Tagged_Record_T, Array_T => Boolean_Array_Of_Integers_T,
 8 Access_T => Access_Integer_T, Private_T => Some_Private_T,
 9 Unconstrained_T => String);
10
11 type Item_T is (Red, White, Blue);
12 type Access_T is access all Item_T;
13 type Index_T is range 1 .. 100;
14 type Array_T is array (Index_T range <>) of Access_T;
15 package Combination_Instance is new Generic_Data.Combination
16 (Item_T, Access_T, Index_T, Array_T);
17end Generic_Instances;

generic_data.adb

 1package body Generic_Data is
 2 package body Parameter_Properties is
 3 procedure Do_Something (Discrete_Param : Discrete_T;
 4 Integer_Param : Integer_T;
 5 Float_Param : Float_T;
 6 Indefinite_Param : access Indefinite_T;
 7 Tagged_Param : Tagged_T;
 8 Array_Param : Array_T;
 9 Access_Param : Access_T;
10 Private_Param : Private_T;
11 Unconstrained_Param : Unconstrained_T) is null;
12 end Parameter_Properties;
13
14 package body Combination is
15 procedure Add (List : in out Array_T;
16 Index : in Index_T;
17 Item : in Item_T) is
18 begin
19 List (Index) := new Item_T'(Item);
20 end Add;
21 end Combination;
22end Generic_Data;

types.ads

 1package Types is
 2 type Hidden_T;
 3 type Tagged_Record_T is tagged record
 4 Field : access Hidden_T;
 5 end record;
 6 type Hidden_T is private;
 7 type Boolean_Array_Of_Integers_T is array (Boolean) of Integer;
 8 type Access_Integer_T is access all Integer;
 9 type Some_Private_T is private;
10private
11 type Hidden_T is new Integer;
12 type Some_Private_T is new Integer;
13end Types;

Generic Formal Data

generic_formal_data.ads

 1package Generic_Formal_Data is
 2 generic
 3 type Variable_T is range <>;
 4 Variable : in out Variable_T;
 5 Increment : Variable_T;
 6 package Constants_And_Variables is
 7 procedure Add;
 8 function Value return Variable_T is (Variable);
 9 end Constants_And_Variables;
10
11 generic
12 type Type_T is (<>);
13 with procedure Print_One (Prompt : String; Value : Type_T);
14 with procedure Print_Two (Prompt : String; Value : Type_T) is null;
15 with procedure Print_Three (Prompt : String; Value : Type_T) is <>;
16 package Subprogram_Parameters is
17 procedure Print (Prompt : String; Param : Type_T);
18 end Subprogram_Parameters;
19end Generic_Formal_Data;

test_generic_formal_data.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Generic_Formal_Data; use Generic_Formal_Data;
 3procedure Test_Generic_Formal_Data is
 4 procedure Print_One (Prompt : String; Param : Integer) is
 5 begin
 6 Put_Line (Prompt & " - Print_One" & Param'Image);
 7 end Print_One;
 8 procedure Print_Two (Prompt : String; Param : Integer) is
 9 begin
10 Put_Line (Prompt & " - Print_Two" & Param'Image);
11 end Print_Two;
12 procedure Print_Three (Prompt : String; Param : Integer) is
13 begin
14 Put_Line (Prompt & " - Print_Three" & Param'Image);
15 end Print_Three;
16 procedure Print_Three_Prime (Prompt : String; Param : Integer) is
17 begin
18 Put_Line (Prompt & " - Print_Three_Prime" & Param'Image);
19 end Print_Three_Prime;
20
21 Global_Object : Integer := 0;
22 package Global_Data is new Constants_And_Variables
23 (Integer, Global_Object, 111);
24
25 package Print_1 is new Subprogram_Parameters (Integer, Print_One);
26 package Print_2 is new Subprogram_Parameters (Integer, Print_One, Print_Two);
27 package Print_3 is new Subprogram_Parameters (Integer, Print_One, Print_Two, Print_Three_Prime);
28
29begin
30 Print_1.Print ("print_1", Global_Data.Value);
31 Global_Data.Add;
32 Print_2.Print ("print_2", Global_Data.Value);
33 Global_Data.Add;
34 Print_3.Print ("print_3", Global_Data.Value);
35end Test_Generic_Formal_Data;

generic_formal_data.adb

 1package body Generic_Formal_Data is
 2 package body Constants_And_Variables is
 3 procedure Add is
 4 begin
 5 Variable := Variable + Increment;
 6 end Add;
 7 end Constants_And_Variables;
 8
 9 package body Subprogram_Parameters is
10 procedure Print (Prompt : String; Param : Type_T) is
11 begin
12 Print_One (Prompt, Param);
13 Print_Two (Prompt, Param);
14 Print_Three (Prompt, Param);
15 end Print;
16 end Subprogram_Parameters;
17end Generic_Formal_Data;

Footnotes

Inheritance

Primitives

primitives_example.ads

 1package Primitives_Example is
 2
 3 type Record_T is record
 4 Field : Integer;
 5 end record;
 6 type Access_To_Record_T is access Record_T;
 7 type Array_T is array (1 .. 10) of Integer;
 8
 9 procedure Primitive_Of_Record_T (P : in out Record_T) is null;
10 function Primitive_Of_Record_T (P : Integer) return Record_T is
11 ((Field => P));
12 procedure Primitive_Of_Record_T (I : Integer;
13 P : access Record_T) is null;
14 procedure Not_A_Primitive_Of_Record_T
15 (I : Integer; P : Access_To_Record_T) is null;
16
17 procedure Primitive_Of_Record_T_And_Array_T
18 (P1 : in out Record_T; P2 : in out Array_T) is null;
19end Primitives_Example;

Simple Derivation

simple_derivation.ads

 1package Simple_Derivation is
 2 type Parent_T is range 1 .. 10;
 3 function Primitive1 (V : Parent_T) return String is
 4 ("Primitive1 of Parent_T" & V'Image);
 5 function Primitive2 (V : Parent_T) return String is
 6 ("Primitive2 of Parent_T" & V'Image);
 7 function Primitive3 (V : Parent_T) return String is
 8 ("Primitive3 of Parent_T" & V'Image);
 9
10 type Child_T is new Parent_T; -- implicitly gets access to Primitive1
11
12 -- new behavior for Primitive2
13 overriding function Primitive2 (V : Child_T) return String is
14 ("Primitive2 of Child_T" & V'Image);
15
16 -- remove behavior for Primitive3 from Child_T
17 overriding function Primitive3 (V : Child_T) return String is abstract;
18
19 -- add primitive only for Child_T
20 not overriding function Primitive4 (V : Child_T) return String is
21 ("Primitive4 of Child_T" & V'Image);
22end Simple_Derivation;

test_simple_derivation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Simple_Derivation; use Simple_Derivation;
 3procedure Test_Simple_Derivation is
 4 function Not_A_Primitive (V : Parent_T) return String is
 5 ("Not_A_Primitive" & V'Image);
 6 Parent_V : Parent_T := 1;
 7 Child_V : Child_T := 2;
 8begin
 9 Put_Line ("Parent_V - " & Primitive1 (Parent_V));
10 Put_Line ("Parent_V - " & Primitive2 (Parent_V));
11 Put_Line ("Parent_V - " & Primitive3 (Parent_V));
12 -- Put_Line ("Parent_V - " & Primitive4 (Parent_V)); -- illegal
13
14 Put_Line ("Child_V - " & Primitive1 (Child_V));
15 Put_Line ("Child_V - " & Primitive2 (Child_V));
16 -- Put_Line ("Child_V - " & Primitive3 (Child_V)); -- illegal
17 Put_Line ("Child_V - " & Primitive4 (Child_V));
18
19 Put_Line (Not_A_Primitive (Parent_V));
20 Put_Line (Not_A_Primitive (Parent_T (Child_V)));
21end Test_Simple_Derivation;

Tagged Derivation

tagged_derivation.ads

 1package Tagged_Derivation is
 2
 3 type Root_T is tagged record
 4 Root_Field : Integer;
 5 end record;
 6 function Primitive_1 (This : Root_T) return Integer is (This.Root_Field);
 7 function Primitive_2 (This : Root_T) return String is
 8 (Integer'Image (This.Root_Field));
 9
10 type Child_T is new Root_T with record
11 Child_Field : Integer;
12 end record;
13 overriding function Primitive_2 (This : Child_T) return String is
14 (Integer'Image (This.Root_Field) & " " &
15 Integer'Image (This.Child_Field));
16 function Primitive_3 (This : Child_T) return Integer is
17 (This.Root_Field + This.Child_Field);
18
19 -- type Simple_Deriviation_T is new Child_T; -- illegal
20
21 type Root2_T is tagged record
22 Root_Field : Integer;
23 end record;
24 -- procedure Primitive_4 (X : Root_T; Y : Root2_T); -- illegal
25
26end Tagged_Derivation;

test_tagged_derivation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Tagged_Derivation; use Tagged_Derivation;
 3procedure Test_Tagged_Derivation is
 4 Root : Root_T := (Root_Field => 1);
 5 Child : Child_T := (Root_Field => 11, Child_Field => 22);
 6begin
 7 Put_Line ("Root: " & Primitive_2 (Root));
 8 Put_Line ("Child: " & Primitive_2 (Child));
 9 Root := Root_T (Child);
10 Put_Line ("Root from Child: " & Primitive_2 (Root));
11 -- Child := Child_T (Root); -- illegal
12 -- Put_Line ("Child from Root: " & Primitive_2 (Child)); -- illegal
13 Child := (Root with Child_Field => 999);
14 Put_Line ("Child from Root via aggregate: " & Primitive_2 (Child));
15end Test_Tagged_Derivation;

Footnotes

Polymorphism

Classes Of Types

class_types.ads

 1package Class_Types is
 2 type Root_T is tagged null record;
 3 type Child1_T is new Root_T with null record;
 4 type Child2_T is new Root_T with null record;
 5 type Grandchild1_T is new Child1_T with null record;
 6
 7 -- Root'Class = {Root_T, Child1_T, Child2_T, Grandchild1_T}
 8 -- Child1'Class = {Child1_T, Grandchild1_T} Child2'Class = {Child2_T}
 9 -- Granchild1'Class ={Grandchild1_T}
10 procedure Test;
11
12end Class_Types;

class_types.adb

 1with Ada.Tags; use Ada.Tags;
 2with Ada.Text_IO; use Ada.Text_IO;
 3package body Class_Types is
 4 Root_Object : Root_T;
 5 Child_Object : Child1_T;
 6
 7 Class_Object1 : Child1_T'Class := Child_Object;
 8 Class_Object2 : Root_T'Class := Class_Object1;
 9 Class_Object3 : Root_T'Class := Child_Object;
10 -- Class_Object4 : Root_T'class; -- illegal
11
12 procedure Do_Something (Object : in out Root_T'Class) is
13 begin
14 Put_Line
15 ("Do_Something: " & Boolean'Image (Object in Root_T'Class) & " / " &
16 Boolean'Image (Object in Child1_T'Class));
17 end Do_Something;
18
19 procedure Test is
20 begin
21 Put_Line (Boolean'Image (Class_Object1'Tag = Class_Object2'Tag));
22 Put_Line (Boolean'Image (Class_Object2'Tag = Class_Object3'Tag));
23 Do_Something (Root_Object);
24 Do_Something (Child_Object);
25 Do_Something (Class_Object1);
26 Do_Something (Class_Object2);
27 Do_Something (Class_Object3);
28 end Test;
29end Class_Types;

abstract_types.ads

 1package Abstract_Types is
 2 type Root_T is abstract tagged record
 3 Field : Integer;
 4 end record;
 5 function Primitive1 (V : Root_T) return String is abstract;
 6 function Primitive2 (Prompt : String; V : Root_T) return String is
 7 (Prompt & "> " & Integer'Image (V.Field));
 8
 9 type Child_T is abstract new Root_T with null record;
10 -- Child_T does not need to redefine any primitives
11
12 type Grandchild_T is new Child_T with null record;
13 -- Grandchild_T is required to create a concrete version of Primitive2
14 function Primitive1 (V : Grandchild_T) return String is
15 (Integer'Image (V.Field));
16
17 procedure Test;
18end Abstract_Types;

abstract_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Abstract_Types is
 3 Object1 : constant Grandchild_T := (Field => 123);
 4 Object2 : constant Root_T'Class := Object1;
 5
 6 procedure Test is
 7 begin
 8 Put_Line (Object1.Primitive1);
 9 Put_Line (Primitive2 ("Object1", Object2));
10 Put_Line (Object2.Primitive1);
11 Put_Line (Primitive2 ("Object2", Object2));
12 end Test;
13
14end Abstract_Types;

test.adb

1with Abstract_Types;
2with Class_Types;
3procedure Test is
4begin
5 Class_Types.Test;
6 Abstract_Types.Test;
7end Test;

Dispatching And Redispatching

types.ads

1package Types is
2
3 type Root_T is tagged null record;
4 function Primitive (V : Root_T) return String is ("Root_T");
5
6 type Child_T is new Root_T with null record;
7 function Primitive (V : Child_T) return String is ("Child_T");
8
9end Types;

test_dispatching_and_redispatching.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Types; use Types;
 3procedure Test_Dispatching_And_Redispatching is
 4
 5 Root_Object : Root_T;
 6 Child_Object : Child_T;
 7
 8 V1 : constant Root_T'Class := Root_Object;
 9 V2 : constant Root_T'Class := Child_Object;
10 V3 : constant Child_T'Class := Child_Object;
11
12begin
13
14 Put_Line (Primitive (V1));
15 Put_Line (Primitive (V2));
16 Put_Line (Primitive (V3));
17
18end Test_Dispatching_And_Redispatching;

Exotic Dispatching Operations

types.ads

 1package Types is
 2 type Root_T is tagged record
 3 Field : Integer;
 4 end record;
 5 function Primitive (Left : Root_T; Right : Root_T) return Integer is
 6 (Left.Field + Right.Field);
 7 function "=" (Left : Root_T; Right : Root_T) return Boolean is
 8 (Left.Field in Right.Field - 1 .. Right.Field + 1);
 9 function Constructor (I : Integer := 0) return Root_T is ((Field => I));
10
11 type Child_T is new Root_T with null record;
12 overriding function Primitive (Left : Child_T; Right : Child_T) return Integer is
13 (Left.Field * Right.Field);
14 overriding function "=" (Left : Child_T; Right : Child_T) return Boolean is
15 (Right.Field in Left.Field - 1 .. Left.Field + 1);
16 -- function Constructor (I : Integer := 0) return child_T; -- inherited from Root_t
17
18 type Child2_T is new Root_T with record
19 Field2 : Integer;
20 end record;
21 overriding function Primitive (Left : Child2_T; Right : Child2_T) return Integer is
22 (Left.Field * Right.Field);
23 overriding function "=" (Left : Child2_T; Right : Child2_T) return Boolean is
24 (Left.Field = Right.Field);
25 -- must create a constructor because new fields added
26 function Constructor (I : Integer := 0) return Child2_T is ((I, I));
27end Types;

test_exotic_dispatching_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Types; use Types;
 3procedure Test_Exotic_Dispatching_Operations is
 4 R1 : constant Root_T := (Field => 10);
 5 R2 : constant Root_T := (Field => 20);
 6 C1 : constant Child_T := (Field => 10);
 7 Cl1 : constant Root_T'Class := R1;
 8 Cl2 : constant Root_T'Class := R2;
 9 Cl3 : constant Root_T'Class := C1;
10
11 procedure Test_Primitive is
12 begin
13 Put_Line ("Primitive");
14 Put_Line (Integer'Image (Primitive (R1, R2))); -- static: ok
15 -- Put_Line (Integer'Image (Primitive (R1, C1))); -- static: error
16 Put_Line (Integer'Image (Primitive (Cl1, Cl2))); -- dynamic: ok
17 -- Put_Line (Integer'Image (Primitive (R1, Cl1))); -- static: error
18 Put_Line (Integer'Image (Primitive (Root_T'Class (R1), Cl1))); -- dynamic: ok
19 Put_Line (Integer'Image (Primitive (Cl1, Cl3))); -- dynamic: error
20 end Test_Primitive;
21
22 procedure Test_Equality is
23 begin
24 Put_Line ("Equality");
25 Put_Line ("Cl1 = Cl2 " & Boolean'Image (Cl1 = Cl2));
26 Put_Line ("Cl2 = Cl3 " & Boolean'Image (Cl2 = Cl3));
27 Put_Line ("Cl3 = Cl1 " & Boolean'Image (Cl3 = Cl1));
28 end Test_Equality;
29
30 procedure Test_Constructor is
31 -- Static call to Root_T primitive
32 V1 : Root_T'Class := Root_T'(Constructor);
33 V2 : Root_T'Class := V1;
34 -- Static call to Child2_T primitive
35 V3 : Root_T'Class := Child2_T'(Constructor);
36 -- V4 : Root_T'Class := Constructor; -- What is the tag of V4?
37 begin
38 -- No
39 -- V1 := Constructor;
40
41 -- Yes
42 V1 := Root_T'(Constructor);
43 end Test_Constructor;
44
45begin
46 Test_Equality;
47 Test_Constructor;
48 Test_Primitive;
49end Test_Exotic_Dispatching_Operations;

Footnotes

Exceptions

Handlers

joy_ride.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Automotive; use Automotive;
 3procedure Joy_Ride is
 4 Hot_Rod : Vehicle_T;
 5 Bored : Boolean := False;
 6begin
 7 while not Bored loop
 8 Steer_Aimlessly (Bored);
 9 Consume_Fuel (Hot_Rod);
10 end loop;
11 Put_Line ("Driving Home");
12 Drive_Home;
13exception
14 when Fuel_Exhausted =>
15 Put_Line ("Pushing Home");
16 Push_Home;
17end Joy_Ride;

automotive.ads

 1package Automotive is
 2 Fuel_Exhausted : exception;
 3
 4 type Vehicle_T is record
 5 Fuel_Quantity : Float := 10.0;
 6 Fuel_Minimum : Float := 1.0;
 7 end record;
 8
 9 procedure Consume_Fuel (Car : in out Vehicle_T);
10 procedure Steer_Aimlessly (Flag : out Boolean);
11 procedure Drive_Home;
12 procedure Push_Home;
13end Automotive;

automotive.adb

 1with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 2package body Automotive is
 3 Gen : Generator;
 4 function Current_Consumption is new Random_Float (Float);
 5 function Random_Number is new Random_Discrete (Integer);
 6
 7 procedure Consume_Fuel (Car : in out Vehicle_T) is
 8 begin
 9 if Car.Fuel_Quantity <= Car.Fuel_Minimum then
10 raise Fuel_Exhausted;
11 else
12 Car.Fuel_Quantity := Car.Fuel_Quantity - Current_Consumption (Gen);
13 end if;
14 end Consume_Fuel;
15
16 procedure Steer_Aimlessly (Flag : out Boolean) is
17 begin
18 Flag := Random_Number (Gen, 1, 50) = 1;
19 if Random_Number (Gen, 1, 50) = 2 then
20 raise Constraint_Error;
21 end if;
22 end Steer_Aimlessly;
23
24 procedure Drive_Home is null;
25 procedure Push_Home is null;
26
27begin
28 Reset (Gen);
29end Automotive;

Implicitly And Explicitly Raised Exceptions

implicit_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Implicit_Exceptions is
 3 Array_Object : array (1 .. 100) of Integer;
 4
 5 procedure Raise_Constraint_Error (X : Integer) is
 6 begin
 7 Put_Line ("* Raise_Constraint_Error: " & X'Image);
 8 Array_Object (X) := X - 10;
 9 end Raise_Constraint_Error;
10
11 function Raise_Program_Error (X : Integer) return Boolean is
12 begin
13 Put_Line ("* Raise_Program_Error: " & X'Image);
14 if X in Array_Object'Range then
15 return Array_Object (X) > 0;
16 end if;
17 end Raise_Program_Error;
18end Implicit_Exceptions;

explicit_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Explicit_Exceptions is
 3 procedure Raise_Storage_Error (X : Integer) is
 4 begin
 5 Put_Line ("* Raise_Storage_Error: " & X'Image);
 6 if X < 0 then
 7 raise Storage_Error;
 8 end if;
 9 end Raise_Storage_Error;
10end Explicit_Exceptions;

test_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Implicit_Exceptions; use Implicit_Exceptions;
 3with Explicit_Exceptions; use Explicit_Exceptions;
 4procedure Test_Exceptions is
 5 procedure Test_Constraint_Error (X : Integer) is
 6 begin
 7 Raise_Constraint_Error (X);
 8 Put_Line ("Test_Constraint_Error success");
 9 exception
10 when Constraint_Error =>
11 Put_Line ("Test_Constraint_Error caught exception");
12 end Test_Constraint_Error;
13
14 procedure Test_Program_Error (X : Integer) is
15 begin
16 if Raise_Program_Error (X) then
17 Put_Line ("Test_Program_Error true");
18 else
19 Put_Line ("Test_Program_Error false");
20 end if;
21 exception
22 when Program_Error =>
23 Put_Line ("Test_Program_Error caught exception");
24 end Test_Program_Error;
25
26 procedure Test_Storage_Error (X : Integer) is
27 begin
28 Raise_Storage_Error (X);
29 Put_Line ("Test_Storage_Error success");
30 exception
31 when Storage_Error =>
32 Put_Line ("Test_Storage_Error caught exception");
33 end Test_Storage_Error;
34
35begin
36 Test_Constraint_Error (20);
37 Test_Constraint_Error (0);
38 Test_Constraint_Error (Integer'Last);
39 Test_Program_Error (Integer'First);
40 Test_Program_Error (Integer'Last);
41 Test_Storage_Error (Integer'First);
42 Test_Storage_Error (Integer'Last);
43end Test_Exceptions;

implicit_exceptions.ads

1package Implicit_Exceptions is
2 procedure Raise_Constraint_Error (X : Integer);
3 function Raise_Program_Error (X : Integer) return Boolean;
4end Implicit_Exceptions;

explicit_exceptions.ads

1package Explicit_Exceptions is
2 procedure Raise_Storage_Error (X : Integer);
3end Explicit_Exceptions;

User Defined Exceptions

stack.ads

1package Stack is
2 Underflow, Overflow : exception;
3 procedure Push (Item : in Integer);
4 procedure Pop (Item : out Integer);
5end Stack;

stack.adb

 1package body Stack is
 2 Values : array (1 .. 100) of Integer;
 3 Top : Integer := 0;
 4
 5 procedure Push (Item : in Integer) is
 6 begin
 7 if Top = Values'Last then
 8 raise Overflow;
 9 end if;
10 Top := Top + 1;
11 Values (Top) := Item;
12 end Push;
13
14 procedure Pop (Item : out Integer) is
15 begin
16 if Top < Values'First then
17 raise Underflow;
18 end if;
19 Item := Values (Top);
20 Top := Top - 1;
21 end Pop;
22end Stack;

test_stack.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Stack;
 3procedure Test_Stack is
 4 Global : Integer := 123;
 5
 6 procedure Push (X : Integer) is
 7 begin
 8 Stack.Push (X);
 9 exception
10 when Stack.Overflow =>
11 Put_Line ("No room on the stack");
12 end Push;
13
14 procedure Pop is
15 begin
16 Stack.Pop (Global);
17 exception
18 when Stack.Underflow =>
19 Put_Line ("Nothing on the stack");
20 end Pop;
21
22begin
23 Pop;
24 for I in 1 .. 100 loop
25 Push (I);
26 end loop;
27 Push (2);
28end Test_Stack;

Propagation

propagation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 3procedure Propagation is
 4 Error1 : exception;
 5 Error2 : exception;
 6
 7 Gen : Generator;
 8 procedure Maybe_Raise is
 9 Test : constant Float := Random (Gen);
10 begin
11 if Test > 0.666 then
12 raise Error1;
13 end if;
14 exception
15 when Error1 =>
16 if Test > 0.95 then
17 raise Error2;
18 else
19 raise;
20 end if;
21 end Maybe_Raise;
22
23 procedure One is
24 begin
25 Maybe_Raise;
26 end One;
27
28 procedure Two is
29 begin
30 One;
31 Maybe_Raise;
32 exception
33 when Error1 =>
34 Put_Line ("Exception from 1 or 2");
35 end Two;
36
37begin
38 Reset (Gen);
39 Maybe_Raise;
40 Two;
41exception
42 when Error1 =>
43 Put_Line ("Exception from 3");
44end Propagation;

Exceptions As Objects

exception_objects_example.ads

1package Exception_Objects_Example is
2
3 Public_Exception : exception;
4
5 procedure Do_Something (X : Integer);
6
7end Exception_Objects_Example;

exception_objects_example.adb

 1package body Exception_Objects_Example is
 2 Hidden_Exception : exception;
 3
 4 procedure Do_Something (X : Integer) is
 5 begin
 6 if X < 0 then
 7 raise Public_Exception;
 8 elsif X = 0 then
 9 raise Hidden_Exception;
10 end if;
11 end Do_Something;
12
13end Exception_Objects_Example;

test_exception_objects_example.adb

 1with Ada.Exceptions; use Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Exception_Objects_Example; use Exception_Objects_Example;
 4procedure Test_Exception_Objects_Example is
 5begin
 6
 7 for I in -1 .. 1 loop
 8 begin
 9 Put_Line ("Try " & I'Image);
10 Do_Something (I);
11 Put_Line (" success");
12 exception
13 when Public_Exception =>
14 Put_Line (" Expected exception");
15 when The_Err : others =>
16 Put_Line (" Unexpected exception");
17 Put_Line (" Name: " & Exception_Name (The_Err));
18 Put_Line (" Information: " & Exception_Information (The_Err));
19 Put_Line (" Message: " & Exception_Message (The_Err));
20 end;
21 end loop;
22
23end Test_Exception_Objects_Example;

