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CHAPTER

ONE

INTRODUCTION

This document explains how to use AdaCore's technologies — the company's tools, run-
time libraries, and associated services — in conjunction with the safety-related standards
for airborne software: DO ‑ 178C/ED ‑ 12C and and its technology supplements and tool
qualification considerations. It describes how AdaCore's technologies fit into a project's
software life cycle processes, and how they can satisfy various objectives of the standards.
Many of the advantages of AdaCore's products stem from the software engineering sup-
port found in the Ada programming language, including features (such as contract-based
programming) introduced in Ada 2012 [ISOIEC12]. Other advantages draw directly from
the formally analyzable SPARK subset of Ada [AA20], [Dro22], [CDMM24]. As a result, this
document identifies how Ada and SPARK contribute toward the development of reliable soft-
ware. AdaCore personnel have played key roles in the design and implementation of both
of these languages.
Although DO ‑ 178C/ED ‑ 12C doesn't prescribe any specific software life cycle, the develop-
ment and verification processes that it encompasses can be represented as a variation of
the traditional "V-model"2. As shown in Fig. 1, AdaCore's products and the Ada and SPARK
languages contribute principally to the bottom portions of the V — coding and integration
and their verification. The Table annotations in Fig. 1 refer to the tables in DO ‑ 178C/ED ‑
12C and, when applicable, specific objectives in those tables.

Fig. 1: AdaCore Technologies and DO ‑ 178C/ED ‑ 12C Life Cycle Processes
2 https://en.wikipedia.org/wiki/V-model_(software_development)
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Complementing AdaCore's support for Ada and SPARK, the company offers tools and tech-
nologies for C, C++ and Rust. Although C lacks the built-in checks as well as other func-
tionality that Ada provides, AdaCore's Ada and C toolchains have similar capabilities. And
mixed-language applications can take advantage of Ada's interface checking that is per-
formed during inter-module communication.
AdaCore's Ada and C compilers can help developers produce reliable software, targeting
embedded platforms with RTOSes as well as bare metal configurations. These are avail-
able with long term support, certifiable run-time libraries, and source-to-object traceability
analyses as required for DO ‑ 178C/ED ‑ 12C Level A. Supplementing the compilers are a
comprehensive set of static and dynamic analysis tools, including a code standard enforcer,
a vulnerability and logic error detector, test and coverage analyzers, and a fuzzing tool.
A number of these tools are qualifiable with respect to the DO ‑ 330/ED ‑ 215 standard (Tool
Qualification Considerations). The use of qualified tools can save considerable effort during
development and/or verification since the output of the tools does not need to be manually
checked. Qualification material, at the applicable Tool Qualification Level (TQL), is available
for specific AdaCore tools.
Supplementing the core DO ‑ 178C/ED ‑ 12C standard are three supplements that address
specific technologies:
• DO-331/ED-218: Model-Based Development and Verification

AdaCore's tools and technologies can be used in conjunction with model-based meth-
ods but do not relate directly to the issues addressed in DO ‑ 331/ED ‑ 218.

• DO-332/ED-217: Object-Oriented Technology and Related Techniques

The Ada and SPARK languages provide specific features that help meet the objectives
of DO ‑ 332/ED ‑ 217, thus allowing developers to exploit Object Orientation (e.g., class
hierarchies and inheritance for specifying data relationships) in a certified application.

• DO-333/ED-216: Formal Methods

The SPARK language and toolset directly support DO ‑ 333/ED ‑ 216, allowing the use
of formal proofs to replace some low-level testing.

The technologies and associated options presented in this document are known to be
acceptable, and certification authorities have already accepted most of them on actual
projects. However, acceptance is project dependent. An activity using a technique or
method may be considered as appropriate to satisfy one or several DO ‑ 178C/ED ‑ 12C
objectives for one project (determined by the development standards, the input complex-
ity, the target computer and system environment) but not necessarily on another project.
The effort and amount of justification to gain approval may also differ from one auditor to
another, depending of their background. Whenever a new tool, method, or technique is
introduced, it's important to open a discussion with AdaCore and the designated authority
to confirm its acceptability. The level of detail in the process description provided in the
project plans and standard is a key factor in gaining acceptance.

6 Chapter 1. Introduction



CHAPTER

TWO

THE DO-178C/ED-12C STANDARDS SUITE

2.1 Overview
"Every State has complete and exclusive sovereignty over the airspace above its territory."
This general principle was codified in Article 1 of the Convention on International Civil Avi-
ation (the "Chicago Convention") in 1944 [ICA44]. To control the airspace, harmonized
regulations have been formulated to ensure that the aircraft are airworthy.
A type certificate is issued by a certification authority to signify the airworthiness of an
aircraft manufacturing design. The certificate reflects a determination made by the regu-
lating body that the aircraft is manufactured according to an approved design, and that the
design complies with airworthiness requirements. To meet those requirements the aircraft
and each subassembly must also be approved. Typically, requirements established by a
regulating body refer to "Minimum Operating Performance Standards" (MOPS) and a set of
recognized "Acceptable Means of Compliance" such as DO ‑ 178/ED ‑ 12 for software, DO
‑ 160/ED ‑ 14 for environmental conditions and test procedures, and DO ‑ 254/ED ‑ 80 for
Complex Electronic Hardware.
DO-178C/ED-12C - Software Considerations in Airborne Systems and Equipment Certifica-
tion [RCT11] — was issued in December 2011, developed jointly by RTCA, Inc., and EURO-
CAE. It is the primary document by which certification authorities such as the FAA, EASA,
and Transport Canada approve all commercial software-based aerospace systems.
The DO ‑ 178C/ED ‑ 12C document suite comprises:
• The core document, which is a revision of the previous release (DO ‑ 178B/ED ‑ 12B).
The changes are mostly clarifications, and also address the use of "Parameter Data
Items" (e.g., Configuration tables)

• DO ‑ 278A/ED ‑ 109A, which is similar to DO ‑ 178C/ED ‑ 12C and addresses ground-
based software used in the domain of CNS/ATM (Communication Navigation Surveil-
lance/Air Traffic Management)

• DO ‑ 248C/ED ‑ 94C (Supporting Information for DO ‑ 178C/ED ‑ 12C and DO ‑ 278A/ED
‑ 109A), which explains the rationale behind the guidance provided in the core docu-
ments

• Three technology-specific supplements
– DO ‑ 331/ED ‑ 218: Model-Based Development and Verification
– DO ‑ 332/ED ‑ 217: Object Oriented Technology and Related Techniques
– DO ‑ 333/ED ‑ 216: Formal Methods

Each supplement adapts the core document guidance as appropriate for its re-
spective technology. These supplements are not standalone documents but must
be used in conjunction with DO ‑ 178C/ED ‑ 12C or DO ‑ 278A/ED ‑ 109A.

7
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• DO ‑ 330/ED ‑ 215 (Software Tool Qualification Considerations), providing guidance for
qualifying software tools. This standard is not specific to DO ‑ 178C/ED ‑ 12C and may
be applied to software certification in other application domains.

Details on how to use these standards in practice may be found in [Rie13].
One of the main principles of the DO ‑ 178C/ED ‑ 12C document suite is to be "objective
oriented". The guidance in each document consists of a set of objectives that relate to the
various software life-cycle processes (planning, development, verification, configuration
management, quality assurance, certification liaison). The objectives that must be met
for a particular software component depend on the software level (also known as a Design
Assurance Level or DAL) of the component. The level in turn is based on the potential effect
of an anomaly in that software component on the continued safe operation of the aircraft.
Software levels range from E (the lowest) where there is no effect, to A (the highest) where
an anomaly can cause the loss of the aircraft. A software component's level is established
as part of the system life-cycle processes.
To gain software approval for a system, the applicant has to demonstrate that the objec-
tives relevant to the software level for each component have been met. To achieve this
goal, the development team specifies the various software life-cycle activities (based on
those recommended by DO ‑ 178C/ED ‑ 12C and/or others), and its associated methods,
environment, and organization/management. In case the chosen methods are addressed
by one of the technology supplements, additional or alternative objectives must also be
satisfied. The technology supplements may replace or add objectives and/or activities.

2.2 Software Tool Qualification Considerations: DO-
330/ED-215

A software tool needs to be qualified when a process is automated, eliminated, or reduced,
but its outputs are not verified. The systematic verification of the tool outputs is replaced by
activities performed on the tool itself: the tool qualification. The qualification effort depends
on the assurance level of the airborne software and the possible effect that an error in the
tool may have on this software. The resulting combination, the Tool Qualification Level, is
a 5 level scale, from TQL-5 (the lowest level, applicable to software tools that cannot insert
an error in the resulting software, but might fail to detect an error) to TQL-1 (the highest,
applicable to software tools that can insert an error in software at level A).
A tool is only qualified in the context of a specific project, for a specific certification credit,
expressed in term of objectives and activities. Achieving qualification for a tool on a specific
project does of course greatly increase the likelihood of being able to qualify the tool on
another project. However, a different project may have different processes or requirements,
or develop software with different environment constraints. As a result, the qualifiability of
a tool needs to be systematically assessed on a case-by-case basis.
Although many references are made in the literature about qualified tools, strictly speaking
this term should only be used in the context of a specific project. Tools provided by tool
vendors, independently of any project, should be identified as qualifiable only. The tool
qualification document guidance DO ‑ 330/ED ‑ 215 includes specific objectives that can
only be satisfied in the context of a given project environment.
Throughout this document, the applicable tool qualification level is identified together with
the relevant objective or activity for which credit may be sought. The qualification activities
have been performed with respect to DO ‑ 330/ED ‑ 215 at the applicable Tool Qualification
Level. Tool qualification material is available to customers as a supplement to AdaCore's
GNAT Pro Assurance product.

8 Chapter 2. The DO-178C/ED-12C Standards Suite
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2.3 Model-Based Development and Verification Supple-
ment: DO-331/ED-218

Model-based development covers a wide range of techniques for representing the software
requirements and/or architecture, most often through a graphical notation. The source
code itself is not considered as a model. Well known examples include UML for software
architecture, SysSML for system representation, and Simulink© for control algorithms and
related requirements. DO ‑ 331/ED ‑ 218 presents the objectives and activities associated
with the use of such techniques.
Themain added value of the supplement is its guidance on how to usemodel simulation and
obtain certification credit. AdaCore's tools and technologies can be used in conjunction with
model-based methods but do not relate directly to the issues addressed in this supplement.

2.4 Object-Oriented Technology and Related Techniques
Supplement: DO-332/ED-217

Although DO ‑ 332/ED ‑ 217 is often referred as the "object oriented supplement", the "re-
lated techniques" mentioned in the title are equally relevant and are addressed in detail.
They may be used in conjunction with Object-Oriented Technology (OOT) but are not nec-
essarily related to OO features. Such related techniques include virtualization, genericity
(also known as templates), exceptions, overloading, and dynamic memory management.
Considering the breadth of features covered by DO ‑ 332/ED ‑ 217, at least some of its
guidance should be followed regardless of whether the actual application is using object
orientation. For example, type conversion is probably present in most code bases regard-
less of which language is being used.
The DO ‑ 332/ED ‑ 217 supplement is much more code-centric than the others, and only
two objectives are added: one related to local type consistency (dynamic dispatching) and
another one related to dynamic memory. All other guidance takes the form of additional
activities for existing DO ‑ 178C/ED ‑ 12C objectives.
Of particular relevance is the supplement's Vulnerability Analysis annex. Although not bind-
ing, it explains in detail what is behind these additional activities. The following features in
particular may need to be addressed when Ada is used:
• Inheritance / local type consistency
• Parametric polymorphism (genericity)
• Overloading
• Type conversion
• Exception management
• Dynamic memory
• Component-based development

The Ada language, the precautions taken during the design and coding processes, and the
use of AdaCore tools combine to help address or mitigate the vulnerabilities associated with
these features.

2.5 Formal Methods Supplement: DO-333/ED-216
DO ‑ 333/ED ‑ 216 provides guidance on the use of formal methods. A formal method
is defined as "a formal model combined with a formal analysis". A formal model should
be precise, unambiguous and have a mathematically defined syntax and semantics. The
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formal analysis should be sound; i.e., if it is supposed to determine whether the formal
model (for example the software source code in a language such as SPARK) satisfies a
given property, then the analysis should never assert that the property holds when in fact
it does not.
A formal method may be used to satisfy DO ‑ 178C/ED ‑ 12C verification objectives; formal
analysis may therefore replace some reviews, analyses and tests. Almost all verification
objectives are potential candidates for formal methods.
In DO ‑ 178C/ED ‑ 12C, the purpose of testing is to verify the Executable Object Code (EOC)
based on the requirements. The main innovation of DO-333 / ED-216 is to allow the use of
formal methods to replace some categories of tests. In fact, with the exception of software
/ hardware integration tests showing that the EOC is compatible with the target computer,
the other objectives of EOC verification may be satisfied by formal analysis. This is a signif-
icant added value. However, employing formal analysis to replace tests is a new concept in
the avionics domain, with somewhat limited experience in practice thus far (see [MLD+13]
for further information). As noted in [Moy17], a significant issue is how to demonstrate that
the compiler generates code that properly preserves the properties that have been formally
demonstrated for the source code. Running the integration tests both with and without the
contracts being executed, and showing that the results are the same in both cases, is one
way to gain the necessary confidence that properties have been preserved in the EOC.
Details from tool providers on the underlyingmodels ormathematical theories implemented
in the tool are necessary to assess the maturity of the method. Then substantiation and jus-
tification need to be documented, typically in the Plan for Software Aspects of Certification
(PSAC), and provided to certification authorities at an early stage for review.
AdaCore provides the SPARK technology as a formal method that can eliminate or reduce
the testing based on low-level requirements. Using SPARK will also get full or partial credit
for other objectives, such as requirements and code accuracy and consistency, verifiability,
etc. Its usage is consistent with the example provided in Appendix B of DO ‑ 333/ED ‑ 216,
"FM.B.1.5.1 Unit Proof", and a SPARK version of this example is shown in SPARK Develop-
ment Cycle Example (page 73). Certification credit for using formal proofs is summarized
in Fig. 2:

Fig. 2: SPARK contributions to verification objectives

10 Chapter 2. The DO-178C/ED-12C Standards Suite



CHAPTER

THREE

ADACORE TOOLS AND TECHNOLOGIES OVERVIEW

3.1 Ada

3.1.1 Background
Ada is a modern programming language designed for large, long-lived applications — and
embedded systems in particular — where reliability, maintainability, and efficiency are es-
sential. It was originally developed in the early 1980s (this version is generally known
as Ada 83) by a team led by Jean Ichbiah at CII-Honeywell-Bull in France. The language
was revised and enhanced in an upward compatible fashion in the early 1990s, under the
leadership of Tucker Taft from Intermetrics in the U.S. The resulting language, Ada 95, was
the first internationally standardized (ISO) object-oriented language. Under the auspices
of ISO, a further (minor) revision was completed as an amendment to the standard; this
version of the language is known as Ada 2005. Additional features (including support for
contract-based programming in the form of subprogram pre- and postconditions and type
invariants) were added in the Ada 2012 version of the language standard, and a number
of features to increase the language's expressiveness were introduced in Ada 2022 (see
[ISOIEC12], [BB15], [Bar14], [ISOIEC22] for information about Ada).
The name Ada is not an acronym; it was chosen in honor of Augusta Ada Lovelace (1815-
1852), a mathematician who is regarded as the world's first programmer because of her
work with Charles Babbage. She was also the daughter of the poet Lord Byron.
Ada is seeing significant usage worldwide in high-integrity / safety-critical / high-security
domains including commercial and military aircraft avionics, air traffic control, railroad sys-
tems, and medical devices. With its embodiment of modern software engineering princi-
ples, Ada is an excellent teaching language for both introductory and advanced computer
science courses, and it has been the subject of significant university research especially
in the area of real-time technologies. The so-called Ravenscar profile — a subset of the
language's concurrency features with deterministic semantics — broke new ground in sup-
porting the use of concurrent programming in high assurance software.
AdaCore has a long history and close connection with the Ada programming language. Com-
pany members worked on the original Ada 83 design and review and played key roles in the
Ada 95 project as well as the subsequent revisions. AdaCore's initial GNAT compiler was
essential to the growth of Ada 95; it was delivered at the time of the language's standard-
ization, thus guaranteeing that users would have a quality implementation for transitioning
to Ada 95 from Ada 83 or other languages.

3.1.2 Language Overview
Ada is multi-faceted. From one perspective it is a classical stack-based general-purpose
language, not tied to any specific development methodology. It has a simple syntax, struc-
tured control statements, flexible data composition facilities, strong type checking, tradi-
tional features for code modularization (subprograms), and a mechanism for detecting and
responding to exceptional run-time conditions (exception handling). But it also includes
much more:
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Scalar ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada allows the program-
mer to simply and explicitly specify the range of values that are permitted for variables of
scalar types (integer, floating-point, fixed-point, and enumeration types). The attempted
assignment of an out-of-range value causes a run-time error. The ability to specify range
constraints makes programmer intent explicit and makes it easier to detect a major source
of coding and user input errors. It also provides useful information to static analysis tools
and facilitates automated proofs of program properties.
Here's an example of an integer scalar range:

declare
Score : Integer range 1..100;
N : Integer;

begin
... -- Code that assigns a value to N
Score := N;
-- A run-time check verifies that N is within the range 1..100
-- If this check fails, the Constraint_Error exception is raised

end;

Contract-based programming

A feature introduced in Ada 2012 allows extending a subprogram specification or a
type/subtype declaration with a contract (a Boolean assertion). Subprogram contracts take
the form of preconditions and postconditions, type contracts are used for invariants, and
subtype contracts provide generalized constraints (predicates). Through contracts the de-
veloper can formalize the intended behavior of the application, and can verify this behavior
by testing, static analysis or formal proof.
Here's a skeletal example that illustrates contact-based programming; a Table object is a
fixed-length container for distinct Float values.

package Table_Pkg is
type Table is private; -- Encapsulated type

procedure Insert (T : in out Table; Item: in Float)
with Pre => not Is_Full(T) and not Contains(T, Item),

Post => Contains(T, Item);

procedure Remove (T : in out Table; Item: out Float);
with Pre => Contains(T, Item),

Post => not Contains(T, Item);

function Is_Full (T : in Table) return Boolean;
function Contains (T : in Table; Item: in Float)

return Boolean;
...

private
...

end Table_Pkg;

A compiler option controls whether the pre- and postconditions are checked at run time. If
checks are enabled, any pre- or postcondition failure — i.e., the contract's Boolean expres-
sion evaluating to False — raises the Assertion_Error exception.

12 Chapter 3. AdaCore Tools and Technologies Overview
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Programming in the large

The original Ada 83 design introduced the package construct, a feature that supports en-
capsulation (information hiding) and modularization, and which allows the developer to
control the namespace that is accessible within a given compilation unit. Ada 95 intro-
duced the concept of child units, adding considerable flexibility and easing the design of
very large systems. Ada 2005 extended the language's modularization facilities by allowing
mutual references between package specifications, thus making it easier to interface with
languages such as Java.

Generic templates

A key to reusable components is a mechanism for parameterizing modules with respect
to data types and other program entities, for example a stack package for an arbitrary
element type. Ada meets this requirement through a facility known as generics; since the
parameterization is done at compile time, run-time performance is not penalized.

Object-Oriented Programming (OOP)

Ada 83 was object-based, allowing the partitioning of a system into modules corresponding
to abstract data types or abstract objects. Full OOP support was not provided since, first,
it seemed not to be required in the real-time domain that was Ada's primary target, and,
second, the apparent need for automatic garbage collection in an OO language would have
interfered with predictable and efficient performance.
However, large real-time systems often have components such as GUIs that do not have
real-time constraints and that could be most effectively developed using OOP features. In
part for this reason, Ada 95 supplies comprehensive support for OOP, through its tagged
type facility: classes, polymorphism, inheritance, and dynamic binding. Ada 95 does not
require automatic garbage collection but rather supplies definitional features allowing the
developer to supply type-specific storage reclamation operations (finalization). Ada 2005
brought additional OOP features including Java-like interfaces and traditional obj.op(...) op-
eration invocation notation.
Ada is methodologically neutral and does not impose a distributed overhead for OOP. If an
application does not need OOP, then the OOP features do not have to be used, and there
is no run-time penalty. See [Bar14] or [Ada16] for more details.

Concurrent programming

Ada supplies a structured, high-level facility for concurrency. The unit of concurrency is a
program entity known as a task. Tasks can communicate implicitly via shared data or ex-
plicitly via a synchronous control mechanism known as the rendezvous. A shared data item
can be defined abstractly as a protected object (a feature introduced in Ada 95), with oper-
ations executed under mutual exclusion when invoked from multiple tasks. Asynchronous
task interactions are also supported for timeouts, software event notifications, and task
termination. Such asynchronous behavior is deferred during certain operations, to prevent
the possibility of leaving shared data in an inconsistent state. Mechanisms designed to help
take advantage of multi-core architectures were introduced in Ada 2012.

Systems programming

Both in the core language and the Systems Programming Annex, Ada supplies the neces-
sary features for hardware-specific processing. For example, the programmer can specify
the bit layout for fields in a record, define alignment and size properties, place data at spe-
cific machine addresses, and express specialized code sequences in assembly language.
Interrupt handlers can be written in Ada, using the protected type facility.

3.1. Ada 13
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Real-time programming

Ada's tasking facility and the Real-Time Systems Annex support common idioms such as
periodic or event-driven tasks, with features that can help avoid unbounded priority inver-
sions. A protected object locking policy is defined that uses priority ceilings; this has an
especially efficient implementation in Ada (mutexes are not required) since protected op-
erations are not allowed to block. Ada 95 defined a task dispatching policy that basically
requires tasks to run until blocked or preempted. Subsequent versions of the language
standard introduced several other policies, such as Earliest Deadline First.

High-integrity systems

With its emphasis on sound software engineering principles, Ada supports the development
of high-integrity applications, including those that need to be certified against safety stan-
dards such DO ‑ 178C/ED ‑ 12C for avionics, CENELEC EN 50716:2023 for rail systems, and
security standards such as the Common Criteria [Cri22]. Key to Ada's support for high-
assurance software is the language's memory safety; this is illustrated by a number of
features, including:
• Strong typing
Data intended for one purpose will not be accessed via inappropriate operations; errors
such as treating pointers as integers (or vice versa) are prevented.

• Array bounds checking
A run-time check guarantees that an array index is within the bounds of the array.
This prevents buffer overflow vulnerabilities that are common in C and C++. In many
cases a a compiler optimization can detect statically that the index is within bounds
and thus eliminate any run-time code for the check.

• Prevention of null pointer dereferences
As with array bounds, pointer dereferences are checked to make sure that the pointer
is not null. Again, such checks can often be optimized out.