Footnotes

Elaboration

Elaboration

elab_1.ads

1with Initializer; use Initializer;
2package Elab_1 is
3 Spec_Object : Integer := Call (101);
4 procedure Proc;
5end Elab_1;

elab_1.adb

1package body Elab_1 is
2 Body_Object : Integer := Call (102);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (103);
6end Elab_1;

elab_2.ads

1with Initializer; use Initializer;
2package Elab_2 is
3 Spec_Object : Integer := Call (201);
4 procedure Proc;
5end Elab_2;

elab_2.adb

1package body Elab_2 is
2 Body_Object : Integer := Call (202);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (203);
6end Elab_2;

test_elab.adb

1with Elab_2;
2with Elab_1;
3procedure Test_Elab is
4begin
5 Elab_2.Proc;
6 Elab_1.Proc;
7end Test_Elab;

initializer.ads

1package Initializer is
2 function Call (I : Integer) return Integer;
3end Initializer;

initializer.adb

1with Ada.Text_IO; use Ada.Text_IO;
2package body Initializer is
3 function Call (I : Integer) return Integer is
4 begin
5 Put_Line ("Call with " & Integer'Image (I));
6 return I;
7 end Call;
8end Initializer;

Elaboration Control

pure_p.ads

1package Pure_P is
2 pragma Pure;
3 Some_Constant : constant Integer := Integer'Size;
4 function Call (I : Integer) return Integer is (I);
5end Pure_P;

preelaborate_p.ads

1with Pure_P;
2package Preelaborate_P is
3 pragma Preelaborate;
4 Global_Object : Integer := Pure_P.Some_Constant;
5end Preelaborate_P;

elaborate_body_p.ads

1package Elaborate_Body_P is
2 pragma Elaborate_Body;
3 function Call (I : Integer) return Integer;
4end Elaborate_Body_P;

elaborate_body_p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Elaborate_Body_P is
 3 function Call (I : Integer) return Integer is
 4 begin
 5 Put_Line ("Call with " & Integer'Image (I));
 6 return I;
 7 end Call;
 8begin
 9 Put_Line ("Elaborate_Body_P package execution");
10end Elaborate_Body_P;

elab_1.ads

1with Elaborate_Body_P; use Elaborate_Body_P;
2pragma Elaborate (Elaborate_Body_P);
3package Elab_1 is
4 Spec_Object : Integer := Call (101);
5 procedure Proc;
6end Elab_1;

elab_1.adb

1with Elab_2;
2package body Elab_1 is
3 Body_Object : Integer := Call (102);
4 procedure Proc is null;
5begin
6 Body_Object := Body_Object + Call (103);
7 Elab_2.Proc;
8end Elab_1;

elab_2.ads

1with Elaborate_Body_P; use Elaborate_Body_P;
2package Elab_2 is
3 Spec_Object : Integer := Call (201);
4 procedure Proc;
5end Elab_2;

elab_2.adb

1package body Elab_2 is
2 Body_Object : Integer := Call (202);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (203);
6end Elab_2;

test_elab_control.adb

1with Elab_2;
2with Elab_1;
3pragma Elaborate_All (Elab_2);
4procedure Test_Elab_Control is
5begin
6 Elab_1.Proc;
7 Elab_2.Proc;
8end Test_Elab_Control;

Footnotes

Subprogram Contracts

Preconditions And Postconditions

stack_pkg.ads

 1package Stack_Pkg is
 2 procedure Push (Item : in Integer) with
 3 Pre => not Full,
 4 Post => not Empty and then Top = Item;
 5 procedure Pop (Item : out Integer) with
 6 Pre => not Empty,
 7 Post => not Full and Item = Top'Old;
 8 function Pop return Integer with
 9 Pre => not Empty,
10 Post => not Full and Pop'Result = Top'Old;
11 function Top return Integer with
12 Pre => not Empty;
13 function Empty return Boolean;
14 function Full return Boolean;
15end Stack_Pkg;

stack_pkg.adb

 1package body Stack_Pkg is
 2 Values : array (1 .. 100) of Integer;
 3 Current : Natural := 0;
 4
 5 -- Push/Pop cannot fail because preconditions prevent it
 6 procedure Push (Item : in Integer) is
 7 begin
 8 Current := Current + 1;
 9 Values (Current) := Item;
10 end Push;
11
12 procedure Pop (Item : out Integer) is
13 begin
14 Item := Values (Current);
15 Current := Current - 1;
16 end Pop;
17
18 function Pop return Integer is
19 Item : constant Integer := Values (Current);
20 begin
21 Current := Current - 1;
22 return Item;
23 end Pop;
24
25 function Top return Integer is (Values (Current));
26 function Empty return Boolean is (Current not in Values'Range);
27 function Full return Boolean is (Current >= Values'Length);
28end Stack_Pkg;

Footnotes

Type Contracts

Type Invariants

bank.ads

 1package Bank is
 2 type Account_T is private with Type_Invariant => Consistent_Balance (Account_T);
 3 type Currency_T is delta 0.01 digits 12;
 4 function Consistent_Balance (This : Account_T) return Boolean;
 5 procedure Open (This : in out Account_T; Initial_Deposit : Currency_T);
 6private
 7 type List_T is array (1 .. 100) of Currency_T;
 8 type Transaction_List_T is record
 9 Values : List_T;
10 Count : Natural := 0;
11 end record;
12 type Account_T is record -- initial state MUST satisfy invariant
13 Current_Balance : Currency_T := 0.0;
14 Withdrawals : Transaction_List_T;
15 Deposits : Transaction_List_T;
16 end record;
17end Bank;

bank.adb

 1package body Bank is
 2 function Total (This : Transaction_List_T) return Currency_T is
 3 Result : Currency_T := 0.0;
 4 begin
 5 for I in 1 .. This.Count loop -- no iteration if list empty
 6 Result := Result + This.Values (I);
 7 end loop;
 8 return Result;
 9 end Total;
10 function Consistent_Balance (This : Account_T) return Boolean is
11 (Total (This.Deposits) - Total (This.Withdrawals) = This.Current_Balance);
12 procedure Open (This : in out Account_T; Initial_Deposit : Currency_T) is
13 begin
14 This.Current_Balance := Initial_Deposit;
15 -- if we checked, the invariant would be false here!
16 This.Withdrawals.Count := 0;
17 This.Deposits.Count := 1;
18 This.Deposits.Values (1) := Initial_Deposit;
19 end Open; -- invariant is now true
20end Bank;

Subtype Predicates

predicates.adb

 1with Ada.Exceptions; use Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3procedure Predicates is
 4
 5 subtype Even_T is Integer with Dynamic_Predicate => Even_T mod 2 = 0;
 6 type Serial_Baud_Rate_T is range 110 .. 115_200 with
 7 Static_Predicate => Serial_Baud_Rate_T in -- Non-contiguous range
 8 2_400 | 4_800 | 9_600 | 14_400 | 19_200 | 28_800 | 38_400 | 56_000;
 9
10 -- This must be dynamic because "others" will be evaluated at run-time
11 subtype Vowel_T is Character with Dynamic_Predicate =>
12 (case Vowel_T is when 'A' | 'E' | 'I' | 'O' | 'U' => True, when others => False);
13
14 type Table_T is array (Integer range <>) of Integer;
15 subtype Sorted_Table_T is Table_T (1 .. 5) with
16 Dynamic_Predicate =>
17 (for all K in Sorted_Table_T'Range =>
18 (K = Sorted_Table_T'First or else Sorted_Table_T (K - 1) <= Sorted_Table_T (K)));
19
20 J : Even_T;
21 Values : Sorted_Table_T := (1, 3, 5, 7, 9);
22
23begin
24 begin
25 Put_Line ("J is" & J'Img);
26 J := Integer'Succ (J); -- assertion failure here
27 Put_Line ("J is" & J'Img);
28 J := Integer'Succ (J); -- or maybe here
29 Put_Line ("J is" & J'Img);
30 exception
31 when The_Err : others =>
32 Put_Line (Exception_Message (The_Err));
33 end;
34
35 for Baud in Serial_Baud_Rate_T loop
36 Put_Line (Baud'Image);
37 end loop;
38
39 Put_Line (Vowel_T'Image (Vowel_T'Succ ('A')));
40 Put_Line (Vowel_T'Image (Vowel_T'Pred ('Z')));
41
42 begin
43 Values (3) := 0; -- not an exception
44 Values := (1, 3, 0, 7, 9); -- exception
45 exception
46 when The_Err : others =>
47 Put_Line (Exception_Message (The_Err));
48 end;
49end Predicates;

Footnotes

Low Level Programming

Data Representation

test_data_representation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Test_Data_Representation is
 3
 4 type Enum is (E1, E2, E3);
 5
 6 procedure Attributes is
 7 type Integer_T is range 1 .. 10;
 8 type Similar_Integer_T is range 1 .. 10 with
 9 Size => 13,
10 Object_Size => 16,
11 Alignment => 1;
12 begin
13 Put_Line
14 ("Integer_T 'Size / 'Object_size / 'Alignment " &
15 Integer'Image (Integer_T'Size) &
16 Integer'Image (Integer_T'Object_Size) &
17 Integer'Image (Integer_T'Alignment));
18 Put_Line
19 ("Similar_Integer_T 'Size / 'Object_size / 'Alignment " &
20 Integer'Image (Similar_Integer_T'Size) &
21 Integer'Image (Similar_Integer_T'Object_Size) &
22 Integer'Image (Similar_Integer_T'Alignment));
23 end Attributes;
24
25 procedure Representation_Clauses is
26
27 type Normal_Record_T is record
28 A : Integer range 0 .. 4;
29 B : Boolean;
30 C : Integer;
31 D : Enum := E1;
32 end record;
33 type Normal_Array_T is array (1 .. 1_000) of Boolean;
34
35 type Packed_Record_T is record
36 A : Integer range 0 .. 4;
37 B : Boolean;
38 C : Integer;
39 D : Enum := E2;
40 end record with
41 Pack;
42 type Packed_Array_T is array (1 .. 1_000) of Boolean with
43 Pack;
44
45 type Repped_Record_T is record
46 A : Integer range 0 .. 4;
47 B : Boolean;
48 C : Integer;
49 D : Enum := E3;
50 end record;
51 for Repped_Record_T use record
52 A at 0 range 0 .. 2;
53 B at 0 range 3 .. 3;
54 C at 0 range 5 .. 36;
55 D at 5 range 0 .. 2;
56 end record;
57 type Repped_Array_T is array (1 .. 1_000) of Boolean;
58 for Repped_Array_T'Component_Size use 2;
59
60 begin
61 Put_Line
62 ("Size of normal record / array: " &
63 Integer'Image (Normal_Record_T'Size) &
64 Integer'Image (Normal_Array_T'Size));
65 Put_Line
66 ("Size of packed record / array: " &
67 Integer'Image (Packed_Record_T'Size) &
68 Integer'Image (Packed_Array_T'Size));
69 Put_Line
70 ("Size of repped record / array: " &
71 Integer'Image (Repped_Record_T'Size) &
72 Integer'Image (Repped_Array_T'Size));
73 end Representation_Clauses;
74
75begin
76 Attributes;
77 Representation_Clauses;
78
79end Test_Data_Representation;

Address Clauses And Overlays

test_address_clauses_and_overlays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3with System.Storage_Elements; use System.Storage_Elements;
 4procedure Test_Address_Clauses_And_Overlays is
 5
 6 type Bitfield_T is array (Integer range <>) of Boolean with
 7 Pack;
 8
 9 V : aliased Integer; -- object can be referenced elsewhere
10 pragma Volatile (V); -- may be updated at any time
11
12 V2 : aliased Integer;
13 pragma Volatile (V2);
14
15 V_A : constant System.Address := V'Address;
16 V_I : constant Integer_Address := To_Integer (V_A);
17
18 -- This maps directly on to the bits of V
19 V3 : aliased Bitfield_T (1 .. V'Size);
20 for V3'Address use V_A; -- overlays V
21
22 V4 : aliased Integer;
23 -- Trust me, I know what I'm doing, this is V2
24 for V4'Address use To_Address (V_I - 4);
25
26 function Str (Bitfield : Bitfield_T) return String is
27 Retval : String (Bitfield'First .. Bitfield'Last);
28 begin
29 for I in Bitfield'Range loop
30 Retval (I) := (if Bitfield (I) then '1' else '0');
31 end loop;
32 return Retval;
33 end Str;
34
35begin
36
37 V := 123;
38 Put (Integer'Image (V) & " => " & Str (V3));
39 New_Line;
40
41 V3 (V3'First + 2) := not V3 (V3'First + 2);
42 Put (Str (V3) & " => " & Integer'Image (V));
43 New_Line;
44
45 V2 := 456;
46 Put_Line ("V4 = " & Integer'Image (V4));
47 V4 := 789;
48 Put_Line ("V2 = " & Integer'Image (V2));
49
50end Test_Address_Clauses_And_Overlays;

Footnotes

Tasking

Tasks

tasks.ads

1package Tasks is
2 task T is
3 entry Start;
4 entry Receive_Message (V : String);
5 end T;
6end Tasks;

tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Tasks is
 3 task body T is
 4 begin
 5 loop
 6 accept Start do
 7 Put_Line ("Start");
 8 end Start;
 9 accept Receive_Message (V : String) do
10 Put_Line ("Receive " & V);
11 end Receive_Message;
12 end loop;
13 end T;
14end Tasks;

test_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Tasks; use Tasks;
 3procedure Test_Tasks is
 4begin
 5 Put_Line ("calling start");
 6 T.Start;
 7 Put_Line ("calling receive 1");
 8 T.Receive_Message ("1");
 9 Put_Line ("calling receive 2");
10 -- Locks until somebody calls Start
11 T.Receive_Message ("2");
12end Test_Tasks;

Protected Objects

protected_objects.ads

1package Protected_Objects is
2 protected Object is
3 procedure Set (Prompt : String; V : Integer);
4 function Get (Prompt : String) return Integer;
5 private
6 Local : Integer := 0;
7 end Object;
8end Protected_Objects;

protected_objects.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Protected_Objects is
 3 protected body Object is
 4 procedure Set (Prompt : String; V : Integer) is
 5 Str : constant String := "Set " & Prompt & V'Image;
 6 begin
 7 Local := V;
 8 Put_Line (Str);
 9 end Set;
10 function Get (Prompt : String) return Integer is
11 Str : constant String := "Get " & Prompt & Local'Image;
12 begin
13 Put_Line (Str);
14 return Local;
15 end Get;
16 end Object;
17end Protected_Objects;

tasks.ads

 1package Tasks is
 2 task T1 is
 3 entry Start;
 4 entry Receive_Message;
 5 end T1;
 6 task T2 is
 7 entry Start;
 8 entry Receive_Message;
 9 end T2;
10end Tasks;

test_protected_objects.adb

 1with Tasks; use Tasks;
 2procedure Test_Protected_Objects is
 3begin
 4 T1.Start;
 5 T1.Receive_Message;
 6 T2.Start;
 7 T2.Receive_Message;
 8 T2.Receive_Message;
 9 T1.Receive_Message;
10end Test_Protected_Objects;

tasks.adb

 1with Protected_Objects; use Protected_Objects;
 2package body Tasks is
 3 task body T1 is
 4 begin
 5 accept Start do
 6 Object.Set ("T1 Start", 0);
 7 end Start;
 8 loop
 9 accept Receive_Message do
10 Object.Set ("T1 Receive", Object.Get ("T1 Receive") + 1);
11 end Receive_Message;
12 end loop;
13 end T1;
14
15 task body T2 is
16 begin
17 accept Start do
18 Object.Set ("T2 Start", 0);
19 end Start;
20 loop
21 accept Receive_Message do
22 Object.Set ("T2 Receive", Object.Get ("T2 Receive") + 1);
23 end Receive_Message;
24 end loop;
25 end T2;
26end Tasks;

Task And Protected Types

tasks.ads

1package Tasks is
2 task type T is
3 entry Start (Id : Character; Initial_1, Initial_2 : Integer);
4 entry Receive_Message (Delta_1, Delta_2 : Integer);
5 end T;
6 T1, T2 : T;
7end Tasks;

protected_objects.ads

 1package Protected_Objects is
 2 protected type Object is
 3 procedure Set (Caller : Character; V : Integer);
 4 function Get return Integer;
 5 procedure Initialize (My_Id : Character);
 6 private
 7 Local : Integer := 0;
 8 Id : Character := ' ';
 9 end Object;
10 O1, O2 : Object;
11end Protected_Objects;

test_types.adb

 1with Tasks; use Tasks;
 2with Protected_Objects; use Protected_Objects;
 3procedure Test_Types is
 4begin
 5 O1.Initialize ('X');
 6 O2.Initialize ('Y');
 7 T1.Start ('A', 1, 2);
 8 T2.Start ('B', 1_000, 2_000);
 9 T1.Receive_Message (1, 2);
10 T2.Receive_Message (10, 20);
11end Test_Types;

tasks.adb

 1with Protected_Objects; use Protected_Objects;
 2package body Tasks is
 3 task body T is
 4 My_Id : Character := ' ';
 5 begin
 6 accept Start (Id : Character; Initial_1, Initial_2 : Integer) do
 7 My_Id := Id;
 8 O1.Set (My_Id, Initial_1);
 9 O2.Set (My_Id, Initial_2);
10 end Start;
11 loop
12 accept Receive_Message (Delta_1, Delta_2 : Integer) do
13 declare
14 New_1 : constant Integer := O1.Get + Delta_1;
15 New_2 : constant Integer := O2.Get + Delta_2;
16 begin
17 O1.Set (My_Id, New_1);
18 O2.Set (My_Id, New_2);
19 end;
20 end Receive_Message;
21 end loop;
22 end T;
23end Tasks;

protected_objects.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Protected_Objects is
 3 protected body Object is
 4 procedure Initialize (My_Id : Character) is
 5 begin
 6 Id := My_Id;
 7 end Initialize;
 8 procedure Set (Caller : Character; V : Integer) is
 9 begin
10 Local := V;
11 Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);
12 end Set;
13 function Get return Integer is
14 begin
15 return Local;
16 end Get;
17 end Object;
18end Protected_Objects;

Some Advanced Concepts

some_advanced_concepts.ads

1package Some_Advanced_Concepts is
2 Termination_Flag : Boolean := False;
3 task Select_Loop_Task is
4 entry Start;
5 entry Receive_Message (V : String);
6 entry Send_Message (V : String);
7 entry Stop;
8 end Select_Loop_Task;
9end Some_Advanced_Concepts;

some_advanced_concepts.adb

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Text_IO; use Ada.Text_IO;
 3package body Some_Advanced_Concepts is
 4 task body Select_Loop_Task is
 5 begin
 6 accept Start do
 7 Put_Line ("Select_Loop_Task started at" &
 8 Day_Duration'Image (Seconds (Clock)));
 9 end Start;
10 loop
11 select
12 accept Receive_Message (V : String) do
13 Put_Line ("Select_Loop_Task Receive: " & V);
14 end Receive_Message;
15 or
16 accept Send_Message (V : String) do
17 Put_Line ("Select_Loop_Task Send: " & V);
18 end Send_Message;
19 or when Termination_Flag =>
20 accept Stop;
21 or
22 delay 5.0;
23 Put_Line ("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
24 exit;
25 end select;
26 end loop;
27 end Select_Loop_Task;
28
29end Some_Advanced_Concepts;

test_some_advanced_concepts.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Some_Advanced_Concepts; use Some_Advanced_Concepts;
 3procedure Test_Some_Advanced_Concepts is
 4begin
 5 Put_Line ("calling start");
 6 Select_Loop_Task.Start;
 7 Select_Loop_Task.Receive_Message ("1");
 8 Select_Loop_Task.Send_Message ("A");
 9 Select_Loop_Task.Send_Message ("B");
10 Select_Loop_Task.Receive_Message ("2");
11 Select_Loop_Task.Stop;
12exception
13 when Tasking_Error =>
14 Put_Line ("Expected exception: Entry not reached");
15end Test_Some_Advanced_Concepts;

Footnotes

Contents:

	Declarations
	Identifiers Comments And Pragmas

	Numeric Literals

	Object Declarations

	Named Numbers

	Scope And Visibility

	Aspect Clauses

	Basic Types
	Discrete Numeric Types

	Discrete Enumeration Types

	Real Types

	Statements
	Assignment Statements

	Conditional Statements

	Loop Statements

	Array Types
	Constrained Array Types

	Unconstrained Array Types

	Attributes

	Operations

	Operations Added For Ada2012

	Aggregates

	Record Types
	Components Rules

	Operations

	Aggregates

	Default Values

	Variant Records

	Subprograms
	Declarations And Bodies

	Parameters

	Expression Functions

	Potential Pitfalls

	Expressions
	Subtypes

	Membership Tests

	Slices

	Conditional Expressions

	Quantified Expressions

	Overloading
	Enumerals And Operators

	Call Resolution

	Visibility Issues

	User Defined Equality

	Composition Of Equality

	Library Units
	Library Units

	With Clauses

	Packages
	Declarations

	Bodies

	Executable Parts

	Idioms

	Private Types
	Implementing Abstract Data Types Via Views

	Private Part Construction

	Idioms

	Limited Types
	Declarations

	Creating Values

	Extended Return Statements

	Combining Limited And Private Views

	Program Structure
	Limited With Clauses

	Hierarchical Library Units

	Visibility Limits

	Private Children

	Visibility
	Use Clauses

	Use Type Clauses

	Use All Type Clauses

	Access Types
	Pool Specific Access Types

	General Access Types

	Access Types

	Accessibility Checks

	Memory Management

	Anonymous Access Types

	Genericity
	Generic Data

	Generic Formal Data

	Inheritance
	Primitives

	Simple Derivation

	Tagged Derivation

	Polymorphism
	Classes Of Types

	Dispatching And Redispatching

	Exotic Dispatching Operations

	Exceptions
	Handlers

	Implicitly And Explicitly Raised Exceptions

	User Defined Exceptions

	Propagation

	Exceptions As Objects

	Elaboration
	Elaboration

	Elaboration Control

	Subprogram Contracts
	Preconditions And Postconditions

	Type Contracts
	Type Invariants

	Subtype Predicates

	Low Level Programming
	Data Representation

	Address Clauses And Overlays

	Tasking
	Tasks

	Protected Objects

	Task And Protected Types

	Some Advanced Concepts

Footnotes

aspect_clauses.ads

1package Aspect_Clauses is
2 Eight_Bits : Integer range 0 .. 255 with
3 Size => 8;
4 Object : Integer with
5 Atomic;
6end Aspect_Clauses;

Footnotes

identifiers_comments_and_pragmas.ads

 1package Identifiers_Comments_And_Pragmas is
 2
 3 Spaceperson : Integer;
 4 --SPACEPERSON : integer; -- identifier is a duplicate
 5 Space_Person : Integer;
 6 --Null : integer := 0; -- identifier is a reserved word
 7 pragma Unreferenced (Spaceperson);
 8 pragma Unreferenced (Space_Person);
 9
10end Identifiers_Comments_And_Pragmas;

Footnotes

named_numbers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Named_Numbers is
 3 Universal_Third : constant := 1.0 / 3.0;
 4 Float_Third : constant Float := 1.0 / 3.0;
 5 Float_Value : Float;
 6 Long_Float_Value : Long_Float;
 7 Long_Long_Float_Value : Long_Long_Float;
 8begin
 9 Float_Value := Universal_Third;
10 Long_Float_Value := Universal_Third;
11 Long_Long_Float_Value := Universal_Third;
12 Put_Line (Float'Image (Float_Value));
13 Put_Line (Long_Float'Image (Long_Float_Value));
14 Put_Line (Long_Long_Float'Image (Long_Long_Float_Value));
15 Float_Value := Float_Third;
16 Long_Float_Value := Long_Float (Float_Third);
17 Long_Long_Float_Value := Long_Long_Float (Float_Third);
18 Put_Line (Float'Image (Float_Value));
19 Put_Line (Long_Float'Image (Long_Float_Value));
20 Put_Line (Long_Long_Float'Image (Long_Long_Float_Value));
21end Named_Numbers;

Footnotes

numeric_literals.ads

1package Numeric_Literals is
2
3 Simple_Integer : constant := 3;
4 Decimal_Number : constant := 0.25;
5 Using_Separator : constant := 1_000_000.0;
6 Octal : constant := 8#33#;
7 Hexadecimal : constant := 16#AAAA#;
8
9end Numeric_Literals;

Footnotes

object_declarations.ads

1with Ada.Calendar; use Ada.Calendar;
2package Object_Declarations is
3 A : Integer := 0;
4 B, C : Time := Clock;
5 D : Integer := A + 1;
6end Object_Declarations;

Footnotes

scope_and_visibility.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Scope_And_Visibility is
 3 Name : Integer;
 4begin
 5 Name := 1;
 6 declare
 7 Name : Float := 2.0;
 8 begin
 9 Name := Name + Float (Scope_And_Visibility.Name);
10 Put_Line (Name'Image);
11 end;
12 Put_Line (Name'Image);
13end Scope_And_Visibility;

Footnotes

discrete_enumeration_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Discrete_Enumeration_Types is
 3
 4 type Colors_Type is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
 5 Color : Colors_Type := Red;
 6
 7 type Traffic_Light_Type is (Red, Yellow, Green);
 8 for Traffic_Light_Type use (1, 2, 4);
 9 Stoplight : Traffic_Light_Type := Red;
10
11 type Roman_Numeral_Digit_Type is ('I', 'V', 'X', 'L', 'C', 'M');
12 Digit : Roman_Numeral_Digit_Type := 'I';
13
14 Flag : Boolean;
15
16 Position : Integer;
17
18begin
19
20 Position := Traffic_Light_Type'Pos (Green);
21 Color := Colors_Type'Val (Position);
22 Stoplight := Traffic_Light_Type'(Red);
23 Digit := Roman_Numeral_Digit_Type'Succ (Digit);
24 Flag := End_Of_Line;
25
26 Put_Line (Position'Image);
27 Put_Line (Color'Image);
28 Put_Line (Flag'Image);
29 Put_Line (Digit'Image);
30 Put_Line (Stoplight'Image);
31
32end Discrete_Enumeration_Types;

Footnotes

discrete_numeric_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Discrete_Numeric_Types is
 3
 4 type Signed_Integer_Type is range -128 .. 127;
 5 Signed_Integer : Signed_Integer_Type := 100;
 6
 7 type Unsigned_Integer_Type is mod 256;
 8 Unsigned_Integer : Unsigned_Integer_Type := 100;
 9
10begin
11
12 Signed_Integer := Signed_Integer_Type'Last;
13 Signed_Integer := Signed_Integer_Type'Succ (Signed_Integer);
14 Put_Line (Signed_Integer'Image);
15
16 Unsigned_Integer := Unsigned_Integer_Type'First;
17 Unsigned_Integer := Unsigned_Integer_Type'Pred (Unsigned_Integer);
18 Put_Line (Unsigned_Integer'Image);
19
20 Unsigned_Integer := Unsigned_Integer_Type (Signed_Integer);
21 Put_Line (Unsigned_Integer'Image);
22
23 Unsigned_Integer := Unsigned_Integer_Type'Mod (Signed_Integer);
24 Put_Line (Unsigned_Integer'Image);
25
26 declare
27 Some_String : constant String :=
28 Unsigned_Integer_Type'Image (Unsigned_Integer);
29 begin
30 Signed_Integer := Signed_Integer_Type'Value (Some_String);
31 Put_Line (Signed_Integer'Image);
32
33 Put_Line (Some_String);
34 end;
35
36end Discrete_Numeric_Types;

Footnotes

real_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Real_Types is
 3
 4 Predefined_Floating_Point : constant Float := 0.0;
 5
 6 type Floating_Point_Type is digits 8 range -1.0e10 .. 1.0e10;
 7 Floating_Point : Floating_Point_Type := 1.234e2;
 8
 9begin
10
11 Put_Line (Integer'Image (Floating_Point_Type'Digits));
12 Put_Line (Integer'Image (Floating_Point_Type'Base'Digits));
13 Floating_Point := Floating_Point_Type'Succ (Floating_Point);
14 Put_Line (Floating_Point_Type'Image (Floating_Point));
15 Put_Line (Predefined_Floating_Point'Image);
16
17end Real_Types;

Footnotes

assignment_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Assignment_Statements is
 3
 4 Max_Miles : constant Integer := 20;
 5
 6 type Feet_T is range 0 .. Max_Miles * 5_280;
 7 type Miles_T is range 0 .. Max_Miles;
 8
 9 Feet : constant Feet_T := Feet_T (Line) * 1_000;
10 Miles : Miles_T := 0;
11
12 Index1, Index2 : Miles_T range 1 .. 20;
13
14begin
15
16 -- Miles := Feet / 5_280; -- compile error
17
18 -- Max_Miles := Max_Miles + 1; -- compile error
19
20 Index1 := Miles_T (Max_Miles); -- constraint checking added
21 Index2 := Index1; -- no constraint checking needed
22
23 Put_Line ("Index1 = " & Index1'Image);
24 Put_Line ("Index2 = " & Index2'Image);
25
26 Index1 := 0; -- run-time error
27 Put_Line ("Index1 = " & Index1'Image);
28
29end Assignment_Statements;

Footnotes

conditional_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Conditional_Statements is
 3 type Light_T is (Red, Yellow, Green);
 4 A, B : Integer := Integer (Line);
 5 Speed : Integer;
 6 Light : constant Light_T := Light_T'Val (Line);
 7
 8begin
 9 if Light = Red then
10 Speed := 0;
11 elsif Light = Green then
12 Speed := 25;
13 else
14 Speed := 50;
15 end if;
16
17 case Light is
18 when Red => Speed := 0;
19 when Green => Speed := 25;
20 when Yellow => Speed := 50;
21 end case;
22
23 case A is
24 when 1 .. 100 => B := A;
25 when -100 .. -1 => B := -A;
26 when others => A := B;
27 end case;
28
29 Put_Line ("Speed = " & Speed'Image);
30 Put_Line ("Light = " & Light'Image);
31
32end Conditional_Statements;

Footnotes

loop_statements.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Loop_Statements is
 3 File : File_Type;
 4 Counter : Integer := 0;
 5 type Light_T is (Red, Yellow, Green);
 6begin
 7 loop
 8 if not Is_Open (File) then
 9 exit;
10 end if;
11 Counter := Counter + 1;
12 exit when Is_Open (File);
13 end loop;
14
15 while Is_Open (File) loop
16 Counter := Counter - 1;
17 end loop;
18
19 for Light in Light_T loop
20 Put_Line (Light_T'Image (Light));
21 end loop;
22
23 for Counter in reverse 1 .. 10 loop
24 Put_Line (Integer'Image (Counter));
25 exit when Is_Open (File);
26 end loop;
27end Loop_Statements;

Footnotes

aggregates.adb

 1procedure Aggregates is
 2
 3 type Days_T is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 4 type Working_T is array (Days_T) of Float;
 5 Week : Working_T := (others => 0.0);
 6
 7 Start, Finish : Days_T;
 8
 9 type Array_T is array (Days_T range <>) of Boolean;
10 List : Array_T (Mon .. Start) := (others => False);
11
12begin
13
14 Week := (8.0, 8.0, 8.0, 8.0, 8.0, 0.0, 0.0);
15 Week := (Sat => 0.0, Sun => 0.0, Mon .. Fri => 8.0);
16 Week := (Sat | Sun => 0.0, Mon .. Fri => 8.0);
17 -- Compile error
18 -- Week := (8.0, 8.0, 8.0, 8.0, 8.0, Sat => 0.0, Sun => 0.0);
19
20 if Week = (10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 0.0) then
21 null; -- four-day week
22 end if;
23
24 Week := (8.0, others => 0.0);
25 Week := (8.0, others => <>); -- Ada2012: use previously set values
26
27 -- Compile error
28 -- Week := (Week'First .. Start => 0.0, Start .. Finish => 8.0,
29 -- Finish .. Week'Last => 0.0);
30
31end Aggregates;

Footnotes

attributes.adb

 1procedure Attributes is
 2
 3 type Array_Of_Bits_T is array (Natural range <>) of Boolean;
 4 Bits8 : Array_Of_Bits_T (0 .. 7);
 5
 6 type Array_Of_Bitstrings_T is
 7 array (Natural range <>, Natural range <>) of Boolean;
 8 Bitstrings : Array_Of_Bitstrings_T (1 .. 10, 0 .. 16);
 9
10 Value : Natural;
11
12begin
13
14 Value := 0;
15 for Index in Bits8'First .. Bits8'Last loop
16 if Bits8 (Index) then
17 Value := Value + 2**(Index - Bits8'First);
18 end if;
19 end loop;
20
21 for String_Index in Bitstrings'Range (1) loop
22 Value := 0;
23 for Bit_Index in Bitstrings'Range (2) loop
24 if Bitstrings (String_Index, Bit_Index) then
25 Value := Value + 2**(Bit_Index - Bitstrings'First (2));
26 end if;
27 end loop;
28 end loop;
29
30end Attributes;

Footnotes

constrained_array_types.ads

 1package Constrained_Array_Types is
 2
 3 type Array_Of_Integers_T is array (1 .. 10) of Integer;
 4 type Array_Of_Bits_T is
 5 array (Natural range 0 .. 31) of Boolean;
 6
 7 type Color_T is (Red, Green, Blue);
 8 type Color_Range_T is mod 256;
 9 type Rgb_T is array (Color_T) of Color_Range_T;
10
11 Ten_Integers : Array_Of_Integers_T;
12 One_Word : Array_Of_Bits_T;
13 Color : Rgb_T;
14
15end Constrained_Array_Types;

Footnotes

operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations is
 3
 4 type Boolean_Array_T is array (0 .. 15) of Boolean;
 5 Bool1, Bool2, Bool3 : Boolean_Array_T;
 6
 7 type Integer_Array_T is array (1 .. 100) of Integer;
 8 Int1, Int2 : Integer_Array_T;
 9
10 Str1 : String (1 .. 10) := (others => 'X');
11 Str2 : String (2 .. 9) := (others => '-');
12
13 Flag : Boolean;
14
15begin
16
17 Bool3 := Bool1 or Bool2;
18 Flag := Int1 > Int2;
19 Put_Line (Flag'Image);
20
21 declare
22 Str3 : String := Str1 & Str2;
23 begin
24 Str3
25 (Str3'First .. Str3'First + 1) := "**";
26 Str3 (1 .. 4) := Str1 (1 .. 2) & Str2 (8 .. 9);
27 Put_Line (Str3);
28 end;
29
30 if Int1 (1) in Bool3'Range then
31 Bool3 (Int1 (1)) := Int1 (1) > Int2 (1);
32 Put_Line (Boolean'Image (Bool3 (Int1 (1))));
33 end if;
34
35end Operations;

Footnotes

operations_added_for_ada2012.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations_Added_For_Ada2012 is
 3
 4 type Integer_Array_T is array (1 .. 10) of Integer with
 5 Default_Component_Value => -1;
 6 Int_Array : Integer_Array_T;
 7
 8 type Matrix_T is array (1 .. 3, 1 .. 3) of Integer with
 9 Default_Component_Value => -1;
10 Matrix : Matrix_T;
11
12begin
13
14 for Index in Int_Array'First + 1 .. Int_Array'Last - 1 loop
15 Int_Array (Index) := Index * 10;
16 end loop;
17 for Item of Int_Array loop
18 Put_Line (Integer'Image (Item));
19 end loop;
20
21 for Index1 in Matrix_T'First (1) + 1 .. Matrix'Last (1) loop
22 for Index2 in Matrix_T'First (2) + 1 .. Matrix'Last (2) loop
23 Matrix (Index1, Index2) := Index1 * 100 + Index2;
24 end loop;
25 end loop;
26 for Item of reverse Matrix loop
27 Put_Line (Integer'Image (Item));
28 end loop;
29
30end Operations_Added_For_Ada2012;

Footnotes

unconstrained_array_types.ads

 1package Unconstrained_Array_Types is
 2
 3 type Index_T is range 1 .. 100;
 4 type List_T is array (Index_T range <>) of Character;
 5 Wrong : List_T (0 .. 10); -- runtime error
 6 Right : List_T (11 .. 20);
 7
 8 type Array_Of_Bits_T is array (Natural range <>) of Boolean;
 9 Bits8 : Array_Of_Bits_T (0 .. 7);
10 Bits16 : Array_Of_Bits_T (1 .. 16);
11
12 type Days_T is (Sun, Mon, Tues, Wed, Thu, Fri, Sat);
13 type Schedule_T is array (Days_T range <>) of Float;
14 Schedule : Schedule_T (Mon .. Fri);
15
16 Name : String (1 .. 10);
17
18 type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
19 type Roman_Number is array (Natural range <>) of Roman_Digit;
20 Orwellian : constant Roman_Number := "MCMLXXXIV";
21
22end Unconstrained_Array_Types;

Footnotes

aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Aggregates is
 3
 4 type Date_T is record
 5 Day : Integer range 1 .. 31;
 6 Month : Positive range 1 .. 12;
 7 Year : Natural range 0 .. 2_099;
 8 end record;
 9 type Personal_Information_T is record
10 Name : String (1 .. 10);
11 Birthdate : Date_T;
12 end record;
13 type Employee_Information_T is record
14 Number : Positive;
15 Personal_Information : Personal_Information_T;
16 end record;
17 Birthdate : Date_T;
18 Personal_Information : Personal_Information_T;
19 Employee : Employee_Information_T;
20begin
21 Birthdate := (25, 12, 2_001);
22 Put_Line
23 (Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
24 Personal_Information := (Name => "Jane Smith", Birthdate => (14, 2, 2_002));
25 Put_Line
26 (Personal_Information.Birthdate.Year'Image &
27 Personal_Information.Birthdate.Month'Image &
28 Personal_Information.Birthdate.Day'Image);
29 Employee := (1_234, Personal_Information => Personal_Information);
30 Put_Line
31 (Employee.Personal_Information.Birthdate.Year'Image &
32 Employee.Personal_Information.Birthdate.Month'Image &
33 Employee.Personal_Information.Birthdate.Day'Image);
34 Birthdate := (Month => 1, others => 2);
35 Put_Line
36 (Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
37end Aggregates;

Footnotes

components_rules.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Components_Rules is
 3 type File_T is record
 4 Name : String (1 .. 12);
 5 Mode : File_Mode;
 6 Size : Integer range 0 .. 1_024;
 7 Is_Open : Boolean;
 8 -- Anonymous_Component : array (1 .. 3) of Integer;
 9 -- Constant_Component : constant Integer := 123;
10 -- Self_Reference : File_T;
11 end record;
12 File : File_T;
13begin
14 File.Name := "Filename.txt";
15 File.Mode := In_File;
16 File.Size := 0;
17 File.Is_Open := False;
18 Put_Line (File.Name);
19end Components_Rules;

Footnotes

default_values.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Default_Values is
 3
 4 type Complex is record
 5 Real : Float := -1.0;
 6 Imaginary : Float := -1.0;
 7 end record;
 8
 9 Phasor : Complex;
10 I : constant Complex := (0.0, 1.0);
11
12begin
13 Put_Line
14 (Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
15 Put_Line (Float'Image (I.Real) & " " & Float'Image (I.Imaginary) & "i");
16 Phasor := (12.34, others => <>);
17 Put_Line
18 (Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
19end Default_Values;

Footnotes

operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Operations is
 3 type Date_T is record
 4 Day : Integer range 1 .. 31;
 5 Month : Positive range 1 .. 12;
 6 Year : Natural range 0 .. 2_099;
 7 end record;
 8 type Personal_Information_T is record
 9 Name : String (1 .. 10);
10 Birthdate : Date_T;
11 end record;
12 type Employee_Information_T is record
13 Number : Positive;
14 Personal_Information : Personal_Information_T;
15 end record;
16 Employee : Employee_Information_T;
17begin
18 Employee.Number := 1_234;
19 Employee.Personal_Information.Name := "Fred Smith";
20 Employee.Personal_Information.Birthdate.Year := 2_020;
21 Put_Line (Employee.Number'Image);
22end Operations;

Footnotes

variant_records.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Variant_Records is
 3 type Person_Tag is (Student, Faculty);
 4 type Person (Tag : Person_Tag) is -- Tag is the discriminant
 5 record
 6 Name : String (1 .. 10); -- Always present
 7 case Tag is
 8 when Student => -- 1st variant
 9 Gpa : Float range 0.0 .. 4.0;
10 Year : Integer range 1 .. 4;
11 when Faculty => -- 2nd variant
12 Pubs : Integer;
13 end case;
14 end record;
15 S : Person (Student) :=
16 (Tag => Student, Name => (others => 'S'), Gpa => 4.0, Year => 4);
17 F : Person (Faculty) :=
18 (Tag => Faculty, Name => (others => 'F'), Pubs => 10);
19begin
20 Put_Line (S.Name & " " & F.Name);
21 Put_Line (S.Gpa'Image);
22 Put_Line (S.Pubs'Image); -- run-time error
23 Put_Line (F.Pubs'Image);
24 Put_Line (F.Year'Image); -- run-time error
25end Variant_Records;

Footnotes

declarations_and_bodies.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Declarations_And_Bodies is
 3
 4 -- declarations
 5 procedure Swap (A, B : in out Integer);
 6 function Triple (X : Float) return Float;
 7
 8 -- bodies
 9 procedure Swap (A : in out Integer; B : in out Integer) is
10 C : constant Integer := A;
11 begin
12 A := B;
13 B := C;
14 end Swap;
15 function Triple (X : Float) return Float is
16 begin
17 return X * 3.0;
18 end Triple;
19
20 function Factorial (Counter : Natural) return Natural;
21 function Factorial (Counter : Natural) return Natural is
22 begin
23 if Counter = 1 then
24 return 1;
25 else
26 return Counter * Factorial (Counter - 1);
27 end if;
28 end Factorial;
29
30 I1, I2 : Integer := 123;
31
32begin
33 Swap (I1, I2);
34 Put_Line (Float'Image (Triple (12.3)));
35 Put_Line (Natural'Image (Factorial (5)));
36
37end Declarations_And_Bodies;

Footnotes

expression_functions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Expression_Functions is
 3
 4 function Square1 (X : Integer) return Integer is (X * 2);
 5 function Square2 (X : Integer) return Integer is
 6 begin
 7 return X * 2;
 8 end Square2;
 9
10 function Square3 (X : Integer) return Integer;
11 function Square3 (X : Integer) return Integer is (X * 2);
12
13 function Square4 (X : Integer) return Integer is (X * 2);
14 -- illegal: Square4 already complete function Square4 (X : Integer) return
15 -- Integer is begin
16 -- return X * 2;
17 -- end Square4;
18
19begin
20 Put_Line (Integer'Image (Square1 (2)));
21 Put_Line (Integer'Image (Square2 (3)));
22 Put_Line (Integer'Image (Square3 (4)));
23 Put_Line (Integer'Image (Square4 (5)));
24end Expression_Functions;

Footnotes

parameters.adb

 1procedure Parameters is
 2
 3 procedure Do_Something (Formal_I : in Integer; Formal_B : out Boolean) is
 4 begin
 5 Formal_B := Formal_I > 0;
 6 end Do_Something;
 7
 8 procedure All_Modes (Number : in Integer;
 9 Value : in out Integer;
10 Result : out Boolean) is
11 begin
12 Value := Value * Number;
13 Result := Value > 0;
14 end All_Modes;
15
16 procedure Defaults (A : Integer := 1;
17 B : Integer := 2;
18 C : Boolean := True;
19 D : Boolean := False) is null;
20
21 type Vector is array (Positive range <>) of Float;
22 procedure Add (Left : in out Vector; Right : Vector) is
23 begin
24 for I in Left'First .. Left'Last loop
25 Left (I) := Left (I) + Right (I);
26 end loop;
27 end Add;
28
29 Actual_I1, Actual_I2 : Integer := 0;
30 Actual_B : Boolean;
31 Actual_V : Vector (1 .. 100);
32
33begin
34 Do_Something (Actual_I1,
35 Formal_B => Actual_B);
36 All_Modes (Actual_I1 + 100, Actual_I2, Actual_B);
37 -- All_Modes (Actual_I1, Actual_I2 + 100, Actual_B); -- compile error
38 Defaults (1, 2, True, False);
39 Defaults;
40 -- Defaults (1, True); -- compile error
41 Defaults (A => 1,
42 D => True);
43 Add (Actual_V (1 .. 10), Actual_V (11 .. 20));
44end Parameters;

Footnotes

potential_pitfalls.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Potential_Pitfalls is
 3 Global_I : Integer := 0;
 4 Global_P : Positive := 1;
 5 Global_S : String := "Hello";
 6
 7 procedure Unassigned_Out (A : in Integer; B : out Positive) is
 8 begin
 9 if A > 0 then
10 B := A;
11 end if;
12 end Unassigned_Out;
13
14 function Cause_Side_Effect return Integer is
15 begin
16 Global_I := Global_I + 1;
17 return Global_I;
18 end Cause_Side_Effect;
19
20 procedure Order_Dependent_Code (X, Y : Integer) is
21 begin
22 Put_Line (Integer'Image (X) & " / " & Integer'Image (Y));
23 end Order_Dependent_Code;
24
25 procedure Aliasing (Param : in String;
26 I1 : in out Integer;
27 I2 : in out Integer) is
28 begin
29 Global_S := "World";
30 I1 := I1 * 2;
31 I2 := I2 * 3;
32 Put_Line ("Aliasing string: " & Param);
33 end Aliasing;
34
35begin
36 Unassigned_Out (-1, Global_P);
37 Put_Line ("Global_P = " & Positive'Image (Global_P));
38
39 Order_Dependent_Code (Global_I, Cause_Side_Effect);
40
41 Global_P := Positive'First;
42 -- Aliasing (Global_S, Global_I, Global_I); -- compile error
43 Aliasing (Global_S, Global_I, Global_P);
44 Put_Line ("Global_S: " & Global_S);
45 Put_Line ("Global_P: " & Global_P'Image);
46end Potential_Pitfalls;

Footnotes

conditional_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Conditional_Expressions is
 3
 4 type Months_T is
 5 (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
 6 Year : constant Integer := 2_020;
 7
 8 procedure If_Expression is
 9 Counter : Natural := 5;
10 begin
11 while Counter > 0 loop
12 Put_Line
13 ("Self-destruct in" & Natural'Image (Counter) &
14 (if Counter = 1 then " second" else " seconds"));
15 delay 1.0;
16 Counter := Counter - 1;
17 end loop;
18 Put_Line ("Boom! (goodbye Nostromo)");
19 end If_Expression;
20
21 procedure Case_Expression is
22 Leap_Year : constant Boolean :=
23 (Year mod 4 = 0 and Year mod 100 /= 0) or else (Year mod 400 = 0);
24 begin
25 for M in Months_T loop
26 Put_Line
27 (M'Image & " => " &
28 Integer'Image
29 (case M is when Sep | Apr | Jun | Nov => 30,
30 when Feb => (if Leap_Year then 29 else 28),
31 when others => 31));
32 end loop;
33 end Case_Expression;
34
35begin
36 If_Expression;
37 Case_Expression;
38end Conditional_Expressions;

Footnotes

membership_tests.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Membership_Tests is
 3 subtype Index_T is Integer range 1 .. 100;
 4 X : constant Integer := Integer (Line);
 5 B : Boolean := X in 1 .. 100;
 6 C : Boolean := not (X in Index_T);
 7 D : Boolean := X not in Index_T;
 8
 9 type Calendar_Days is (Sun, Mon, Tues, Wed, Thur, Fri, Sat);
10 subtype Weekdays is Calendar_Days range Mon .. Fri;
11 Day : Calendar_Days := Calendar_Days'Val (X);
12
13begin
14
15 if Day in Sun | Sat then
16 -- identical expressions
17 B := Day in Mon .. Fri;
18 C := Day in Weekdays;
19 Day := Wed;
20 elsif Day = Mon or Day = Tues then
21 D := D and (B or C);
22 Day := Thur;
23 end if;
24
25 Put_Line (D'Image & " " & B'Image & " " & C'Image);
26 Put_Line (Day'Image);
27
28end Membership_Tests;

Footnotes

quantified_expressions.adb

 1with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 2with Ada.Text_IO; use Ada.Text_IO;
 3procedure Quantified_Expressions is
 4 Gen : Generator;
 5 Values : constant array (1 .. 10) of Integer := (others => Random (Gen));
 6
 7 Any_Even : constant Boolean := (for some N of Values => N mod 2 = 0);
 8 All_Odd : constant Boolean := (for all N of reverse Values => N mod 2 = 1);
 9
10 function Is_Sorted return Boolean is
11 (for all K in Values'Range =>
12 K = Values'First or else Values (K - 1) <= Values (K));
13
14 function Duplicate return Boolean is
15 (for some I in Values'Range =>
16 (for some J in I + 1 .. Values'Last => Values (I) = Values (J)));
17
18begin
19 Put_Line ("Any Even: " & Boolean'Image (Any_Even));
20 Put_Line ("All Odd: " & Boolean'Image (All_Odd));
21 Put_Line ("Is_Sorted " & Boolean'Image (Is_Sorted));
22 Put_Line ("Duplicate " & Boolean'Image (Duplicate));
23end Quantified_Expressions;