• Prevention of dangling references
A scope accessibility checks ensures that a pointer cannot reference an object on the
stack after exit/return from the scope (block or subprogram) in which the object is
declared. Such checks are generally static, with no run-time overhead.

However, the full language may be inappropriate in a safety-critical application, since the
generality and flexibility could interfere with traceability / certification requirements. Ada
addresses this issue by supplying a compiler directive, pragma Restrictions, that allows con-
straining the language features to a well-defined subset (for example, excluding dynamic
OOP facilities).
The evolution of Ada has seen the continued increase in support for safety-critical and high-
security applications. Ada 2005 standardized the Ravenscar profile, a collection of concur-
rency features that are powerful enough for real-time programming but simple enough
to make certification and formal analysis practical. Ada 2012 introduced contract-based
programming facilities, allowing the programmer to specify preconditions and/or postcon-
ditions for subprograms, and invariants for encapsulated (private) types. These can serve
both for run-time checking and as input to static analysis tools. The most recent version
of the standard, Ada 2022, has added several contract-based programming constructs in-
spired by SPARK (Contract_Cases, Global, and Depends aspects) and, more generally, has
enhanced the language's expressiveness. For example, Ada 2022 has introduced some new
syntax in its concurrency support and has defined the Jorvik tasking profile, which is less
restrictive than Ravenscar.
In brief, Ada is an internationally standardized language combining object-oriented pro-
gramming features, well-engineered concurrency facilities, real-time support, and built-in
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reliability through both compile-time and run-time checks. As such it is an appropriate lan-
guage for addressing the real issues facing software developers today. Ada has a long and
successful history and is used throughout a number of major industries to design software
that protects businesses and lives.

3.2 SPARK
SPARK is a software development technology (programming language and verification
toolset) specifically designed for engineering ultra-low defect level applications, for exam-
ple where safety and/or security are key requirements. SPARK Pro is AdaCore's commercial-
grade offering of the SPARK technology. The main component in the toolset is GNATprove,
which performs formal verification on SPARK code.
SPARK has an extensive industrial track record. Since its inception in the late 1980s it
has been used worldwide in a range of industrial applications such as civil and military
avionics, air traffic management / control, railway signaling, cryptographic software, and
cross-domain solutions.
The SPARK language has been stable over the years, with periodic enhancements. The
2014 version of SPARK represented a major revision (see [MC15]), incorporating contract-
based programming syntax from Ada 2012, and subsequent upgrades included support for
pointers (access types) based on the Rust ownership model.

3.2.1 Flexibility
SPARK offers the flexibility of configuring the language on a per-project basis. Restrictions
can be fine-tuned based on the relevant coding standards or run-time environments. SPARK
code can easily be combined with full Ada code or with C, so that new systems can be built
on and reuse legacy codebases.

3.2.2 Powerful Static Verification
The SPARK language supports a wide range of static verification techniques. At one end
of the spectrum is basic data and control flow analysis, i.e., exhaustive detection of errors
such as attempted reads of uninitialized variables, and ineffective assignments (where a
variable is assigned a value that is never read). For more critical applications, dependency
contracts can constrain the information flow allowed in an application. Violations of these
contracts — potentially representing violations of safety or security policies — can then be
detected even before the code is compiled.
In addition, the language supports mathematical proof and can thus provide high confi-
dence that the software meets a range of assurance requirements: from the absence of
run-time exceptions, to the enforcement of safety or security properties, to compliance
with a formal specification of the program's required behavior.

3.2.3 Ease of Adoption
User experience has shown that the language and the SPARK Pro toolset do not require
a steep learning curve. Training material such as AdaCore's online AdaLearn course for
SPARK [Ada] can quickly bring developers up to speed; users are assumed to be experts in
their own application domain such as avionics software and do not need to be familiar with
formal methods or the proof technology implemented by the toolset. In effect, SPARK Pro is
an advanced static analysis tool that will detect many logic errors very early in the software
life cycle. It can be smoothly integrated into an organization's existing development and
verification methodology and infrastructure.
SPARK uses the standard Ada 2012 contract syntax, which both simplifies the learning pro-
cess and also allows new paradigms of software verification. Programmers familiar with
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writing executable contracts for run-time assertion checking can use the same approach but
with additional flexibility: the contracts can be verified either dynamically through classical
run-time testing methods or statically (i.e., pre-compilation and pre-test) using automated
tools.
SPARK supports hybrid verification that can mix testing with formal proofs. For example, an
existing project in Ada and C can adopt SPARK to implement new functionality for critical
components. The SPARK units can be analyzed statically to achieve the desired level of
verification, with testing performed at the interfaces between the SPARK units and the
modules in the other languages.

3.2.4 Reduced Cost and Improved Efficiency of Executable Object
Code (EOC) verification

Software verification typically involves extensive testing, including unit tests and integra-
tion tests. Traditional testing methodologies are a major contributor to the high delivery
costs for safety-critical software. Furthermore, they may fail to detect errors. SPARK ad-
dresses this issue by allowing automated proof to be used to demonstrate functional cor-
rectness at the subprogram level, either in combination with or as a replacement for unit
testing (see Property preservation between source code and object code (page 72)). In the
high proportion of cases where proofs can be discharged automatically, the cost of writ-
ing unit tests is completely avoided. Moreover, verification by proofs covers all execution
conditions and not just a sample.

3.3 GNAT Pro Assurance
GNAT Pro Assurance is an Ada and C development environment for projects requiring spe-
cialized support, such as bug fixes and known problems analyses, on a specific version of
the toolchain. This product line is especially suitable for applications with long maintenance
cycles or certification requirements, since critical updates to the compiler or other product
components may become necessary years after the initial release. Such customized main-
tenance of a specific version of the product is known as a sustained branch.
Based on the GNU GCC technology, GNAT Pro Assurance supports all versions of the Ada
language standard and also handles multiple versions of C (C89, C99, and C11). It includes
an Integrated Development Environment (GNAT Programming Studio and/or GNATbench),
a comprehensive toolsuite including a visual debugger, and an extensive set of libraries
and bindings.

3.3.1 Sustained Branches
Unique to GNAT Pro Assurance is a service known as a sustained branch: customized sup-
port and maintenance for a specific version of the product. A project on a sustained branch
can monitor relevant known problems, analyze their impact and, if needed, update to a
newer version of the product on the same development branch (i.e., not incorporating
changes introduced in later versions of the product).
Sustained branches are a practical solution to the problem of ensuring toolchain stability
while allowing flexibility in case an upgrade is needed to correct a critical problem.

3.3.2 Configurable Run-Time Libraries
Two specific GNAT-defined run-time libraries have been designed with certification in mind
and are known as the Certifiable Profiles:
• Light Profile
• Light-Tasking Profile
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The Light Profile provides a flexible Ada subset that is supported by a certifiable Ada run-
time library. Depending on application requirements, this profile can be further restricted
through the Restrictions pragma, with the application only including run-time code that
is used by the application.
These run-time libraries can also be customized directly to suit certification requirements:
unneeded packages can be removed to allow for self-certification of the runtime, while the
-nostdlib linker switch can be used to prevent the use of the runtime. Even when the
run-time library is suppressed, some run-time sources are still required to provide compile-
time definitions. While this code produces no object code, the certification protocol may
still require tests to ensure correct access to these definitions.
The Light-Tasking Profile expands the Light Profile to include Ravenscar tasking support,
allowing developers to use concurrency in their certification applications.
Although limited in terms of dynamic Ada semantics, all Certifiable Profiles fully support
static Ada constructs such as private types, generic templates, and child units. Some dy-
namic semantics are also supported. For example, these profiles allow the use of tagged
types (at library level) and other Object-Oriented Programming features, including dynamic
dispatching. The general use of dynamic dispatching at the application level can be pre-
vented through pragma Restrictions.
A traditional problem with predefined profiles is their inflexibility: if a feature outside a
given profile is needed, then it is the developer's responsibility to address the certification
issues deriving from its use. GNAT Pro Assurance accommodates this need by allowing the
developer to define a profile for the specific set of features that are used. Typically this will
be for features with run-time libraries that require associated certification materials. Thus
the program will have a tailored run-time library supporting only those features that have
been specified.
More generally, the configurable run-time capability allows specifying support for Ada's
dynamic features in an à la carte fashion ranging from none at all to full Ada. The units
included in the executable may be either a subset of the standard libraries provided with
GNAT Pro, or specially tailored to the application. This latter capability is useful, for example,
if one of the predefined profiles implements almost all the dynamic functionality needed
in an existing system that has to meet new safety-critical requirements, and where the
costs of adapting the application without the additional run-time support are considered
prohibitive.
Certification material up to Software Level A can be developed for the Light and Light-
Tasking run-time libraries.

3.3.3 Full Implementation of Ada Standards
GNAT Pro provides a complete implementation of the Ada language from Ada 83 to Ada
2012, and support for selected features from Ada 2022. Developers of safety-critical and
high-security systems can thus take advantage of features such as contract-based pro-
gramming, which effectively embed requirements in the source program text and simplify
verification.

3.3.4 Source to Object Traceability
A compiler option can limit the use of language constructs that generate object code that
is not directly traceable to the source code. As an add-on service, AdaCore can perform
an analysis that demonstrates this traceability and justifies any remaining cases of non-
traceable code.
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3.3.5 Safety-Critical Support and Expertise
At the heart of every AdaCore subscription are the support services that AdaCore provides
to its customers. AdaCore staff are recognized experts on the Ada language, software cer-
tification standards in several domains, compilation technologies, and static and dynamic
verification. They have extensive experience in supporting customers in avionics, railway,
space, energy, air traffic management/control, automotive, and military projects. Every
AdaCore product comes with front-line support provided directly by these experts, who are
also the developers of the technology. This ensures that customers' questions (requests for
guidance on feature usage, suggestions for technology enhancements, or defect reports)
are handled efficiently and effectively.
Beyond this bundled support, AdaCore also provides Ada language and tool training as well
as on-site consulting on topics such as how to best deploy the technology, and assistance on
start-up issues. On-demand tool development and ports to new platforms are also available.

3.3.6 Libadalang
Libadalang is a library, included with GNAT Pro, that gives applications access to the com-
plete syntactic and semantic structure of an Ada compilation unit. This library is typically
used by tools that need to perform some sort of static analysis on an Ada program.
AdaCore can assist customers in developing libadalang-based tools to meet their specific
needs, as well as develop such tools upon request.
Typical libadalang applications include:
• Static analysis (property verification)
• Code instrumentation
• Design and document generation tools
• Metric testing or timing tools
• Dependency tree analysis tools
• Type dictionary generators
• Coding standard enforcement tools
• Language translators (e.g., to CORBA IDL)
• Quality assessment tools
• Source browsers and formatters
• Syntax directed editors

3.3.7 GNATstack
Included with GNAT Pro is GNATstack, a static analysis tool that enables an Ada/C software
developer to accurately predict the maximum size of the memory stack required for pro-
gram execution.
GNATstack statically predicts the maximum stack space required by each task in an appli-
cation. The computed bounds can be used to ensure that sufficient space is reserved, thus
guaranteeing safe execution with respect to stack usage. The tool uses a conservative anal-
ysis to deal with complexities such as subprogram recursion, while avoiding unnecessarily
pessimistic estimates.
This static stack analysis tool exploits data generated by the compiler to compute worst-
case stack requirements. It performs per-subprogram stack usage computation combined
with control flow analysis.
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GNATstack can analyze object-oriented applications, automatically determining maximum
stack usage on code that uses dynamic dispatching in Ada. A dispatching call challenges
static analysis because the identity of the subprogram being invoked is not known until run
time. GNATstack solves this problem by statically determining the subset of potential tar-
gets (primitive operations) for every dispatching call. This significantly reduces the analysis
effort and yields precise stack usage bounds on complex Ada code.
GNATstack's analysis is based on information known at compile time. When the tool indi-
cates that the result is accurate, the computed bound can never be exceeded.
On the other hand, there may be cases in which the results will not be accurate (the tool will
report such situations) because of some missing information (such as the maximum depth
of subprogram recursion, indirect calls, etc.). The user can assist the tool by specifying
missing call graph and stack usage information.
GNATstack's main output is the worst-case stack usage for every entry point, together with
the paths that result in these stack sizes. The list of entry points can be automatically
computed (all the tasks, including the environment task) or can be specified by the user (a
list of entry points or all the subprograms matching a given regular expression).
GNATstack can also detect and display a list of potential problems when computing stack
requirements:
• Indirect (including dispatching) calls. The tool will indicate the number of indirect calls
made from any subprogram.

• External calls. The tool displays all the subprograms that are reachable from any entry
point for which there is no stack or call graph information.

• Unbounded frames. The tool displays all the subprograms that are reachable from any
entry point with an unbounded stack requirement. The required stack size depends
on the arguments passed to the subprogram. For example:

procedure P(N : Integer) is
S : String (1..N);

begin
...

end P;

• Cycles. The tool can detect all the cycles (i.e., potential recursion) in the call graph.
GNATstack allows the user to supply a text file with the missing information, such as the po-
tential targets for indirect calls, the stack requirements for external calls, and the maximal
size for unbounded frames.
TQL-5 qualification material can be made available for GNATstack.

3.4 GNAT Static Analysis Suite (GNAT SAS)
GNAT SAS is a stand-alone tool that runs on Windows and Linux platforms and may be
used with any standard Ada compiler or fully integrated into the GNAT Pro development
environment.

3.4.1 Defects and vulnerability analysis
GNAT SAS features an Ada source code analyzer that detects run-time and logic errors. It
assesses potential bugs and vulnerabilities before program execution, serving as an auto-
mated peer reviewer, helping to find errors easily at any stage of the development life-cycle.
It helps improve code quality and makes it easier to perform safety and/or security anal-
ysis. GNAT SAS can detect several of the "Top 25 Most Dangerous Software Errors" in the
Common Weakness Enumeration.
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3.4.2 GNATmetric
The GNATmetric tool analyzes source code to calculate a set of commonly used industry
metrics, thus allowing developers to estimate the size and better understand the structure
of the source code. This information also facilitates satisfying the requirements of certain
software development frameworks.

3.4.3 GNATcheck
GNATcheck is a coding standard verification tool that is extensible and rule-based. It allows
developers to completely define a coding standard as a set of rules, for example a subset of
permitted language features. It verifies a program's conformance with the resulting rules
and thereby facilitates demonstration of a system's compliance with Table A-5, Objective 4
of DO ‑ 178C/ED ‑ 12C ("Source Code conforms to standards"). GNATcheck providess:
• An integrated Ada Restrictions mechanism for banning specific features from an ap-
plication. This can be used to restrict features such as tasking, exceptions, dynamic
allocation, fixed- or floating point, input/output and unchecked conversions.

• Restrictions specific to GNAT Pro, such as banning features that result in the generation
of implicit loops or conditionals in the object code, or in the generation of elaboration
code.

• Additional Ada semantic rules resulting from customer input, such as ordering of pa-
rameters, normalized naming of entities, and subprograms with multiple returns.

• An easy-to-use interface for creating and using a complete coding standard.
• Generation of project-wide reports, including evidence of the level of compliance with
a given coding standard.

• Over 30 compile-time warnings from GNAT Pro that detect typical error situations,
such as local variables being used before being initialized, incorrect assumptions about
array lower bounds, infinite recursion, incorrect data alignment, and accidental hiding
of names.

• Style checks that allow developers to control indentation, casing, comment style, and
nesting level.

AdaCore's GNATformat tool, which formats Ada source code according to the GNAT coding
style3, can help avoid having code that violates GNATcheck rules
GNATcheck comes with a query language (called LKQL) that lets developers define their own
checks for any in-house rules that need to be followed. GNATcheck can thus be customized
to meet an organization's specific requirements, processes and procedures.
TQL-5 qualification material is available for GNATcheck.

3.5 GNAT Dynamic Analysis Suite (GNAT DAS)

3.5.1 GNATtest
The GNATtest tool helps create and maintain a complete unit testing infrastructure for com-
plex projects. Based on AUnit, it captures the simple idea that each public subprogram
(these are known as visible subprograms in Ada) should have at least one corresponding
unit test. GNATtest takes a project file as input, and produces two outputs:
• The complete harnessing code for executing all the unit tests under consideration.
This code is generated completely automatically.

3 https://gcc.gnu.org/onlinedocs/gnat-style.pdf
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• A set of separate test stubs for each subprogram to be tested. These test stubs are to
be completed by the user.

GNATtest handles Ada's Object-Oriented Programming features and can be used to help
verify tagged type substitutability (the Liskov Substitution Principle) that can be used to
demonstrate consistency of class hierarchies.
Testing a private subprogram is outside the scope of GNATtest but can be implemented by
defining the relevant testing code in a private child of the package that declares the private
subprogram. For DO ‑ 178C/ED ‑ 12C credit, such test code needs to be derived from the
system's low-level requirements. Additionally, hybrid verification can help (see Low-level
verification by mixing test and proof ("Hybrid verification") (page 71)): augmenting testing
with the use of SPARK to formally prove relevant properties of the private subprogram.

3.5.2 GNATemulator
GNATemulator is an efficient and flexible tool that provides integrated, lightweight target
emulation.
Based on the QEMU technology, a generic and open-source machine emulator and virtu-
alizer, GNATemulator allows software developers to compile code directly for their target
architecture and run it on their host platform, through an approach that translates from the
target object code to native instructions on the host. This avoids the inconvenience and
cost of managing an actual board, while offering an efficient testing environment compati-
ble with the final hardware.
There are two basic types of emulators. The first can serve as a surrogate for the final
hardware during development for a wide range of verification activities, particularly those
that require time accuracy. However, they tend to be extremely costly, and are often very
slow. The second, which includes GNATemulator, does not attempt to be a complete time-
accurate target board simulator, and thus it cannot be used for all aspects of testing. But
it does provide a very efficient and cost-effective way to execute the target code very
early in the development and verification processes. GNATemulator thus offers a practical
compromise between a native environment that lacks target emulation capability, and a
cross configuration where the final target hardware might not be available soon enough or
in sufficient quantity.

3.5.3 GNATcoverage
GNATcoverage is a code coverage analysis tool. Its results are computed from trace files that
show which program constructs have been exercised by a given test campaign. With source
code instrumentation, the tool produces these files by executing an alternative version
of the program, built from source code instrumented to populate coverage-related data
structures. Through an option to GNATcoverage, the user can specify the granularity of the
analysis by choosing any of the coverage criteria defined in DO ‑ 178C/ED ‑ 12C: statement
coverage, decision coverage, or Modified Condition / Decision Coverage (MC/DC).
Source-based instrumentation brings several major benefits: efficiency of tool execution
(much faster than alternative coverage strategies using binary traces and target emulation,
especially on native platforms), compact-size source trace files independent of execution
duration, and support for coverage of shared libraries.
TQL-5 qualification material for GNATcoverage is available for DO ‑ 178C/ED ‑ 12C up to
level A (MC/DC).

3.5.4 GNATfuzz
GNATfuzz is a fuzzing tool; i.e., a tool that automatically and repeatedly executes tests and
generates new test cases at a very high frequency to detect faulty behavior of the system
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under test. Such anomalous behavior is captured by monitoring the system for triggered
exceptions, failing built-in assertions, and signals such as SIGSEGV.
Fuzz testing has proven to be an effective mechanism for finding corner-case vulnerabilities
that traditional human-driven verification mechanisms, such as unit and integration test-
ing, can miss. Since such vulnerabilities can often lead to malicious exploitations, fuzzing
technology is most useful for meeting security verification objectives as stated within DO ‑
326A/ED ‑ 202A ("Airworthiness Security Process Specification") and more specifically the
guidelines specified within DO ‑ 356A/ED ‑ 203A ("Airworthiness Security Methods and Con-
siderations").
However, fuzz-testing campaigns are complex and time-consuming to construct, execute
and monitor. GNATfuzz simplifies the process by analyzing a code base and identifying
subprograms that can act as fuzz-test entry points. GNATfuzz then automates the creation
of test harnesses suitable for fuzzing. In addition, GNATfuzz will automate the building,
executing and analyzing of fuzz-testing campaigns.
Although GNATfuzz does not directly provide evidence for DO ‑ 178C/ED ‑ 12C compliance,
it can serve a useful role if used as part of the software development and verification life
cycle processes. For example, by detecting some of the anomalous behavior cited in §6.3.4.f
(e.g., data corruption due to task or interrupt conflicts), GNATfuzz can help prevent defects
from being introduced into the Source Code.

3.5.5 TGen
TGen is an experimental run-time library / marshalling technology that can be used by
GNATtest and/or GNATfuzz to automate the production of test cases for Ada code. It per-
forms type-specific low-level processing to generate test vectors for subprogram parame-
ters, such as uniform value distribution for scalar types and analogous strategies for uncon-
strained arrays and record discriminants. A command-line argument specifies the number
of test values to be generated, and these can then be used as input to test cases created
by GNATtest.
TGen can also be used with GNATfuzz, to help start a fuzz-testing campaign when the user
supplies an initial set of test cases where some may contain invalid data. GNATfuzz will uti-
lize coverage-driven fuzzer mutations coupled with TGen to convert invalid test cases into
valid ones. TGen represents test data values compactly, removing a large amount of mem-
ory padding that would otherwise be present for alignment of data components. With its
space-efficient representation, TGen significantly increases the probability of a successful
mutation that results in a new valid test case.

3.6 GNAT Pro for Rust
The Rust language was designed for software that needs to meet stringent requirements for
both assurance and performance: Rust is a memory-safe systems-programming language
with software integrity guarantees (in both concurrent and sequential code) enforced by
compile-time checks. The language is seeing growing use in domains such as automotive
systems and is a viable choice for airborne software.
AdaCore's GNAT Pro for Rust is a complete development environment for the Rust program-
ming language, supporting both native builds and cross compilation to embedded targets.
The product is not a fork of the Rust programming language or the Rust tools. Instead, GNAT
Pro for Rust is a professionally supported build of a selected version of rustc and other core
Rust development tools that offers stability for professional and high-integrity Rust projects.
Critical fixes to GNAT Pro for Rust are upstreamed to the Rust community, and critical fixes
made by the community to upstream Rust tools are backported as needed to the GNAT
Pro for Rust code base. Additionally, the Assurance edition of GNAT Pro for Rust includes
the "sustained branch" service (see Sustained Branches (page 16)) that strikes the balance
between tool stability and project flexibility.
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3.7 Integrated Development Environments (IDEs)

3.7.1 GNAT Studio
GNAT Studio is a powerful and simple-to-use IDE that streamlines software development
from the initial coding stage through testing, debugging, system integration, and mainte-
nance. It is designed to allow programmers to get the most out of GNAT Pro technology.

3.7.1.1 Tools

GNAT Studio's extensive navigation and analysis tools can generate a variety of useful in-
formation including call graphs, source dependencies, project organization, and complexity
metrics, giving a thorough understanding of a program at multiple levels. It allows interfac-
ing with third-party version control systems, easing both development and maintenance.