Footnotes

slices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Slices is
 3 procedure Explicit_Indices is
 4 Full_Name : String (1 .. 20) := "Barney Rubble ";
 5 begin
 6 Put_Line (Full_Name);
 7 Full_Name (1 .. 10) := "Betty ";
 8 Put_Line (Full_Name (1 .. 10)); -- first half of name
 9 Put_Line (Full_Name (11 .. 20)); -- second half of name
10 end Explicit_Indices;
11
12 procedure Subtype_Indices is
13 subtype First_Name is Positive range 1 .. 10;
14 subtype Last_Name is Positive range 11 .. 20;
15 Full_Name : String (First_Name'First .. Last_Name'Last) :=
16 "Fred Flintstone";
17 begin
18 Put_Line (Full_Name);
19 Full_Name (First_Name) := "Wilma ";
20 Put_Line (Full_Name (First_Name)); -- first half of name
21 Put_Line (Full_Name (Last_Name)); -- second half of name
22 end Subtype_Indices;
23begin
24 Explicit_Indices;
25 Subtype_Indices;
26end Slices;

Footnotes

subtypes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Subtypes is
 3 type Days_T is (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
 4 subtype Weekdays_T is Days_T range Mon .. Fri;
 5
 6 Weekday : Weekdays_T := Mon;
 7 Also_Weekday : Days_T range Mon .. Fri := Tues;
 8 Day : Days_T := Weekday;
 9
10 type Matrix_T is array (Integer range <>, Integer range <>) of Integer;
11 subtype Matrix_3x3_T is Matrix_T (1 .. 3, 1 .. 3);
12 subtype Line_T is String (1 .. 80);
13
14 I : Integer := 1_234;
15 procedure Takes_Positive (P : Positive) is null;
16
17 type Tertiary_Switch is (Off, On, Neither) with
18 Default_Value => Neither;
19 subtype Toggle_Switch is Tertiary_Switch range Off .. On;
20 Safe : Toggle_Switch := Off;
21 -- Implicit : Toggle_Switch; -- compile error: out of range
22
23 pragma Unreferenced (Safe);
24
25begin
26 Also_Weekday := Day; -- runtime error if Day is Sat or Sun
27 Put_Line (Also_Weekday'Image);
28 Day := Weekday; -- always legal
29 I := I - 1;
30 Takes_Positive (I); -- runtime error if I <= 0
31
32 Weekday := Weekdays_T'Last;
33 Day := Days_T'Last;
34
35 Put_Line (Weekdays_T'Image (Weekday) & " / " & Days_T'Image (Day));
36 Put_Line (Days_T'Image (Weekdays_T'Succ (Weekday)));
37 Put_Line (Integer'Image (Matrix_3x3_T'Length (1)));
38 Put_Line (Integer'Image (Line_T'Length (1)));
39end Subtypes;

Footnotes

call_resolution.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Call_Resolution is
 3 type Colors_T is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
 4 type Rgb_T is (Red, Green, Blue);
 5 function Str (P : Colors_T) return String is (Colors_T'Image (P));
 6 function Str (P : Rgb_T) return String is (Rgb_T'Image (P));
 7 procedure Print (Color : Colors_T) is
 8 begin
 9 Put_Line (Str (Color));
10 end Print;
11 procedure Print (Rgb : Rgb_T) is
12 begin
13 Put_Line (Str (Rgb));
14 end Print;
15 procedure Print (P1 : Colors_T; P2 : Rgb_T) is null;
16
17begin
18 Put_Line (Str (Yellow));
19 -- Put_Line (Str (Red)); -- compile error
20 Print (Orange);
21 Print (Rgb => Red);
22 Print (Color => Blue);
23 Print (Red, Red);
24end Call_Resolution;

Footnotes

composition_of_equality.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Composition_Of_Equality is
 3 type My_Integer is range -1_000 .. 1_000;
 4 function "=" (L, R : My_Integer) return Boolean is
 5 (False); -- for illustration purposes
 6 type Record_T is tagged record
 7 Field : My_Integer := 0;
 8 end record;
 9 type Record_List is array (My_Integer range 1 .. 10) of Record_T;
10
11 I1, I2 : constant My_Integer := 0;
12 R1, R2 : constant Record_List := (others => (Field => 0));
13begin
14 -- uses primitive "=" => False
15 Put_Line (Boolean'Image (I1 = I2));
16 -- uses predefined "=" for components=>True
17 Put_Line (Boolean'Image (R1 = R2));
18end Composition_Of_Equality;

Footnotes

enumerals_and_operators.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Enumerals_And_Operators is
 3 type Colors_T is (Blue, Yellow, Black, Green, Red);
 4 type Rgb_T is (Red, Green, Blue);
 5 type Stoplight_T is (Green, Yellow, Red);
 6
 7 Color : constant Colors_T := Red;
 8 Rgb : constant Rgb_T := Red;
 9 Light : constant Stoplight_T := Red;
10
11 type Miles_T is digits 6;
12 type Hour_T is digits 6;
13 type Speed_T is digits 6;
14 function "/" (M : Miles_T; H : Hour_T) return Speed_T is
15 (Speed_T (Float (M) / Float (H)));
16 function "*" (Mph : Speed_T; H : Hour_T) return Miles_T is
17 (Miles_T (Float (Mph) * Float (H)));
18
19 M : Miles_T := Miles_T (Col);
20 H : constant Hour_T := Hour_T (Line);
21 Mph : Speed_T;
22
23begin
24 Put_Line (Color'Image & " " & Rgb'Image & " " & Light'Image);
25 Mph := M / H;
26 M := Mph * H;
27 Put_Line (Mph'Image & M'Image);
28
29 Mph := "/" (M => M, H => H);
30 M := "*" (Mph, H);
31 Put_Line (Mph'Image & M'Image);
32end Enumerals_And_Operators;

Footnotes

user_defined_equality.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure User_Defined_Equality is
 3 type Array_T is array (1 .. 10) of Integer;
 4 type List_T is record
 5 List : Array_T;
 6 Count : Integer := 0;
 7 end record;
 8
 9 function "=" (L, R : List_T) return Boolean is
10 begin
11 if L.Count /= R.Count then
12 Put_Line ("Count is off");
13 return False;
14 else
15 for I in 1 .. L.Count loop
16 if L.List (I) /= R.List (I) then
17 Put_Line ("elements don't match");
18 return False;
19 end if;
20 end loop;
21 end if;
22 return True;
23 end "=";
24 L, R : List_T := (List => (others => 1), Count => 3);
25begin
26 Put_Line (Boolean'Image (L = R));
27 L.List (2) := 0;
28 Put_Line (Boolean'Image (L = R));
29 R.Count := 1;
30 Put_Line (Boolean'Image (L = R));
31end User_Defined_Equality;

Footnotes

visibility_issues.adb

 1procedure Visibility_Issues is
 2 procedure Foo (I : Integer) is
 3 procedure Foo (N : Natural) is null;
 4 begin
 5 Foo (I);
 6 end Foo;
 7 -- procedure Foo (N : Natural) is null; -- compile error
 8begin
 9 Foo (1);
10end Visibility_Issues;

Footnotes

named_common.ads

1package Named_Common is
2 X : Integer; -- valid object for life of application
3 Y : Float; -- valid object for life of application
4end Named_Common;

library_procedure.ads

1procedure Library_Procedure (Parameter : in out Integer);

library_procedure.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Library_Procedure (Parameter : in out Integer) is
 3 -- X is visible to Library_Procedure and Nested_Procedure
 4 X : constant Integer := Parameter;
 5 procedure Nested_Procedure is
 6 -- Y is only visible to Nested_Procedure
 7 Y : constant Integer := X * 2;
 8 begin
 9 Parameter := X * Y;
10 end Nested_Procedure;
11begin
12 Nested_Procedure;
13 Put_Line ("parameter = " & Parameter'Image);
14end Library_Procedure;

main.adb

1with Library_Procedure;
2with Named_Common;
3procedure Main is
4begin
5 Named_Common.X := 123;
6 Library_Procedure (Named_Common.X);
7end Main;

Footnotes

base_types.ads

1with Ada.Text_IO;
2package Base_Types is
3 type Position_T is record
4 Line : Ada.Text_IO.Positive_Count;
5 Column : Ada.Text_IO.Positive_Count;
6 end record;
7end Base_Types;

files.ads

 1-- no need to "with" ada.text_io
 2with Base_Types;
 3package Files is
 4 subtype Name_T is String (1 .. 12);
 5 type File_T is record
 6 Name : Name_T := (others => ' ');
 7 Position : Base_Types.Position_T := (Line => 1, Column => 1);
 8 end record;
 9 function Create (Name : Name_T) return File_T;
10end Files;

files.adb

1package body Files is
2 -- "with" of base_types inherited from spec
3 Default_Position : constant Base_Types.Position_T := (1, 1);
4 function Create (Name : Name_T) return File_T is
5 (Name => Name, Position => Default_Position);
6end Files;

Footnotes

body_not_allowed.ads

 1package Body_Not_Allowed is
 2 type Real is digits 12;
 3 type Device_Coordinates is record
 4 X, Y : Integer;
 5 end record;
 6 type Normalized_Coordinates is record
 7 X, Y : Real range 0.0 .. 1.0;
 8 end record;
 9 -- nothing to implement, so no body allowed
10end Body_Not_Allowed;

body_required.ads

 1package Body_Required is
 2 subtype Rows is Integer range 1 .. 24;
 3 subtype Columns is Integer range 1 .. 80;
 4 type Position is record
 5 Row : Rows := Rows'First;
 6 Col : Columns := Columns'First;
 7 end record;
 8 -- The following need to be defined in the body
 9 procedure Move_Cursor (To : in Position);
10 procedure Home;
11end Body_Required;

body_required.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Body_Required is
 3 -- This function is not visible outside this package
 4 function Unsigned (Input : Integer) return String is
 5 Str : constant String := Integer'Image (Input);
 6 begin
 7 return Str (2 .. Str'Length);
 8 end Unsigned;
 9 procedure Move_Cursor (To : in Position) is
10 begin
11 Put (ASCII.ESC & "I" & Unsigned(To.Row) & ";" & Unsigned(To.Col) & "H");
12 end Move_Cursor;
13 procedure Home is null; -- not yet implemented
14end Body_Required;

Footnotes

global_data.ads

1package Global_Data is
2 Object : Integer := 100;
3 type Float_T is digits 6;
4end Global_Data;

float_stack.ads

1with Global_Data;
2package Float_Stack is
3 Max : constant Integer := Global_Data.Object;
4 procedure Push (X : in Global_Data.Float_T);
5 function Pop return Global_Data.Float_T;
6end Float_Stack;

float_stack.adb

 1package body Float_Stack is
 2 Local_Object : Global_Data.Float_T;
 3 procedure Not_Exported is null;
 4 procedure Push (X : in Global_Data.Float_T) is
 5 begin
 6 Not_Exported;
 7 Local_Object := X;
 8 end Push;
 9 function Pop return Global_Data.Float_T is (Local_Object);
10end Float_Stack;

Footnotes

executable_part.ads

1package Executable_Part is
2 Visible_Seed : Integer;
3 function Number return Float;
4end Executable_Part;

executable_part.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Executable_Part is
 3 Hidden_Seed : Integer;
 4 procedure Initialize (Seed1 : out Integer; Seed2 : out Integer) is
 5 begin
 6 Seed1 := Integer'First;
 7 Seed2 := Integer'Last;
 8 end Initialize;
 9 function Number return Float is (0.0); -- not yet implemented
10begin
11 Put_Line ("Elaborating Executable_Part");
12 Initialize (Visible_Seed, Hidden_Seed);
13end Executable_Part;

force_body.ads

1package Force_Body is
2 pragma Elaborate_Body;
3 Global_Data : array (1 .. 10) of Integer;
4end Force_Body;

force_body.adb

1-- without Elaborate_Body, this is illegal
2with Ada.Text_IO; use Ada.Text_IO;
3package body Force_Body is
4begin
5 Put_Line ("Elaborating Force_Body");
6 for I in Global_Data'Range loop
7 Global_Data (I) := I * 100;
8 end loop;
9end Force_Body;

main.adb

1with Executable_Part;
2with Force_Body;
3procedure Main is
4begin
5 null;
6end Main;

Footnotes

constants.ads

1package Constants is
2 Polar_Radius : constant := 20_856_010.51;
3 Equatorial_Radius : constant := 20_926_469.20;
4 Earth_Diameter : constant :=
5 2.0 * ((Polar_Radius + Equatorial_Radius) / 2.0);
6end Constants;

global_data.ads

1package Global_Data is
2 Longitudinal_Velocity : Float := 0.0;
3 Longitudinal_Acceleration : Float := 0.0;
4 Lateral_Velocity : Float := 0.0;
5 Lateral_Acceleration : Float := 0.0;
6 Vertical_Velocity : Float := 0.0;
7 Vertical_Acceleration : Float := 0.0;
8end Global_Data;

related_units.ads

1package Related_Units is
2 type Vector is array (Positive range <>) of Float;
3 function "+" (L, R : Vector) return Vector;
4 function "-" (L, R : Vector) return Vector;
5end Related_Units;

related_units.adb

1package body Related_Units is
2 -- nothing is implemented yet!
3 function "+" (L, R : Vector) return Vector is (L);
4 function "-" (L, R : Vector) return Vector is (L);
5end Related_Units;

stack_abstract_data_machine.ads

1package Stack_Abstract_Data_Machine is
2 procedure Push (X : in Float);
3 procedure Pop (X : out Float);
4 function Empty return Boolean;
5 function Full return Boolean;
6end Stack_Abstract_Data_Machine;

stack_abstract_data_machine.adb

1package body Stack_Abstract_Data_Machine is
2 -- nothing is implemented yet!
3 procedure Push (X : in Float) is null;
4 procedure Pop (X : out Float) is null;
5 function Empty return Boolean is (True);
6 function Full return Boolean is (True);
7end Stack_Abstract_Data_Machine;

Footnotes

complex.ads

 1package Complex is
 2 type Number_T is private;
 3 function Constructor (Real_Part, Imaginary_Part : Float)
 4 return Number_T;
 5 procedure Constructor (This : out Number_T;
 6 Real_Part : Float;
 7 Imaginary_Part : Float);
 8 function Real_Part (This : Number_T) return Float;
 9 function Imaginary_Part (This : Number_T) return Float;
10 function Str (This : Number_T) return String;
11
12private
13 type Number_T is record
14 Real_Part, Imaginary_Part : Float;
15 end record;
16
17 function Constructor (Real_Part, Imaginary_Part : Float)
18 return Number_T is
19 (Real_Part, Imaginary_Part);
20
21 function Real_Part (This : Number_T) return Float is
22 (This.Real_Part);
23 function Imaginary_Part (This : Number_T) return Float is
24 (This.Imaginary_Part);
25end Complex;

complex.adb

 1package body Complex is
 2 procedure Constructor (This : out Number_T;
 3 Real_Part : Float;
 4 Imaginary_Part : Float) is
 5 begin
 6 This := Constructor (Real_Part, Imaginary_Part);
 7 end Constructor;
 8
 9 function Str (This : Number_T) return String is
10 begin
11 return Float'Image (Real_Part (This)) & " " &
12 Float'Image (Imaginary_Part (This)) & "i";
13 end Str;
14end Complex;

main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Complex; use Complex;
3procedure Main is
4 Number : Number_T := Constructor (1.2, 3.4);
5begin
6 Put_Line (Str (Number));
7 Constructor (Number, 56.7, 8.9);
8 Put_Line (Str (Number));
9end Main;

Footnotes

bounded_stack.ads

 1package Bounded_Stack is
 2 Max_Capacity : constant := 100;
 3 type Stack_T is private;
 4 procedure Push (This : in out Stack_T; Item : Integer);
 5 procedure Pop (This : in out Stack_T; Item : out Integer);
 6 function Is_Empty (This : Stack_T) return Boolean;
 7private
 8 type List_T is array (1 .. Max_Capacity) of Integer;
 9 type Stack_T is record
10 List : List_T;
11 Top : Integer range 0 .. Max_Capacity := 0;
12 end record;
13end Bounded_Stack;

bounded_stack.adb

 1package body Bounded_Stack is
 2 procedure Push (This : in out Stack_T; Item : Integer) is
 3 begin
 4 This.Top := This.Top + 1;
 5 This.List (This.Top) := Item;
 6 end Push;
 7 procedure Pop (This : in out Stack_T; Item : out Integer) is
 8 begin
 9 Item := This.List (This.Top);
10 This.Top := This.Top - 1;
11 end Pop;
12 function Is_Empty (This : Stack_T) return Boolean is (This.Top = 0);
13end Bounded_Stack;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Bounded_Stack; use Bounded_Stack;
 3procedure Main is
 4 Stack : Stack_T;
 5 Item : Integer;
 6begin
 7 Push (Stack, 42);
 8 Put_Line (Boolean'Image (Is_Empty (Stack)));
 9 Pop (Stack, Item);
10 --Put_Line (Integer'Image (Stack.Top)); -- compile error
11 Put_Line (Boolean'Image (Is_Empty (Stack)));
12 Put_Line (Item'Image);
13end Main;

Footnotes

sets.ads

 1package Sets is
 2 type Set_T is private;
 3 Null_Set : constant Set_T;
 4 type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 5 procedure Add (This : in out Set_T; Day : Days_T);
 6 procedure Remove (This : in out Set_T; Day : Days_T);
 7 function Str (This : Set_T) return String;
 8private
 9 function Length (This : Set_T) return Natural;
10 type Set_T is array (Days_T) of Boolean;
11 Null_Set : constant Set_T := (others => False);
12end Sets;

sets.adb

 1package body Sets is
 2 procedure Add (This : in out Set_T; Day : Days_T) is
 3 begin
 4 This (Day) := True;
 5 end Add;
 6 procedure Remove (This : in out Set_T; Day : Days_T) is null;
 7 function Str (This : Set_T) return String is
 8 Ret_Val : String (1 .. Length (This) * 4) := (others => ' ');
 9 Pos : Natural := 1;
10 begin
11 for D in This'Range loop
12 if This (D) then
13 Ret_Val (Pos .. Pos + 2) := D'Image;
14 Pos := Pos + 4;
15 end if;
16 end loop;
17 return Ret_Val;
18 end Str;
19 function Length (This : Set_T) return Natural is
20 Ret_Val : Natural := 0;
21 begin
22 for D in This'Range loop
23 Ret_Val := Ret_Val + (if This (D) then 1 else 0);
24 end loop;
25 return Ret_Val;
26 end Length;
27end Sets;

main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Sets; use Sets;
 3procedure Main is
 4 Set : Set_T := Null_Set;
 5begin
 6 Add (Set, Sun);
 7 Add (Set, Sat);
 8 Add (Set, Mon);
 9 Put_Line (Str (Set));
10end Main;

Footnotes

multiprocessor_mutex.ads

 1with Interfaces; use Interfaces;
 2package Multiprocessor_Mutex is
 3 type Limited_T is limited private;
 4 procedure Lock (This : in out Limited_T);
 5 procedure Unlock (This : in out Limited_T);
 6 function Create return Limited_T;
 7private
 8 type Limited_T is limited -- no internal copying allowed
 9 record
10 Flag : Interfaces.Unsigned_8; -- users cannot see this
11 end record;
12end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Limited_T) is null;
 3 procedure Unlock (This : in out Limited_T) is null;
 4
 5 Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
 6 function Create return Limited_T is
 7 begin
 8 return Ret_Val : Limited_T do
 9 Global_Lock_Counter := Global_Lock_Counter + 1;
10 Ret_Val.Flag := Global_Lock_Counter;
11 end return;
12 end Create;
13end Multiprocessor_Mutex;

use_limited_type.ads

 1with Multiprocessor_Mutex; use Multiprocessor_Mutex;
 2package Use_Limited_Type is
 3 type Legal is limited private;
 4 type Also_Legal is limited private;
 5 -- type Not_Legal is private;
 6 -- type Also_Not_Legal is private;
 7private
 8 type Legal is record
 9 S : Limited_T;
10 end record;
11 type Also_Legal is limited record
12 S : Limited_T;
13 end record;
14 -- type Not_Legal is limited record
15 -- S : Limited_T;
16 -- end record;
17 -- type Also_Not_Legal is record
18 -- S : Limited_T;
19 -- end record;
20end Use_Limited_Type;

Footnotes

multiprocessor_mutex.ads

 1with Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T);
13 procedure Unlock (This : in out Also_Limited_T);
14 function Create (Flag : Interfaces.Unsigned_8;
15 Id : Id_T)
16 return Also_Limited_T;
17end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Also_Limited_T) is null;
 3 procedure Unlock (This : in out Also_Limited_T) is null;
 4 Global_Lock : Also_Limited_T := (Lock => (Flag => 0), Id => "GLOB");
 5 function Create (Flag : Interfaces.Unsigned_8;
 6 Id : Id_T)
 7 return Also_Limited_T is
 8 Local_Lock : Also_Limited_T := (Lock => (Flag => 1), Id => "LOCA");
 9 begin
10 Global_Lock.Lock.Flag := Flag;
11 Local_Lock.Id := Id;
12 -- Compile error
13 -- return Local_Lock;
14 -- Compile error
15 -- return Global_Lock;
16 return (Lock => (Flag => Flag), Id => Id);
17 end Create;
18end Multiprocessor_Mutex;

perform_lock.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Multiprocessor_Mutex; use Multiprocessor_Mutex;
3procedure Perform_Lock is
4 Lock1 : Also_Limited_T := (Lock => (Flag => 2), Id => "LOCK");
5 Lock2 : Also_Limited_T;
6begin
7 -- Lock2 := Create (3, "CREA"); -- illegal
8 Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);
9end Perform_Lock;

Footnotes

multiprocessor_mutex.ads

 1with Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T) is null;
13 procedure Unlock (This : in out Also_Limited_T) is null;
14end Multiprocessor_Mutex;

Footnotes

multiprocessor_mutex.ads

 1with Interfaces; use Interfaces;
 2package Multiprocessor_Mutex is
 3 subtype Id_T is String (1 .. 4);
 4 -- prevent copying of a lock
 5 type Limited_T is limited record
 6 Flag : Interfaces.Unsigned_8;
 7 end record;
 8 type Also_Limited_T is record
 9 Lock : Limited_T;
10 Id : Id_T;
11 end record;
12 procedure Lock (This : in out Also_Limited_T);
13 procedure Unlock (This : in out Also_Limited_T);
14 function Create (Id : Id_T) return Also_Limited_T;
15end Multiprocessor_Mutex;

multiprocessor_mutex.adb

 1package body Multiprocessor_Mutex is
 2 procedure Lock (This : in out Also_Limited_T) is null;
 3 procedure Unlock (This : in out Also_Limited_T) is null;
 4
 5 Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
 6 function Create (Id : Id_T) return Also_Limited_T is
 7 begin
 8 return Ret_Val : Also_Limited_T do
 9 if Global_Lock_Counter = Interfaces.Unsigned_8'Last then
10 return;
11 end if;
12 Global_Lock_Counter := Global_Lock_Counter + 1;
13 Ret_Val.Id := Id;
14 Ret_Val.Lock.Flag := Global_Lock_Counter;
15 end return;
16 end Create;
17end Multiprocessor_Mutex;

perform_lock.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Multiprocessor_Mutex; use Multiprocessor_Mutex;
3procedure Perform_Lock is
4 Lock1 : constant Also_Limited_T := Create ("One ");
5 Lock2 : constant Also_Limited_T := Create ("Two ");
6begin
7 Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);
8 Put_Line (Lock2.Id & Lock2.Lock.Flag'Image);
9end Perform_Lock;

Footnotes

complex.ads

1package Complex is
2 type Number is private;
3 function "+" (Left, Right : Number) return Number;
4 function "-" (Left, Right : Number) return Number;
5private
6 type Number is record
7 Real_Part, Imaginary_Part : Float;
8 end record;
9end Complex;

complex-utils.ads

1package Complex.Utils is
2 function To_String (C : Number) return String;
3end Complex.Utils;

complex-utils.adb

1package body Complex.Utils is
2 -- construction of "number" is visible in the child body
3 function To_String (C : Number) return String is
4 (C.Real_Part'Image & " + i" & C.Imaginary_Part'Image);
5end Complex.Utils;

complex-debug.ads

1package Complex.Debug is
2 -- "with Complex;" not needed for visibility to Number
3 procedure Print (C : Number);
4end Complex.Debug;

complex-debug.adb

1with Ada.Text_IO;
2with Complex.Utils; -- needed for visibility to "To_String"
3package body Complex.Debug is
4 procedure Print (C : Number) is
5 begin
6 -- because of parent visibility, don't need to use "Complex.Utils"
7 Ada.Text_IO.Put_Line (Utils.To_String (C));
8 end Print;
9end Complex.Debug;

complex.adb

1package body Complex is
2 function "+" (Left, Right : Number) return Number is (Left);
3 function "-" (Left, Right : Number) return Number is (Left);
4end Complex;

Footnotes

personnel.ads

 1limited with Department;
 2package Personnel is
 3 type Employee_T is private;
 4 procedure Assign (This : in out Employee_T; Section : in Department.Section_T);
 5private
 6 type Employee_T is record
 7 Name : String (1 .. 10);
 8 Assigned_To : access Department.Section_T;
 9 end record;
10end Personnel;

department.ads

 1limited with Personnel;
 2package Department is
 3 type Section_T is private;
 4 procedure Set_Manager (This : in out Section_T; Who : in Personnel.Employee_T);
 5private
 6 type Section_T is record
 7 Name : String (1 .. 10);
 8 Manager : access Personnel.Employee_T;
 9 end record;
10end Department;

personnel.adb

1with Department;
2package body Personnel is
3 procedure Assign (This : in out Employee_T; Section : in Department.Section_T) is
4 begin
5 This.Assigned_To.all := Section;
6 end Assign;
7end Personnel;

department.adb

1with Personnel;
2package body Department is
3 procedure Set_Manager (This : in out Section_T; Who : in Personnel.Employee_T) is
4 begin
5 This.Manager.all := Who;
6 end Set_Manager;
7end Department;

Footnotes

os.ads

1package Os is
2 type File_T is private;
3 function Open (Name : String) return File_T;
4 procedure Write (File : File_T; Str : String);
5 procedure Close (File : File_T);
6private
7 type File_T is new Integer;
8end Os;

os-uart.ads

1private package Os.Uart is
2 type Device_T is private;
3 function Open (Name : String) return Device_T;
4 procedure Write (Device : Device_T; Str : String);
5 procedure Close (Device : Device_T);
6private
7 type Device_T is new Integer;
8end Os.Uart;

os-serial.ads

1private with Os.Uart; -- references only in private section
2private package Os.Serial is
3 type Comport_T is private;
4 procedure Initialize (Comport : in out Comport_T);
5private
6 type Comport_T is record
7 Device : Uart.Device_T;
8 end record;
9end Os.Serial;

os.adb

1package body Os is
2 function Open (Name : String) return File_T is (1);
3 procedure Write (File : File_T; Str : String) is null;
4 procedure Close (File : File_T) is null;
5end Os;

os-uart.adb

1package body Os.Uart is
2 function Open (Name : String) return Device_T is (1);
3 procedure Write (Device : Device_T; Str : String) is null;
4 procedure Close (Device : Device_T) is null;
5end Os.Uart;

os-serial.adb

1package body Os.Serial is
2 procedure Initialize (Comport : in out Comport_T) is null;
3end Os.Serial;

Footnotes

stack.ads

1package Stack is
2 procedure Push (Item : in Integer);
3 procedure Pop (Item : out Integer);
4private
5 Object : array (1 .. 100) of integer;
6 Top : Natural := 0;
7end Stack;

stack-utils.ads

1package Stack.Utils is
2 function Top return Integer;
3private
4 -- Legal here, but not above "private"
5 function Top return Integer is (Object (Stack.Top));
6end Stack.Utils;

stack-child.ads

1package Stack.Child is
2 procedure Misbehave;
3 procedure Reset;
4 function Peek (Index : Natural) return Integer;
5end Stack.Child;

stack-child.adb

 1package body Stack.Child is
 2 procedure Misbehave is
 3 begin
 4 Top := 0;
 5 end Misbehave;
 6
 7 procedure Reset is
 8 begin
 9 Top := 0;
10 end Reset;
11
12 function Peek (Index : Natural) return Integer is (Object (Index));
13end Stack.Child;

stack.adb

1package body Stack is
2 procedure Push (Item : in Integer) is null;
3 procedure Pop (Item : out Integer) is null;
4end Stack;

Footnotes

complex.ads

 1package Complex is
 2 type Number is private;
 3 function "*" (Left, Right : Number) return Number;
 4 function "+" (Left, Right : Number) return Number;
 5 procedure Put (C : Number);
 6 function Make (Real_Part, Imaginary_Part : Float) return Number;
 7 procedure Non_Primitive (X : Integer);
 8private
 9 type Number is record
10 Real_Part : Float;
11 Imaginary_Part : Float;
12 end record;
13end Complex;

demo_use_all_type.adb

 1with Complex;
 2use all type Complex.Number;
 3procedure Demo_Use_All_Type is
 4 A, B, C : Complex.Number;
 5begin
 6 -- "use all type" makes these available
 7 A := Make (Real_Part => 1.0,
 8 Imaginary_Part => 0.0);
 9 B := Make (Real_Part => 1.0,
10 Imaginary_Part => 0.0);
11 C := A + B;
12 Put (C);
13 -- Non_Primitive (0); -- but not this one
14end Demo_Use_All_Type;

demo_use_type.adb

 1with Complex;
 2use type Complex.Number;
 3procedure Demo_Use_Type is
 4 A, B, C : Complex.Number;
 5begin
 6 -- "use type" makes this available
 7 C := A + B;
 8 -- but not these
 9 -- A := Make (Real_Part => 1.0,
10 -- Imaginary_Part => 0.0);
11 -- B := Make (Real_Part => 1.0,
12 -- Imaginary_Part => 0.0);
13 -- Put (C);
14 -- Non_Primitive (0);
15end Demo_Use_Type;

demo_use.adb

 1with Complex; use Complex;
 2procedure Demo_Use is
 3 A, B, C : Complex.Number := (Complex.Make (1.1, 2.2));
 4begin
 5 -- "use" makes all these available
 6 C := A + B;
 7 A := Make (Real_Part => 1.0,
 8 Imaginary_Part => 0.0);
 9 B := Make (Real_Part => 1.0,
10 Imaginary_Part => 0.0);
11 Put (C);
12 Non_Primitive (0);
13end Demo_Use;

complex.adb

1package body Complex is
2 function "*" (Left, Right : Number) return Number is (Left);
3 function "+" (Left, Right : Number) return Number is (Left);
4 procedure Put (C : Number) is null;
5 function Make (Real_Part, Imaginary_Part : Float) return Number is
6 ((Real_Part, Imaginary_Part));
7 procedure Non_Primitive (X : Integer) is null;
8end Complex;

Footnotes

pkg_a.ads

1package Pkg_A is
2 Constant_A : constant := 1;
3 Constant_Aa : constant := 11;
4 Initialized : Boolean := False;
5end Pkg_A;

pkg_b.ads

1package Pkg_B is
2 Constant_B : constant := 20;
3 Constant_Bb : constant := 220;
4 Initialized : Boolean := False;
5end Pkg_B;

pkg_b-child.ads

1package Pkg_B.Child is
2 Constant_Bbb : constant := 222;
3end Pkg_B.Child;

p.ads

 1with Pkg_A; use Pkg_A;
 2with Pkg_B;
 3with Pkg_B.Child;
 4package P is
 5 type Type_1 is range Constant_A .. -- visible without dot-notation
 6 Pkg_B.Constant_B; -- not visible without dot-notation
 7
 8 use Pkg_B;
 9 -- Constant_B is now visible without dot-notation
10 type Type_2 is range Constant_Aa .. Constant_Bb;
11
12 Constant_Bb : Integer := 33; -- Constant_Bb will always be the local version
13 function Bb return Integer is (Constant_Bb);
14
15 function Is_Initialized return Boolean is
16 (Pkg_A.Initialized and Pkg_B.Initialized); -- Dot-notation to resolve ambiguity
17
18 -- we "use" Pkg_B, so Child is directly visible
19 Object : Integer := Child.Constant_Bbb;
20end P;

test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P;
 3procedure Test is
 4 A, B, C : P.Type_2 := P.Type_2'First;
 5begin
 6 -- C := A + B; -- illegal
 7 C := P."+" (A, B); -- legal but not pretty
 8 Put_Line (C'Image);
 9 declare
10 use P; -- make everything visible (including operators)
11 begin
12 C := A + B; -- now legal
13 Put_Line (C'Image);
14 end;
15end Test;

Footnotes

p.ads

1package P is
2 type Int1 is range 0 .. 1_000;
3 type Int2 is range 0 .. 2_000;
4 type Int3 is range 0 .. 3_000;
5 function "+" (Left : Int1; Right : Int3) return Int3;
6 function "+" (Left : Int2; Right : Int3) return Int3;
7end P;

test.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with P;
 3procedure Test is
 4 A, B, C : P.Int1 := 123;
 5 use type P.Int1;
 6 -- D : Int2; -- "Int2" is not visible
 7 D : P.Int2 := 234;
 8 E : P.Int3 := 345;
 9begin
10 B := A;
11 C := A + B; -- implicit operator is visible
12 Put_Line (C'Image);
13 A := B;
14 E := A + E; -- "used" operator visible
15 Put_Line (E'Image);
16 -- E := D + E; -- illegal: operator not "used"
17 -- E := E + A; -- illegal: no matching operator
18end Test;

p.adb

1package body P is
2 function "+" (Left : Int1; Right : Int3) return Int3 is (Int3'Last);
3 function "+" (Left : Int2; Right : Int3) return Int3 is (Int3'Last);
4end P;

Footnotes

access_types.ads

 1package Access_Types is
 2
 3 type R is record
 4 F1, F2 : Integer;
 5 end record;
 6 type A_Int is access Integer;
 7 type A_String is access all String;
 8 type A_R is access R;
 9
10 V_Int : A_Int := new Integer;
11 V_String : A_String := new String'("abc");
12 V_R : A_R := new R;
13
14 procedure Do_Something;
15
16end Access_Types;

access_types.adb

 1package body Access_Types is
 2
 3 function Local_Access_Example return Integer is
 4 type String_Access is access String; -- only visible here
 5 X : String_Access;
 6 begin
 7 X := new String'("Hello, World");
 8 return X.all'Length;
 9 end Local_Access_Example;
10
11 procedure Do_Something is
12 begin
13 V_Int.all := Local_Access_Example;
14 V_String.all := "cde";
15 V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
16 V_R.all := (0, 0);
17 V_R.F1 := 1; -- similar to V_R.all.F1 := 1;
18 V_Int := null;
19 V_R := null;
20 end Do_Something;
21
22end Access_Types;

Footnotes

accessibility_checks.ads

1package Accessibility_Checks is
2 procedure Proc_Access;
3 procedure Proc_Unchecked_Access;
4end Accessibility_Checks;

accessibility_checks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Accessibility_Checks is
 3
 4 type Recursive_Record_T;
 5 type Global_Access_T is access all Recursive_Record_T;
 6 type Recursive_Record_T is record
 7 Field : Integer;
 8 Next : Global_Access_T := null;
 9 end record;
10 Global_Pointer : Global_Access_T;
11 Global_Object : aliased Recursive_Record_T;
12 procedure Proc_Access is
13 type Local_Access_T is access all Recursive_Record_T;
14 Local_Pointer : Local_Access_T;
15 Local_Object : aliased Recursive_Record_T;
16 begin
17 Global_Pointer := Global_Object'Access;
18 Put_Line (Integer'Image (Global_Pointer.Field));
19 -- Global_Pointer := Local_Object'Access; -- illegal
20 Global_Pointer := Local_Object'Unchecked_Access;
21 Put_Line (Integer'Image (Global_Pointer.Field));
22 Local_Pointer := Global_Object'Access;
23 Put_Line (Integer'Image (Local_Pointer.Field));
24 Local_Pointer := Local_Object'Access;
25 Put_Line (Integer'Image (Local_Pointer.Field));
26 Local_Pointer := Local_Access_T (Global_Pointer);
27 Put_Line (Integer'Image (Local_Pointer.Field));
28 -- Global_Pointer := Global_Access_T (Local_Pointer); -- illegal
29 end Proc_Access;
30
31 procedure Proc_Unchecked_Access is
32 Local_Object : aliased Recursive_Record_T;
33 begin
34 -- Global_Pointer := Local_Object'Access; -- illegal
35 Global_Pointer := Local_Object'Unchecked_Access;
36 end Proc_Unchecked_Access;
37
38end Accessibility_Checks;

Footnotes

anonymous_access_types.ads

 1package Anonymous_Access_Types is
 2 type Access_T is access all Integer;
 3 Global : Access_T := new Integer'(123);
 4
 5 function F1 (Param : access Integer) return Boolean is (Param = null);
 6 function F2 (Param : access Integer) return Boolean is (F1 (Param));
 7
 8 function F3 (Param : access Integer) return Boolean is
 9 (F1 (Param) -- Param is an anonymous access type
10 or F2 (Global)); -- Global is a named access type
11end Anonymous_Access_Types;

primitives_and_access_type.ads

 1package Primitives_And_Access_Type is
 2 type Root_T is tagged null record;
 3 type Access_Root_T is access all Root_T;
 4 function Primitive_Of_Root (V : access Root_T) return Boolean is (V = null);
 5 function Action_On_Access (V : Access_Root_T) return Boolean is (V = null);
 6 type Child_T is new Root_T with null record;
 7 type Access_Child_T is access all Child_T;
 8 overriding function Primitive_Of_Root (V : access Child_T) return Boolean is
 9 (False);
10 -- Illegal:
11 -- overriding function Action_On_Access (V : access_child_t_t)
12 -- return boolean is (false);
13end Primitives_And_Access_Type;

anonymous_access_modifiers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Anonymous_Access_Types;
 3with Primitives_And_Access_Type;
 4procedure Anonymous_Access_Modifiers is
 5 Global : aliased Primitives_And_Access_Type.Root_T;
 6
 7 type Constant_Access_T is access constant Integer;
 8 type Not_Null_Access_T is not null access Integer;
 9
10 Constant_Access_Object : Constant_Access_T := new Integer'(123);
11 Not_Null_Access_Object : Not_Null_Access_T := new Integer'(345);
12
13begin
14 Put_Line (Boolean'Image (Anonymous_Access_Types.F3 (Not_Null_Access_Object)));
15 Put_Line (Boolean'Image
16 (Primitives_And_Access_Type.Primitive_Of_Root (Global'Access)));
17
18 Put_Line (Integer'Image (Not_Null_Access_Object.all));
19 Not_Null_Access_Object := new Integer'(Constant_Access_Object.all);
20 Put_Line (Integer'Image (Not_Null_Access_Object.all));
21
22 -- Constant_Access_Object.all := Not_Null_Access_Object.all; -- illegal
23 Constant_Access_Object := null; -- legal
24 Put_Line (Boolean'Image (Constant_Access_Object = null));
25end Anonymous_Access_Modifiers;

Footnotes

general.ads

 1package General is
 2 type Pointed_To_T is new Integer;
 3 type Access_T is access all Pointed_To_T;
 4 Object : Access_T := new Pointed_To_T;
 5
 6 type Other_Access_T is access all Pointed_To_T;
 7 Other_Object : Other_Access_T := Other_Access_T (Object);
 8
 9 Pointed_To : aliased Pointed_To_T := 1_234;
10
11end General;

use_general.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with General; use General;
 3procedure Use_General is
 4begin
 5 Object := Pointed_To'Access;
 6 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
 7 Pointed_To := Pointed_To + 1;
 8 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
 9 Object.all := Object.all * 2;
10 Put_Line (Pointed_To'Image & Pointed_To_T'Image (Object.all));
11end Use_General;

Footnotes

memory_management_types.ads

1with Ada.Unchecked_Deallocation;
2package Memory_Management_Types is
3 type Integer_Access_T is access all Integer;
4 procedure Free is new Ada.Unchecked_Deallocation (Integer, Integer_Access_T);
5end Memory_Management_Types;

memory_management_test.adb

 1with Memory_Management_Types; use Memory_Management_Types;
 2with Ada.Exceptions; use Ada.Exceptions;
 3with Ada.Text_IO; use Ada.Text_IO;
 4procedure Memory_Management_Test is
 5
 6 procedure Uninitialized_Pointer is
 7 Object : Integer_Access_T;
 8 begin
 9 Object.all := 123;
10 Put_Line ("Object = " & Integer'Image (Object.all));
11 exception
12 when Err : others =>
13 Put_Line ("Uninitialized_Pointer error: " & Exception_Name (Err));
14 end Uninitialized_Pointer;
15
16 procedure Double_Deallocation is
17 Object : Integer_Access_T;
18 begin
19 Object := new Integer'(123);
20 Put_Line ("Object = " & Integer'Image (Object.all));
21 Free (Object);
22 Free (Object);
23 exception
24 when Err : others =>
25 Put_Line ("Double_Deallocation error: " & Exception_Name (Err));
26 end Double_Deallocation;
27
28 procedure Accessing_Deallocated_Memory is
29 Object : Integer_Access_T;
30 begin
31 Object := new Integer'(123);
32 Put_Line ("Object = " & Integer'Image (Object.all));
33 Free (Object);
34 Put_Line ("Object = " & Integer'Image (Object.all));
35 exception
36 when Err : others =>
37 Put_Line ("Accessing_Deallocated_Memory error: " & Exception_Name (Err));
38 end Accessing_Deallocated_Memory;
39
40 procedure Memory_Leak is
41 Object : Integer_Access_T;
42 begin
43 for Counter in Integer'Range loop
44 Object := new Integer'(Counter);
45 end loop;
46 Put_Line ("Complete");
47 exception
48 when Err : others =>
49 Put_Line ("Memory_Leak error: " & Exception_Name (Err));
50 end Memory_Leak;
51
52begin
53 Uninitialized_Pointer;
54 Double_Deallocation;
55 Accessing_Deallocated_Memory;
56 Memory_Leak;
57end Memory_Management_Test;

Footnotes

pool_specific.ads

 1package Pool_Specific is
 2 type Pointed_To_T is new Integer;
 3 type Access_T is access Pointed_To_T;
 4 Object : Access_T := new Pointed_To_T;
 5
 6 type Other_Access_T is access Pointed_To_T;
 7 -- Other_Object : Other_Access_T := Other_Access_T (Object); -- illegal
 8
 9 type String_Access_T is access String;
10end Pool_Specific;

use_pool_specific.adb

 1with Ada.Unchecked_Deallocation;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Pool_Specific; use Pool_Specific;
 4procedure Use_Pool_Specific is
 5 X : Access_T := new Pointed_To_T'(123);
 6 Y : String_Access_T := new String (1 .. 10);
 7
 8 procedure Free is new Ada.Unchecked_Deallocation (Pointed_To_T, Access_T);
 9
10begin
11 Put_Line (Y.all);
12 Y := new String'("String will be long enough to hold this");
13 Put_Line (Y.all);
14 Put_Line (Pointed_To_T'Image (X.all));
15 Free (X);
16 Put_Line (Pointed_To_T'Image (X.all)); -- run-time error
17end Use_Pool_Specific;

Footnotes

generic_data.ads

 1package Generic_Data is
 2 generic
 3 type Discrete_T is (<>);
 4 type Integer_T is range <>;
 5 type Float_T is digits <>;
 6 type Indefinite_T;
 7 type Tagged_T is tagged;
 8 type Array_T is array (Boolean) of Integer;
 9 type Access_T is access all Integer;
10 type Private_T is private;
11 type Unconstrained_T (<>) is private;
12 package Parameter_Properties is
13 procedure Do_Something (Discrete_Param : Discrete_T;
14 Integer_Param : Integer_T;
15 Float_Param : Float_T;
16 Indefinite_Param : access Indefinite_T;
17 Tagged_Param : Tagged_T;
18 Array_Param : Array_T;
19 Access_Param : Access_T;
20 Private_Param : Private_T;
21 Unconstrained_Param : Unconstrained_T);
22 end Parameter_Properties;
23
24 generic
25 type Item_T is private;
26 type Access_Item_T is access all Item_T;
27 type Index_T is (<>);
28 type Array_T is array (Index_T range <>) of Access_Item_T;
29 package Combination is
30 procedure Add (List : in out Array_T;
31 Index : in Index_T;
32 Item : in Item_T);
33 end Combination;
34end Generic_Data;

generic_instances.ads

 1with Types; use Types;
 2with Generic_Data;
 3package Generic_Instances is
 4 package Parameter_Properties_Instance is new Generic_Data
 5 .Parameter_Properties
 6 (Boolean, Integer, Float, Indefinite_T => Hidden_T,
 7 Tagged_T => Tagged_Record_T, Array_T => Boolean_Array_Of_Integers_T,
 8 Access_T => Access_Integer_T, Private_T => Some_Private_T,
 9 Unconstrained_T => String);
10
11 type Item_T is (Red, White, Blue);
12 type Access_T is access all Item_T;
13 type Index_T is range 1 .. 100;
14 type Array_T is array (Index_T range <>) of Access_T;
15 package Combination_Instance is new Generic_Data.Combination
16 (Item_T, Access_T, Index_T, Array_T);
17end Generic_Instances;

generic_data.adb

 1package body Generic_Data is
 2 package body Parameter_Properties is
 3 procedure Do_Something (Discrete_Param : Discrete_T;
 4 Integer_Param : Integer_T;
 5 Float_Param : Float_T;
 6 Indefinite_Param : access Indefinite_T;
 7 Tagged_Param : Tagged_T;
 8 Array_Param : Array_T;
 9 Access_Param : Access_T;
10 Private_Param : Private_T;
11 Unconstrained_Param : Unconstrained_T) is null;
12 end Parameter_Properties;
13
14 package body Combination is
15 procedure Add (List : in out Array_T;
16 Index : in Index_T;
17 Item : in Item_T) is
18 begin
19 List (Index) := new Item_T'(Item);
20 end Add;
21 end Combination;
22end Generic_Data;

types.ads

 1package Types is
 2 type Hidden_T;
 3 type Tagged_Record_T is tagged record
 4 Field : access Hidden_T;
 5 end record;
 6 type Hidden_T is private;
 7 type Boolean_Array_Of_Integers_T is array (Boolean) of Integer;
 8 type Access_Integer_T is access all Integer;
 9 type Some_Private_T is private;
10private
11 type Hidden_T is new Integer;
12 type Some_Private_T is new Integer;
13end Types;

Footnotes

generic_formal_data.ads

 1package Generic_Formal_Data is
 2 generic
 3 type Variable_T is range <>;
 4 Variable : in out Variable_T;
 5 Increment : Variable_T;
 6 package Constants_And_Variables is
 7 procedure Add;
 8 function Value return Variable_T is (Variable);
 9 end Constants_And_Variables;
10
11 generic
12 type Type_T is (<>);
13 with procedure Print_One (Prompt : String; Value : Type_T);
14 with procedure Print_Two (Prompt : String; Value : Type_T) is null;
15 with procedure Print_Three (Prompt : String; Value : Type_T) is <>;
16 package Subprogram_Parameters is
17 procedure Print (Prompt : String; Param : Type_T);
18 end Subprogram_Parameters;
19end Generic_Formal_Data;

test_generic_formal_data.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Generic_Formal_Data; use Generic_Formal_Data;
 3procedure Test_Generic_Formal_Data is
 4 procedure Print_One (Prompt : String; Param : Integer) is
 5 begin
 6 Put_Line (Prompt & " - Print_One" & Param'Image);
 7 end Print_One;
 8 procedure Print_Two (Prompt : String; Param : Integer) is
 9 begin
10 Put_Line (Prompt & " - Print_Two" & Param'Image);
11 end Print_Two;
12 procedure Print_Three (Prompt : String; Param : Integer) is
13 begin
14 Put_Line (Prompt & " - Print_Three" & Param'Image);
15 end Print_Three;
16 procedure Print_Three_Prime (Prompt : String; Param : Integer) is
17 begin
18 Put_Line (Prompt & " - Print_Three_Prime" & Param'Image);
19 end Print_Three_Prime;
20
21 Global_Object : Integer := 0;
22 package Global_Data is new Constants_And_Variables
23 (Integer, Global_Object, 111);
24
25 package Print_1 is new Subprogram_Parameters (Integer, Print_One);
26 package Print_2 is new Subprogram_Parameters (Integer, Print_One, Print_Two);
27 package Print_3 is new Subprogram_Parameters (Integer, Print_One, Print_Two, Print_Three_Prime);
28
29begin
30 Print_1.Print ("print_1", Global_Data.Value);
31 Global_Data.Add;
32 Print_2.Print ("print_2", Global_Data.Value);
33 Global_Data.Add;
34 Print_3.Print ("print_3", Global_Data.Value);
35end Test_Generic_Formal_Data;

generic_formal_data.adb

 1package body Generic_Formal_Data is
 2 package body Constants_And_Variables is
 3 procedure Add is
 4 begin
 5 Variable := Variable + Increment;
 6 end Add;
 7 end Constants_And_Variables;
 8
 9 package body Subprogram_Parameters is
10 procedure Print (Prompt : String; Param : Type_T) is
11 begin
12 Print_One (Prompt, Param);
13 Print_Two (Prompt, Param);
14 Print_Three (Prompt, Param);
15 end Print;
16 end Subprogram_Parameters;
17end Generic_Formal_Data;

Footnotes

primitives_example.ads

 1package Primitives_Example is
 2
 3 type Record_T is record
 4 Field : Integer;
 5 end record;
 6 type Access_To_Record_T is access Record_T;
 7 type Array_T is array (1 .. 10) of Integer;
 8
 9 procedure Primitive_Of_Record_T (P : in out Record_T) is null;
10 function Primitive_Of_Record_T (P : Integer) return Record_T is
11 ((Field => P));
12 procedure Primitive_Of_Record_T (I : Integer;
13 P : access Record_T) is null;
14 procedure Not_A_Primitive_Of_Record_T
15 (I : Integer; P : Access_To_Record_T) is null;
16
17 procedure Primitive_Of_Record_T_And_Array_T
18 (P1 : in out Record_T; P2 : in out Array_T) is null;
19end Primitives_Example;