3.7.1.2 Robust, Flexible and Extensible

Especially suited for large, complex systems, GNAT Studio can import existing projects from
other Ada implementations while adhering to their file naming conventions and retaining
the existing directory organization. Through the multi-language capabilities of GNAT Stu-
dio, components written in C and C++ can also be handled. The IDE is highly extensible;
additional tools can be plugged in through a simple scripting approach. It is also tailorable,
allowing various aspects of the program's appearance to be customized in the editor.

3.7.1.3 Easy to learn, easy to use

GNAT Studio is intuitive to new users thanks to its menu-driven interface with extensive
online help (including documentation on all the menu selections) and tool tips. The Project
Wizard makes it simple to get started, supplying default values for almost all of the project
properties. For experienced users, it offers the necessary level of control for advanced
purposes; e.g., the ability to run command scripts. Anything that can be done on the
command line is achievable through the menu interface.

3.7.1.4 Remote Programming

Integrated into GNAT Studio, Remote Programming provides a secure and efficient way for
programmers to access any number of remote servers on a wide variety of platforms while
taking advantage of the power and familiarity of their local PC workstations.

3.7.2 VS Code Extensions for Ada and SPARK
AdaCore's extensions to Visual Studio Code (VS Code) enable Ada and SPARK development
with a lightweight editor, as an alternative to the full GNAT Studio IDE. Functionality in-
cludes:
• Syntax highlighting for Ada and SPARK files
• Code navigation
• Error diagnostics (errors reported in the Problems pane)
• Build integration (execution of GNAT-based toolchains from within VS Code)
• Display of SPARK proof results (green/red annotations from GNATprove)
• Basic IntelliSense (completion and hover information for known symbols)
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3.7.3 Eclipse support - GNATbench
GNATbench is an Ada development plug-in for Eclipse and Wind River's Workbench envi-
ronment. The Workbench integration supports Ada development on a variety of VxWorks
real-time operating systems. The Eclipse version is primarily for native applications, with
some support for cross development. In both cases the Ada tools are tightly integrated.

3.7.4 GNATdashboard
GNATdashboard serves as a one-stop control panel for monitoring and improving the qual-
ity of Ada software. It integrates and aggregates the results of AdaCore's various static and
dynamic analysis tools (GNATmetric, GNATcheck, GNATcoverage, SPARK Pro, among oth-
ers) within a common interface, helping quality assurance managers and project leaders
understand or reduce their software's technical debt, and eliminating the need for manual
input.
GNATdashboard fits naturally into a continuous integration environment, providing users
with metrics on code complexity, code coverage, conformance to coding standards, and
more.
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CHAPTER

FOUR

COMPLIANCE WITH DO-178C/ED-12C GUIDANCE:
ANALYSIS

4.1 Overview
DO ‑ 178C/ED ‑ 12C uses the term "requirement" to identify the expected behavior of the
system, the software, or a part thereof. The desired functions are formulated at the sys-
tem level as "system requirements" and are refined and elaborated into "software require-
ments". DO ‑ 178C/ED ‑ 12C identifies several categories of software requirements.
The High-Level Requirements (HLR) define the expected behavior of the complete software
loaded on the target computer, independent of the software architecture. The HLR are
further refined into one or more lower levels, specifying the expected behavior of each
software subpart (component) based on the architecture definition. The lowest level of
requirements (the LLR) and the architecture are translated into source code, which finally
is compiled to produce the Executable Object Code (EOC).
Within this basic framework, the development process activities (requirements definition,
design, coding, and integration) should be conducted so as to reduce the likelihood of intro-
ducing errors. Verification process activities are designed to detect errors through multiple
filters, by assessing the same artifacts in different ways. This naturally applies to the EOC,
whose verification involves checking compliance with the requirements at each level, using
both normal and abnormal inputs. Such verification comprises manual reviews, automated
analyses (possibly including the use of formal methods), and testing based on the software
requirements. Finally, the EOC verification must itself be verified.
While it is not a DO ‑ 178C/ED ‑ 12C concept, a V cycle is often used to represent the
complete software life cycle. A variation of the traditional V cycle, oriented around the DO
‑ 178C/ED ‑ 12C processes, was shown earlier in Fig. 1. As is seen in that figure, AdaCore
tools mostly apply towards the bottom stages of the V cycle:
• Design (architecture + LLR), coding and integration (EOC generation), for the devel-
opment activities.

• Design and source code review / analysis and LLR testing, for the verification activities.
Additional support is provided for design activities in conjunction with two technology sup-
plements (Object-Oriented Technology and Formal Methods).
Language development environments provide the foundation for AdaCore's toolchains, in-
cluding support for Ada, C, C++, and Rust. Complementary tools support several verifica-
tion activities for Ada:
• GNATstack for stack checking (which also supports C),
• the GNAT Static Analysis Suite, or GNAT SAS, for defect and vulnerability detection,
code standard checking (GNATcheck), and code metrics generation (GNATmetric)

• the GNAT Dynamic Analysis Suite, or GNAT DAS, for testing (GNATtest, TGen), struc-
tural code coverage analysis (GNATcoverage, which also supports C and C++), pro-
cessor emulation (GNATemulator), and fuzzing (GNATfuzz).
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To show how AdaCore tools can be used in connection with the software life cycle processes
for a system that is to be assessed against DO ‑ 178C/ED ‑ 12C, several possible scenarios
will be described:
• Use Case 1: Traditional development process, excluding or including

OOT The development process produces requirements specified in text (natural
language) that are implemented in Ada source code. A code standard defines a
set of restrictions, which may or may not include limitations on object-oriented
features. Both cases need to be considered:
– Use Case 1a: No use is made of object oriented technology or related tech-
niques

– Use Case 1b: Ada's OOT features are used, and the guidance in DO ‑ 332/ED
‑ 217 is considered

• Use Case 2: Using SPARK and Formal Methods
The development uses a formal description of the low-level requirements, namely
SPARK / Ada 2012 contracts. A formal analysis is performed, and credit is claimed
on reducing the testing. The certification effort follows the additional guidance
from the Formal Methods Supplement (DO ‑ 333/ED ‑ 216).

In the tables that appear in this chapter, the references shown in parentheses for the objec-
tives identify the table, objective number, and paragraph reference for the objective in the
DO ‑ 178C/ED ‑ 12C standard or the relevant technology supplement. For example, A-2[6]:
5.3.1.a refers to Table A-2, Objective 6, paragraph 5.3.1a.

4.2 Use case #1a: Coding with Ada 2012
The adoption of Ada as the coding language brings a number of benefits during design,
coding, and testing, both from language features (as summarized in the table below) and
from the AdaCore ecosystem.

4.2.1 Benefits of the Ada language

Contributions

Objectives • Software Coding (A-2[6]: 5.3.1.a)
• Reviews and Analyses of Source Code:

– Verifiability (A-5[3]- 6.3.4.c)
– Accuracy and consistency (A-5[6]- 6.3.4.f)

• Test Coverage Analysis:
– Test coverage for Data Coupling and Control Coupling
achieved (A-7[8] - 6.4.4.d)

Activities • Software Coding (5.3.2.a)
• Reviews and Analyses of Source Code (6.3.4)
• Structural Coverage Analysis (6.4.4.2.c, 6.4.4.2.d)
• Structural Coverage Analysis Resolution (6.4.4.3)

Ada's most significant contribution is towards the reliability of the written code; the lan-
guage is designed to promote readability and maintainability, and to detect errors early in
the software development process. This section will summarize several Ada features that
help meet these goals.
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4.2.1.1 Modularization

Ada's package facility was designed for programming in the large: designing a system
comprising millions of lines of code through modules (packages) that maximize reuse while
making explicit the allowed inter-module dependencies. Ada directly supports the software
engineering principle of information hiding, with a package comprising an interface (its
specification) and an implementation (its body). A package specification itself is separated
into a visible part that is accessible externally, and optionally a private part that can only
be accessed by the associated package body and by the private parts and bodies of child
packages. Packages support programming by composition (bottom-up design), program-
ming by decomposition (top-down design), and programming by extension (Object-Oriented
Programming).
Packagesmake clear syntactically, and enforce with compile-time checks, the ways in which
one module can depend on another; in DO ‑ 178C/ED ‑ 12C terms, their coupling. They thus
help meet the DO ‑ 178C/ED ‑ 12C objective A-7[8] of achieving test coverage of the sys-
tem's control and data coupling. For example, if a compilation unit Q has a with dependence
on package P, then Q has a potential data coupling on any data item defined in the visible
part of the specification for P, and likewise a potential control coupling on any subprogram
defined in the visible part of the specification for P. These couplings are actualized if Q refer-
ences these items, and they must be demonstrated by structural code coverage tests. On
the other hand, data items or subprograms defined in P's private part or package body are
inaccessible to Q (any such accesses would be flagged as compile-time errors), and thus
they do not constitute a coupling for Q. For further details, see Data and control coupling
coverage with GNATcoverage (page 49).

4.2.1.2 Strong typing

The emphasis on early error detection and program clarity is perhapsmost clearly illustrated
in the language's strong typing. A type in Ada is a semantic entity that can embody static
(and possibly also dynamic) constraints. For example:

type Ratio is digits 16 range -1.0 .. 1.0;

In the above example, Ratio is a floating-point type. Two constraints are specified:
• digits specifies the minimum precision needed for objects of this type, in terms of
decimal digits. Here the compiler will likely choose a 64-bit representation. If the target
architecture only supports 32-bit floating-point, the compiler will reject the program.

• range defines the set of acceptable values. Here, only values between -1.0 and 1.0
(inclusive) are acceptable; an attempt to assign a value outside this range to a variable
of type Ratio will raise the Constraint_Error run-time exception.

Strong typing means an absence of implicit conversions (implicit casts), since such conver-
sions can mask logical errors. For example:

type Miles is digits 16;
type Kilometers is digits 16;
...
Distance_1 : Miles;
Distance_2 : Kilometers;
...
Distance_1 := Distance_2; -- Illegal, rejected at compile time

Both Miles and Kilometers are 16-digit floating-point types (the range constraint is op-
tional in a floating-point type declaration) but they are different types, and thus the assign-
ment is illegal. Likewise, it is illegal to combine Miles and Kilometers in an expression;
Miles + Kilometers would also be rejected by the compiler.
With strong typing the program's data can be partitioned so that an object of a given type
can only be processed using operations that make sense for that type. This helps prevent
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data mismatch errors.
Explicit conversions between related types are allowed, either predefined (for example be-
tween any two numeric types) or supplied by the programmer. Explicit conversions make
the programmer's intent clear. For example:

type Grade is range 0..100; -- a new integer type

Test_Grade : Grade;
N : Integer; -- predefined type
...
Test_Grade := N;
-- Illegal (type mismatch), rejected at compile time

Test_Grade := Grade (N);
-- Legal, with run-time constraint check that N is in 0..100

4.2.1.3 Dimensionality checking

One of the challenges to a language's type model is the enforcement of the proper use
of units of measurement. For example dividing a distance by a time should be allowed,
yielding a velocity. But the error of dividing a time by a distance where a velocity value is
required should be detected and reported as an error at compile time.
Although this issue could be addressed in theory by defining a separate type for each unit
of measurement, such an approach would require defining functions (likely as overloaded
operator symbols) for the permitted operand combinations. This would be notationally
cumbersome and probably not used much in practice.
The GNAT Pro environment provides a solution through the implementation-defined aspects
Dimension_System which can be applied to a type, and Dimension which can be applied
to a subtype. Uses of variables are checked at compile time for consistency based on the
Dimension aspect of their subtypes. The GNAT library includes a package System.Dim.
Mks that defines a type and its associated subtypes that will be used for meters (Length),
kilograms (Mass), seconds (Time), and other units. The programmer can define a subtype
such as Velocity that corresponds to Length (in meters) divided by Time (in seconds):

subtype Velocity is Mks_Type with
Dimension => ("m/sec",

Meter => 1,
-- Values are exponents in the product of
-- the units
Second => -1,
others => 0);

With such a declaration the following is permitted:

My_Distance : Length := 10 * m; -- m is 1.0 meter
My_Time : Time := 5.0 * h; -- h is 1.0 hour

-- (3600.0 sec)
My_Velocity : Velocity := My_Distance / My_Time; -- OK

A Velocity value should be computed as a distance divided by a time. The following will
be detected as an error:

My_Distance : Length := 10 * m;
My_Time : Time := 5.0 * h;
My_Velocity : Velocity := My_Time / My_Distance; -- Illegal

GNAT Pro's support for dimensionality checking is a useful adjunct to Ada's strong typing
facilities.
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4.2.1.4 Pointers

For compliance with DO ‑ 178C/ED ‑ 12C, the use of dynamic memory (and pointers) should
be kept to the bare minimum, and Ada helps support this goal. Features such as arrays
or by-reference parameter passing, which require pointers or explicit references in other
languages, are captured by specific facilities in Ada. For example, Ada's parameter passing
mechanism reflects the direction of data flow (in, out, or in out) rather than the imple-
mentation technique. Some data types always require by-copy (for example scalars), and
some types always require by-reference (for example tagged types, in OOP). For all other
types the compiler will choose whether it is more efficient to use by-reference (via a hidden
pointer or reference) or by-copy. Since the developer does not have to explicitly manipu-
late pointers to obtain by-reference passing, many common errors are avoided. Here's an
example:

type Rec is
record

A, B : Integer;
end record;

My_Rec : Rec;

procedure Update (R : in out Rec);

...

Update (My_Rec);

The above procedure takes a Rec object as an in out parameter. In the invocation Update
(My_Rec), the compiler may choose to pass My_Rec either by reference or by copy based
on efficiency considerations. Other languages use pointers, either explicitly or implicitly,
to obtain by-reference passing if the actual parameter needs to be modified by the called
subprogram.
When pointers are absolutely required, Ada's approach is to supply a type-safe and high-
level mechanism (known as access types) to obtain the needed functionality while also
providing low-level facilities that are potentially unsafe but whose usage is always explicitly
indicated in the source text (thus alerting the human reader).
One example is the use of the generic procedure Ada.Unchecked_Deallocation to free the
storage for an object that is no longer needed:

with Ada.Unchecked_Deallocation;
procedure Proc is

type String_Ptr is access String;
procedure Free is new Ada.Unchecked_Deallocation (String, String_Ref);
-- procedure Free (X : in out String_Ref);
Ptr : String_Ptr;

begin
...
Ptr := new String' ("Hello");
-- Allocates a String, initialized to "Hello"
...
Free (Ptr);
-- Deallocates heap object, sets Ptr to null
...

end Proc;

An object of type String_Ptr is a value that is either null or else points to a dynamically
allocated String object. To deallocate an allocated object, it is necessary to instantiate
the generic procedure Ada.Unchecked_Deallocation; the result is the definition of proce-
dure Free. The sample code allocates an initialized heap object and subsequently frees its
storage
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As another example, here's a C code fragment that performs pointer arithmetic:

int *ptr = malloc (sizeof (int));
ptr++;

This may or may not be safe; after the increment, ptr points to a location immediately
beyond the storage for the allocated int.
As part of its C interfacing facilities Ada supports such pointer arithmetic, indeed with algo-
rithmic code that is similar to the C notation, but the dependence on a potentially unsafe
operation is explicit:

with Interfaces.C.Pointers;
procedure Pointer_Arith is

type Int_Array is
array (Positive range <>) of aliased Integer;

package P is
new Interfaces.C.Pointers(Positive, Integer,

Int_Array, Integer'First);
-- This generic instantiation defines the access type
-- Pointer and its associated operations
use type P.Pointer;
-- For notational convenience in invoking "+"

Ref : P.Pointer := new Integer;
begin

Ref := Ref+1;
-- Increments Ref by the size (number of storage elements)
-- of an Integer

end Pointer_Arith;

This syntax, though wordier than the C version, makes potentially unsafe operations much
more visible, hence easier to identify and review.

4.2.1.5 Arrays

The array (an indexable sequence of elements) is a fundamental and efficient data struc-
turing mechanism, but a major vulnerability unless attempted accesses to data outside the
bounds of the array are prevented. Ada avoids this vulnerability since array operations
such as indexing are checked to ensure that they are within the specified bounds. In addi-
tion to indexing, Ada provides various array operations (assignment, comparison, slicing,
catenation, etc.) which allow manipulating arrays in an explicit and safe manner.
Ada's arrays are fixed size; once an array object is created, its bounds are established and
cannot change. This simplifies the storage management (arrays in Ada can go on the stack
and do not require hidden pointers). Additional flexibility (for example bounded-size arrays
whose length can vary up to a specified maximum limit, or unbounded arrays of arbitrary
length) is obtained through the Ada predefined library.
Here's an example:

type Int_Array is array(Positive range <>) of Integer;
-- Different objects of type Int_Array can have different
-- bounds

A : Int_Array (1 .. 8);
B : Int_Array (2 .. 12);
I : Integer;
...

A := (others => 0);
(continues on next page)
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(continued from previous page)
B := (2 .. 7 => 0, others => 1);
...
if A (1 .. 3) = B (6 .. 8) then

Put_Line ("Slices are equal");
end if;

Get (I); -- Read in an integer
A (I) := 100; -- Run-time check that I is in range

The above code creates two arrays, A with 8 elements indexed from 1 to 8, and B with 11
elements indexed from 2 to 12. A is assigned all zeroes, and B is assigned 0 in its first 6
elements and 1 in the rest. Contiguous sequences (slices) of the two arrays are compared
for equality. All of this is done through standard language syntax as opposed to explicit
loops or library calls.
The code at the end of the example illustrates Ada's index checking. If I is not in
the index range of array A (i.e., between 1 and 8 inclusive) then a run-time exception
(Constraint_Error) is raised.

4.2.1.6 Other Ada features

Many other features contribute to Ada's support for reliable and maintainable embedded
software. Some were described briefly in Language Overview (page 11). Others include the
Ravenscar profile, a deterministic tasking subset that is simple enough for certification but
rich enough to program real-time embedded systems; and Ada's low-level facilities, which
allow the programmer to specify target-specific representations for data types (including
the bit layout of fields in a record, and the values for enumeration elements). Further
information on features that contribute to safe software may be found in [BB15].
In summary, Ada's benefits stem from its expressive power, allowing the developer to spec-
ify the needed functionality or to constrain the feature usage to a deterministic subset,
together with its support for reliability and readability. A variety of errors, including some
of the most frequent and harmful vulnerabilities, are detected in Ada either at compilation
time or through dynamic checks automatically added by the compiler. Such checks can
be either retained (for example during a testing campaign) or removed (for example at
production time, after verification has provided confidence that they are not needed).
Additional Ada features will be described and highlighted in other sections of this document.
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4.2.2 Using Ada during the design process

Contributions

Objectives • Software Design Process (A-2[3,4]: 5.2.1.a)
• Reviews and Analyses of Source Code: Compliance with architecture
(A-5[2]: 6.3.4.b), traceability (A-5[5]:6.3.4.e)

• Reviews and Analyses of LLR: Compatibility with target (A-5[3]:
6.3.2.c)

• Reviews and Analyses of architecture: Compatibility with target (A-
4[10]: 6.3.3.c)"

Activities • Software Design Activities (5.2.2.a, 5.2.2.d)
• Software Development Process Traceability (5.5.c)
• Reviews and Analyses of Source Code (6.3.4)
• Reviews and Analyses of LLR: Compatibility with target (6.3.2)
• Reviews and Analyses of architecture: Compatibility with target
(6.3.3)

An application's design — that is its low-level requirements and software architecture —
may be specified in many ways, combining text and graphics at various levels of formality.
The main principle is to keep the design at a higher level of abstraction than the code: in
particular avoiding expression of requirements as code or pseudo-code. Requirements are
properties to be verified by the code and are not the code itself. Thus the general advice
is to avoid using a programming language as the medium for expressing — even in part —
the software design.
Ada, however, presents an exception to this advice. The language provides extensive facil-
ities for capturing a program unit's specification (its what) separately from the implemen-
tation (its how). An Ada package and an Ada subprogram each consists of a specification
(the interface) and a body (the implementation) and a similar separation of interface from
implementation is found in generic units, tasks, and encapsulated types.
A unit's specification establishes the constraints on its usage, that is, the permitted relation-
ships between that unit and other parts of the program. These are the unit's architectural
properties, in contrast to its implementation. It thus makes sense for a significant part of
the Ada specifications to be developed during the design process. An interesting effect is
that the design elements defined as Ada specifications are easy to verify, sometimes simply
by compiling the code and showing that the interface usages are correct.
The separation of specification and implementation means that an Ada specification can
have an implementation written in a different language, for example C. Although this may
lose some of Ada's benefits, it illustrates the flexibility and relevance of the approach.

4.2.2.1 Component identification

Regardless of the method used for designing the software as a hierarchical set of com-
ponents, Ada may be directly used to identify the software components and define their
interfaces. This is typically done via package specifications and subprogram specifications.
A few comments on the term interface may be helpful. (It is not referring to the OOP lan-
guage feature here.) Informally, a component's interface is the collection of its properties
that establish whether any given usage of the component is correct. These properties arise
at several levels. As an example, for a procedure that sorts an array of floating point values
its interface may be regarded as comprising the following:
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• Syntactic interface: the procedure's name and its formal parameters (their names,
parameter passing modes, and types).

• Information flow interface: how, if at all, non-local data are accessed by the procedure
(read, written, or both)

• Semantic (functional) interface: the function performed by the procedure — what does
it mean to sort an array, independent of the algorithm — which is a low-level require-
ment for the procedure

Other low-level constraints may also be considered as part of the interface, such as a time
or space constraint.
The syntactic interface in Ada is a simple subprogram specification:

type Float_Array is array (Integer range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

This will also suffice for information flow if Sort does not access non-local data. If Sort does
access non-local data then the uses can be specified informally by comments:

type Float_Array is array (Positive range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

-- Inputs: None
-- Outputs
-- p_GLOBAL.Status : p_GLOBAL.T_Status;

They can also be captured more formally as aspects of the procedure specification (an
aspect is a technical feature that specifies a property of program entity) if the SPARK subset
of Ada is used, as will be explained below.
The LLR (including the semantic interface) are developed in parallel and may be specified
separately from or together with the component's specification. They can be defined in nat-
ural language, as comments, or using contracts (pre- and/or postconditions) as illustrated
in the next subsection.