Footnotes

simple_derivation.ads

 1package Simple_Derivation is
 2 type Parent_T is range 1 .. 10;
 3 function Primitive1 (V : Parent_T) return String is
 4 ("Primitive1 of Parent_T" & V'Image);
 5 function Primitive2 (V : Parent_T) return String is
 6 ("Primitive2 of Parent_T" & V'Image);
 7 function Primitive3 (V : Parent_T) return String is
 8 ("Primitive3 of Parent_T" & V'Image);
 9
10 type Child_T is new Parent_T; -- implicitly gets access to Primitive1
11
12 -- new behavior for Primitive2
13 overriding function Primitive2 (V : Child_T) return String is
14 ("Primitive2 of Child_T" & V'Image);
15
16 -- remove behavior for Primitive3 from Child_T
17 overriding function Primitive3 (V : Child_T) return String is abstract;
18
19 -- add primitive only for Child_T
20 not overriding function Primitive4 (V : Child_T) return String is
21 ("Primitive4 of Child_T" & V'Image);
22end Simple_Derivation;

test_simple_derivation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Simple_Derivation; use Simple_Derivation;
 3procedure Test_Simple_Derivation is
 4 function Not_A_Primitive (V : Parent_T) return String is
 5 ("Not_A_Primitive" & V'Image);
 6 Parent_V : Parent_T := 1;
 7 Child_V : Child_T := 2;
 8begin
 9 Put_Line ("Parent_V - " & Primitive1 (Parent_V));
10 Put_Line ("Parent_V - " & Primitive2 (Parent_V));
11 Put_Line ("Parent_V - " & Primitive3 (Parent_V));
12 -- Put_Line ("Parent_V - " & Primitive4 (Parent_V)); -- illegal
13
14 Put_Line ("Child_V - " & Primitive1 (Child_V));
15 Put_Line ("Child_V - " & Primitive2 (Child_V));
16 -- Put_Line ("Child_V - " & Primitive3 (Child_V)); -- illegal
17 Put_Line ("Child_V - " & Primitive4 (Child_V));
18
19 Put_Line (Not_A_Primitive (Parent_V));
20 Put_Line (Not_A_Primitive (Parent_T (Child_V)));
21end Test_Simple_Derivation;

Footnotes

tagged_derivation.ads

 1package Tagged_Derivation is
 2
 3 type Root_T is tagged record
 4 Root_Field : Integer;
 5 end record;
 6 function Primitive_1 (This : Root_T) return Integer is (This.Root_Field);
 7 function Primitive_2 (This : Root_T) return String is
 8 (Integer'Image (This.Root_Field));
 9
10 type Child_T is new Root_T with record
11 Child_Field : Integer;
12 end record;
13 overriding function Primitive_2 (This : Child_T) return String is
14 (Integer'Image (This.Root_Field) & " " &
15 Integer'Image (This.Child_Field));
16 function Primitive_3 (This : Child_T) return Integer is
17 (This.Root_Field + This.Child_Field);
18
19 -- type Simple_Deriviation_T is new Child_T; -- illegal
20
21 type Root2_T is tagged record
22 Root_Field : Integer;
23 end record;
24 -- procedure Primitive_4 (X : Root_T; Y : Root2_T); -- illegal
25
26end Tagged_Derivation;

test_tagged_derivation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Tagged_Derivation; use Tagged_Derivation;
 3procedure Test_Tagged_Derivation is
 4 Root : Root_T := (Root_Field => 1);
 5 Child : Child_T := (Root_Field => 11, Child_Field => 22);
 6begin
 7 Put_Line ("Root: " & Primitive_2 (Root));
 8 Put_Line ("Child: " & Primitive_2 (Child));
 9 Root := Root_T (Child);
10 Put_Line ("Root from Child: " & Primitive_2 (Root));
11 -- Child := Child_T (Root); -- illegal
12 -- Put_Line ("Child from Root: " & Primitive_2 (Child)); -- illegal
13 Child := (Root with Child_Field => 999);
14 Put_Line ("Child from Root via aggregate: " & Primitive_2 (Child));
15end Test_Tagged_Derivation;

Footnotes

class_types.ads

 1package Class_Types is
 2 type Root_T is tagged null record;
 3 type Child1_T is new Root_T with null record;
 4 type Child2_T is new Root_T with null record;
 5 type Grandchild1_T is new Child1_T with null record;
 6
 7 -- Root'Class = {Root_T, Child1_T, Child2_T, Grandchild1_T}
 8 -- Child1'Class = {Child1_T, Grandchild1_T} Child2'Class = {Child2_T}
 9 -- Granchild1'Class ={Grandchild1_T}
10 procedure Test;
11
12end Class_Types;

class_types.adb

 1with Ada.Tags; use Ada.Tags;
 2with Ada.Text_IO; use Ada.Text_IO;
 3package body Class_Types is
 4 Root_Object : Root_T;
 5 Child_Object : Child1_T;
 6
 7 Class_Object1 : Child1_T'Class := Child_Object;
 8 Class_Object2 : Root_T'Class := Class_Object1;
 9 Class_Object3 : Root_T'Class := Child_Object;
10 -- Class_Object4 : Root_T'class; -- illegal
11
12 procedure Do_Something (Object : in out Root_T'Class) is
13 begin
14 Put_Line
15 ("Do_Something: " & Boolean'Image (Object in Root_T'Class) & " / " &
16 Boolean'Image (Object in Child1_T'Class));
17 end Do_Something;
18
19 procedure Test is
20 begin
21 Put_Line (Boolean'Image (Class_Object1'Tag = Class_Object2'Tag));
22 Put_Line (Boolean'Image (Class_Object2'Tag = Class_Object3'Tag));
23 Do_Something (Root_Object);
24 Do_Something (Child_Object);
25 Do_Something (Class_Object1);
26 Do_Something (Class_Object2);
27 Do_Something (Class_Object3);
28 end Test;
29end Class_Types;

abstract_types.ads

 1package Abstract_Types is
 2 type Root_T is abstract tagged record
 3 Field : Integer;
 4 end record;
 5 function Primitive1 (V : Root_T) return String is abstract;
 6 function Primitive2 (Prompt : String; V : Root_T) return String is
 7 (Prompt & "> " & Integer'Image (V.Field));
 8
 9 type Child_T is abstract new Root_T with null record;
10 -- Child_T does not need to redefine any primitives
11
12 type Grandchild_T is new Child_T with null record;
13 -- Grandchild_T is required to create a concrete version of Primitive2
14 function Primitive1 (V : Grandchild_T) return String is
15 (Integer'Image (V.Field));
16
17 procedure Test;
18end Abstract_Types;

abstract_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Abstract_Types is
 3 Object1 : constant Grandchild_T := (Field => 123);
 4 Object2 : constant Root_T'Class := Object1;
 5
 6 procedure Test is
 7 begin
 8 Put_Line (Object1.Primitive1);
 9 Put_Line (Primitive2 ("Object1", Object2));
10 Put_Line (Object2.Primitive1);
11 Put_Line (Primitive2 ("Object2", Object2));
12 end Test;
13
14end Abstract_Types;

test.adb

1with Abstract_Types;
2with Class_Types;
3procedure Test is
4begin
5 Class_Types.Test;
6 Abstract_Types.Test;
7end Test;

Footnotes

types.ads

1package Types is
2
3 type Root_T is tagged null record;
4 function Primitive (V : Root_T) return String is ("Root_T");
5
6 type Child_T is new Root_T with null record;
7 function Primitive (V : Child_T) return String is ("Child_T");
8
9end Types;

test_dispatching_and_redispatching.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Types; use Types;
 3procedure Test_Dispatching_And_Redispatching is
 4
 5 Root_Object : Root_T;
 6 Child_Object : Child_T;
 7
 8 V1 : constant Root_T'Class := Root_Object;
 9 V2 : constant Root_T'Class := Child_Object;
10 V3 : constant Child_T'Class := Child_Object;
11
12begin
13
14 Put_Line (Primitive (V1));
15 Put_Line (Primitive (V2));
16 Put_Line (Primitive (V3));
17
18end Test_Dispatching_And_Redispatching;

Footnotes

types.ads

 1package Types is
 2 type Root_T is tagged record
 3 Field : Integer;
 4 end record;
 5 function Primitive (Left : Root_T; Right : Root_T) return Integer is
 6 (Left.Field + Right.Field);
 7 function "=" (Left : Root_T; Right : Root_T) return Boolean is
 8 (Left.Field in Right.Field - 1 .. Right.Field + 1);
 9 function Constructor (I : Integer := 0) return Root_T is ((Field => I));
10
11 type Child_T is new Root_T with null record;
12 overriding function Primitive (Left : Child_T; Right : Child_T) return Integer is
13 (Left.Field * Right.Field);
14 overriding function "=" (Left : Child_T; Right : Child_T) return Boolean is
15 (Right.Field in Left.Field - 1 .. Left.Field + 1);
16 -- function Constructor (I : Integer := 0) return child_T; -- inherited from Root_t
17
18 type Child2_T is new Root_T with record
19 Field2 : Integer;
20 end record;
21 overriding function Primitive (Left : Child2_T; Right : Child2_T) return Integer is
22 (Left.Field * Right.Field);
23 overriding function "=" (Left : Child2_T; Right : Child2_T) return Boolean is
24 (Left.Field = Right.Field);
25 -- must create a constructor because new fields added
26 function Constructor (I : Integer := 0) return Child2_T is ((I, I));
27end Types;

test_exotic_dispatching_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Types; use Types;
 3procedure Test_Exotic_Dispatching_Operations is
 4 R1 : constant Root_T := (Field => 10);
 5 R2 : constant Root_T := (Field => 20);
 6 C1 : constant Child_T := (Field => 10);
 7 Cl1 : constant Root_T'Class := R1;
 8 Cl2 : constant Root_T'Class := R2;
 9 Cl3 : constant Root_T'Class := C1;
10
11 procedure Test_Primitive is
12 begin
13 Put_Line ("Primitive");
14 Put_Line (Integer'Image (Primitive (R1, R2))); -- static: ok
15 -- Put_Line (Integer'Image (Primitive (R1, C1))); -- static: error
16 Put_Line (Integer'Image (Primitive (Cl1, Cl2))); -- dynamic: ok
17 -- Put_Line (Integer'Image (Primitive (R1, Cl1))); -- static: error
18 Put_Line (Integer'Image (Primitive (Root_T'Class (R1), Cl1))); -- dynamic: ok
19 Put_Line (Integer'Image (Primitive (Cl1, Cl3))); -- dynamic: error
20 end Test_Primitive;
21
22 procedure Test_Equality is
23 begin
24 Put_Line ("Equality");
25 Put_Line ("Cl1 = Cl2 " & Boolean'Image (Cl1 = Cl2));
26 Put_Line ("Cl2 = Cl3 " & Boolean'Image (Cl2 = Cl3));
27 Put_Line ("Cl3 = Cl1 " & Boolean'Image (Cl3 = Cl1));
28 end Test_Equality;
29
30 procedure Test_Constructor is
31 -- Static call to Root_T primitive
32 V1 : Root_T'Class := Root_T'(Constructor);
33 V2 : Root_T'Class := V1;
34 -- Static call to Child2_T primitive
35 V3 : Root_T'Class := Child2_T'(Constructor);
36 -- V4 : Root_T'Class := Constructor; -- What is the tag of V4?
37 begin
38 -- No
39 -- V1 := Constructor;
40
41 -- Yes
42 V1 := Root_T'(Constructor);
43 end Test_Constructor;
44
45begin
46 Test_Equality;
47 Test_Constructor;
48 Test_Primitive;
49end Test_Exotic_Dispatching_Operations;

Footnotes

exception_objects_example.ads

1package Exception_Objects_Example is
2
3 Public_Exception : exception;
4
5 procedure Do_Something (X : Integer);
6
7end Exception_Objects_Example;

exception_objects_example.adb

 1package body Exception_Objects_Example is
 2 Hidden_Exception : exception;
 3
 4 procedure Do_Something (X : Integer) is
 5 begin
 6 if X < 0 then
 7 raise Public_Exception;
 8 elsif X = 0 then
 9 raise Hidden_Exception;
10 end if;
11 end Do_Something;
12
13end Exception_Objects_Example;

test_exception_objects_example.adb

 1with Ada.Exceptions; use Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3with Exception_Objects_Example; use Exception_Objects_Example;
 4procedure Test_Exception_Objects_Example is
 5begin
 6
 7 for I in -1 .. 1 loop
 8 begin
 9 Put_Line ("Try " & I'Image);
10 Do_Something (I);
11 Put_Line (" success");
12 exception
13 when Public_Exception =>
14 Put_Line (" Expected exception");
15 when The_Err : others =>
16 Put_Line (" Unexpected exception");
17 Put_Line (" Name: " & Exception_Name (The_Err));
18 Put_Line (" Information: " & Exception_Information (The_Err));
19 Put_Line (" Message: " & Exception_Message (The_Err));
20 end;
21 end loop;
22
23end Test_Exception_Objects_Example;

Footnotes

joy_ride.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Automotive; use Automotive;
 3procedure Joy_Ride is
 4 Hot_Rod : Vehicle_T;
 5 Bored : Boolean := False;
 6begin
 7 while not Bored loop
 8 Steer_Aimlessly (Bored);
 9 Consume_Fuel (Hot_Rod);
10 end loop;
11 Put_Line ("Driving Home");
12 Drive_Home;
13exception
14 when Fuel_Exhausted =>
15 Put_Line ("Pushing Home");
16 Push_Home;
17end Joy_Ride;

automotive.ads

 1package Automotive is
 2 Fuel_Exhausted : exception;
 3
 4 type Vehicle_T is record
 5 Fuel_Quantity : Float := 10.0;
 6 Fuel_Minimum : Float := 1.0;
 7 end record;
 8
 9 procedure Consume_Fuel (Car : in out Vehicle_T);
10 procedure Steer_Aimlessly (Flag : out Boolean);
11 procedure Drive_Home;
12 procedure Push_Home;
13end Automotive;

automotive.adb

 1with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 2package body Automotive is
 3 Gen : Generator;
 4 function Current_Consumption is new Random_Float (Float);
 5 function Random_Number is new Random_Discrete (Integer);
 6
 7 procedure Consume_Fuel (Car : in out Vehicle_T) is
 8 begin
 9 if Car.Fuel_Quantity <= Car.Fuel_Minimum then
10 raise Fuel_Exhausted;
11 else
12 Car.Fuel_Quantity := Car.Fuel_Quantity - Current_Consumption (Gen);
13 end if;
14 end Consume_Fuel;
15
16 procedure Steer_Aimlessly (Flag : out Boolean) is
17 begin
18 Flag := Random_Number (Gen, 1, 50) = 1;
19 if Random_Number (Gen, 1, 50) = 2 then
20 raise Constraint_Error;
21 end if;
22 end Steer_Aimlessly;
23
24 procedure Drive_Home is null;
25 procedure Push_Home is null;
26
27begin
28 Reset (Gen);
29end Automotive;

Footnotes

implicit_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Implicit_Exceptions is
 3 Array_Object : array (1 .. 100) of Integer;
 4
 5 procedure Raise_Constraint_Error (X : Integer) is
 6 begin
 7 Put_Line ("* Raise_Constraint_Error: " & X'Image);
 8 Array_Object (X) := X - 10;
 9 end Raise_Constraint_Error;
10
11 function Raise_Program_Error (X : Integer) return Boolean is
12 begin
13 Put_Line ("* Raise_Program_Error: " & X'Image);
14 if X in Array_Object'Range then
15 return Array_Object (X) > 0;
16 end if;
17 end Raise_Program_Error;
18end Implicit_Exceptions;

explicit_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Explicit_Exceptions is
 3 procedure Raise_Storage_Error (X : Integer) is
 4 begin
 5 Put_Line ("* Raise_Storage_Error: " & X'Image);
 6 if X < 0 then
 7 raise Storage_Error;
 8 end if;
 9 end Raise_Storage_Error;
10end Explicit_Exceptions;

test_exceptions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Implicit_Exceptions; use Implicit_Exceptions;
 3with Explicit_Exceptions; use Explicit_Exceptions;
 4procedure Test_Exceptions is
 5 procedure Test_Constraint_Error (X : Integer) is
 6 begin
 7 Raise_Constraint_Error (X);
 8 Put_Line ("Test_Constraint_Error success");
 9 exception
10 when Constraint_Error =>
11 Put_Line ("Test_Constraint_Error caught exception");
12 end Test_Constraint_Error;
13
14 procedure Test_Program_Error (X : Integer) is
15 begin
16 if Raise_Program_Error (X) then
17 Put_Line ("Test_Program_Error true");
18 else
19 Put_Line ("Test_Program_Error false");
20 end if;
21 exception
22 when Program_Error =>
23 Put_Line ("Test_Program_Error caught exception");
24 end Test_Program_Error;
25
26 procedure Test_Storage_Error (X : Integer) is
27 begin
28 Raise_Storage_Error (X);
29 Put_Line ("Test_Storage_Error success");
30 exception
31 when Storage_Error =>
32 Put_Line ("Test_Storage_Error caught exception");
33 end Test_Storage_Error;
34
35begin
36 Test_Constraint_Error (20);
37 Test_Constraint_Error (0);
38 Test_Constraint_Error (Integer'Last);
39 Test_Program_Error (Integer'First);
40 Test_Program_Error (Integer'Last);
41 Test_Storage_Error (Integer'First);
42 Test_Storage_Error (Integer'Last);
43end Test_Exceptions;

implicit_exceptions.ads

1package Implicit_Exceptions is
2 procedure Raise_Constraint_Error (X : Integer);
3 function Raise_Program_Error (X : Integer) return Boolean;
4end Implicit_Exceptions;

explicit_exceptions.ads

1package Explicit_Exceptions is
2 procedure Raise_Storage_Error (X : Integer);
3end Explicit_Exceptions;

Footnotes

propagation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with GNAT.Random_Numbers; use GNAT.Random_Numbers;
 3procedure Propagation is
 4 Error1 : exception;
 5 Error2 : exception;
 6
 7 Gen : Generator;
 8 procedure Maybe_Raise is
 9 Test : constant Float := Random (Gen);
10 begin
11 if Test > 0.666 then
12 raise Error1;
13 end if;
14 exception
15 when Error1 =>
16 if Test > 0.95 then
17 raise Error2;
18 else
19 raise;
20 end if;
21 end Maybe_Raise;
22
23 procedure One is
24 begin
25 Maybe_Raise;
26 end One;
27
28 procedure Two is
29 begin
30 One;
31 Maybe_Raise;
32 exception
33 when Error1 =>
34 Put_Line ("Exception from 1 or 2");
35 end Two;
36
37begin
38 Reset (Gen);
39 Maybe_Raise;
40 Two;
41exception
42 when Error1 =>
43 Put_Line ("Exception from 3");
44end Propagation;

Footnotes

stack.ads

1package Stack is
2 Underflow, Overflow : exception;
3 procedure Push (Item : in Integer);
4 procedure Pop (Item : out Integer);
5end Stack;

stack.adb

 1package body Stack is
 2 Values : array (1 .. 100) of Integer;
 3 Top : Integer := 0;
 4
 5 procedure Push (Item : in Integer) is
 6 begin
 7 if Top = Values'Last then
 8 raise Overflow;
 9 end if;
10 Top := Top + 1;
11 Values (Top) := Item;
12 end Push;
13
14 procedure Pop (Item : out Integer) is
15 begin
16 if Top < Values'First then
17 raise Underflow;
18 end if;
19 Item := Values (Top);
20 Top := Top - 1;
21 end Pop;
22end Stack;

test_stack.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Stack;
 3procedure Test_Stack is
 4 Global : Integer := 123;
 5
 6 procedure Push (X : Integer) is
 7 begin
 8 Stack.Push (X);
 9 exception
10 when Stack.Overflow =>
11 Put_Line ("No room on the stack");
12 end Push;
13
14 procedure Pop is
15 begin
16 Stack.Pop (Global);
17 exception
18 when Stack.Underflow =>
19 Put_Line ("Nothing on the stack");
20 end Pop;
21
22begin
23 Pop;
24 for I in 1 .. 100 loop
25 Push (I);
26 end loop;
27 Push (2);
28end Test_Stack;

Footnotes

elab_1.ads

1with Initializer; use Initializer;
2package Elab_1 is
3 Spec_Object : Integer := Call (101);
4 procedure Proc;
5end Elab_1;

elab_1.adb

1package body Elab_1 is
2 Body_Object : Integer := Call (102);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (103);
6end Elab_1;

elab_2.ads

1with Initializer; use Initializer;
2package Elab_2 is
3 Spec_Object : Integer := Call (201);
4 procedure Proc;
5end Elab_2;

elab_2.adb

1package body Elab_2 is
2 Body_Object : Integer := Call (202);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (203);
6end Elab_2;

test_elab.adb

1with Elab_2;
2with Elab_1;
3procedure Test_Elab is
4begin
5 Elab_2.Proc;
6 Elab_1.Proc;
7end Test_Elab;

initializer.ads

1package Initializer is
2 function Call (I : Integer) return Integer;
3end Initializer;

initializer.adb

1with Ada.Text_IO; use Ada.Text_IO;
2package body Initializer is
3 function Call (I : Integer) return Integer is
4 begin
5 Put_Line ("Call with " & Integer'Image (I));
6 return I;
7 end Call;
8end Initializer;

Footnotes

pure_p.ads

1package Pure_P is
2 pragma Pure;
3 Some_Constant : constant Integer := Integer'Size;
4 function Call (I : Integer) return Integer is (I);
5end Pure_P;

preelaborate_p.ads

1with Pure_P;
2package Preelaborate_P is
3 pragma Preelaborate;
4 Global_Object : Integer := Pure_P.Some_Constant;
5end Preelaborate_P;

elaborate_body_p.ads

1package Elaborate_Body_P is
2 pragma Elaborate_Body;
3 function Call (I : Integer) return Integer;
4end Elaborate_Body_P;

elaborate_body_p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Elaborate_Body_P is
 3 function Call (I : Integer) return Integer is
 4 begin
 5 Put_Line ("Call with " & Integer'Image (I));
 6 return I;
 7 end Call;
 8begin
 9 Put_Line ("Elaborate_Body_P package execution");
10end Elaborate_Body_P;

elab_1.ads

1with Elaborate_Body_P; use Elaborate_Body_P;
2pragma Elaborate (Elaborate_Body_P);
3package Elab_1 is
4 Spec_Object : Integer := Call (101);
5 procedure Proc;
6end Elab_1;

elab_1.adb

1with Elab_2;
2package body Elab_1 is
3 Body_Object : Integer := Call (102);
4 procedure Proc is null;
5begin
6 Body_Object := Body_Object + Call (103);
7 Elab_2.Proc;
8end Elab_1;

elab_2.ads

1with Elaborate_Body_P; use Elaborate_Body_P;
2package Elab_2 is
3 Spec_Object : Integer := Call (201);
4 procedure Proc;
5end Elab_2;

elab_2.adb

1package body Elab_2 is
2 Body_Object : Integer := Call (202);
3 procedure Proc is null;
4begin
5 Body_Object := Body_Object + Call (203);
6end Elab_2;

test_elab_control.adb

1with Elab_2;
2with Elab_1;
3pragma Elaborate_All (Elab_2);
4procedure Test_Elab_Control is
5begin
6 Elab_1.Proc;
7 Elab_2.Proc;
8end Test_Elab_Control;

Footnotes

stack_pkg.ads

 1package Stack_Pkg is
 2 procedure Push (Item : in Integer) with
 3 Pre => not Full,
 4 Post => not Empty and then Top = Item;
 5 procedure Pop (Item : out Integer) with
 6 Pre => not Empty,
 7 Post => not Full and Item = Top'Old;
 8 function Pop return Integer with
 9 Pre => not Empty,
10 Post => not Full and Pop'Result = Top'Old;
11 function Top return Integer with
12 Pre => not Empty;
13 function Empty return Boolean;
14 function Full return Boolean;
15end Stack_Pkg;

stack_pkg.adb

 1package body Stack_Pkg is
 2 Values : array (1 .. 100) of Integer;
 3 Current : Natural := 0;
 4
 5 -- Push/Pop cannot fail because preconditions prevent it
 6 procedure Push (Item : in Integer) is
 7 begin
 8 Current := Current + 1;
 9 Values (Current) := Item;
10 end Push;
11
12 procedure Pop (Item : out Integer) is
13 begin
14 Item := Values (Current);
15 Current := Current - 1;
16 end Pop;
17
18 function Pop return Integer is
19 Item : constant Integer := Values (Current);
20 begin
21 Current := Current - 1;
22 return Item;
23 end Pop;
24
25 function Top return Integer is (Values (Current));
26 function Empty return Boolean is (Current not in Values'Range);
27 function Full return Boolean is (Current >= Values'Length);
28end Stack_Pkg;