4.2.2.2 Low-Level Requirements

A simple example of a low-level requirement, for the Sort procedure defined above, is the
following:

The component shall order the array from the smallest value to highest one

In Ada, we can capture this requirement as a postcondition aspect of the procedure:

type Some_Array is array (Positive range <>) of Integer;

procedure Sort (My_Array : in out Some_Array)
with Post =>

(for all I in My_Array'First .. My_Array'Last-1 =>
My_Array (I) <= My_Array (I+1) );

The with Post construct defines a postcondition for the procedure; i.e., a condition that
is asserted to be True when the procedure returns. Here it expresses, in Ada syntax, the
low-level requirement that the procedure sort the array in ascending order: for each index
I into the array, from the first position through the next-to-last, the value of the element at
position I+1 is at least as large as the element at position I. In the degenerate case where
the array is either empty or contains a single element (i.e., when the range of I is empty)
the for all condition is considered to be True.
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It's clear that the postcondition expression says nothing about how the procedure is im-
plemented. It's not pseudo-code for an algorithm but rather a property of the procedure
that will need to be verified. It's the formalization of a requirement that happens to use
Ada syntax. Moreover, a postcondition can refer to the values of formal parameters and/or
global data, both at the point of call and the point of return. (In the above example, the
postcondition could be strengthened by specifying that the value of My_Array on return
is a permutation, possibly the identity mapping, of the value on entry.) And a function
postcondition can refer to the value being returned by the function.
A subprogram can also have a precondition (a Boolean expression), which is a requirement
that the caller needs to satisfy and that is assumed to be True by the called subprogram.
For example, a function that returns the maximum value in an array of integers should have
a precondition that the array is non-empty. The postcondition that is shown reflects the two
properties that need to be met:
• The function result is at least as large as each element in the array, and
• The function result is present in the array

type Some_Array is array (Positive range <>) of Integer;

function Maximum (My_Array : in Some_Array) return Integer
with Pre => My_Array'Length > 0,

Post =>
(for all I in My_Array'Range =>

Maximum'Result >= My_Array (I)) and
(for some I in My_Array'Range =>

Maximum'Result = My_Array (I));

Preconditions and postconditions, and related features such as type invariants, are referred
to collectively as contract-based programming and were introduced in the Ada 2012 version
of the language. Based on the assertion policy (as specified by a pragma), the contracts
can be checked at run-time, raising an exception on failure. They also support (but do not
require) formal analysis, since the Ada syntax is the same as is used in SPARK. In SPARK
the contracts are subject to additional restrictions (for example they must conform to the
SPARK language subset). The contracts are then considered to be low-level requirements
and verification cases at the same time, used by the SPARK proof technology for formal
verification, for example to demonstrate that if a subprogram satisfies its precondition then
on return it will satisfy its postcondition. In summary, functional contracts (such as pre- and
postconditions) serve three purposes:
• As conditions to be formally proved by SPARK technology,
• As run-time conditions to be evaluated/checked using standard Ada semantics, and
• As requirements documentation to the human reader (if checks are not enabled and
formal methods are not used) in an unambiguous notation (i.e., using Ada syntax
rather than natural language)

When used for defining the software's architecture, Ada specifications can obviously ex-
press concepts such as modules (packages), groups of modules (package hierarchies),
subprograms, class inheritance hierarchies, etc. Additional interface properties can be ex-
pressed using SPARK aspects, for example a subprogram's data and flow dependencies.
Here's an example which, for simplicity and purposes of illustration, uses visible variables
in a package specification to represent a data structure for a last-in first-out stack:

package Stack_Pkg is

Max_Length : constant := 100;
subtype Element_Type is Integer;

Length : Natural range 0.. Max_Length := 0;
(continues on next page)
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(continued from previous page)
Stack : array (1..Max_Length) of Element_Type);

procedure Push ( Item : in Element_Type )
with Global => (In_Out => (Length, Stack)),

Depends => (Length => Length,
Stack => (Stack, Length, Item)),

Pre => Length < Max_Length,
Post => Length = Length'Old+1;

...
end Stack_Pkg;

The Global aspect captures the data dependency: Push will reference and assign to the
global variables Length and Stack. The Depends aspect captures the flow dependency:
the new value of Length depends on its old value, and the new value of Stack depends
on the values of Stack, Length, and Item. These dependencies can be verified by the
SPARK tools (assuming that the subprogram body is written in the SPARK subset). The
pre- and postconditions reflect some of the functional properties of the procedure, and
the postcondition illustrates the 'Old attribute for referencing the point-of-call value of a
variable.
A more realistic version of this example would hide the representation in the private part or
body of the package. The contracts would then be expressed differently, for example with
the Global and Depends referring to the abstract state of the package rather than visible
variables.
Some low-level requirements might not be expressible using the aspect mechanism (for
example timing constraints). A convenient approach during architecture definition is to
separately specify those components whose requirements can be defined using contracts,
from those that cannot.

4.2.2.3 Implementation of Hardware / Software Interfaces

Ada's type system makes it straightforward to implement hardware/software interfaces,
while also detecting target incompatibilities at compile time. Such interfaces may be de-
fined as part of the coding process, but performing this activity during the design process
has a number of benefits. It may avoid duplication of effort and also helps prevent errors
from being introduced during the translation from design to code. It also allows early error
detection through compilation checks.

Package Interfaces

Applications sometimes need to use types that correspond exactly to the native numeric
data representations supported on the target machine, for example 16- or 32-bit signed
and unsigned integers. Such types are defined in package Interfaces, which is part of the
standard Ada library. The exact set of types depends on the target but typically includes
integer types such as Unsigned_16, Unsigned_32, Integer_16, and Integer_32, as well
as several floating-point types. The unsigned integer types are especially useful for hard-
ware / software interfacing since they support bitwise operations including shift and rotate
functions.

Specifying data representation

Embedded systems often need to deal with external data having a specific representation,
and Ada has a variety of features to help meet this requirement. For example, the following
can be defined:
• the values of the elements in an enumeration type,
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• the layout of a record (size and position of each field, possibly with fields overlaid),
and

• the address, size, and/or alignment of a data object.
The compiler will check that the specified representation is consistent with the target hard-
ware. For example, Fig. 3 shows the required layout (on a little-endian machine) for a data
object consisting of an unsigned 16-bit integer (Num), a 4-bit enumeration value (Urgency)
that is either Low, Medium, or High, with the respective values 2, 5, and 10), and a Boolean
flag (F).

Fig. 3: Data Layout

As with other entities, Ada separates the type's interface (its logical structure as a record
type with named fields) from its implementation (its physical representation / layout includ-
ing size, alignment, and exact position of each field). The representation can be specified
through a combination of aspects and representation clauses. Defining the Bit_Order and
the Scalar_Storage_Order explicitly means that the code will work correctly on both little-
endian and big-endian hardware.

type Urgency_Type is (Low, Medium, High);
for Urgency_Type use (Low => 2, Medium => 5, High => 10);
for Urgency_Type'Size use 4; -- Number of bits
type Urgency_Type is (Low, Medium, High);
for Urgency_Type use (Low => 2, Medium => 5, High => 10);
for Urgency_Type'Size use 4; -- Number of bits

type Message is
record

Num : Interfaces.Unsigned_16;
Urgency : Urgency_Type;
F : Boolean;

end record
with

Bit_Order => System.Low_Order_First,
Scalar_Storage_Order => System.Low_Order_First,

-- Scalar_Storage_Order is a GNAT-specifc aspect
Size => 32, -- Bits
Alignment => 4; -- Storage units

for Message use -- Representation clause
record

Num at 0 range 0..15;
Urgency at 2 range 0..3;
F at 3 range 2..2;

end record;
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The at syntax in the record representation clause specifies the offset (in storage units) to
the storage unit where the field begins, and the bit positions that are occupied. A field can
overlap multiple storage units.
When the program specifies these kinds of representational details, it's typical for the ap-
plication to read a raw value from an external source, and in such cases it is important to
ensure that such data values are valid. In the above example, the Urgency field needs to
have one of the values 2, 5, or 10. Any other value has to be detected by the program
logic, and Ada's 'Valid attribute can perform that check. The following example illustrates
a typical style:

M : Message;
...
Device.Read (M); -- Reads a value into M
if not M.Urgency'Valid then

... -- Report non-valid input value
else

... -- Normal processing
end if;

The 'Valid attribute can be applied to data objects from numeric and enumeration types.
It is useful when the permitted values for the object are a proper subset of the full value
set supported by the object's representation.

Numeric types

Another feature related to hardware/software interfaces is Ada's numeric type facility (in-
teger, floating-point, fixed-point). The programmer can specify the type's essential proper-
ties, such as range and precision, in a machine-independent fashion; these will be mapped
to an efficient data representation, with any incompatibilities detected at compile time. As
an example:

type Nanoseconds is range 0 .. 20_000_000_000;

V : Nanoseconds;

The above code requires integers up to 20 billion to be represented. This would only be
accepted on a 64-bit machine, and the compiler would reject the program if the target
lacks such support. This can even be made explicit as part of the type declaration:

type Nanoseconds is range 0 .. 20_000_000_000
with Size => 64;

V : Nanoseconds;

The compiler will check that 64 bits are sufficient, and that it can be implemented on the
target computer.
Similar constraints can be expressed for floating-point types:

type Temperature is digits 14;

V : Temperature;

At least 14 digits of decimal precision are required in the representation of Temperature
values. The program would be accepted if the target has a 64-bit floating point unit, and
would be rejected otherwise.
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4.2.3 Integration of C components with Ada

Contributions

Objectives • Software Coding (A-2[6]: 5.3.1.a)
• Software Integration (A-2[7]: 5.4.1.a)

Activities • Software Coding (5.3.2.a)
• Software Integration (5.4.2a)

C is widely used for embedded development, including safety-critical systems. Even where
Ada is the main language for a system, components written in C are very commonly in-
cluded, either from legacy libraries or third party software. (Languages such as Java and
C++ are used much less frequently. This is due in part to their semantic complexity and
the difficulty of demonstrating compliance with certification standards, for example for the
C++ standard library or the Java Garbage Collector.)
Friendly cooperation between Ada and C is supported in several ways by AdaCore tools and
the Ada language.
• Most of the tools provided by AdaCore (compiler, debugger, development environ-
ments, etc.) can support systems written entirely in Ada, in a mixture of Ada and C,
and entirely in C.

• Specific interfacing tools are available to automatically generate bindings between
Ada and C, either creating Ada specification from a C header file:

$ g++ -fdump-ada-spec

or a C header file from an Ada specification:

$ gcc -gnatceg

These binding generators make it straightforward to integrate C components in an Ada
application or vice versa.

• The Ada language directly supports interfacing Ada with other languages, most no-
tably C (and also Fortran and COBOL). One of the standard libraries is a package
Interfaces.C that defines Ada types corresponding to the C basic types (int, char,
etc.) and implementation advice in the Ada Language Reference Manual explains how
to import C functions and global data to be used in Ada code, and in the other direction,
how to export Ada subprograms and global data so that they can be used in C.

• The GNAT Pro compiler uses the same back end technology for both Ada and C, facili-
tating interoperability.

• A project using a C codebase can incrementally introduce Ada or SPARK. Ada has stan-
dard support for interfacing with C, SPARK can be combined with C (with checks at
the interfaces) [KOC16], and AdaCore's GNAT Pro Common Code Generator compiles
a SPARK-like subset of Ada into C (for use on processors lacking an Ada compiler). C
projects can thus progressively adopt higher-tier languages without losing the invest-
ment made in existing components.
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4.2.4 Robustness / defensive programming

Contributions

Objectives • Software Coding (A-2[6]: 5.3.1.a)
• Reviews and Analyses of Source Code: Accuracy and consistency (A-
5[6]: 6.3.4.f)

Activities • Software Coding (5.3.2.a)
• Software Coding (5.3.2.c - inadequate/incorrect inputs)
• Reviews and Analyses of Source Code (6.3.4)
• Robustness Test Cases (6.4.2.2)"

Robustness means ensuring correct software behavior in the presence of abnormal input,
and (as per DO ‑ 178C/ED ‑ 12C) such behavior should be defined in the software require-
ments. There is no fundamental difference between requirements concerning abnormal
input (robustness requirements) and those concerning normal input (functional require-
ments).
One approach to meeting robustness requirements is through defensive programming tech-
niques; that is, code that detects incorrect input and performs the appropriate actions.
However, this has two undesirable side effects.
• "Correct behavior in case of incorrect input" is sometimes difficult to define, resulting in
code that cannot be verified by requirements based tests. Additional test cases based
on the code itself (called structural testing) are not acceptable from a DO ‑ 178C/ED ‑
12C perspective, since they are not appropriate for revealing errors.

• Unexercised defensive code complicates structural coverage analysis. It can't be clas-
sified as extraneous (since it does meet a requirement), but neither can it be consid-
ered as deactivated (since it is intended to be executed when the input is abnormal).
As with any other non-exercised code, justification should be provided for defensive
code, and this may entail difficult discussions with certification authorities.

An alternative approach is to ensure that no invalid input is ever supplied (in other words,
to make each caller responsible for ensuring that the input is valid, rather than having
the callee deal with potential violations). This can be done through the use of Ada 2012
contracts. Here's an example, a procedure that interchanges two elements in an array:

type Float_Array is array (1..100) of Float;

procedure Swap (FA : in out Float_Array;
I1, I2 : in Integer);

-- I1 and I2 have to be indices into the array,
-- i.e., in FA'Range

procedure Swap (FA : in out Float_Array;
I1, I2 : in Integer) is

Temp : Float;
begin

if I1 in FA'Range and then I2 in FA'Range then
Temp := FA (I1);
FA (I1) := FA (I2);
FA (I2) := Temp;

end if;
end Swap;

The above example illustrates the ambiguity of the requirements for defensive code. What
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does it mean to invoke Swap when one or both indices are out of range? Not doing anything
(which is the effect of the above code) is a possible answer, but this should be identified
as a derived requirement (since it is an additional behavior of the component). Other pos-
sibilities:
• Raise an exception
• Report the error through an additional out parameter to the procedure, or as a status
value returned (if the subprogram were expressed as a function rather than a proce-
dure)

• Map an out-of-bounds low value to FA'First, and an out-of-bounds high value to
FA'Last

Even if one of these options is chosen as the required behavior, there are both efficiency
questions (why should the procedure spend execution time checking for a condition that is
expected to be met) and methodological issues with such defensive code.
The responsibility should really be on the caller to avoid invoking the procedure if any of the
actual parameters has an incorrect value. A comment in the code states that the indices
should be in range, but Ada 2012 allows formalizing this comment in an automatically
verifiable way:

type Float_Array is array (Positive range <>) of Float;

procedure Swap (FA : in out Float_Array; I1, I2 : Integer)
with Pre => I1 in FA'Range and then I2 in FA'Range

procedure Swap (FA : in out Float_Array; I1, I2 : Integer) is
Temp : Float;

begin
Temp := FA (I1);
FA (I1) := FA (I2);
FA (I2) := Temp;

end Swap;

The comment has been replaced by a precondition, which is part of the procedure specifica-
tion. Assuming proper verification at each call site, defensive code in the implementation
of the procedure is not needed. The requirement is now to check that the values passed
at each call meet the precondition, and to take appropriate action if not. This action may
differ from call to call, and may involve further preconditions to be defined higher up in the
call chain.
Enforcement of these preconditions may be accomplished through several possible activi-
ties:
• Code reviews using the Ada contracts as constraints. This is the least formal
technique, but the explicit specification of the preconditions in Ada contract syntax
(versus comments) helps improve the thoroughness of the review and avoids the po-
tential ambiguity of requirements expressed in natural language.

• Enabling dynamic checks during testing, and removing them in the final ex-
ecutable object code. Run-time checks are generated for pre- and postconditions
if the program specifies pragma Assertion_Policy (Check) and the code is com-
piled with the compiler switch -gnata. A violation of a pre- or postcondition will then
raise the Assertion_Error exception. After testing and related verification activi-
ties achieve sufficient assurance that no violations will occur, the checking code can
be removed (either by pragma Asserion_Policy(Ignore) or by compiling without
-gnata).

• Enabling dynamic checks during testing, and keeping them in the final ex-
ecutable object code. In this case, the software requirements should define the
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expected behavior in case a pre- or postcondition is violated, for example to reset the
application to a known safe state as soon as an inconsistency is detected.

• Static analysis or formal proof. The GNAT Static Analysis Suite technology
(page 19)) takes preconditions into account as part of its analysis in detecting poten-
tial errors. It can be tuned based on whether the priority is on finding as many errors
as possible, at the expense of false positives, or on "picking the low-hanging fruit":
detecting defects but minimizing the false positives at the expense of missing some
actual errors. The SPARK (page 15) tools likewise use preconditions, in this case to
guide formal analysis. The proof engine can statically verify (or else report otherwise)
that (1) a precondition is strong enough to guarantee the absence of run-time errors
in the subprogram, and (2) every call satisfies the precondition. The SPARK analysis
is sound (no false negatives): if the proof succeeds, then there is no violation of the
properties that SPARK checks for.

The methods and activities adopted to address the robustness issue should be described in
the software plans and, when applicable, in the software development standards (require-
ments and/or code standards).
Note that pre- or postcondition contracts do not in themselves implement robustness re-
quirements. Instead they help to formalize and verify such requirements (through static
analysis, formal proof, and/or testing). The defensive code is the code that is developed, if
any, to make sure that these contracts are respected.

4.2.5 Defining and Verifying a Code Standard with GNATcheck

Contributions

Objectives • Software Planning Process (A-1[5]: 4.1.e)
• Software Coding (A-2[6]: 5.3.1.a)
• Reviews and Analyses of Source Code (A-5[4]: 6.3.4.d)

Activities • Software Planning Process Activities (4.2.b)
• Software Development Standards (4.5.b, 4.5.c)
• Software Coding (5.3.2.b)
• Reviews and Analyses of Source Code (6.3.4)

Defining a Software Code Standard serves at least two purposes:
• It helps to make the application source code consistent, more verifiable, and more eas-
ily maintainable. While these qualities do not have a direct safety benefit, adherence
to a code standard will improve the efficiency of the source code verification activities.

• It can prevent the use of language features that complicate software product verifi-
cation or introduce potential safety issues. A common example is the deallocation
of dynamically allocated objects, which can lead to dangling references if used incor-
rectly. Verification that a program is not susceptible to such errors would require thor-
ough and complex analysis, and as a result it's typical for a code standard to prohibit
deallocation.

GNATcheck provides an extensive set of user-selectable rules to verify compliance with var-
ious Ada coding standard requirements. These includes style convention enforcement (cas-
ing, indentation, etc.), detection of features that are susceptible to misuse (floating-point
equality, goto statements), static complexity checks (block nesting, cyclomatic complexity)
and detection of features with complex run-time semantics (tasking, dynamic memory).
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Since a code standard may include qualitative rules, or rules that are not handled by
GNATcheck, verifying that the source code complies with the standard is not always fully
automatable. However, there are two ways to extend automated verification:
• GNATcheck's rules are extended on a regular basis in response to customer input, and
the tool's enforcement of the new rules is eligible for qualification. Even in the absence
of tool qualification, the tool can still save time during verification by detecting rule
violations.

• Users can define their own rules as well, in particular using LKQL (LangKit Query Lan-
guage) for running queries on top of source code.

One issue that comes upwith a code standard is how to apply it retrospectively to an existing
code base. The first time a compliance checking tool is run, it would not be uncommon to
find hundreds or even thousands of deviations. Fixing them all is not only a cumbersome
and tedious task, but as a manual activity it's also a potential for introducing new errors
into the code. As a result, it is often more practical to focus on those deviations that are
directly linked to safety, rather than trying to update the entire application. Then for newly
written code the compliance checker can verify that no new deviations are introduced.
Deviation identification may be monitored (e.g. with SonarQube or SQUORE) and viewed
with AdaCore's GNATdashboard tool. This approach can provide an analysis over time, for
example showing the progress of removal of certain categories of deviations that were
present in a given baseline.
Another practicality with code standards is that some rules might need to admit deviations
in specific contexts when justified (for example the goto statement might be acceptable
to implement state transitions in code that simulates a finite-state machine, and forbidden
elsewhere). GNATcheck allows adding local check exemptions, around a statement or a
piece of code. Such exemptions and their justification would then appear in the tool's
report.

4.2.6 Checking source code accuracy and consistency with GNAT
SAS

Contributions

Objectives • Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

Activities • Reviews and Analyses of Source Code (6.3.4)

"Accuracy and consistency" is a rather broad objective in DO ‑ 178C/ED ‑ 12C, identifying a
range of development errors that need to be prevented. Satisfying this objective requires
a combination of reviews, analyses and tests, and tools may be used for some of these
activities. The GNAT Static Analysis Suite (GNAT SAS) (page 19) specifically targets issues
that correspond to Ada exceptions, such as scalar overflow, range constraint violations, and
array indexing errors. It also detects other errors including reads of uninitialized variables,
useless assignments, and data corruption due to race conditions. The depth of the tool's
analysis can be adjusted based on whether the priority is maximal error detection at the
expense of false alarms, or minimal false alarms at the expense of undetected errors.
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4.2.7 Checking worst case stack consumption with GNATstack

Contributions

Objectives • Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

Activities • Reviews and Analyses of Source Code (6.3.4)

Stack usage is one of the items listed in the "source code accuracy and consistency" ob-
jective; i.e., ensuring that the application has sufficient stack memory reserved during pro-
gram execution. Verification is often achieved by running test cases and measuring the
actual stack space used. This approach may provide a false sense of confidence, however,
since there is no evidence that the worst case usage has been addressed.
A more precise analysis method is to statically determine the actual stack consumption,
looking at the memory statically allocated by the compiler together with the stack usage
implied by the subprogram call graphs. The GNATstack tool (page 18) can perform this
analysis for Ada and C, determining the maximum amount of memory needed for each
task stack.
In many cases, however, not everything can be statically computed; examples are recursive
calls, dynamically sized stack frames, and system calls. In such cases, the user can provide
a worst-case estimate as input to GNATstack's computation.

4.2.8 Compiling with the GNAT Pro compiler

Contributions

Objectives • Integration Process (A-2[7]: 5.4.1.a)
• Reviews and Analyses of Integration (A-5[7]: 6.3.5.a)

Activities • Integration Process (5.4.2.a, 5.4.2.b, 5.4.2.d)
• Reviews and Analyses of Integration (6.3.5)
• Software Development Environment (4.4.1.f)

The GNAT Pro technology includes GNU gcc-based Ada and C compilation toolsuites in wide
use by developers of high assurance software, in particular in a DO ‑ 178C/ED ‑ 12C context.
They are available on a broad range of platforms, both native and cross. Embedded targets
include various RTOSes for certified applications (such as VxWorks 653, VxWorks 6 Cert,
Lynx178, PikeOS) as well as bare metal configurations, for a wide range of processors (such
as PowerPC and ARM).
The Ada language helps reduce the risk of introducing errors during software development
(see [BKKF11]). This is achieved through a combination of specific programming constructs
together with static and dynamic checks. As a result, Ada code standards tend to be shorter
and simpler than C code standards, since many issues are taken care of by default. The
GNAT Pro compiler and linker provide detailed error and warning diagnostics, making it easy
to correct potential problems early in the development process.
As with all AdaCore tools, the list of known problems in the compiler is kept up to date
and is available to all subscribers to the technology. A safety analysis of the list entries
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is also available, helping developers assess potential impact and decide on appropriate
actions. Possible actions are code workarounds or a choice of a different set of compiler
code generation options.
For certain Ada language features the GNAT Pro compiler may generate object code that
is not directly traceable to source code. This non-traceable code can be verified using a
traceability analysis (see Demonstrating traceability of source to object code (page 51)).

4.2.9 Using GNATtest for low-level testing

Contributions

Objectives • Software Testing (A-6[3,4]: 6.4.c, 6.4.d)
• Review and Analyses of Test procedures (A-7[1]: 6.4.5.b) and results
(A-7[2]: 6.4.5.c)

Activities • Normal Range Test Cases (6.4.2.1)
• Robustness Test Cases (6.4.2.2)
• Review and Analyses of Test procedures and results (6.4.5)
• Software Verification Process Traceability (6.5.b, 6.5.c)

The software architecture is developed during the design process, identifying components
and sometimes subcomponents. The behavior of each terminal component is defined
through a set of low-level requirements. Typically, low-level testing consists in
1. Developing test cases from the low-level requirements,
2. Implementing the test cases into test procedures,
3. Exercising the test procedures separately on one or more components, and
4. Verifying the test results

GNATtest (page 20) may be used to develop the test data. The general approach is for
GNATtest to generate an Ada test harness around the component under test, leaving the
tester to complete test skeletons based on the predefined test cases, with actual inputs
and expected results. Since the test generation is carried out in a systematic way, it's very
easy to identify where tests are missing (they will be reported as non-implemented).
The tool works iteratively. If it's called a second time on a set of files that have changed, it
will identify the changes automatically, preserving existing tests and generating new tests
for newly added subprograms.
A component under test may call external components. One possible approach is to inte-
grate the components incrementally. This has the benefit of preserving the actual calls, but
it may be difficult to accurately manage the component interfaces. Another approach is to
replace some of the called subprograms with dummy versions (stubs). GNATtest supports
both approaches, and can generate stub skeletons if needed.
The functionality just described is common to most test tools. A novel and useful feature
of GNATtest is its ability to develop the test cases during the design process. (Note that
independence between design and test cases is not required. Independence is required
between code development and test case derivation, to satisfy the independence criteria
of objectives A6-3 and 4 for software level A and B).
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4.2.9.1 Approach 1: Test cases are not specified in Ada specifications

A traditional approach can be followed by GNATtest — that is to say, tests cases are de-
scribed outside of the Ada specification, but linked to a particular function. When working
this way, GNATtest will generate one test per subprogram; for example :

function Sqrt (X : Float) return Float;

This will generate one unique test procedure skeleton.

4.2.9.2 Approach 2: Test cases are developed during the design process

In this approach, Ada package specifications are considered as an output of the design
process (see Using Ada during the design process (page 32)). More than one test per
subprogram may be developed. Here's a simple example:

function Sqrt (X : Float) return Float
with Pre => X >= 0.0,

Post => Sqrt'Result >= 0.0,
Test_Case =>

(Name => "test case 1",
Mode => Nominal,
Requires => X = 16.0,
Ensures => Sqrt'Result = 4.0),

Test_Case =>
(Name => "test case 2",
Mode => Robustness,
Requires => X < 0.0,
Ensures => raise Constraint_Error

with "Non-negative value needed");

As part of the specification for the Sqrt function, the GNAT-specific aspect Test_Case is
used to define two test cases. The one named "test case 1" is identified as Nominal, which
means that the argument supplied as Requires should satisfy the function's precondition,
and the argument supplied as Ensures should satisfy the function's postcondition. The test
case named "test case 2" is specified as Robustness, so the pre- and postconditions are
ignored. As with all test cases, these are based on the function's requirements.
When generating the test harness, GNATtest provides a skeleton of the test procedures,
and the user has to plug in the input values (from the Requires argument) and the ex-
pected results (from the Ensures argument) for all test cases defined in the Ada package
specification.
GNATtest will insert specific checks to verify that, within "test case 1", all calls made to
Sqrt have X equal to 16.0, and each value returned is equal to 4.0. This not only verifies
that the test succeeded, but also confirms that the test conducted is indeed the intended
test. As a result, GNATtest verifies that the test procedures comply with the test cases, that
they are complete (all test cases have been implemented and exercised), and that the test
results are as expected.
In addition, the traceability between test case, test procedures and test results is direct,
and does not require production of further trace data.

4.2.9.3 Approach 3: Test cases are developed separately from the design process

The two test cases developed in Approach 2 are not sufficient to fully verify the Sqrt func-
tion. To comply with DO ‑ 178C/ED ‑ 12C Table A-6 Objectives 3 and 4, the activities pre-
sented in §6.4.2 (Requirements-Based Test Selection) for normal and robustness cases are
applicable. It is not generally practical to include all the test cases in the Ada package
specification.
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Another consideration is the criterion of independence between code and test case devel-
opment. Thus Approach 2 is applicable only if the Ada package specification is developed
during the design process (and not during the coding process).
An alternative approach is to develop the test data separately from the Ada package speci-
fications, while some test cases (effectively test case classes) are still defined and used by
GNATtest to develop the test harness. Here's an example:

function Sqrt (X : Float) return Float
with Test_Case =>

(Name => "test case 1",
Mode => Nominal,
Requires => X > 0.0,
Ensures => Sqrt'Result > 0.0),

Test_Case =>
(Name => "test case 2",
Mode => Nominal,
Requires => X = 0.0,
Ensures => Sqrt'Result = 0.0),

Test_Case =>
(Name => "test case 3",
Mode => Robustness,
Requires => X < 0.0,
Ensures => raise Constraint_Error

with "Non-negative value needed");

In this approach, three Test_Case aspects are defined — in effect test case classes that
partition the set of possible input values — defining the expected high-level characteristics
of the function. For each Test_Case, at least one actual test case will be developed. In this
example, at least three test cases need to be defined, corresponding to an actual parameter
that is positive, zero, or negative, with the respective expected results of positive, zero, and
raising an exception.
As in Approach 2, the skeleton generated by GNATtest must be completed by the user, but
in that case the data produced are the actual test cases (and cannot be considered as test
procedures). For example, based on the range of the input, the user should define tests for
boundary values, for the value 1, or any representative data (equivalence classes).
As previously, GNATtest will insert specific checks based on the Requires and Ensures
values for each Test_Case. Then GNATtest will verify that at least one actual test case has
been implemented for each Test_Case, and that the results are correct.
Note that in this approach, the test procedures become the internal files generated by
GNATtest. Therefore, as it will be difficult to verify the correctness of these files, GNATtest
qualification is needed in order to satisfy objective A7-1 "test procedures are correct".

4.2.10 Using GNATemulator for low-level and software / software
integration tests

Contributions

Objectives • Software testing (A-6[1,2,3,4]: 6.4.a, 6.4.b, 6.4.c, 6.4.d)

Activities • Test environment (6.4.1)
• Software Integration testing (6.4.3.b)
• Low Level testing (6.4.3.c)
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As stated in DO ‑ 178C/ED ‑ 12C §6.4.1:
"More than one test environment may be needed to satisfy the objectives for software
testing.... Certification credit may be given for testing done using a target computer
emulator or a host computer simulator".

But an integrated target computer environment is still necessary to satisfy the verification
objective (A6-5) that the executable object code is compatible with the target computer.
These tests, referred to as "Hardware / Software integration tests", are necessary since
some errors might only be detected in this environment. As stated in DO ‑ 330/ED ‑ 215,
FAQ D.3, qualification of a target emulator or simulator may be required if they are used to
execute the Hardware / Software integration tests.
Although GNATemulator might thus not be applicable in the scope of Hardware / Software
integration tests, it is allowed for all other tests (see DO ‑ 330/ED ‑ 215 FAQ D.3). Two
approaches may be used:
• To perform some tests (that may be part of low-level testing and/or Software / Soft-
ware integration testing) on GNATemulator, and to claim credit on this environment for
satisfying the objectives concerning the Executable Object Code's compliance with its
requirements

• To use GNATemulator to prototype and gain confidence in tests prior to re-running the
tests on the actual target computer environment.

In any event GNATemulator helps considerably in the early detection of errors in both the
software and the test procedures. GNATemulator works in much the same fashion as a
"Just In Time" (JIT) compiler: it analyzes the target instructions as it encounters them and
translates them on the fly (if not done previously) into host instructions, for example an
x86. This makes it particularly suitable for low-level testing, at least for those tests that do
not depend on actual timing on the target.
GNATemulator also provides an easy way to interact with emulated devices and drivers on
the host. Reads and writes to emulated memory can trigger interactions with such code,
through the GNATbus interface.

4.2.11 Structural code coverage with GNATcoverage

Contributions

Objectives • Test Coverage Analysis (A-7[5]: 6.4.4.c)

Activities • Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

The structural coverage analysis objectives of DO ‑ 178C/ED ‑ 12C serve to verify the thor-
oughness of the requirements-based tests and to help detect unintended functionality. The
scope of this analysis depends on the software Level:
• Statement coverage for Level C,
• Statement and Decision coverage for level B, and
• Statement, Decision and Modified Condition / Decision Coverage (MC/DC) at level A.

These three criteria will be explained through a simple (and artificial) example, to determine
whether a command should be issued to open the aircraft doors:

Closed_Doors : Integer;
Open_Ordered, Plane_Landed : Boolean;

(continues on next page)
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(continued from previous page)
...

if Closed_Doors > 0 and then Open_Ordered and then Plane_Landed then
Open_Doors;

end if;

Note: the Ada short-circuit form and then is equivalent to the C shortcut boolean operator
&&: the second operand is evaluated if and only if the first operand evaluates to True. If
the first operand evaluates to False, then the expression's value is False.
This code fragment consists of two statements:
• The enclosing if statement
• The enclosed Open_Doors; statement, which will be executed if the decision in the if
statement is True

The if statement in turn contains a single decision:

Closed_Doors > 0 and then Open_Ordered and then Plane_Landed

and this decision contains three conditions:
• Closed_Doors > 0

• Open_Ordered

• Plane_Landed

At the statement level, both statements need to be executed during requirements-based
tests. This criterion may be achieved with only one test, with all three conditions True.
It's important to realize that this piece of code is the implementation of one or several
requirements, and a single test with all three conditions True will almost certainly fail to
satisfy the requirement coverage criterion. Further, this single test is probably not sufficient
to detect implementation errors: the purpose of testing is to detect errors and to show that
the software satisifes its requirements, not to achieve structural code coverage. Structural
coverage analysis is mainly a test completeness activity.
At the decision level, each decision must be exercised both with a True and False outcome.
In the example above, this may be achieved with only two tests; one test with all three
conditions True, and a second test with at least one False.
The third level is called MC/DC, for Modified Condition / Decision Coverage. The goal is to
assess that each condition within a decision has an impact, independently of other condi-
tions, on the decision outcome.
The motivation for MC/DC is most easily appreciated if we first look at what would be re-
quired for full coverage of each possible combination of truth values for the constituent
conditions. This would require eight tests, represented in the following table:

Closed_Doors > 0 Open_Ordered Plane_Landed Result
True True True True
True True False False
True False True False
True False False False
False True True False
False True False False
False False True False
False False False False
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In the general case, 2n cases would be needed for a decision with n conditions, and this
would be impractical for all but small values of n. The MC/DC criterion is achieved by
selecting combinations demonstrating that each condition contributes to the outcome of
the decision.
With MC/DC, each condition in the decision must be exercised with both True and False
values, and each condition must be shown to independently affect the result. That is, each
condition must be exercised by two tests, one with that condition True and the other with
the condition False, such that:
• The result of the decision is different in the two tests, and
• For each other condition, the condition is either True in both tests or False in both
tests

Here the MC/DC criterion may be achieved with four tests: one test with all three conditions
True, and each other test changing the value of one condition to False:

Closed_Doors > 0 Open_Ordered Plane_Landed Result

Baseline True True True True
Test 1 False True True False
Test 2 True False True False
Test 3 True True False False

Each condition thus has two associated tests, the one marked as baseline, and the one with
False in that condition's column. These two tests show how that condition independently
affects the outcome: The given condition is True in the baseline and False in the other,
each other condition has the same value in both tests, and the outcome of the two tests is
different.
In the general case, the MC/DC criterion for a decision with n conditions requires n+1 tests,
instead of 2n. For more information about MC/DC, see [HVCR01].
GNATcoverage provides output that helps comply with DO ‑ 178C/ED ‑ 12C objectives for test
coverage of software structure (Table 7, objectives 5, 6, and 7), for both Ada and C source
code. The tool computes its results from trace files that show which program constructs
have been exercised by a given test campaign. With source code instrumentation, the tool
produces these files by executing an alternative version of the program, built from source
code instrumented to populate coverage-related data structures. Through an option to
GNATcoverage, the user can specify the granularity of the analysis by choosing any of the
coverage criteria defined in DO ‑ 178C/ED ‑ 12C: Statement Coverage, Decision Coverage,
or Modified Condition / Decision Coverage (MC/DC).
Source-based instrumentation brings several major benefits: efficiency of tool execution
(much faster than alternative coverage strategies using binary traces and target emulation,
especially on native platforms), compact-size source trace files independent of execution
duration, and support for coverage of shared libraries.

4.2.12 Data and control coupling coverage with GNATcoverage

Contributions

Objectives • Test Coverage Analysis (A-7[8]: 6.4.4.d)

Activities • Structural Coverage Analysis (6.4.4.2.c)
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DO ‑ 178C/ED ‑ 12C objective A7-8 states:
"Test coverage of software structure (data coupling and control coupling) is
achieved".

This is part of overall structural coverage analysis. Although structural coverage activities
(Statement, Decision, or MC/DC) can be carried out at various times, it is often performed
during low-level testing. This allows precise control and monitoring of test inputs and code
execution. If code coverage data is retrieved during low-level testing, structural coverage
analysis can assess the completeness of the low-level tests.
In addition, the completeness of the integration tests needs to be verified. For that purpose
the integration tests have to be shown to exercise the interactions between components
that are otherwise tested independently. This is done through data and control coupling
coverage activities. Each data and control coupling relationship must be exercised at least
once during integration tests.
Data and control coupling are the interfaces between components, as defined in the archi-
tecture. More specifically, data coupling concerns the data objects that are passed between
modules. These may be global variables, subprogram parameters, or any other data pass-
ing mechanisms. Control coupling concerns the influence on control flow. Inter-module sub-
program calls are obvious cases of control coupling (they initiate a control flow sequence)
but subtler cases such as a global variable influencing a condition can be also considered
as control coupling. For example, if module Alpha has something like:

if G then
Do_Something;

else
Do_Something_Else;

end if;

and in a module Beta:

G := False;

Then this is really an example of control coupling, and not data coupling. Using a global
variable to effect this control flow is considered an implementation choice.
In the software engineering literature, the term coupling generally has negative connota-
tions since high coupling can interfere with a module's maintainability and reusability. In
DO ‑ 178C/ED ‑ 12C there is no such negative connotation; coupling simply indicates a
relationship between two modules. That relationship needs to be defined in the software
architecture and verified by requirements-based integration tests.
One strategy to verify coverage of data and control coupling is to perform statement cov-
erage analysis during integration testing. GNATcoverage may be used in this way to detect
incomplete execution of such data and control flows. This may require coding constraints,
such as limited use of global data, or additional verification for such data:
• Parameter passing and subprogram calls: Statement coverage ensures that all sub-
programs are called at least once. Additional verification is needed to demonstrate
correctness properties for the parameters.

• Global data: The Global aspect in SPARK (and in Ada 2022) can be used to verify
correct usages of global data.
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4.2.13 Demonstrating traceability of source to object code

Contributions

Objectives • Test Coverage Analysis (A-7[5]: 6.4.4.c)

Activities • Structural Coverage Analysis (6.4.4.2.b)

For software at level A, DO ‑ 178C/ED ‑ 12C objective A7-9 requires identifying if code not
visible at the source code level is added by the compiler, linker, or other means; if so, it
is necessary to verify such code for correctness. Compiler-added code typically takes the
form of extra branches or loops that are explicit in the object code but not at the source
level. One example in Ada is the implicit checking that is often required by the language
semantics.
A statement like:

A : Integer range 1..10;
B : Integer;
...
A := B;

may be compiled into the following pseudo-object code:

if B >= 1 or else B <= 10 then
A := B;

else
raise Constraint_Error;

end if;

This assumes that checks are retained at run-time. However, even with checks disabled,
a compiler for either Ada or C may still need to generate non-traceable code to implement
some language constructs. An Ada example is array slice assignment, which results in loops
at the object code level on typical target hardware:

A, B : String (1..100);
...
A (1..50) := B (11..60);

AdaCore has verified the correctness of non-traceable code for the GNAT Pro for Ada and
GNAT Pro for C compilers, based on representative samples of source code. Samples were
chosen for the language features permitted by common code standards. Object code was
generated for each sample, and any additional (non-traceable) code was identified. For
each non-traceable feature, additional requirements and tests were provided to verify that
the behavior of the resulting code was indeed as required.
Traceability analyses for GNAT Pro for Ada and GNAT Pro for C are available. These analyses
take into account the specific compiler version, compiler options, and code standard that
are used, to ensure that the code samples chosen are representative. If some specific lan-
guage features, options, or compiler versions are not suitable for the analysis, appropriate
adaptations are made.
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4.3 Use case #1b: Coding with Ada using OOT features
This use case is based on use case #1, taking advantage of Ada and the AdaCore ecosys-
tem, but with a design that uses Object-Oriented Technologies. As a result, the following
vulnerabilities identified in the technology supplement DO ‑ 332/ED ‑ 217 need to be ad-
dressed:
• Local type consistency
• Dynamic memory management
• Parametric polymorphism (genericity)
• Overloading
• Type conversion
• Exception management
• Component-based development

4.3.1 Object orientation for the architecture

Contributions

Objectives • Software Design Process Objectives (A-2[4]: 5.2.1.a)

Activities • Software Design Process Activities (OO.5.2.2.h)
• Software Development Process Traceability (OO.5.5.d)

Vulnerabilities • Traceability (OO.D.2.1)

Object orientation is a design methodology, a way to compose a system where the focus is
on the kinds of entities that the system deals with, and their interrelationships. Choosing
an object-oriented design will thus have a significant impact on the architecture, which
is expressed in terms of classes and their methods (or primitive operations in Ada). This
architecture can be modeled in many ways, for example with UML class diagrams.
The use of OOT can affect traceability between low-level requirements and code. Without
object orientation, traceability is generally between a set of requirements and one module,
one function or one piece of code. In an object-oriented design, as defined in DO ‑ 332/ED
‑ 217, §O.O.5.5:

"All functionality is implemented in methods; therefore, traceability is from re-
quirements to the methods and attributes that implement the requirements".
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4.3.2 Coverage in the case of generics

Contributions

Objectives • Test Coverage Analysis (A-7[4,5]: 6.4.4.b, 6.4.4.c)

Activities • Requirement coverage analysis (6.4.4.1)
• Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

Vulnerabilities • Parametric Polymorphism (OO.D.1.2)
• Structural Coverage (OO.D.2.2)

Genericity is one of the related techniques (not part of OOT) that is covered by DO ‑ 332/ED
‑ 217. A generic unit is a template for a piece of code that can be instantiated with different
parameters, including types and subprograms. A complication with respect to certification
is that the same generic unit may have different instantiations that behave differently. Con-
sider, for example, a simple generic Ada function that can be instantiated with an integer
type to perform some basic computation:

generic
type Int_Type is range <>;

function Add_Saturated (Left, Right, Max : Int_Type)
return Int_Type
with Pre => Max>0;

function Add_Saturated (Left, Right, Max : Int_Type)
return Int_Type is
Temp : Int_Type;

begin
Temp := Left + Right;

if Temp > Max then
return Max;

elsif Temp < -Max then
return -Max;

else
return Temp;

end if;
end Add_Saturated;

Then consider two separate instantiations:

with Add_Saturated;
procedure Test_Gen is

function Add_1 is new Add_Saturated (Integer);

type Small_Int is range -10 .. 10;
function Add_2 is new Add_Saturated (Small_Int);

N1 : Integer;
N2 : Small_Int;

begin
N1 := Add_1 (6, 6, 10); -- Correctly yields 10
N2 := Add_2 (6, 6, 10); -- Raises Constraint_Error

end Test_Gen;

Calling Add_1 (6, 6, 10) will yield 10 as a result. Calling Add_2 (6, 6, 10) will raise
Constraint_Error on the first addition, since the sum Left + Right will be equal to 12
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and therefore violate the range constraint for Small_Int.
Different instantiations of the same generic unit can thus exhibit different behaviors. As a
result, DO ‑ 332/ED ‑ 217 specifies that each generic instance must be tested (and covered);
see section OO.D.1.2.3.
GNATtest will generate a test harness taking this requirement into account. In particular,
it will generate a separate testing setup for each instance, while keeping a generic test
procedure for all of them.
GNATcoverage can separately report the coverage of each generic instance, based on the
-S instance switch.
With respect to traceability, the code of a generic instantiation is traceable to the source.
Indeed, at the point of instantiation, the effect is as though the generic template were
expanded in place, with formal parameters replaced by the actuals. (This expansion is
not at the level of source text, but rather is based on a program representation where all
names have been semantically resolved.) As a result, using a generic doesn't add any
non-traceable code. Code is traced from the generic template to the object code, once per
instance.

4.3.3 Dealing with dynamic dispatching and substitutability

Contributions

Objectives • Software Design Process Objectives (A-2[4]: 5.2.1.a)
• Local Type Consistency Verification Objective (OO.A-7[OO 10]:
OO.6.7.1)

Activities • Software Design Process Activities (OO.5.2.2.i)
• Local Type Consistency Verification Activity (OO.6.7.2)

Vulnerabilities • Inheritance (OO.D.1.1)

One of the major features of OOT is dynamic dispatching (also called dynamic binding),
which adds considerable expressive power but also presents challenges to verification. With
dynamic dispatching, the subprogram to be invoked on a reference to a target object is not
known statically but rather is resolved at run time based on which class the target object
belongs to. This differs from a call through an access-to-subprogram value in the sense
that, with dynamic dispatching, the potential destination subprograms are constrained to
a specific class hierarchy as determined by the type of the reference to the target object
(the controlling parameter, in Ada terms).
In Ada, a subprogram that can be invoked through dynamic dispatching — this is known
as a primitive subprogram — can never be removed by a subclass; it is either inherited
or overridden. Thus on a call that is dynamically dispatched, although it is not known at
compile time which subclass's version of the subprogram will be invoked, some subclass's
implementation of the subprogram will indeed be called. Ada is not susceptible to "no such
method" errors that can arise with dynamic dispatching in some other languages.
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4.3.3.1 Understanding Substitutability

From a safety point of view, not knowing the specific target of a given call introduces sig-
nificant issues for verifiability. DO ‑ 332/ED ‑ 217 states that if an inheritance hierarchy
is constructed so that each subclass specializes its superclass (i.e., wherever a superclass
instance is permitted a subclass instance may be substituted) then dynamic dispatching is
acceptable. This substitutability property for a class inheritance hierarchy is known as the
Liskov Substitution Principle (LSP).
If a hierarchy complies with LSP, then testing and other verification can be conducted based
on properties defined at the class level, which will then need to be respected by each
subclass. As will be explained below, this has implications on the pre- and postconditions
that are allowed when a dispatching subprogram is overridden.
Here is a specific — although simplified — example: an aircraft type with a subprogram
that is supposed to open the doors.

package Aircraft_Pkg is
type Aircraft is abstract tagged private;

procedure Open_Doors (Self : Aircraft)
with Pre'Class => Self.On_Ground,

Post'Class => Self.Doors_Opened;

...
private

...
end Aircraft_Pkg;

The contracts for the pre- and postconditions reflect the low-level requirements:
• the aircraft has to be on the ground prior to having its doors opened, and
• the doors are opened as a result of the call.

The Aircraft type could be used as follows:

procedure Landing_Procedure (My_Aircraft : Aircraft'Class) is
begin

...
while not My_Aircraft.On_Ground loop

...
end loop;

-- Here if My_Aircraft is on the ground

My_Aircraft.Open_Doors; -- Dispatching call
My_Aircraft.Let_Passengers_Out;
...

end Landing_Procedure;

We're first waiting until the aircraft is actually on the ground, then open the doors, then as
the doors are opened we let passengers out.
All types in the Aircraft inheritance hierarchy have to comply with the Aircraft contracts.
That is, for any type in the Aircraft'Class hierarchy, the Open_Doors subprogram for that
type can require at most the On_Ground precondition and nothing stronger. If a stronger
precondition were imposed, then a dynamically dispatching call of Open_Doors could fail if
the actual parameter were of this (non-substitutable) type. The extra precondition would
not necessarily be known to clients of the root type Aircraft.
Analogously for the postcondition, any type in the Aircraft'Class hierarchy has to guaran-
tee at least the Doors_Opened property, since this will be assumed by callers of Open_Doors.
In short, the substitutability property can be summarized as follows:
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If a type hierarchy is to be substitutable, then a dispatching subprogram for a
derived type can weaken but not strengthen the precondition of the overridden
subprogram for its parent type, and can strengthen but not weaken the postcon-
dition.

The class-wide Pre'Class and Post'Class aspects are inherited (unless overridden) and
have other semantics that directly support this substitutability property. The specific (non-
class-wide) aspects Pre and Post are not inherited and should only be used if the hierarchy
does not support substitutability.
Let's now define a Jet:

type Jet is new Aircraft with ...

overriding
procedure Open_Doors (Self : Jet)
with Pre => Self.On_Ground and Self.Engines_Off,

Post'Class => Self.Doors_Opened and not Self.Pressurized;

Suppose that Landing_Procedure is invoked on an object of type Jet:

J : Aircraft'Class := Jet'(...);
...
Landing_Procedure (J);

In the call My_Aircraft.Open_Doors, first the precondition for Open_Doors for Aircraft
will be evaluated (since the actual parameter is of the class-wide type Aircraft'Class.
That's not a problem, since the caller sees this precondition. However, then the specific
precondition for Open_Doors for Jet is evaluated, and there is a problem with the addi-
tional constraint — requiring the engines to be off. The Jet type could have been defined
long after the Landing_Procedure subprogram was written, so the design of the Land-
ing_Procedure code would not have taken the added precondition into account. As a result,
the Open_Doors procedure could be invoked when the engines were still running, violating
the requirement. (With run-time assertion checking enabled, an exception would be raised.)
The type Jet is not substitutable for the type Aircraft on invocations of Open_Doors.
The non-substitutabiity is reflected in the use of the specific aspect Pre rather than the
class-wide aspect Pre'Class. In a type hierarchy rooted at type T where Pre'Class is
specified at each level for a subprogram Proc, the effective precondition for a dispatching
call X.Proc where X is of the type T'Class is simply the precondition specified for Proc
for the root type T (which is the only precondition known to the caller). In the Jet exam-
ple, if Pre'Class had been used, a dispatching call to Open_Doors would not check the
Engines_Off condition.
In short, if a subclass is to be substitutable then it may weaken but not strengthen a sub-
program's precondition, and it should use Pre'Class rather than Pre. If a subclass needs
to strengthen a precondition then it is not substitutable and should use Pre rather than
Pre'Class.
The postcondition for Open_Doors for Jet does not have this problem. It adds an additional
guarantee: pressurization is off after the opening of the doors. That's OK; it doesn't con-
tradict the expectations of the Landing_Procedure subprogram, it just adds an additional
guarantee.
The Jet type illustrated non-substitutability due to precondition strengthening. Non-
substitutability can also arise for postconditions, as illustrated in a slight variation of the
Aircraft type:

package Aircraft_Pkg is
type Aircraft is abstract tagged private;

procedure Open_Doors (Self : Aircraft)
(continues on next page)
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(continued from previous page)
with Pre'Class => Self.On_Ground,

Post => Self.Doors_Opened;
-- Specific, not class-wide

...
private

...
end Aircraft_Pkg;

Here's a possible declaration for a hot air balloon:

type Hot_Air_Balloon is new Aircraft with ...

overriding
procedure Open_Doors (Self : Hot_Air_Balloon)
with Pre'Class => Self.On_Ground or Self.Tethered,

Post => Self.Doors_Unlocked;

In this case, the precondition is relaxed (we're assuming a short tether). This is accept-
able, since the landing procedure will still check the stronger precondition and wait for
the aircraft to be on the ground; the class-wide precondition of the root type is checked
on a dispatching call. (The weaker precondition would be checked on a call such as B.
Open_Doors where B is either of the specific type Hot_Air_Balloon or the class-wide type
Hot_Air_Balloon'Class.)
However, a Hot_Air_Balloon is less automated than a Jet: the doors don't open automati-
cally, they just unlock. The Landing_Procedure subprogram assumes the postcondition for
Aircraft (that the doors are opened), but this is not guaranteed for a Hot_Air_Balloon,
so passengers might be pushed out while the doors are unlocked but still closed. The new
postcondition is breaking the requirement by weakening its parent type's postcondition,
and this is not acceptable. Thus the Hot_Air_Balloon type is not substitutable for Air-
craft.
Substitutability defects may be evidence of a number of problems; for example, the hierar-
chy of classes or requirements may be incorrect, or the classes may be modeling properties
inappropriately. Overall, this indicates design issues to be addressed when specifying the
low-level requirements and/or architecture.
A natural question is how to detect substitutability defects (or achieve confidence that such
defects are not present) in the application. DO ‑ 332/ED ‑ 217 provides three approaches:
pessimistic testing, local substitution tests, or formal proofs.

4.3.3.2 Verifying substitutability by pessimistic testing

Pessimistic testing is conceptually the easiest to understand. The idea is to test at each
point of dispatch all possible types that could be substituted. In the Landing_Procedure
example, assuming that our system is managing both jets and hot air balloons, this would
mean two sets of tests: one for the Jet type, and one for Hot_Air_Balloon. This is working
around the difficulty of not knowing statically the potential target of a call: we just test all
possible scenarios.
This is particularly appropriate with flat hierarchies, which may be broad but not deep. An
example is an OOP design pattern for an abstract root type (such as a container data struc-
ture) with concrete specializations corresponding to different representational choices. In
this case, regular requirement-based testing is equivalent to pessimistic testing. However,
the complexity of additional testing can quickly become unmanageable as the depth of the
class hierarchy increases.

4.3. Use case #1b: Coding with Ada using OOT features 57



AdaCore Technologies for Airborne Software

4.3.3.3 Verifying substitutability through requirement-based testing

In this case verification of substitutability is done on top of regular testing. In the above ex-
amples the Aircraft, Jet and Hot_Air_Balloon requirements are all associated with spe-
cific requirement-based tests. Substitutability can be demonstrated by running top level
tests with instances of other types of the class. In other words, tests developed based on
requirements of Aircraft must pass with instances of Jet and Hot_Air_Balloon. This is
enough to demonstrate substitutability, effectively testing the substitution. This may re-
quire more or fewer tests depending on OOP usage. In particular, for large class hierarchies,
testing at the class level is much more cost-effective than testing every possible target of
every possible dispatching call in the actual code.
The GNATtest tool supports generation of the appropriate test framework for substitution
testing; see the GNATtest option --validate-type-extensions.

4.3.3.4 Verifying substitutability through formal proof

In conjunction with DO ‑ 333/ED ‑ 216 (Formal Methods supplement), and assuming that
requirements can be expressed in the form of pre- and postconditions, the consistency
between an overriding subprogram and its parent type's version can be verified through
formal proof. This can be done in particular with the SPARK language. There are two criteria
for substitutability:
• The precondition of a subprogram for a type must imply the precondition of each over-
riding subprogram in the class hierarchy.

• The postcondition of any overriding subprogram for a type must imply the postcondi-
tion of the corresponding subprogram for each ancestor type in the hierarchy

These preconditions and postconditions — or requirements —must also be verified, through
either requirement-based testing or formal proofs.
The SPARK GNATprove tool can verify consistency of classes of types, and in particular
consistency of pre- and postconditions as described above. To enable such verification,
these must be declared as class-wide contracts as in the initial example of the Aircraft type
above.

4.3.3.5 Differences between local and global substitutability

DO ‑ 332/ED ‑ 217 does not require classes to be globally substitutable, but only locally; that
is, only around actual dispatching points. For example, the following code is not globally
substitutable, but is locally substitutable at the dispatching calls:

package Aircraft_Pkg is
type Aircraft is abstract tagged private;

procedure Open_Doors (Self : Aircraft)
with Pre'Class => Self.On_Ground,

Post'Class => Self.Doors_Opened;

procedure Take_Off (Self : Aircraft)
with Pre'Class => Self.On_Ground and not

Self.Doors_Opened,
Post'Class => not Self.On_Ground;

...
private

...
end Aircraft_Pkg;

package Aircraft_Pkg.Jet_Pkg is
type Jet is new Aircraft with ...

(continues on next page)
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(continued from previous page)
overriding
procedure Open_Doors (Self : Jet)
with Pre => Self.On_Ground and Self.Engines_Off,

-- Not substitutable
Post'Class => not Self.Pressurized;

overriding
procedure Take_Off (Self : Aircraft)
-- Inherit Aircraft's precondition
with Post'Class => not Self.On_Ground and

Self.Speed >= 100.0;

...
private

...
end Aircraft_Pkg.Jet_Pkg;
...
X, Y : Aircraft'Class := Jet'(...)
...

X.Take_Off;
Y.Take_Off;

The Jet type is not globally substitutable for Aircraft, since the precondition on
Open_Doors for Jet is stronger than the precondition on Open_Doors for Aircraft. But
Jet is locally substitutable in the above fragment:
• The invocations X.Take_Off and Y.Take_Off dispatch to Jet, but Jet is substitutable
for Aircraft here:
– The precondition for Take_Off(Aircraft) is inherited by Jet,and
– The postcondition for Take_Off(Aircraft) is strengthened by Jet

Whether it is easier to demonstrate local versus global suitability for a given class depends
on the architecture and the ease of identification of actual dispatch destinations and sub-
stitutability. DO ‑ 332/ED ‑ 217 allows the applicant to decide on whichever means is the
most appropriate.

4.3.4 Dispatching as a new module coupling mechanism

Contributions

Objectives • Test Coverage Analysis (A-7[8]: 6.4.4.d)

Activities • Structural Coverage Analysis (6.4.4.2.c)

Vulnerabilities • Structural Coverage (OO.D.2.2)

With procedural programming, modules can be interfaced, or coupled, through parameter
passing, subprogram calls or global variables (data and control coupling). Object orientation
introduces a new way in which two modules may interface with each other: by extension /
type derivation. Following-up on previous examples:
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procedure Control_Flight (Plane : Aircraft'Class) is
begin

...

-- Dispatching call, may call Take_Off from instances
-- defined in other modules, creating coupling
-- relationship with those modules
Plane.Take_Off;

...

end Control_Flight;

Aircraft of different types may be defined in separate modules. A connection between
these modules and the rest of the application may be made by dispatching from this call.
All objectives that apply to control and data coupling now apply to type derivation coupling,
in particular the coverage objectives. Whether or not testing with all possible derivations
in the system is used (i.e., pessimistic testing) depends of the strategy chosen for substi-
tutability demonstration.

4.3.5 Memory management issues

Contributions

Objectives • Software Design Process Objectives (A-2[3,4]: 5.2.1.a)
• Reviews and Analyses of Software Architecture (OO.A-4[8]:
OO.6.3.3.a)

• Dynamic Memory Management Verification Objective (OO.A-
7[OO10]: OO.6.8.1)

Activities • Software Design Process Activities (OO.5.2.2.j)
• Dynamic Memory Management Verification Activities (OO.6.8.2)
• Reviews and Analyses of Software Architecture (OO.6.3.3)

Vulnerabilities • Dynamic Memory Management (OO.D.1.6)

In addition to local type consistency, which was described in the preceding section, DO ‑
332/ED ‑ 217 also introduced another new verification objective: robustness of dynamic
memory management. This objective encompasses not only explicit use of dynamic mem-
ory, through either automatic reclamation (garbage collection) or application-provided al-
location / deallocation, but also implicit uses through higher level data structures such as
object collections of various kinds. DO ‑ 332/ED ‑ 217 identifies a number of criteria that
need to be met by any memory management scheme:
• The allocator returns a reference to a valid piece of memory, not otherwise in use
• If enough space is available, allocations will not fail due to memory fragmentation
• An allocation cannot fail because of insufficient reclamation of inaccessible memory
• The total amount of memory needed by the application is available (that is, the appli-
cation will not fail because of insufficient memory)

• An object is only deallocated after it is no longer used
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• If the memory management system moves objects to avoid fragmentation, inconsis-
tent references are prevented

• Allocations and deallocations complete in bounded time
Meeting these criteria may be the responsibility of the run-time memory management li-
brary (referred to as the "memory management infrastructure", or MMI in DO ‑ 332/ED ‑
217) or the application code (AC). Table OO.D.1.6.3 in DO ‑ 332/ED ‑ 217 presents several
different memory management techniques that can be used. For each technique the table
identifies whether the MMI or the AC is responsible for meeting each criterion.
Dynamic memory is identified as a specific issue in object orientation because, in many
languages, it is very difficult or even impossible to use object-oriented paradigms without
dynamic memory management. This is in particularly true for reference-based languages
such as Java.
Although dynamic memory is also helpful when OOP is used in Ada, simple architectures
may allow creating (and subsequently dispatching on) stack-resident or library-level ob-
jects, without needing dynamic memory. This can be done if such objects are of a class-
wide type. The main constraint is that each object has to be initialized at declaration, and
its specific type cannot change later. For example, the following code provides a function
returning an object of a type in the Aircraft class hierarchy, depending on a parameter:

type Aircraft is abstract tagged ...
type Jet is new Aircraft with ...
type Hot_Air_Balloon is new Aircraft with ...
...
function Create (T : Integer) return Aircraft'Class is
begin

if T = 1 then
return Jet'(<initialization of a Jet>);

elsif T = 2 then
return Hot_Air_Balloon'(...);
-- initialization of a Hot_Air_Balloon

else
raise <some exception>;

end if;
end Create;

Objects of the class-wide type Aircraft'Class can be created as local or global variables:

N : Integer := Get_Integer; -- Dynamically computed
P : Aircraft'Class := Create (N);
...
P.Take_Off;

Here, P is allocated on the stack and may be either a Jet or a Hot_Air_Balloon. The call
to P.Take_Off will dispatch accordingly.
For notational convenience it may be useful to reference objects of a class-wide type
through access values (pointers), since that makes it easier to compose data structures,
but to prevent dynamic allocation. This can be achieved in Ada:

type Aircraft is abstract tagged ...
type Jet is new Aircraft with ...
type Hot_Air_Balloon is new Aircraft with ...

type Aircraft_Ref is access all Aircraft'Class;
for Aircraft_Ref'Storage_Size use 0;

-- No dynamic allocations
...
Jet_1, Jet_2 : aliased Jet := ...;
Balloon_1, Balloon_2, Balloon_3 : aliased Hot_Air_Balloon := ...;

(continues on next page)
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(continued from previous page)

type Aircraft_Pool_Type is array(Positive range <>) of Aircraft_Ref;
Pool : Aircraft_Pool_Type := (Jet_2'Access,

Balloon_3'Access,
Jet_1'Access);

...
for P of Pool loop

P.Take_Off; -- Dispatches
end loop;

These examples show how object orientation can be used in Ada without dynamic memory.
More complicated designs, however, would probably need some form of dynamic memory
and thus need to comply with the criteria listed above.

4.3.6 Exception handling

Contributions

Objectives • Software Design Process Objectives (A-2[4]: 5.2.1.a)
• Reviews and Analyses of Software Architecture (OO.A-4[8]:
OO.6.3.3.a)

Activities • Software Design Process Activities (OO.5.2.2.k)
• Reviews and Analyses of Software Architecture (OO.6.3.3)

Vulnerabilities • Exception Management (OO.D.1.5)

An exception identifies a condition that is detected by the executing program (often im-
plicitly by the generated code) and causes an interruption of the normal control flow and
a transfer to a handler. The condition is typically an error of some sort, for example an
out-of-bounds index.
Exceptions are useful in certain scenarios:
• When a program deals with externally provided data (operator input, sensor readings),
the exception mechanism is a convenient way to express validity checks. A handler
can perform appropriate diagnostic / recovery actions.

• When an emergency shutdown is needed for a system component, a "last chance
handler" can take the appropriate measures.

However, the general exception mechanism complicates certification for several reasons:
• Typically, verification should have detected and prevented the exception from occur-
ring in the final code. That is, exceptions can correspond to violations of preconditions,
and such violations should not occur in verified code.

• Since the normal control flow has been abandoned, the program may be in an instable
state (for example with aggregate data structures not fully updated) and writing an
appropriate handler can be difficult.

DO ‑ 332/ED ‑ 217 specifies that exception handling needs to be taken into account at
the architecture level, but doesn't provide many more details. It also lists vulnerabilities
to consider; for example, an exception might not be handled properly and as a result the
program could be left in an inconsistent state.
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The GNAT Pro compiler supplies several strategies concerning exceptions.
• Checks can be globally deactivated. By default, execution of certain constructs (an
out-of-range assignment for example) generates a run-time check. This can be re-
moved through the -p option for the compiler. This should only be done after verifying
that such checks cannot fail.

• If exceptions are kept but are meant to trigger an application shutdown, they can
be connected to a "last chance handler". This allows the application to perform the
needed finalization, such as diagnostics and logging, after which it is terminated and
possibly rebooted.

• Exceptions can also be locally handled; this is achieved by specifying pragma Re-
strictions (No_Exception_Propagation). This GNAT-specific restriction ensures
that an exception is only raised when its handler is statically in the same subprogram.
Exception handling can then be implemented (conceptually) by a simple branch to its
handler. Such a policy is much easier to manage in a safe way than general exception
propagation. Local handling is useful in situations where the software requirements
specify a particular termination behavior for a subprogram under conditions that are
best detected by raising an exception. An example is a "saturated add" procedure
that takes two positive integers and delivers a positive integer result and an over-
flow status: the integer result will be the actual sum if no overflow occurred, and the
maximum positive value if an overflow occurred.

type Overflow_Status is (No_Overflow, Overflow);

procedure Saturated_Add (I1, I2 : in Positive;
Result : out Positive;
Status : out Overflow_Status) is

begin
Result := I1+I2;
Status := No_Overflow;

exception
when Constraint_Error =>

Result := Integer'Last;
Status := Overflow;

end Saturated_Add;

SPARK addresses the exception handling issue by ensuring that exceptions are never raised:
• The SPARK tools can be used to demonstrate the absence of run-time exceptions.
• Handlers are not permitted.
• Raise statements are permitted but must be proved to never execute.

4.3.7 Overloading and type conversion vulnerabilities

Contributions

Objectives • Reviews and Analyses of Source Code (OO.A-5[6]: OO.6.3.4.f)

Activities • Reviews and Analyses of Source Code (OO.6.3.4)

Vulnerabilities • Overloading (OO.D.1.3)
• Type Conversion (OO.D.1.4)
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Many languages allow subprogram overloading (use of the same name for different sub-
programs, with a call resolved based on the types of the actual parameters and possibly
also the return type for a function) and implicit type conversions. This combination can
lead to readability and/or maintainability issues. For example, the application may have
two functions with the same name and the same number of parameters, only distinguished
by their type. In C++ this could be:

int f (int x);
int f (float x);

...

int r = f (100);

Knowing which function f() will be called is not immediately obvious. Furthermore, if the
original version of the program contained only the declaration of f() with a float parame-
ter, and the declaration of f() with an int parameter was added during maintenance, then
the recompilation of f(100) would silently change the effect of the program to invoke the
new version of f().
Compiler warnings or static analysis tools are required to identify such cases and warn the
user that a possibly unintended call may be made.
Such problems are much less frequent in Ada, since the language does not allow these sorts
of implicit conversions. If a call is ambiguous, this is detected and the developer will need
to specify the intent. Here is an example:

type Miles is new Integer;
type Kilometers is new Integer;

function F (Distance : Miles) return Integer;
function F (Distance : Kilometers) return Integer;

R : Integer := F (100); -- Ambiguous

The above code is illegal in Ada due to the ambiguity: the literal 100 could be interpreted
as either a Miles or a Kilometers value. A construct called type qualification can be used
to make the type explicit and the call unambiguous:

R1 : Integer := F ( Miles'(100) );
R2 : Integer := F ( Kilometers'(100) );

With its restrictions on implicit conversions and its provision of an explicit facility for making
subprogram calls unambiguous, Ada supports the necessary verification activity to mitigate
the vulnerabilities in question.

4.3.8 Accounting for dispatching in performing resource analysis

Contributions

Objectives • Reviews and Analyses of Source Code (OO.A-5[6]: OO.6.3.4.f)

Activities • Reviews and Analyses of Source Code (OO.6.3.4)

Vulnerabilities • Resource analysis (OO.D.2.4)
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One of the difficulties in resource analysis (worst case execution time, maximal stack usage,
etc.) is how to take into account that the target of a dispatching call is unknown. This can be
addressed by including resource consumption limits as part of the call requirements. E.g.,
each overriding version of a given subprogram must complete within a particular relative
deadline, or use at most a particular amount of stack space. The usual substitutability
rules would then apply; in effect such resource consumption requirements are a form of
postcondition.
The GNATstack tool would provide a more pessimistic approach to worst-case stack com-
putation, and use the maximum value required over all possible targets in its computation.