Footnotes

predicates.adb

 1with Ada.Exceptions; use Ada.Exceptions;
 2with Ada.Text_IO; use Ada.Text_IO;
 3procedure Predicates is
 4
 5 subtype Even_T is Integer with Dynamic_Predicate => Even_T mod 2 = 0;
 6 type Serial_Baud_Rate_T is range 110 .. 115_200 with
 7 Static_Predicate => Serial_Baud_Rate_T in -- Non-contiguous range
 8 2_400 | 4_800 | 9_600 | 14_400 | 19_200 | 28_800 | 38_400 | 56_000;
 9
10 -- This must be dynamic because "others" will be evaluated at run-time
11 subtype Vowel_T is Character with Dynamic_Predicate =>
12 (case Vowel_T is when 'A' | 'E' | 'I' | 'O' | 'U' => True, when others => False);
13
14 type Table_T is array (Integer range <>) of Integer;
15 subtype Sorted_Table_T is Table_T (1 .. 5) with
16 Dynamic_Predicate =>
17 (for all K in Sorted_Table_T'Range =>
18 (K = Sorted_Table_T'First or else Sorted_Table_T (K - 1) <= Sorted_Table_T (K)));
19
20 J : Even_T;
21 Values : Sorted_Table_T := (1, 3, 5, 7, 9);
22
23begin
24 begin
25 Put_Line ("J is" & J'Img);
26 J := Integer'Succ (J); -- assertion failure here
27 Put_Line ("J is" & J'Img);
28 J := Integer'Succ (J); -- or maybe here
29 Put_Line ("J is" & J'Img);
30 exception
31 when The_Err : others =>
32 Put_Line (Exception_Message (The_Err));
33 end;
34
35 for Baud in Serial_Baud_Rate_T loop
36 Put_Line (Baud'Image);
37 end loop;
38
39 Put_Line (Vowel_T'Image (Vowel_T'Succ ('A')));
40 Put_Line (Vowel_T'Image (Vowel_T'Pred ('Z')));
41
42 begin
43 Values (3) := 0; -- not an exception
44 Values := (1, 3, 0, 7, 9); -- exception
45 exception
46 when The_Err : others =>
47 Put_Line (Exception_Message (The_Err));
48 end;
49end Predicates;

Footnotes

bank.ads

 1package Bank is
 2 type Account_T is private with Type_Invariant => Consistent_Balance (Account_T);
 3 type Currency_T is delta 0.01 digits 12;
 4 function Consistent_Balance (This : Account_T) return Boolean;
 5 procedure Open (This : in out Account_T; Initial_Deposit : Currency_T);
 6private
 7 type List_T is array (1 .. 100) of Currency_T;
 8 type Transaction_List_T is record
 9 Values : List_T;
10 Count : Natural := 0;
11 end record;
12 type Account_T is record -- initial state MUST satisfy invariant
13 Current_Balance : Currency_T := 0.0;
14 Withdrawals : Transaction_List_T;
15 Deposits : Transaction_List_T;
16 end record;
17end Bank;

bank.adb

 1package body Bank is
 2 function Total (This : Transaction_List_T) return Currency_T is
 3 Result : Currency_T := 0.0;
 4 begin
 5 for I in 1 .. This.Count loop -- no iteration if list empty
 6 Result := Result + This.Values (I);
 7 end loop;
 8 return Result;
 9 end Total;
10 function Consistent_Balance (This : Account_T) return Boolean is
11 (Total (This.Deposits) - Total (This.Withdrawals) = This.Current_Balance);
12 procedure Open (This : in out Account_T; Initial_Deposit : Currency_T) is
13 begin
14 This.Current_Balance := Initial_Deposit;
15 -- if we checked, the invariant would be false here!
16 This.Withdrawals.Count := 0;
17 This.Deposits.Count := 1;
18 This.Deposits.Values (1) := Initial_Deposit;
19 end Open; -- invariant is now true
20end Bank;

Footnotes

test_address_clauses_and_overlays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3with System.Storage_Elements; use System.Storage_Elements;
 4procedure Test_Address_Clauses_And_Overlays is
 5
 6 type Bitfield_T is array (Integer range <>) of Boolean with
 7 Pack;
 8
 9 V : aliased Integer; -- object can be referenced elsewhere
10 pragma Volatile (V); -- may be updated at any time
11
12 V2 : aliased Integer;
13 pragma Volatile (V2);
14
15 V_A : constant System.Address := V'Address;
16 V_I : constant Integer_Address := To_Integer (V_A);
17
18 -- This maps directly on to the bits of V
19 V3 : aliased Bitfield_T (1 .. V'Size);
20 for V3'Address use V_A; -- overlays V
21
22 V4 : aliased Integer;
23 -- Trust me, I know what I'm doing, this is V2
24 for V4'Address use To_Address (V_I - 4);
25
26 function Str (Bitfield : Bitfield_T) return String is
27 Retval : String (Bitfield'First .. Bitfield'Last);
28 begin
29 for I in Bitfield'Range loop
30 Retval (I) := (if Bitfield (I) then '1' else '0');
31 end loop;
32 return Retval;
33 end Str;
34
35begin
36
37 V := 123;
38 Put (Integer'Image (V) & " => " & Str (V3));
39 New_Line;
40
41 V3 (V3'First + 2) := not V3 (V3'First + 2);
42 Put (Str (V3) & " => " & Integer'Image (V));
43 New_Line;
44
45 V2 := 456;
46 Put_Line ("V4 = " & Integer'Image (V4));
47 V4 := 789;
48 Put_Line ("V2 = " & Integer'Image (V2));
49
50end Test_Address_Clauses_And_Overlays;

Footnotes

test_data_representation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2procedure Test_Data_Representation is
 3
 4 type Enum is (E1, E2, E3);
 5
 6 procedure Attributes is
 7 type Integer_T is range 1 .. 10;
 8 type Similar_Integer_T is range 1 .. 10 with
 9 Size => 13,
10 Object_Size => 16,
11 Alignment => 1;
12 begin
13 Put_Line
14 ("Integer_T 'Size / 'Object_size / 'Alignment " &
15 Integer'Image (Integer_T'Size) &
16 Integer'Image (Integer_T'Object_Size) &
17 Integer'Image (Integer_T'Alignment));
18 Put_Line
19 ("Similar_Integer_T 'Size / 'Object_size / 'Alignment " &
20 Integer'Image (Similar_Integer_T'Size) &
21 Integer'Image (Similar_Integer_T'Object_Size) &
22 Integer'Image (Similar_Integer_T'Alignment));
23 end Attributes;
24
25 procedure Representation_Clauses is
26
27 type Normal_Record_T is record
28 A : Integer range 0 .. 4;
29 B : Boolean;
30 C : Integer;
31 D : Enum := E1;
32 end record;
33 type Normal_Array_T is array (1 .. 1_000) of Boolean;
34
35 type Packed_Record_T is record
36 A : Integer range 0 .. 4;
37 B : Boolean;
38 C : Integer;
39 D : Enum := E2;
40 end record with
41 Pack;
42 type Packed_Array_T is array (1 .. 1_000) of Boolean with
43 Pack;
44
45 type Repped_Record_T is record
46 A : Integer range 0 .. 4;
47 B : Boolean;
48 C : Integer;
49 D : Enum := E3;
50 end record;
51 for Repped_Record_T use record
52 A at 0 range 0 .. 2;
53 B at 0 range 3 .. 3;
54 C at 0 range 5 .. 36;
55 D at 5 range 0 .. 2;
56 end record;
57 type Repped_Array_T is array (1 .. 1_000) of Boolean;
58 for Repped_Array_T'Component_Size use 2;
59
60 begin
61 Put_Line
62 ("Size of normal record / array: " &
63 Integer'Image (Normal_Record_T'Size) &
64 Integer'Image (Normal_Array_T'Size));
65 Put_Line
66 ("Size of packed record / array: " &
67 Integer'Image (Packed_Record_T'Size) &
68 Integer'Image (Packed_Array_T'Size));
69 Put_Line
70 ("Size of repped record / array: " &
71 Integer'Image (Repped_Record_T'Size) &
72 Integer'Image (Repped_Array_T'Size));
73 end Representation_Clauses;
74
75begin
76 Attributes;
77 Representation_Clauses;
78
79end Test_Data_Representation;

Footnotes

protected_objects.ads

1package Protected_Objects is
2 protected Object is
3 procedure Set (Prompt : String; V : Integer);
4 function Get (Prompt : String) return Integer;
5 private
6 Local : Integer := 0;
7 end Object;
8end Protected_Objects;

protected_objects.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Protected_Objects is
 3 protected body Object is
 4 procedure Set (Prompt : String; V : Integer) is
 5 Str : constant String := "Set " & Prompt & V'Image;
 6 begin
 7 Local := V;
 8 Put_Line (Str);
 9 end Set;
10 function Get (Prompt : String) return Integer is
11 Str : constant String := "Get " & Prompt & Local'Image;
12 begin
13 Put_Line (Str);
14 return Local;
15 end Get;
16 end Object;
17end Protected_Objects;

tasks.ads

 1package Tasks is
 2 task T1 is
 3 entry Start;
 4 entry Receive_Message;
 5 end T1;
 6 task T2 is
 7 entry Start;
 8 entry Receive_Message;
 9 end T2;
10end Tasks;

test_protected_objects.adb

 1with Tasks; use Tasks;
 2procedure Test_Protected_Objects is
 3begin
 4 T1.Start;
 5 T1.Receive_Message;
 6 T2.Start;
 7 T2.Receive_Message;
 8 T2.Receive_Message;
 9 T1.Receive_Message;
10end Test_Protected_Objects;

tasks.adb

 1with Protected_Objects; use Protected_Objects;
 2package body Tasks is
 3 task body T1 is
 4 begin
 5 accept Start do
 6 Object.Set ("T1 Start", 0);
 7 end Start;
 8 loop
 9 accept Receive_Message do
10 Object.Set ("T1 Receive", Object.Get ("T1 Receive") + 1);
11 end Receive_Message;
12 end loop;
13 end T1;
14
15 task body T2 is
16 begin
17 accept Start do
18 Object.Set ("T2 Start", 0);
19 end Start;
20 loop
21 accept Receive_Message do
22 Object.Set ("T2 Receive", Object.Get ("T2 Receive") + 1);
23 end Receive_Message;
24 end loop;
25 end T2;
26end Tasks;

Footnotes

some_advanced_concepts.ads

1package Some_Advanced_Concepts is
2 Termination_Flag : Boolean := False;
3 task Select_Loop_Task is
4 entry Start;
5 entry Receive_Message (V : String);
6 entry Send_Message (V : String);
7 entry Stop;
8 end Select_Loop_Task;
9end Some_Advanced_Concepts;

some_advanced_concepts.adb

 1with Ada.Calendar; use Ada.Calendar;
 2with Ada.Text_IO; use Ada.Text_IO;
 3package body Some_Advanced_Concepts is
 4 task body Select_Loop_Task is
 5 begin
 6 accept Start do
 7 Put_Line ("Select_Loop_Task started at" &
 8 Day_Duration'Image (Seconds (Clock)));
 9 end Start;
10 loop
11 select
12 accept Receive_Message (V : String) do
13 Put_Line ("Select_Loop_Task Receive: " & V);
14 end Receive_Message;
15 or
16 accept Send_Message (V : String) do
17 Put_Line ("Select_Loop_Task Send: " & V);
18 end Send_Message;
19 or when Termination_Flag =>
20 accept Stop;
21 or
22 delay 5.0;
23 Put_Line ("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
24 exit;
25 end select;
26 end loop;
27 end Select_Loop_Task;
28
29end Some_Advanced_Concepts;

test_some_advanced_concepts.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Some_Advanced_Concepts; use Some_Advanced_Concepts;
 3procedure Test_Some_Advanced_Concepts is
 4begin
 5 Put_Line ("calling start");
 6 Select_Loop_Task.Start;
 7 Select_Loop_Task.Receive_Message ("1");
 8 Select_Loop_Task.Send_Message ("A");
 9 Select_Loop_Task.Send_Message ("B");
10 Select_Loop_Task.Receive_Message ("2");
11 Select_Loop_Task.Stop;
12exception
13 when Tasking_Error =>
14 Put_Line ("Expected exception: Entry not reached");
15end Test_Some_Advanced_Concepts;

Footnotes

tasks.ads

1package Tasks is
2 task type T is
3 entry Start (Id : Character; Initial_1, Initial_2 : Integer);
4 entry Receive_Message (Delta_1, Delta_2 : Integer);
5 end T;
6 T1, T2 : T;
7end Tasks;

protected_objects.ads

 1package Protected_Objects is
 2 protected type Object is
 3 procedure Set (Caller : Character; V : Integer);
 4 function Get return Integer;
 5 procedure Initialize (My_Id : Character);
 6 private
 7 Local : Integer := 0;
 8 Id : Character := ' ';
 9 end Object;
10 O1, O2 : Object;
11end Protected_Objects;

test_types.adb

 1with Tasks; use Tasks;
 2with Protected_Objects; use Protected_Objects;
 3procedure Test_Types is
 4begin
 5 O1.Initialize ('X');
 6 O2.Initialize ('Y');
 7 T1.Start ('A', 1, 2);
 8 T2.Start ('B', 1_000, 2_000);
 9 T1.Receive_Message (1, 2);
10 T2.Receive_Message (10, 20);
11end Test_Types;

tasks.adb

 1with Protected_Objects; use Protected_Objects;
 2package body Tasks is
 3 task body T is
 4 My_Id : Character := ' ';
 5 begin
 6 accept Start (Id : Character; Initial_1, Initial_2 : Integer) do
 7 My_Id := Id;
 8 O1.Set (My_Id, Initial_1);
 9 O2.Set (My_Id, Initial_2);
10 end Start;
11 loop
12 accept Receive_Message (Delta_1, Delta_2 : Integer) do
13 declare
14 New_1 : constant Integer := O1.Get + Delta_1;
15 New_2 : constant Integer := O2.Get + Delta_2;
16 begin
17 O1.Set (My_Id, New_1);
18 O2.Set (My_Id, New_2);
19 end;
20 end Receive_Message;
21 end loop;
22 end T;
23end Tasks;

protected_objects.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Protected_Objects is
 3 protected body Object is
 4 procedure Initialize (My_Id : Character) is
 5 begin
 6 Id := My_Id;
 7 end Initialize;
 8 procedure Set (Caller : Character; V : Integer) is
 9 begin
10 Local := V;
11 Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);
12 end Set;
13 function Get return Integer is
14 begin
15 return Local;
16 end Get;
17 end Object;
18end Protected_Objects;

Footnotes

tasks.ads

1package Tasks is
2 task T is
3 entry Start;
4 entry Receive_Message (V : String);
5 end T;
6end Tasks;

tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2package body Tasks is
 3 task body T is
 4 begin
 5 loop
 6 accept Start do
 7 Put_Line ("Start");
 8 end Start;
 9 accept Receive_Message (V : String) do
10 Put_Line ("Receive " & V);
11 end Receive_Message;
12 end loop;
13 end T;
14end Tasks;

test_tasks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Tasks; use Tasks;
 3procedure Test_Tasks is
 4begin
 5 Put_Line ("calling start");
 6 T.Start;
 7 Put_Line ("calling receive 1");
 8 T.Receive_Message ("1");
 9 Put_Line ("calling receive 2");
10 -- Locks until somebody calls Start
11 T.Receive_Message ("2");
12end Test_Tasks;

Footnotes

 _static/logo.png
LEARN.

ADACORE.COM

_static/learn_meta_img.jpeg

_static/plus.png

_static/minus.png

_images/gnat_windows_build_opt.png
File Edit Navigate Find Code VCS Build SPARK Analyze Debug View Window Help
AEE 9C «5 S LABLPR

_images/gnat_windows_build_run_opt.png
File Edit Navigate Find Code VCS Build SPARK Analyze Debug View Window Help
AEED 9C «5 S LAR LR

_images/05_loop.png
Smt2 + Cond + Smts

Smt2 + not Cond + Smt3

_images/ccheart_black.png

_images/gnat_windows_project_debug_opt.png
for Default
General
Sources
Dependencies
Languages
Directories.
Files
Main
~ Naming
Ada
Build
Toolchain
Make
Directories.
~ Switches
AdazwsDL
Pretty Printer
GNATprove
GatCheck
Builder

Binder
Ada Linker
GNATdoc
Embedded
Version Control
Library
Standalone
‘GNATemulator
GNATtest

Code generation
No optimization
Inlining
Unrollloops
Pstion independent code
Always generate AL file
Separate function sections

Separate data sections

Messages
Full errors

Warnings:
Validity checking mode:
Style checks:

Stack usage
Generate stack usage information

Run-time checks Apply changes to:
 Show as hierarchy

Overflow checking
Project

¥ Default

Suppress all checks
Stack checking

Dynamic elaboration

Debugging
Debug Information

Enable assertions

Scenario
Syntax

Ada 83 mode
Ada 95 mode

Ada 2005 mode
Ada 2012 mode

_images/01_spark_ada.png
Ada Core

) language o
features Additional
outside constructs SPARK

\ common to
\ the SPARK Ada and aspects

subset SPARK

SPARK

_images/graphviz-ddc784c4232014390fe2a45f8f0423bf4c4a669e.png
bit

2

3

component

(reserved)

Error

Vi

_images/graphviz-e56231607172aff8df5792206f6e30d00e41a5a2.png
position

component

_images/graphviz-21e577ee7abd1ffa25ea8f3c8bb3cb1a9a22edb8.png
position

2

3

6

7

bits

#0 ..

7

#8 .. #15

#16 .. #23

#24 . #31

#0 ..

7

#8 .. #15

#16 .. #23

#24 .. #31

component

A

B

_images/graphviz-ad402887c1b07e8389cd003d801304a52365e2e6.png
position

2

3

7

8

bits

#0 ..

7

#8 .. #15

#16 .. #23

#24 . #31

#0 ..

7

#8 .. #15

#16 .. #23

#24 . #31

component

A

B

_images/lckr_and_lcck_for_gpio_pin_locking.png
LCKR

31

LCCK
16

Unused

v
GPIO Pin Mask

_images/memory-mapped-device.png
Memory

| Dewce Unsigned_32 with
Address => ...,

{ Current_Value : Unsigned_32;

Current_Value := Device;

Current_Value;

_images/idiom_1_diagram.png
Interrupt Vectors

Protected Object

/"

Handler

Processing
Task

_images/idiom_2_diagram.png
Protected Object

Interrupt Vectors

Processing
Task

Get_Data

- If needed

_images/optimized-record-component-order.png
type My_Intis range 1..10; Sample layout for a given compiler

subtype S is Integer range 1..10;

w
N
o

type R is record

w
<

W3 If compiler allocates
M : My_Int; in declarati d
B : Boolean: in declaration order
C : Character;
end record; R'Size will be 56 bits (7 bytes,

but all 8 will be allocated)

_images/pile_of_dishes.png

_images/plantuml-04a14f1079efd2e29baa5a39d4ec5dbed24284b5.png

nav.xhtml

 Table of Contents

 		
 LEARN.ADACORE.COM

 		
 Introduction to Ada

 		
 Introduction

 		
 History

 		
 Ada today

 		
 Philosophy

 		
 SPARK

 		
 Imperative Language

 		
 Hello world

 		
 Imperative language - If/Then/Else

 		
 Imperative language - Loops

 		
 For loops

 		
 Bare loops

 		
 While loops

 		
 Imperative language - Case statement

 		
 Imperative language - Declarative regions

 		
 Imperative language - conditional expressions

 		
 If expressions

 		
 Case expressions

 		
 Subprograms

 		
 Subprograms

 		
 Subprogram calls

 		
 Nested subprograms

 		
 Function calls

 		
 Parameter modes

 		
 Subprogram calls

 		
 In parameters

 		
 In out parameters

 		
 Out parameters

 		
 Forward declaration of subprograms

 		
 Renaming

 		
 Modular Programming

 		
 Packages

 		
 Using a package

 		
 Package body

 		
 Child packages

 		
 Child of a child package

 		
 Multiple children

 		
 Visibility

 		
 Renaming

 		
 Strongly Typed Language

 		
 What is a type?

 		
 Integers

 		
 Operational semantics

 		
 Unsigned types

 		
 Enumerations

 		
 Floating-point types

 		
 Basic properties

 		
 Precision of floating-point types

 		
 Range of floating-point types

 		
 Strong typing

 		
 Derived types

 		
 Subtypes

 		
 Subtypes as type aliases

 		
 Records

 		
 Record type declaration

 		
 Aggregates

 		
 Component selection

 		
 Renaming

 		
 Arrays

 		
 Array type declaration

 		
 Indexing

 		
 Simpler array declarations

 		
 Range attribute

 		
 Unconstrained arrays

 		
 Predefined array type: String

 		
 Restrictions

 		
 Returning unconstrained arrays

 		
 Declaring arrays (2)

 		
 Array slices

 		
 Renaming

 		
 More About Types

 		
 Aggregates: A primer

 		
 Overloading and qualified expressions

 		
 Character types

 		
 Access Types

 		
 Overview

 		
 Allocation (by type)

 		
 Dereferencing

 		
 Other features

 		
 Mutually recursive types

 		
 More About Records

 		
 Dynamically sized record types

 		
 Records with discriminant

 		
 Variant records

 		
 Fixed-Point Types

 		
 Decimal fixed-point types

 		
 Ordinary fixed-point types

 		
 Privacy

 		
 Basic encapsulation

 		
 Abstract data types

 		
 Limited types

 		
 Child packages & privacy

 		
 Generics

 		
 Introduction

 		
 Formal type declaration

 		
 Formal object declaration

 		
 Generic body definition

 		
 Generic instantiation

 		
 Generic packages

 		
 Formal subprograms

 		
 Example: I/O instances

 		
 Example: ADTs

 		
 Example: Swap

 		
 Example: Reversing

 		
 Example: Test application

 		
 Exceptions

 		
 Exception declaration

 		
 Raising an exception

 		
 Handling an exception

 		
 Predefined exceptions

 		
 Tasking

 		
 Tasks

 		
 Simple task

 		
 Simple synchronization

 		
 Delay

 		
 Synchronization: rendezvous

 		
 Select loop

 		
 Cycling tasks

 		
 Protected objects

 		
 Simple object

 		
 Entries

 		
 Task and protected types

 		
 Task types

 		
 Protected types

 		
 Design by contracts

 		
 Pre- and postconditions

 		
 Predicates

 		
 Type invariants

 		
 Interfacing With C

 		
 Multi-language project

 		
 Type convention

 		
 Foreign subprograms

 		
 Calling C subprograms in Ada

 		
 Calling Ada subprograms in C

 		
 Foreign variables

 		
 Using C global variables in Ada

 		
 Using Ada variables in C

 		
 Generating bindings

 		
 Adapting bindings

 		
 Object Oriented Programming

 		
 Derived types

 		
 Tagged types

 		
 Classwide types

 		
 Dispatching operations

 		
 Dot notation

 		
 Private & Limited

 		
 Classwide access types

 		
 Standard Library: Containers

 		
 Vectors

 		
 Instantiation

 		
 Initialization

 		
 Appending and prepending elements

 		
 Accessing first and last elements

 		
 Iterating

 		
 Finding and changing elements

 		
 Inserting elements

 		
 Removing elements

 		
 Other Operations

 		
 Sets

 		
 Initialization and iteration

 		
 Operations on elements

 		
 Other Operations

 		
 Indefinite maps

 		
 Hashed maps

 		
 Ordered maps

 		
 Complexity

 		
 Standard Library: Dates & Times

 		
 Date and time handling

 		
 Delaying using date

 		
 Real-time

 		
 Benchmarking

 		
 Standard Library: Strings

 		
 String operations

 		
 Limitation of fixed-length strings

 		
 Bounded strings

 		
 Unbounded strings

 		
 Standard Library: Files & Streams

 		
 Text I/O

 		
 Sequential I/O

 		
 Direct I/O

 		
 Stream I/O

 		
 Standard Library: Numerics

 		
 Elementary Functions

 		
 Random Number Generation

 		
 Complex Types

 		
 Vector and Matrix Manipulation

 		
 Appendices

 		
 Appendix A: Generic Formal Types

 		
 Indefinite version

 		
 Appendix B: Containers

 		
 Advanced Journey With Ada

 		
 Data types

 		
 Types

 		
 Scalar Types

 		
 Enumerations

 		
 Definite and Indefinite Subtypes

 		
 Incomplete types

 		
 Type view

 		
 Type conversion

 		
 Qualified Expressions

 		
 Default initial values

 		
 Deferred Constants

 		
 User-defined literals

 		
 Types and Representation

 		
 Enumeration Representation Clauses

 		
 Data Representation

 		
 Record Representation and storage clauses

 		
 Changing Data Representation

 		
 Valid Attribute

 		
 Unchecked Union

 		
 Shared variable control

 		
 Addresses

 		
 Discarding names

 		
 Records

 		
 Mutually dependent types

 		
 Null records

 		
 Per-Object Expressions

 		
 Aggregates

 		
 Container Aggregates

 		
 Record aggregates

 		
 Full coverage rules for Aggregates

 		
 Array aggregates

 		
 Extension Aggregates

 		
 Delta Aggregates

 		
 Arrays

 		
 Unconstrained Arrays

 		
 Multidimensional Arrays

 		
 Strings

 		
 Wide and Wide-Wide Strings

 		
 String Encoding

 		
 Image attribute

 		
 Put_Image aspect

 		
 Universal text buffer

 		
 Numerics

 		
 Modular Types

 		
 Numeric Literals

 		
 Floating-Point Types

 		
 Fixed-Point Types

 		
 Big Numbers

 		
 Control Flow

 		
 Expressions

 		
 Expressions: Definition

 		
 Conditional Expressions

 		
 Quantified Expressions

 		
 Declare Expressions

 		
 Reduction Expressions

 		
 Statements

 		
 Simple and Compound Statements

 		
 Labels

 		
 Exit loop statement

 		
 If, case and loop statements

 		
 Block Statements

 		
 Extended return statement

 		
 Subprograms

 		
 Parameter Modes and Associations

 		
 Operators

 		
 Expression functions

 		
 Overloading

 		
 Operator Overloading

 		
 Operator Overriding

 		
 Nonreturning procedures

 		
 Inline subprograms

 		
 Null Procedures

 		
 Exceptions

 		
 Asserts

 		
 Assertion policies

 		
 Checks and exceptions

 		
 Ada.Exceptions package

 		
 Exception renaming

 		
 Out and Uninitialized

 		
 Suppressing checks

 		
 Modular programming

 		
 Packages

 		
 Package renaming

 		
 Private packages

 		
 Private with clauses

 		
 Limited Visibility

 		
 Visibility

 		
 Use type clause

 		
 Use clauses and naming conflicts

 		
 Subprograms and Modularity

 		
 Private subprograms

 		
 Resource Management

 		
 Access Types

 		
 Access types: Terminology

 		
 Access types: Allocation

 		
 Discriminants as Access Values

 		
 Parameters as Access Values

 		
 Self-reference

 		
 Mutually dependent types using access types

 		
 Dereferencing

 		
 Ragged arrays

 		
 Aliasing

 		
 Accessibility Levels and Rules: An Introduction

 		
 Unchecked Access

 		
 Unchecked Deallocation

 		
 Null & Not Null Access

 		
 Design strategies for access types

 		
 Access to subprograms

 		
 Accessibility Rules and Access-To-Subprograms

 		
 Access and Address

 		
 Anonymous Access Types

 		
 Named and Anonymous Access Types

 		
 Anonymous Access-To-Object Types

 		
 Access discriminants

 		
 Self-reference

 		
 Mutually dependent types using anonymous access types

 		
 Access parameters

 		
 User-Defined References

 		
 Anonymous Access Types and Accessibility Rules

 		
 Anonymous Access-To-Subprograms

 		
 Accessibility Rules and Anonymous Access-To-Subprograms

 		
 Introduction to SPARK

 		
 Overview

 		
 What is it?