4.4 Use case #2: Using SPARK and Formal Methods
This use case is also a variant of use case #1, since the source code is developed in Ada.
It thus benefits from Ada's advantages and the AdaCore ecosystem. The difference here is
that the contracts, in the SPARK subset of Ada, are used to develop the low-level require-
ments. These contracts are amenable to formal analysis by GNATProve, which can verify
consistency with the implementation.

4.4.1 Using SPARK for design data development

Contributions

Objectives • Software Design (A-2[3,4]: 5.2.1.a, 5.2.1.b)
• Software Reviews and analyses — Requirement formalization
correctness (FM.A‑5[FM12]: FM.6.3.i)

• Considerations for formal methods (FM.A-5[FM13]: FM.6.2.1.a,
FM.6.2.1.b, FM.6.2.1.c)

Activities • Software Development Standards (4.5)
• Software Design (5.2.2.a, 5.2.2.b)
• Software Reviews and analyses — Requirement formalization
correctness (FM.6.3.i)

• Considerations for formal methods (FM.6.2.1)

The Ada language in itself is already a significant step forward in terms of software de-
velopment reliability. However, as a general-purpose language it contains features whose
semantics is not completely specified (for example, order of evaluation in expressions) or
which complicate static analysis (such as pointers). Large applications may need the lat-
ter, for example to define and manipulate complex data structures, to implement low-level
functionality, or to interface with other languages. However, sound design principles should
isolate such uses in well-identified modules, outside a safe core whose semantics is deter-
ministic and which is amenable to static analysis. This core can be developed with much
more stringent coding rules, such as those enforced in the SPARK language.
SPARK is an Ada subset with deterministic semantics, whose features are amenable to static
analysis based on formal methods. For example, it excludes exception handling, side ef-
fects in functions, and aliasing (two variables referring to the same object at the same
time); it limits the use of pointers (access values); and it guarantees that variables are only
read after they have been initialized. Note that a SPARK program has the same run time
semantics as Ada. It is compiled with a standard Ada compiler, and can be combined with
code written in full Ada.
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SPARK is also a superset of the Ada language in terms of statically verified specifications.
A variety of pragmas and aspects can be used to define properties (contracts) such as data
coupling, type invariants, and subprogram pre- and postconditions. These are interpreted
by the SPARK analysis tool and do not have any effect at run-time (and thus they can be
ignored by the compiler, although dynamic verification is allowed for some) but they can
formally document the code and allow further static analysis and formal proof.
Even without taking advantage of SPARK's support for formal methods, coding in SPARK (or
using SPARK as the basis of a code standard) helps make the software more maintainable
and reliable. SPARK's contracts use the same syntax as Ada, and as just noted, a number
of checks that a SPARK analysis tool could enforce statically can be enabled as run-time
checks using standard Ada semantics, allowing traditional testing-based verification.
SPARK programs can be verified to have safety and security properties at various levels.
For critical software, SPARK analysis can demonstrate absence of run-time errors/exceptions
(such as buffer overrun and integer overflow) and ensure that variables are assigned to be-
fore they are read. In the extreme, SPARK can show that an implementation complies with
a formal specification of its requirements, and this may be appropriate for some critical
kernel modules. (A description of how SPARK may be introduced into a project at vari-
ous levels, depending on the system's assurance requirements, may be found in a booklet
co-authored by AdaCore and Thales [AT20].) Since subprogram pre- and postcondition con-
tracts often express low-level requirements, some low-level requirements-based testing
may be replaced by formal proofs as described in the DO ‑ 333/ED ‑ 216 Formal Methods
supplement to DO ‑ 178C/ED ‑ 12C.
In summary, SPARK enhances Ada's benefits in reducing programming errors, increasing the
quality and effectiveness of code reviews, and improving the overall verifiability of the code.
It facilitates advanced static analysis and formal proof. At the start of a new development,
considering SPARK for at least part of the application kernel can greatly decrease defects
found late in the process. And when adding functionality to an existing project, SPARK can
likewise bring major benefits since it allows interfacing with other languages and supports
combining formal methods with traditional testing-based verification.
As part of the DO ‑ 178C/ED ‑ 12C processes, amanual review of the requirements translated
into SPARK contracts needs to be conducted. Although SPARK can ensure that contracts are
correctly and consistently implemented by the source code, the language and its analysis
tools cannot verify that the requirements themselves are correct.
Another issue that needs to be taken into account is the justification of the formal method
itself. It should provide a precise and unambiguous notation, and it needs to be sound (i.e.,
if it is supposed to identify a particular property in the source code, such as no reads of
uninitialized variables, then it has to detect all such instances). The qualification material
for the formal analysis tool would typically address this issue. Moreover, any assumptions
concerning the formal method must be identified and justified.

4.4.2 Robustness and SPARK

Contributions

Objectives • Software Design (A-2[3,4,5]: 5.2.1.a, 5.2.1.b)

Activities • Software Design (5.2.2.f)

As discussed in Robustness / defensive programming (page 39), robustness is concerned
with ensuring correct software behavior under abnormal input conditions. Abnormal input
can come from two sources:
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• External: invalid data from the operational environment (for example due to an oper-
ator input error or a hardware failure), or

• Internal: a defect in the software logic.
Behavior in the external case needs to be considered during requirements development,
and from the SPARK perspective (where these requirements are captured as pre- or postcon-
ditions) there is no fundamental difference between a regular requirement and a robustness
requirement. The proof performed by SPARK takes into account the entire potential input
space, whether normal or abnormal.
The internal case, where faulty code passes an invalid value to a subprogram, can be de-
tected by SPARK (GNATprove) if the validity requirement is part of the subprogram's precon-
dition. That is, GNATprove will report its inability to prove that the subprogram invocation
satisfies the precondition.

4.4.3 Contributions to Low-Level Requirement reviews

Contributions

Objectives • Reviews and Analyses of Low-Level Requirements (FM.A-4[2,4,5]:
FM.6.3.2.b, FM.6.3.2.d, FM.6.3.2.e)

• Reviews and analyses of formal analysis cases, procedures and
results (FM.A‑5[FM10,FM11]: FM.6.3.6.a, FM.6.3.6.b, FM 6.3.6.c)

Activities • Reviews and Analyses of Low-Level Requirements (FM.6.3.2)
• Reviews and analyses of formal analysis cases, procedures and
results (FM.6.3.6.)

Using SPARK to define low-level requirements (LLRs) simplifies the verification process.
Since the LLRs are expressed in a formal language (Ada 2012 or SPARK contracts), they
are accurate, unambiguous, and verifiable: expressed as Boolean expressions that can be
either tested or formally proven.
SPARK also makes it easier to define a software design standard, which can use the same
terms and concepts as a code standard, and can be checked with similar tools.

4.4.4 Contributions to architecture reviews

Contributions

Objectives • Reviews and Analyses of Software Architecture (FM.A-4[9,11,12]:
FM.6.3.3.b, FM.6.3.3.d, FM.6.3.3.e)

Activities • Software Development Standards (4.5)
• Reviews and Analyses of Software Architecture (FM.6.3.3)

According to DO ‑ 333/ED ‑ 216, the reviews and analyses of the software architecture
"detect and report errors that may have been introduced during the development of the
software architecture". SPARK helps meet several of the associated objectives:
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• Consistency. SPARK's flow analysis contracts can specify various relationships be-
tween the software components, including a component's data dependencies and how
its outputs depend on its inputs. The SPARK analysis tool (GNATprove) can then verify
the correctness of these contracts / relationships, assuming TQL-5 qualification, and
the consistency of the architecture. For example:

type Probe_Type is
record
...
end record;

Probes : array (1 .. 10) of Probe_Type;

procedure Calibrate_Probe (Index : Integer;
Min, Max : Integer)

with Globals =>
(In_Out => Probes),

Depends =>
(Probes => (Probes, Index, Min, Max));

The Calibrate_Probe procedure will use the global variable Probes in in out mode
(it can read from and write to the variable) and will compute its new value using the old
value of Probes (at the point of call) together with the parameters Index, Min and Max.
SPARK will verify that the only global variable used is Probes, and that this variable
and the parameters specified in the Depends aspect (and no other variables) are used
to compute the value.

• Verifiability. As a formal notation with tool support, SPARK can help ensure that the ar-
chitecture is verifiable. One example is the protection against one component sending
invalid input to another. As noted earlier, this is part of the robustness requirement
that is met by SPARK's pre- and postconditions. Keeping these contracts active even
in the final executable object code will protect a component from sending or receiving
invalid input, and will detect any misuse.

• Conformance with standards. An architecture standard can be defined in part using
similar formalisms as a code standard, thus allowing the use of similar tools for verifi-
cation.

4.4.5 Contributions to source code reviews

Contributions

Objectives • Reviews and Analyses of Source Code (FM.A-5[1,2,3,6]:
FM.6.3.4.a, FM.6.3.4.b, FM.6.3.4.c, FM.6.3.4.f)

Activities • Software Development Standards (4.5)
• Reviews and Analyses of Source Code (FM.6.3.4)

The SPARK analysis tool (GNATprove) can verify that the source code complies with its low-
level requirements (LLRs) defined as SPARK contracts. This can satisfy the source code
verification objectives, depending on the part of the design data formally defined:
• Compliance with the LLRs: code is proven against the LLRs
• Compliance with the architecture: code is proven against the architectural properties
defined at the specification level

68 Chapter 4. Compliance with DO-178C/ED-12C Guidance: Analysis



AdaCore Technologies for Airborne Software

• Verifiability: if the code is verified by SPARK, it is verifiable. No specific activity is
needed here.

• Traceability: traceability is implicit, from the LLRs defined in the specification to the
implementation

The SPARK tool achieves proof in a local context; it's doing a unit proof. The postcondition
of a subprogram will be proven according to its code and its precondition, which makes the
SPARK approach scalable. For example, consider the following function:

type My_Array is array(Positive range <>) of Integer;

function Search (Arr : My_Array;
Start : Positive;
Value : Integer)

return Integer
with Pre =>

Start in Arr'Range,
Post =>

(if Search'Result = -1 then
(for all I in Start .. Arr'Last => Arr (I) /= Value)

else Arr(Search'Result) = Value);

The code inside the body might start with:

function Search (Arr : My_Array;
Start : Positive;
Value : Integer)

return Integer is
begin

if Arr (Start) = Value then
return Start;

end if;
...

Because of the precondition, the SPARK analysis tool can deduce that the array indexing
will not raise an exception.
Here's another piece of code, responsible for replacing all occurrences of one value by the
other:

procedure Replace (Arr : in out My_Array;
X, Y : in Integer)

with Pre => Arr'Length /= 0 and X /= Y,
Post => (for all I in Arr'Range =>

(if Arr'Old (I) = X then Arr (I) = Y));

procedure Replace (Arr : in out My_Array; X, Y : Integer) is
Ind : Integer := Arr'First;

begin
loop

Ind := Search (Arr, Ind, X);
exit when Ind = -1;
Arr (Ind) := Y;
exit when Ind = Arr'Last;

end loop;
end Replace;

When Search is invoked, the only things that the prover knows are its pre- and postcon-
ditions. It will attempt to show that the precondition is satisfied, and will assume that the
postcondition is True. Whether or not Search is proven doesn't matter at this stage. If it
can't be proven with the SPARK tools, we may decide to verify it through other means, such
as testing.
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The SPARK analysis tools can demonstrate absence of run-time errors, absence of reads of
uninitialized variables, absence of unused assignments, and other properties. Additional
contracts may sometimes be needed for assistance (e.g., assertions), but overall SPARK's
restricted feature set and advanced proof technology automate contract proofs with very
few cases needing to be manually dismissed. This almost entirely replaces manual reviews
and analyses.
The analysis performed by SPARK is usually very tedious to conduct by manual review. As
an example, here's a simple piece of code:

subtype Some_Int is Integer range ...;
Arr : array (Integer range <>) of Some_Int := ...;

Index, X, Y, Z : Integer;
...
Arr (Index) := (X * Y) / Z;

Exhaustive analysis of all potential sources of errors requires verifying that:
• X is initialized
• Y is initialized
• Z is initialized
• Index is initialized and is in Arr'Range
• (X * Y) does not overflow
• Z is not equal to zero
• (X * Y) / Z is within the range of Some_Int

The GNATprove tool will check each of these conditions, and report any that might not hold.

4.4.6 Formal analysis as an alternative to low-level testing

Contributions

Objectives • Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

Activities • Low Level testing (6.4.3.c)

As stated in Section 6.4 of DO ‑ 178C/ED ‑ 12C, the purpose of software testing is "to demon-
strate that the software satisfies its requirements and to demonstrate ... that errors that
could lead to unacceptable failure conditions ... have been removed". Thus it's not the
source code but the binary code that is tested, and within an environment representative
of the final target. As a consequence, the compiler itself is not part of the trusted chain.
Since its outputs are verified, it can be assumed to be correct within the exact conditions
of the certified system.
Various activities in DO ‑ 178C/ED ‑ 12C increase the confidence in the compilation step,
such as selecting an appropriate set of options, assessing the effect of its known problems
and limitations, and (at software level A) verifying the correctness of non-traceable code
patterns.
DO ‑ 333/ED ‑ 216 explains how certain classes of testing can be replaced by formal analysis
("proof"). When low level requirements are expressed as formal properties of the code, it's
possible to formally verify that the source code completely implements the requirements.
Using this technique, however, requires additional activities to demonstrate absence of
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unintended function. Further, and more significantly, with formal analysis it's the source
code that is checked against requirements, not the object code. As a result, additional
activities are required to demonstrate correct behavior of the object code. This is the so-
called property preservation issue, discussed in Property preservation between source code
and object code (page 72).

4.4.7 Low-level verification by mixing test and proof ("Hybrid veri-
fication")

Contributions

Objectives • Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

Activities • Low Level testing (6.4.3.c)

It is not always possible for the SPARK proof tool to prove all the contracts in an application.
When this is due to limited capabilities in the proof technology, manually provided assis-
tance may be a solution. However, some assertions and contracts might not be provable
at all. This could be due to several factors:
• The specification is in SPARK but the actual implementation is in a different language
(such as C).

• The contract or implementation uses Ada features outside of the SPARK subset.
• Some constructs might not be amenable to formal proof, even if correct, because a
piece of code is too complex.

• Some final proof step may be hard to reach, requiring an effort that is excessive com-
pared to some other verification technique.

For all of these reasons, a combination of proof and testing may be appropriate to fully
verify the software. The basic principle is that SPARK proofs are local. They're performed
assuming that each called subprogram fulfills its contracts: if its precondition is satisfied
and the subprogram returns, then its postcondition will hold. If this correctness is demon-
strated by formal proof, then the whole program is proven to comply with all contracts.
However, correctness may also be demonstrated by testing. In this case, the dual seman-
tics of contracts, dynamic and static, is key. The pre- and postconditions can be enabled
as run-time checks to verify the expected output of the test procedures.
An efficient approach during the design process is to define an architecture that distin-
guishes between those components verified by formal proofs and those verified by testing.
Mixing the two techniques is sometimes referred to as hybrid verification.
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4.4.8 Alternatives to code coverage when using proofs

Contributions

Objectives • Principles of Coverage Analysis when using Formal Methods
(FM.A-7[FM5-8]: FM.6.7.1.c)

Activities • Requirement-Based Coverage Analysis (FM.6.7.1.2, FM.6.7.1.3,
FM.6.7.1.4, FM.6.7.1.5)

Structural code coverage is a test-based activity for verifying the exhaustivity of the testing,
the completeness of the requirements, and the absence of unintended function (extraneous
code, including dead code). With formal proofs, a different set of activities is needed tomeet
similar objectives. DO ‑ 333/ED ‑ 216 lists four activities to be performed:
• Complete coverage of each requirement. This objective is to verify that each assump-
tion made during the analysis is verified. In SPARK, these assumptions are easily iden-
tifiable. These are typically assertions in the code that cannot be proven automatically,
for example because they are too complex or involve interfacing with non-SPARK code.
These assumptions can be verified not with proofs but with alternative means such as
testing and reviews.

• Completeness of the set of requirements. In particular, for each input condition its cor-
responding output condition has been specified, and vice versa. This can be achieved,
for example, by specifying dependency relationships between input and output (the
SPARK aspect Depends) or by partitioning the input space (the SPARK aspect Con-
tract_Case).

• Detection of unintended dataflow relationships. The SPARK aspect Depends will verify
that each output is computed from its specified set of inputs.

• Detection of extraneous code. If the requirements are complete and all output vari-
ables (and their dependencies) are specified in these requirements, then any extrane-
ous code should be dead and have no unintended effect. A manual review of the code
will help achieve confidence that no such code is present.

4.4.9 Property preservation between source code and object code

Contributions

Objectives • Verification of Property Preservation Between Source and Exe-
cutable Object Code (FM.A-7[FM9]: FM.6.7.f)

Activities • Verification of Property Preservation Between Source and Exe-
cutable Object Code (FM.6.7.f -1)

When part of the executable object code (EOC) verification is performed using formal proof
instead of testing, the source code is verified against the requirements, but the compiler
is out of the loop. As a result, additional activities need to be performed to confirm proper
translation of the source code to object code.
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This is an open topic, and several approaches are possible to achieve credit for preservation
of properties. One possibility is to perform an analysis of the compiler's processing similar
to the source-code-to-object-code traceability study that addresses DO ‑ 178C/ED ‑ 12C
§6.4.4.2.b. However, in addition to analyzing and justifying instances of non-traceability,
the behavior of traceable code also needs to be considered / verified.
An alternative solution is to rely on the fact that SPARK functional contracts are executable
Ada expressions. These are the actual properties that need to be preserved between source
code and EOC. One way to demonstrate property preservation is to run the tests based on
a higher level of requirements (such as Software / Software integration testing) once, with
contract checks activated. If no contract failure occurs, we can conclude that the expected
behavior has been properly translated by the compiler. This gives sufficient confidence in
the code generation chain.
Running tests to verify this activity may seem to defeat the purpose of replacing testing
by proof. However, this should not be considered as requirement-based testing (which is
indeed replaced by proof). This property preservation verification is a confirmation of the
formal analysis by executing the EOC with contract checking enabled.

4.4.10 SPARK Development Cycle Example
An example in Appendix B of DO ‑ 333/ED ‑ 216 — "FM.B.1.5.1 Unit Proof" — shows how the
use of formal methods (in this case the CAVEAT tool for C, based on Hoare logic) can help
meet various DO ‑ 333/ED ‑ 216 objectives. The same example can be expressed in SPARK,
with the same contributions towards DO ‑ 333/ED ‑ 216 compliance.
The High-Level Requirements define the intent of the example; viz., to check the contents
of a flash zone:
• verify that the whole flash zone is initialized to the value 0xFF
• if a memory location is different from 0xFF, the check has failed

The Low-Level Requirments comprise a textual description and a set of formal properties.
The textual description appears in DO ‑ 333/ED ‑ 216 and is not repeated here. The formal
properties of the A1F2_TestZone procedure are of three kinds:
• Global contract: identifies the dependence on external data
• Post contract: the postcondition for the procedure
• Loop_Invariant pragma: a condition that holds at each iteration

with Global => (Input => A1F2_Memory_Zone),
Post =>

-- COND_FCT
((for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#) and then

Rl_Return = OK and then pFailure.FailureIndex = INDEX_NO_ERROR) or else
-- COND_ERR

((for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#) and then
Rl_Return = NOT_OK and then pFailure.FailureIndex = INDEX_FLASH_2);

pragma Loop_Invariant(for all K in T_A1F2_Index'First .. Rl_Index =>
A1F2_Memory_Zone(K) = Rl_Expectedvalue);

pragma Loop_Invariant(pFailure = APAT_Ce_sFAILURE_NO_ERROR
and then

Rl_Return = OK);

Here is the source code for the package spec (a1f2.ads) and body (a1f2.adb):

package A1F2 with SPARK_Mode is
-- Type declarations --------------------------------------------------------
type T_RESULT is (OK, NOT_OK);

(continues on next page)
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(continued from previous page)
type T_FAILURES is (NCD, INDEX_NO_ERROR, INDEX_FLASH_2);

-- 32-bit word type for hardware interaction
type T_WORD32 is mod 2**32;
for T_WORD32'Size use 32;

-- Error descriptor record --------------------------------------------------
-- Record containing several fields that are used to store information about
-- the type of failure that occurred.
type T_FAILURE_DESCRIPTOR is record

FailureIndex : T_FAILURES;
VmemoryState2 : T_WORD32;
VmemoryState3 : T_WORD32;
VmemoryState4 : T_WORD32;
VmemoryState5 : T_WORD32;

end record;

-- Array type for memory zone -----------------------------------------------
A1F2_ZONE_SIZE : constant := 1024; -- Adjust based on your actual memory size
subtype T_A1F2_Index is Integer range 0 .. A1F2_ZONE_SIZE - 1;
type T_A1F2_MEMORY_ZONE is array (T_A1F2_Index) of T_WORD32;

-- Hardware memory mapping --------------------------------------------------
A1F2_Memory_Zone : T_A1F2_MEMORY_ZONE;
-- pragma Volatile(A1F2_Memory_Zone); -- Ensure no optimizations on memory␣

↪access
-- pragma Import(Convention => Ada, Entity => A1F2_Memory_Zone);

-- Constants -----------------------------------------------------------------
APAT_Ce_sFAILURE_NCD : constant T_FAILURE_DESCRIPTOR := (

FailureIndex => NCD,
VmemoryState2 => 0,
VmemoryState3 => 0,
VmemoryState4 => 0,
VmemoryState5 => 0

);

APAT_Ce_sFAILURE_NO_ERROR : constant T_FAILURE_DESCRIPTOR := (
FailureIndex => INDEX_NO_ERROR,
VmemoryState2 => 16#FFFFFFFF#,
VmemoryState3 => 16#FFFFFFFF#,
VmemoryState4 => 16#FFFFFFFF#,
VmemoryState5 => 16#FFFFFFFF#

);

-- INDEX_FLASH_2 : constant Integer := 2;

-- Main test function -------------------------------------------------------
procedure A1F2_TestZone (pFailure : out T_FAILURE_DESCRIPTOR;

Rl_Return : out T_RESULT)
with Global => (Input => A1F2_Memory_Zone),
Post =>

-- COND_FCT
((for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#) and then
Rl_Return = OK and then pFailure.FailureIndex = INDEX_NO_ERROR) or else
-- COND_ERR

((for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#) and then
Rl_Return = NOT_OK and then pFailure.FailureIndex = INDEX_FLASH_2);

-- The function checks a memory zone
-- @param Rl_Return the result of the check and a failure description is
-- updated.

(continues on next page)
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(continued from previous page)
-- @param pFailure the description of the failure
-- Definition of functional conditions
-- LET COND_FCT = (for all k with k > 0 and k <= A1F2_ZONE_SIZE
-- such that (A1F2_Memory_Zone.[.(k)] = 0xFF));
-- (for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#)
--
-- Definition of failure conditions
-- LET COND_ERR = (there exists k with k > 0 and k <= A1F2_ZONE_SIZE
-- such that (A1F2_Memory_Zone.[.(k)] <> 0xFF));
-- There exists an index for which the initial value is wrong
-- (for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#)

end A1F2;

package body A1F2 with SPARK_Mode is
procedure A1F2_TestZone (pFailure : out T_FAILURE_DESCRIPTOR;

Rl_Return : out T_RESULT)
is

Rl_Expectedvalue : constant T_WORD32 := 16#FF#;
begin

-- Return value of the service
Rl_Return := OK;
pFailure := APAT_Ce_sFAILURE_NO_ERROR;
-- Treatment
Find_Failure : for Rl_Index in T_A1F2_Index'Range loop

declare
Tmp : T_WORD32 := A1F2_Memory_Zone(Rl_Index);

begin
if Tmp /= Rl_Expectedvalue then

-- Failure of Flash Test
Rl_Return := NOT_OK;
pFailure.FailureIndex := INDEX_FLASH_2;
pFailure.VmemoryState2 := A1F2_Memory_Zone(Rl_Index);
pFailure.VmemoryState3 := 0;
pFailure.VmemoryState4 := Rl_Expectedvalue;
pFailure.VmemoryState5 := A1F2_Memory_Zone(Rl_Index);
exit;

end if;
end;
pragma Loop_Invariant(for all K in T_A1F2_Index'First .. Rl_Index =>

A1F2_Memory_Zone(K) = Rl_Expectedvalue);
pragma Loop_Invariant(pFailure = APAT_Ce_sFAILURE_NO_ERROR

and then
Rl_Return = OK);

end loop Find_Failure;
end A1F2_TestZone;

end A1F2;

The SPARK proof tool produces the following output:

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...
a1f2.adb:27:32: info: loop invariant initialization proved
a1f2.adb:27:32: info: loop invariant preservation proved
a1f2.adb:27:96: info: index check proved
a1f2.adb:28:32: info: loop invariant preservation proved
a1f2.adb:28:32: info: loop invariant initialization proved
a1f2.ads:49:29: info: initialization of "pFailure" proved
a1f2.ads:49:63: info: initialization of "Rl_Return" proved
a1f2.ads:50:10: info: data dependencies proved
a1f2.ads:52:18: info: postcondition proved
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As with the example in DO ‑ 333/ED ‑ 216, the use of SPARK contributes to meeting the
following objectives. In some cases additional verification activity is needed, and, as noted
in the DO ‑ 333/ED ‑ 216 example, "functional tests are always required to establish cor-
rectness of the overall system."
• Table FM.A-4, Objective FM17: Formal method is correctly defined, justified, and ap-
propriate

• Table FM.A-5, Objective FM13: Formal method is correctly defined, justified, and ap-
propriate

• Table FM.A-7, Objective FM10: Formal method is correctly defined, justified, and ap-
propriate

• Table FM.A-4, Objective FM16: Requirement formalization is correct
• Table FM.A-4, Objective 2: Low-level requirements are accurate and consistent
• Table FM.A-4, Objective 5: Low-level requirements conform to standards
• Table FM.A-5, Objective 1: Source code complies with low-level requirements
• Table FM.A-5, Objective FM-10: Formal analysis cases and procedures are correct
• Table FM.A-5, Objective FM-11: Formal analysis results are correct and discrepancies
explained

• Table FM.A-6, Objective 3: Executable object code complies with low-level require-
ments

• Table FM.A-6, Objective 4: Executable object code is tobust with low-level require-
ments

• Table FM.A-7, Objective FM 4: Coverage of low-level requirements is achieved
• Table FM.A-7, Objective FM 5-8: Verification of software structure is achieved
• Table FM.A-7, Objective FM 9: Verification of property preservation between source
and object code

4.5 Parameter Data Items

Contributions

Objectives • Software requirements process (A-2[1]: 5.1.1.a)
• Software integration process (A-2[7]: 5.4.1.a)
• Verification of Parameter Data Items (A-5[8,9]: 6.6)

Activities • Software requirements process (5.1.2.j)
• Software Integration process (5.4.2.a)
• Verification of Parameter Data Items (6.6.a), (6.6.b)

The term "Parameter Data Item" (PDI) in DO ‑ 178C/ED ‑ 12C refers to a set of parameters
that influence the behavior of the software without modifying the Executable Object Code.
The verification of a parameter data item can be conducted separately from the verification
of the Executable Object Code.
PDI development implies the production of three kinds of data:
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• The "structure and attributes": These define the characteristics of each item, such as
its type, range, or set of allowed values. In order to ensure the data item correct-
ness and consistency, a set of consistency rules should also be defined. For example,
if one item defines the number of temperature sensors, and other items define the
characteristics of each sensor, there is an obvious relationship between these items.

• The specification of an instance of a PDI: The defined set of values for each item for
an applicable configuration

• The PDI file that implements an instance of a PDI directly usable by the processing unit
of the target computer (e.g. a binary file)

An efficient way to develop such artifacts is to use Ada and/or SPARK.
The structure and attributes can be defined in one or more package specifications. Each
item is defined with its type, defining range and set of allowed values. Predicates can be
used to define relationships between parameters. The example below combines a classical
approach using strong typing and type ranges, with a dynamic predicate to describe rela-
tionships between components of the structure. The intent is to specify the accepted range
of temperatures for a given sensor.

type Sensor is
record

Min_Temp : Float range -40.0 .. 60.0;
Max_Temp : Float range -20.0 .. 80.0;

end record
with Dynamic_Predicate => Sensor.Min_Temp < Sensor.Max_Temp;

Each PDI instance needs to satisfy the constraints expressed in the Dynamic_Predicate
aspect. These constraints are based on a higher-level specification, such as customer-
supplied requirements, a system configuration description, or an installation file. Generat-
ing the PDI file for an instance consists in using GNAT Pro to compile/link the Ada source
code for the PDI, producing a binary file.
Verifying the correctness of a PDI instance (compliance with structure and attributes) can
be automated by compiler checks. This means that inconsistencies will be detected at load
time. For example,

S1 : Sensor := (Min_Temp => -30.0, Max_Temp => 50.0);
S2 : Sensor := (Min_Temp => -50.0, Max_Temp => 50.0);
S3 : Sensor := (Min_Temp => 40.0, Max_Temp => 30.0);

S1 will be accepted, S2 will not (Min_Temp is out of range), S3 will not (Min_Temp is above
Max_Temp). (The Dynamic_Predicate check can also be enabled as a run-time check, via
pragma Assertion_Policy(Check) and the -gnata switch to the GNAT compiler.) If all
PDIs are defined in this manner, completeness of verification is ensured.
The only remaining activity is to check that the PDI instance value complies with the system
configuration.
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CHAPTER

FIVE

SUMMARY OF CONTRIBUTIONS TO DO-178C/ED-12C
OBJECTIVES

5.1 Overall summary: which objectives are met
The following tables summarize how the Ada and SPARK languages and AdaCore's tools help
meet the objectives in DO ‑ 178C/ED ‑ 12C and the technology supplements. The numbers
refer to the specific objectives in the core document or the relevant supplement.
Table A-3 and Tables A-8 through A-10 are not included, since they are independent of
AdaCore's technologies.
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5.1.1 Mapping of AdaCore's Technologies to DO-178C/ED-12C Objectives

Table 1: Overall Summary, Part 1 - Which DO ‑ 178C/ED ‑
12C objectives are met by AdaCore's Technologies

Objectives Objectives Objectives

Technology Component Table A-1 Software Plan-
ning Process

Table A-2 Software Devel-
opment Process

Table A-4 Verification of
Outputs of Software De-
sign Process

Programming Language Ada 3, 5 3, 4, 5, 6, 7 3, 7, 8, 10
Programming Language SPARK (GNATprove) 3, 5 3, 4, 5, 6, 7 FM 14, 15, 16, 17
GNAT Pro Toolchain GNAT Pro Assurance 3 7
GNAT Pro Toolchain GNATstack 3, 4

GNAT SAS Defects & Vulnerability
Analysis

3, 4

GNAT SAS GNATmetric 3

GNAT SAS GNATcheck 3, 4, 5

GNAT DAS GNATtest 3, 4

GNAT DAS GNATemulator 3

GNAT DAS GNATcoverage 3, 4

IDE GPS 3

IDE GNATbench 3

IDE GNATdashboard 3
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Table 2: Overall Summary, Part 2 - Which DO ‑ 178C/ED ‑
12C objectives are met by AdaCore's Technologies

Objectives Objectives Objectives

Technology Component Table A-5 Verification of
Outputs of Software Cod-
ing and Verification Pro-
cesses

Table A-6 Verification of
Outputs of Integration
Processes

Table A-7 Verification of
Outputs of Verification
Process Results

Programming Language Ada 2, 3, 5, 6, 8, 9 OO 10, 11

Programming Language SPARK (GNATprove) FM 10, 11, 12, 13 3, 4 FM 1-10
GNAT Pro Toolchain GNAT Pro Assurance 7

GNAT Pro Toolchain GNATstack 6

GNAT SAS Defects & Vulnerability
Analysis

3, 4, 6

GNAT SAS GNATmetric 4

GNAT SAS GNATcheck 4

GNAT DAS GNATtest 3, 4 1, 2

GNAT DAS GNATemulator 3, 4

GNAT DAS GNATcoverage 5, 6, 7, 8

IDE GPS

IDE GNATbench

IDE GNATdashboard
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5.2 Detailed summary: which activities are supported
In the tables below, the references in the Activities column are to sections in DO ‑ 178C/ED ‑ 12C or to one of the technology supplements.
The references in the Use case columns are to sections in this document.
Since AdaCore's tools mostly contribute to the bottom stages of the V cycle (design, coding, integration and related verification activities),
verification of High-Level Requirements (and thus Table A-3) are outside the scope of AdaCore solutions.
Likewise, the objectives in Table A-8 (Configuration Management), A-9 (Quality Assurance) and A-10 (Certification Liaison Process) are inde-
pendent of AdaCore's technologies; they are the responsibility of the user.

5.2.1 Table A-1: Software Planning Process
The objectives of the Software Planning process are satisfied by developing software plans and standards. These activities are the responsi-
bility of the software project. However, using AdaCore solutions can reduce the effort in meeting some of these objectives.

Objective Summary Activi-
ties

Use case #1a Use case #1b
(OOT)

Use case #2

1 The activities of the software life cy-
cle processes are defined

All This document describes possi-
ble methods and tools that may
be used. When an AdaCore solu-
tion is adopted, it should be doc-
umented in the plans.

Same as #1a Same as #1a

2 The software life cycle(s), including
the inter-relationships between the
processes, their sequencing, and
transition criteria, is defined.

All A variety of software life cycles
may be defined (such as V cy-
cle, Incremental, Iterative, and
Agile). AdaCore solutions do not
require any specific software life
cycle.

Same as #1a Same as #1a

3 Software life cycle environment is
selected and defined

4.4.1.a,
4.4.1.f,
4.4.2.b,
4.4.3.a,
4.4.3.b

When an AdaCore solution is
used, the plans should iden-
tify and escribe the associated
tools. In particular, see Sus-
tained Branches (page 16) and
Compiling with the GNAT Pro
compiler (page 43)

Same as #1a Same as #1a

continues on next page
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Table 3 – continued from previous page
4 Additional considerations are ad-

dressed
4.2.j,
4.2.k

The need for tool qualification is
addressed throughout this docu-
ment.

Same as #1a Same as #1a

5 Software development standards
are defined.

4.2.b,
4.5.b,
4.5.c,
4.5.d

This document describes pos-
sible languages, methods and
tools that may be used dur-
ing the design and coding pro-
cesses. When any of them are
used, design and code standards
must be developed accordingly.
A Code Standard can be defined
through GNATcheck (page 20)

Same as #1a Same as #1a

6 Software plans comply with this
document.

All This objective is satisfied
through the review and analysis
of the plans and standards.

Same as #1a Same as #1a

7 Development and revision of soft-
ware plans are coordinated.

All This objective is satisfied
through the review and analysis
of the plans and standards.

Same as #1a Same as #1a

5.2.2 Table A-2: Software Development Processes
AdaCore tools mostly contribute to the bottom stages of the traditional V cycle (design, coding, integration, and the related verification
activities).

Ob-
jec-
tive

Description Activi-
ties

Use case #1a Use case #1b (OOT) Use case #2

1 High-level requirements
are developed

5.1.2.j Outside the scope of Ada-
Core solutions, except
for Parameter Data Items
(page 76)

Same as #1a Same as #1a

continues on next page
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Table 4 – continued from previous page
2 Derived high-level require-

ments are defined and
provided to the system
processes, including the
system safety assessment
process.

Outside the scope of Ada-
Core solutions

Same as #1a Same as #1a

3 Software architecture is
developed.

5.2.2.a See Using Ada during the
design process (page 32)

See Object orientation for
the architecture (page 52),
Memory management issues
(page 60), Exception handling
(page 62)

See Using SPARK for design
data development (page 65)

4 Low-level requirements are
developed.

5.2.2.a See Using Ada during the
design process (page 32)

See Dealing with dynamic dis-
patching and substitutability
(page 54)

See Using SPARK for de-
sign data development
(page 65), Robustness and
SPARK (page 66)

5 Derived low-level require-
ments are defined and
provided to the system
processes, including the
system safety assessment
process

5.2.2.b See Using Ada during the
design process (page 32)

See Dealing with dynamic dis-
patching and substitutability
(page 54)

See Using SPARK for de-
sign data development
(page 65), Robustness and
SPARK (page 66)

6 Source code is developed All See Benefits of the Ada lan-
guage (page 26), Integra-
tion of C components with
Ada (page 38), Robustness
/ defensive programming
(page 39)

Same as #1a See Benefits of the Ada lan-
guage (page 26)

7 Executable Object Code
and Parameter Data Files,
if any produced and loaded
in the target computer.

5.4.2.a,
5.4.2.b,
5.4.2.d

See Compiling with
the GNAT Pro compiler
(page 43), Integration of
C components with Ada
(page 38), Parameter Data
Items (page 76)

Same as #1a Same as #1a
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5.2.3 Table A-4: Verification of Outputs of Software Design Process
AdaCore solutions may contribute to the verification of the architecture and Low-Level Requirements when Ada/SPARK is used during design
process. However, compliance with High-Level Requirements is not addressed by AdaCore solutions.

Objec-
tive

Description Activities Use case #1a Use case #1b (OOT) Use case #2

1 Low-level require-
ments comply
with high-level
requirements.

6.3.2 Outside the scope of AdaCore
solutions, except for Parameter
Data Items (page 76)

Same as #1a Same as #1a

2 Low-level require-
ments are accu-
rate and consis-
tent

6.3.2 See Contributions to Low-
Level Requirement reviews
(page 67)

3 Low-level re-
quirements are
compatible with
target computer.

6.3.2 See Implementation of Hardware
/ Software Interfaces (page 35)

4 Low-level require-
ments are verifi-
able.

6.3.2 See Contributions to Low-
Level Requirement reviews
(page 67)

5 Low-level require-
ments conform to
standards.

6.3.2 See Contributions to Low-
Level Requirement reviews
(page 67)

6 Low-level require-
ments are trace-
able to high-level
requirements.

Outside the scope of AdaCore so-
lutions

Same as #1a Same as #1a

7 Algorithms are ac-
curate.

6.3.2 See Using Ada during the design
process (page 32)

Same as #1a See Contributions to Low-
Level Requirement reviews
(page 67)

8 Software architec-
ture is compatible
with high-level re-
quirements.

6.3.3 See Memory manage-
ment issues (page 60),
Exception handling
(page 62)

continues on next page
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Table 5 – continued from previous page
9 Software architec-

ture is consistent.
6.3.3 See Contributions to archi-

tecture reviews (page 67)
10 Software architec-

ture is compatible
with target com-
puter.

6.3.3 See Implementation of Hardware
/ Software Interfaces (page 35)

Same as #1a Same as #1a

11 Software architec-
ture is verifiable.

6.3.3 See Contributions to archi-
tecture reviews (page 67)

12 Software architec-
ture conforms to
standards.

6.3.3 See Contributions to archi-
tecture reviews (page 67)

13 Software parti-
tioning integrity is
confirmed.

Outside the scope of AdaCore so-
lutions

Same as #1a Same as #1a

FM14 Formal analysis
cases and proce-
dures are correct.

FM 6.3.6 See Contributions to Low-
Level Requirement reviews
(page 67)

FM15 Formal analysis re-
sults are correct
and discrepancies
explained.

FM 6.3.6 See Contributions to Low-
Level Requirement reviews
(page 67)

FM16 Requirements for-
malization is cor-
rect.

FM 6.3.6 See Contributions to Low-
Level Requirement reviews
(page 67)

FM17 Formal method
is appropriately
defined, justified,
and appropriate.

FM 6.3.6 See Contributions to Low-
Level Requirement reviews
(page 67)

5.2.4 Table A-5 Verification of Outputs of Software Requirement Process
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Ob-
jec-
tive

Description Activ-
ities

Use case #1a Use case #1b (OOT) Use case #2

1 Source Code com-
plies with low-level
requirements.

6.3.4 See Contributions to source
code reviews (page 68)

2 Source Code com-
plies with software
architecture.

6.3.4 See Using Ada during the design
process (page 32)

See Contributions to source
code reviews (page 68)

3 Source Code is ver-
ifiable.

6.3.4 See Benefits of the Ada language
(page 26)

See Benefits of the Ada lan-
guage (page 26)

See Contributions to source
code reviews (page 68)

4 Source Code
conforms to stan-
dards.

6.3.4 See Defining and Verifying a
Code Standard with GNATcheck
(page 41)

5 Source Code
is traceable to
low-level require-
ments.

6.3.4 See Using Ada during the design
process (page 32)

See Contributions to source
code reviews (page 68)

6 Source Code is ac-
curate and consis-
tent.

6.3.4 See Benefits of the Ada language
(page 26), Robustness / defensive
programming (page 39), Check-
ing worst case stack consumption
with GNATstack (page 43), Check-
ing source code accuracy and con-
sistency with GNAT SAS (page 42)

See Benefits of the Ada lan-
guage (page 26), Robustness
/ defensive programming
(page 39), Checking worst
case stack consumption with
GNATstack (page 43), Check-
ing source code accuracy and
consistency with GNAT SAS
(page 42), Overloading and
type conversion vulnerabil-
ities (page 63), Accounting
for dispatching in performing
resource analysis (page 64)

See Checking worst case stack
consumption with GNATstack
(page 43)

7 Output of software
integration pro-
cess is complete
and correct.

6.3.5 See Compiling with the GNAT Pro
compiler (page 43)

Same as #1a Same as #1a

continues on next page
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Table 6 – continued from previous page
8 Parameter Data

Item File is com-
plete and correct.

6.6 See Parameter Data Items
(page 76)

Same as #1a Same as #1a

9 Verification of Pa-
rameter Data Item
File is achieved.

6.6 See Parameter Data Items
(page 76)

Same as #1a Same as #1a

FM
10

Formal analysis
cases and proce-
dures are correct.

FM.6.3.6.a,
FM.6.3.6.b

See Contributions to Low-
Level Requirement reviews
(page 67)

FM
11

Formal analysis re-
sults are correct
and discrepancies
explained.

FM.6.3.6.c See Contributions to Low-
Level Requirement reviews
(page 67)

FM
12

Requirement
formalization is
correct.

See Using SPARK for design
data development (page 65)

FM
13

Formal method is
correctly defined,
justified and ap-
propriate.

FM.6.2.1.a,
FM.6.2.1.b,
FM.6.2.1.c

See Using SPARK for design
data development (page 65)
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5.2.5 Table A-6 Testing of Outputs of Integration Process

Ob-
jec-
tive

Description Activi-
ties

Use case #1a Use case #1b (OOT) Use case #2

1 Executable Object
Code complies with
high-level require-
ments.

This objective is outside the scope
of AdaCore solutions

Same as #1a Same as #1a

2 Executable Object
Code is robust with
high-level require-
ments.

This objective is outside the scope
of AdaCore solutions

Same as #1a Same as #1a

3 Executable Object
Code complies with
low-level require-
ments.

6.4.2,
6.4.2.1,
6.4.3,
6.5

See Using GNATtest for low-
level testing (page 44), Using
GNATemulator for low-level and
software / software integration
tests (page 46)

See Formal analysis as an
alternative to low-level test-
ing (page 70), Low-level ver-
ification by mixing test and
proof ("Hybrid verification")
(page 71)

4 Executable Object
Code is robust with
low-level require-
ments.

6.4.2,
6.4.2.2,
6.4.3,
6.5

See Using GNATtest for low-
level testing (page 44), Using
GNATemulator for low-level and
software / software integration
tests (page 46), Robustness /
defensive programming (page 39)

Same as #1a See Formal analysis as an
alternative to low-level test-
ing (page 70), Low-level ver-
ification by mixing test and
proof ("Hybrid verification")
(page 71)

5 Executable Object
Code is compatible
with target com-
puter.

This objective is based on High-
Level Requirements and is thus
outside the scope of AdaCore so-
lutions

Same as #1a Same as #1a

5.2.6 Table A-7 Verification of Verification Process Results
Use case #2 applied formal analysis to verify compliance with Low-Level Requirements. In applying DO ‑ 333/ED ‑ 216, objectives 4 to 7 from
DO ‑ 178C/ED ‑ 12C are replaced with objectives FM 1 to FM 10.
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Ob-
jec-
tive

Description Activi-
ties

Use case #1a Use case #1b (OOT) Use case #2

1 Test procedures are
correct.

6.4.5 See Using GNATtest for low-level
testing (page 44)

Same as #1a Limited to verification not
performed by formal analy-
sis

2 Test results are cor-
rect and discrepan-
cies explained.

6.4.5 See Using GNATtest for low-level
testing (page 44)

Same as #1a Limited to verification not
performed by formal analy-
sis

3 Test coverage of high-
level requirements is
achieved.

This objective concerns the verifi-
cation of High-Level Requirements
and thus is outside the scope of
Adacore solutions

Same as #1a Same as #1a

4 Test coverage of low-
level requirements is
achieved.

6.4.4.1 See Coverage in the case of
generics (page 53)

5 Test coverage of
software structure
(modified condition /
decision coverage) is
achieved.

6.4.4.2.a,
6.4.4.2.b

See