 		
 What do the tools do?

 		
 Key Tools

 		
 A trivial example

 		
 The Programming Language

 		
 Limitations

 		
 No side-effects in expressions

 		
 No aliasing of names

 		
 Designating SPARK Code

 		
 Code Examples / Pitfalls

 		
 Example #1

 		
 Example #2

 		
 Example #3

 		
 Example #4

 		
 Example #5

 		
 Example #6

 		
 Example #7

 		
 Example #8

 		
 Example #9

 		
 Example #10

 		
 Flow Analysis

 		
 What does flow analysis do?

 		
 Errors Detected

 		
 Uninitialized Variables

 		
 Ineffective Statements

 		
 Incorrect Parameter Mode

 		
 Additional Verifications

 		
 Global Contracts

 		
 Depends Contracts

 		
 Shortcomings

 		
 Modularity

 		
 Composite Types

 		
 Value Dependency

 		
 Contract Computation

 		
 Code Examples / Pitfalls

 		
 Example #1

 		
 Example #2

 		
 Example #3

 		
 Example #4

 		
 Example #5

 		
 Example #6

 		
 Example #7

 		
 Example #8

 		
 Example #9

 		
 Example #10

 		
 Proof of Program Integrity

 		
 Runtime Errors

 		
 Modularity

 		
 Exceptions

 		
 Contracts

 		
 Executable Semantics

 		
 Additional Assertions and Contracts

 		
 Debugging Failed Proof Attempts

 		
 Debugging Errors in Code or Specification

 		
 Debugging Cases where more Information is Required

 		
 Debugging Prover Limitations

 		
 Code Examples / Pitfalls

 		
 Example #1

 		
 Example #2

 		
 Example #3

 		
 Example #4

 		
 Example #5

 		
 Example #6

 		
 Example #7

 		
 Example #8

 		
 Example #9

 		
 Example #10

 		
 State Abstraction

 		
 What's an Abstraction?

 		
 Why is Abstraction Useful?

 		
 Abstraction of a Package's State

 		
 Declaring a State Abstraction

 		
 Refining an Abstract State

 		
 Representing Private Variables

 		
 Additional State

 		
 Nested Packages

 		
 Constants that Depend on Variables

 		
 Subprogram Contracts

 		
 Global and Depends

 		
 Preconditions and Postconditions

 		
 Initialization of Local Variables

 		
 Code Examples / Pitfalls

 		
 Example #1

 		
 Example #2

 		
 Example #3

 		
 Example #4

 		
 Example #5

 		
 Example #6

 		
 Example #7

 		
 Example #8

 		
 Example #9

 		
 Example #10

 		
 Proof of Functional Correctness

 		
 Beyond Program Integrity

 		
 Advanced Contracts

 		
 Ghost Code

 		
 Ghost Functions

 		
 Global Ghost Variables

 		
 Guide Proof

 		
 Local Ghost Variables

 		
 Ghost Procedures

 		
 Handling of Loops

 		
 Loop Invariants

 		
 Code Examples / Pitfalls

 		
 Example #1

 		
 Example #2

 		
 Example #3

 		
 Example #4

 		
 Example #5

 		
 Example #6

 		
 Example #7

 		
 Example #8

 		
 Example #9

 		
 Example #10

 		
 Introduction to Embedded Systems Programming

 		
 Introduction

 		
 So, what will we actually cover?

 		
 Definitions

 		
 Down To The Bare Metal

 		
 The Ada Drivers Library

 		
 Low Level Programming

 		
 Separation Principle

 		
 Guaranteed Level of Support

 		
 Querying Implementation Limits and Characteristics

 		
 Querying Representation Choices

 		
 Specifying Representation

 		
 Unchecked Programming

 		
 Data Validity

 		
 Multi-Language Development

 		
 General Interfacing

 		
 Aspect/Pragma Convention

 		
 Aspect/Pragma Import and Export

 		
 Aspect/Pragma External_Name and Link_Name

 		
 Package Interfaces

 		
 Language-Specific Interfacing

 		
 Package Interfaces.C

 		
 Package Interfaces.C.Strings

 		
 Package Interfaces.C.Pointers

 		
 Package Interfaces.Fortran

 		
 Machine Code Insertions (MCI)

 		
 When Ada Is Not the Main Language

 		
 Interacting with Devices

 		
 Non-Memory-Mapped Devices

 		
 Memory-Mapped Devices

 		
 Dynamic Address Conversion

 		
 Address Arithmetic

 		
 General-Purpose Code Generators

 		
 Aspect Independent

 		
 Aspect Volatile

 		
 Aspect Atomic

 		
 Aspect Full_Access_Only

 		
 Handling Interrupts

 		
 Background

 		
 Language-Defined Interrupt Model

 		
 Interrupt Handlers

 		
 Interrupt Management

 		
 Associating Handlers With Interrupts

 		
 Interrupt Priorities

 		
 Common Design Idioms

 		
 Parameterizing Handlers

 		
 Multi-Level Handlers

 		
 Final Points

 		
 Conclusion

 		
 What's New in Ada 2022

 		
 Introduction

 		
 References

 		
 'Image attribute for any type

 		
 'Image attribute for a value

 		
 'Image attribute for any type

 		
 References

 		
 Redefining the 'Image attribute

 		
 What's the Root_Buffer_Type?

 		
 Outdated draft implementation

 		
 References

 		
 User-Defined Literals

 		
 Turn Ada into JavaScript

 		
 References

 		
 Advanced Array Aggregates

 		
 Square brackets

 		
 Iterated Component Association

 		
 References

 		
 Container Aggregates

 		
 References

 		
 Delta Aggregates

 		
 Delta aggregate for records

 		
 Delta aggregate for arrays

 		
 References

 		
 Target Name Symbol (@)

 		
 Alternatives

 		
 References

 		
 Enumeration representation

 		
 Literal positions

 		
 Representation values

 		
 Before Ada 2022

 		
 References

 		
 Big Numbers

 		
 Big Integers

 		
 Tiny RSA implementation

 		
 Big Reals

 		
 References

 		
 Interfacing C variadic functions

 		
 References

 		
 Ada for the C++ or Java Developer

 		
 Preface

 		
 Basics

 		
 Compilation Unit Structure

 		
 Statements, Declarations, and Control Structures

 		
 Statements and Declarations

 		
 Conditions

 		
 Loops

 		
 Type System

 		
 Strong Typing

 		
 Language-Defined Types

 		
 Application-Defined Types

 		
 Type Ranges

 		
 Generalized Type Contracts: Subtype Predicates

 		
 Attributes

 		
 Arrays and Strings

 		
 Heterogeneous Data Structures

 		
 Pointers

 		
 Functions and Procedures

 		
 General Form

 		
 Overloading

 		
 Subprogram Contracts

 		
 Packages

 		
 Declaration Protection

 		
 Hierarchical Packages

 		
 Using Entities from Packages

 		
 Classes and Object Oriented Programming

 		
 Primitive Subprograms

 		
 Derivation and Dynamic Dispatch

 		
 Constructors and Destructors

 		
 Encapsulation

 		
 Abstract Types and Interfaces

 		
 Invariants

 		
 Generics

 		
 Generic Subprograms

 		
 Generic Packages

 		
 Generic Parameters

 		
 Exceptions

 		
 Standard Exceptions

 		
 Custom Exceptions

 		
 Concurrency

 		
 Tasks

 		
 Rendezvous

 		
 Selective Rendezvous

 		
 Protected Objects

 		
 Low Level Programming

 		
 Representation Clauses

 		
 Embedded Assembly Code

 		
 Interfacing with C

 		
 Conclusion

 		
 References

 		
 Ada for the Embedded C Developer

 		
 Introduction

 		
 So, what is this Ada thing anyway?

 		
 Ada â�� The Technical Details

 		
 The C Developer's Perspective

 		
 What we mean by Embedded Software

 		
 The GNAT Toolchain

 		
 The GNAT Toolchain for Embedded Targets

 		
 Hello World in Ada

 		
 The Ada Syntax

 		
 Compilation Unit Structure

 		
 Packages

 		
 Declaration Protection

 		
 Hierarchical Packages

 		
 Using Entities from Packages

 		
 Statements and Declarations

 		
 Conditions

 		
 Loops

 		
 Type System

 		
 Strong Typing

 		
 Language-Defined Types

 		
 Application-Defined Types

 		
 Type Ranges

 		
 Unsigned And Modular Types

 		
 Attributes

 		
 Arrays and Strings

 		
 Heterogeneous Data Structures

 		
 Pointers

 		
 Functions and Procedures

 		
 General Form

 		
 Overloading

 		
 Aspects

 		
 Concurrency and Real-Time

 		
 Understanding the various options

 		
 Tasks

 		
 Rendezvous

 		
 Selective Rendezvous

 		
 Protected Objects

 		
 Ravenscar

 		
 Writing Ada on Embedded Systems

 		
 Understanding the Ada Run-Time

 		
 Low Level Programming

 		
 Representation Clauses

 		
 Embedded Assembly Code

 		
 Interrupt Handling

 		
 Dealing with Absence of FPU with Fixed Point

 		
 Volatile and Atomic data

 		
 Volatile

 		
 Atomic

 		
 Interfacing with Devices

 		
 Size aspect and attribute

 		
 Register overlays

 		
 Data streams

 		
 ARM and svd2ada

 		
 Enhancing Verification with SPARK and Ada

 		
 Understanding Exceptions and Dynamic Checks

 		
 Understanding Dynamic Checks versus Formal Proof

 		
 Initialization and Correct Data Flow

 		
 Contract-Based Programming

 		
 Replacing Defensive Code

 		
 Proving Absence of Run-Time Errors

 		
 Proving Abstract Properties

 		
 Final Comments

 		
 C to Ada Translation Patterns

 		
 Naming conventions and casing considerations

 		
 Manually interfacing C and Ada

 		
 Building and Debugging mixed language code

 		
 Automatic interfacing

 		
 Using Arrays in C interfaces

 		
 By-value vs. by-reference types

 		
 Naming and prefixes

 		
 Pointers

 		
 Bitwise Operations

 		
 Mapping Structures to Bit-Fields

 		
 Overlays vs. Unchecked Conversions

 		
 Handling Variability and Re-usability

 		
 Understanding static and dynamic variability

 		
 Handling variability & reusability statically

 		
 Genericity

 		
 Simple derivation

 		
 Configuration pragma files

 		
 Configuration packages

 		
 Handling variability & reusability dynamically

 		
 Records with discriminants

 		
 Variant records

 		
 Object orientation

 		
 Pointer to subprograms

 		
 Design by components using dynamic libraries

 		
 Performance Considerations

 		
 Overall expectations

 		
 Switches and optimizations

 		
 Optimizations levels

 		
 Inlining

 		
 Checks and assertions

 		
 Checks

 		
 Assertions

 		
 Dynamic vs. static structures

 		
 Pointers vs. data copies

 		
 Function returns

 		
 Argumentation and Business Perspectives

 		
 What's the expected ROI of a C to Ada transition?

 		
 Who is using Ada today?

 		
 What is the future of the Ada technology?

 		
 Is the Ada toolset complete?

 		
 Where can I find Ada or SPARK developers?

 		
 How to introduce Ada and SPARK in an existing code base?

 		
 Conclusion

 		
 Hands-On: Object-Oriented Programming

 		
 System Overview

 		
 Non Object-Oriented Approach

 		
 Starting point in C

 		
 Initial translation to Ada

 		
 Improved Ada implementation

 		
 First Object-Oriented Approach

 		
 Interfaces

 		
 Base type

 		
 Derived types

 		
 Subprograms from parent

 		
 Type AB

 		
 Updated source-code

 		
 Further Improvements

 		
 Dispatching calls

 		
 Dynamic allocation

 		
 Limited controlled types

 		
 Updated source-code

 		
 SPARK Ada for the MISRA C Developer

 		
 Preface

 		
 Enforcing Basic Program Consistency

 		
 Taming Text-Based Inclusion

 		
 Hardening Link-Time Checking

 		
 Going Towards Encapsulation

 		
 Enforcing Basic Syntactic Guarantees

 		
 Distinguishing Code and Comments

 		
 Specially Handling Function Parameters and Result

 		
 Handling the Result of Function Calls

 		
 Handling Function Parameters

 		
 Ensuring Control Structures Are Not Abused

 		
 Preventing the Semicolon Mistake

 		
 Avoiding Complex Switch Statements

 		
 Avoiding Complex Loops

 		
 Avoiding the Dangling Else Issue

 		
 Enforcing Strong Typing

 		
 Enforcing Strong Typing for Pointers

 		
 Pointers Are Not Addresses

 		
 Pointers Are Not References

 		
 Pointers Are Not Arrays

 		
 Pointers Should Be Typed

 		
 Enforcing Strong Typing for Scalars

 		
 Restricting Operations on Types

 		
 Restricting Explicit Conversions

 		
 Restricting Implicit Conversions

 		
 Initializing Data Before Use

 		
 Detecting Reads of Uninitialized Data

 		
 Detecting Partial or Redundant Initialization of Arrays and Structures

 		
 Controlling Side Effects

 		
 Preventing Undefined Behavior

 		
 Reducing Programmer Confusion

 		
 Side Effects and SPARK

 		
 Detecting Undefined Behavior

 		
 Preventing Undefined Behavior in SPARK

 		
 Proof of Absence of Run-Time Errors in SPARK

 		
 Detecting Unreachable Code and Dead Code

 		
 Conclusion

 		
 References

 		
 About MISRA C

 		
 About SPARK

 		
 About MISRA C and SPARK

 		
 Introduction to the GNAT Toolchain

 		
 GNAT Toolchain Basics

 		
 Basic commands

 		
 Compiler warnings

 		
 -gnatwa switch and warning suppression

 		
 Style checking

 		
 GPRbuild

 		
 Basic commands

 		
 Project files

 		
 Basic structure

 		
 Customization

 		
 Project dependencies

 		
 Simple dependency

 		
 Dependencies to dynamic libraries

 		
 Configuration pragma files

 		
 Configuration packages

 		
 GNAT Studio

 		
 Start-up

 		
 Windows

 		
 Linux

 		
 Creating projects

 		
 Building

 		
 Debugging

 		
 Debug information

 		
 Improving main application

 		
 Debugging the application

 		
 Formal verification

 		
 GNAT Tools

 		
 gnatchop

 		
 gnatprep

 		
 gnatmem

 		
 gnatmetric

 		
 gnatdoc

 		
 gnatpp

 		
 gnatstub

 		
 Introduction to Ada: Laboratories

 		
 Imperative Language

 		
 Hello World

 		
 Greetings

 		
 Positive Or Negative

 		
 Numbers

 		
 Subprograms

 		
 Subtract procedure

 		
 Subtract function

 		
 Equality function

 		
 States

 		
 States #2

 		
 States #3

 		
 States #4

 		
 Modular Programming

 		
 Months

 		
 Operations

 		
 Strongly Typed Language

 		
 Colors

 		
 Integers

 		
 Temperatures

 		
 Records

 		
 Directions

 		
 Colors

 		
 Inventory

 		
 Arrays

 		
 Constrained Array

 		
 Colors: Lookup-Table

 		
 Unconstrained Array

 		
 Product info

 		
 String_10

 		
 List of Names

 		
 More About Types

 		
 Aggregate Initialization

 		
 Versioning

 		
 Simple todo list

 		
 Price list

 		
 Privacy

 		
 Directions

 		
 Limited Strings

 		
 Bonus exercise

 		
 Colors

 		
 List of Names

 		
 Price List

 		
 Generics

 		
 Display Array

 		
 Average of Array of Float

 		
 Average of Array of Any Type

 		
 Generic list

 		
 Exceptions

 		
 Uninitialized Value

 		
 Numerical Exception

 		
 Re-raising Exceptions

 		
 Tasking

 		
 Display Service

 		
 Event Manager

 		
 Generic Protected Queue

 		
 Design by contracts

 		
 Price Range

 		
 Pythagorean Theorem: Predicate

 		
 Pythagorean Theorem: Precondition

 		
 Pythagorean Theorem: Postcondition

 		
 Pythagorean Theorem: Type Invariant

 		
 Primary Color

 		
 Object Oriented Programming

 		
 Simple type extension

 		
 Online Store

 		
 Standard Library: Containers

 		
 Simple todo list

 		
 List of unique integers

 		
 Standard Library: Dates & Times

 		
 Holocene calendar

 		
 List of events

 		
 Standard Library: Strings

 		
 Concatenation

 		
 List of events

 		
 Standard Library: Numerics

 		
 Decibel Factor

 		
 Root-Mean-Square

 		
 Rotation

 		
 Solutions

 		
 Imperative Language

 		
 Hello World

 		
 Greetings

 		
 Positive Or Negative

 		
 Numbers

 		
 Subprograms

 		
 Subtract Procedure

 		
 Subtract Function

 		
 Equality function

 		
 States

 		
 States #2

 		
 States #3

 		
 States #4

 		
 Modular Programming

 		
 Months

 		
 Operations

 		
 Strongly typed language

 		
 Colors

 		
 Integers

 		
 Temperatures

 		
 Records

 		
 Directions

 		
 Colors

 		
 Inventory

 		
 Arrays

 		
 Constrained Array

 		
 Colors: Lookup-Table

 		
 Unconstrained Array

 		
 Product info

 		
 String_10

 		
 List of Names

 		
 More About Types

 		
 Aggregate Initialization

 		
 Versioning

 		
 Simple todo list

 		
 Price list

 		
 Privacy

 		
 Directions

 		
 Limited Strings

 		
 Generics

 		
 Display Array

 		
 Average of Array of Float

 		
 Average of Array of Any Type

 		
 Generic list

 		
 Exceptions

 		
 Uninitialized Value

 		
 Numerical Exception

 		
 Re-raising Exceptions

 		
 Tasking

 		
 Display Service

 		
 Event Manager

 		
 Generic Protected Queue

 		
 Design by contracts

 		
 Price Range

 		
 Pythagorean Theorem: Predicate

 		
 Pythagorean Theorem: Precondition

 		
 Pythagorean Theorem: Postcondition

 		
 Pythagorean Theorem: Type Invariant

 		
 Primary Colors

 		
 Object-oriented programming

 		
 Simple type extension

 		
 Online Store

 		
 Standard library: Containers

 		
 Simple todo list

 		
 List of unique integers

 		
 Standard library: Dates & Times

 		
 Holocene calendar

 		
 List of events

 		
 Standard library: Strings

 		
 Concatenation

 		
 List of events

 		
 Standard library: Numerics

 		
 Decibel Factor

 		
 Root-Mean-Square

 		
 Rotation

 		
 Bug Free Coding

 		
 Let's Build a Stack

 		
 Background

 		
 Input Format

 		
 Constraints

 		
 Output Format

 		
 Sample Input

 		
 Sample Output

_images/plantuml-7af7d12d187b8857d5ea2b62a5930aa298f2475d.png
with AG; package Ais

‘rivate with Aq; package Ais

Private

; package body Ais

Private

_images/plantuml-a8b0d001d834e93b61d6949d82aa6f3f46a8b684.png
Private

private with B; package Ais

Private

_images/plantuml-37e03515e17e4d728c08fe32e738a5708a9249fd.png
Public

“private AGH

Public

witng;

[T—me >

procedure Test

el
i
rivate
winan
rivate

Public

Private

Private

_images/plantuml-79d6f7c1d1435fc96aec6fefbd8e34f4deb2d31d.png
[

private | 1

with AG; package body AH s

With AG; package AH s

%] public

public

“private A1

public

Private

public

Private

with AG: private package ATis

Private

with AG; package body Al

_images/pop_1.png
Step @:
Start

v |h |wN |-
T

Last = 3

_images/pop_2.png
Step 1:
Pop()

v |h |wN |-
T

Last = 2
returns:
(H}

_images/plantuml-b058206aee79ef2e5a7a8f8cd60c893759c8c77b.png
\with B; package Ais

Private

Private

_images/plantuml-e6111f21ca6af2664426367000c7428f6a9592db.png
Private

with B; packag

Private

body Ais

_images/pop_3.png
Step 2:
Pop()

v |h |wN |-
T

Last = 1
returns:
(L}

_images/pop_4.png

_images/push_1.png
Step @:
Empty

v |h |wN |-

Last = @

_images/push_4.png
Step 3:

Push(“H")
1: M
2:
3: H
4:
5:

Last = 3

_images/push_5.png
Step 4:
Top()

v |h |wN |-
T

Last = 3
returns:
fH}

_images/push_2.png
Step 1:
Push(“M”)

M

v |h |wN |-

Last = 1

_images/push_3.png
Step 2:

Push(“L™)
1: M
2: L
3:
4:
5:

Last = 2

_images/unoptimized-record-component-order.png
type My_Intis range 1..10; Sample layout for a given compiler

subtype S is Integer range 1..10; 3 2 1

-

0
M
X X X X
B

type R is record

;\(/I.:gl_ly_lnt; If compiler allocates
B - Boolean: in declaration order
C : Character;
end record; R'Size will be 80 bits (10 bytes)

but all 12 are allocated to objects

_plantuml/04/04a14f1079efd2e29baa5a39d4ec5dbed24284b5.png

_images/record_layout_with_rep_clause.png
type My_Int is range 1..10;

subtype S is Integer range 1..10;

type R is record
M : My_Int;
X :S;
B : Boolean;
C : Character;
end record;

for R use record

X atOrangeO ..
M at 4 range O ..
B at5rangeO ..
C at6rangeO..

end record;

WX | Z]e

w

N

o

[o9)

<

_images/scalar_types_tree.png
Discrete

Scalar

Real

Enumerations

Integer

Floating-Point

Fixed-Point

Modular

Ordinary Decimal

_plantuml/79/79d6f7c1d1435fc96aec6fefbd8e34f4deb2d31d.png
[

private | 1

with AG; package body AH s

With AG; package AH s

%] public

public

“private A1

public

Private

public

Private

with AG: private package ATis

Private

with AG; package body Al

_plantuml/7a/7af7d12d187b8857d5ea2b62a5930aa298f2475d.png
with AG; package Ais

‘rivate with Aq; package Ais

Private

; package body Ais

Private

_plantuml/37/37e03515e17e4d728c08fe32e738a5708a9249fd.png
Public

“private AGH

Public

witng;

[T—me >

procedure Test

el
i
rivate
winan
rivate

Public

Private

Private

_plantuml/e6/e6111f21ca6af2664426367000c7428f6a9592db.png
Private

with B; packag

Private

body Ais

_plantuml/a8/a8b0d001d834e93b61d6949d82aa6f3f46a8b684.png
Private

private with B; package Ais

Private

_plantuml/b0/b058206aee79ef2e5a7a8f8cd60c893759c8c77b.png
\with B; package Ais

Private

Private

_static/file.png

_static/cover.jpeg
AAAAAAAAAAA

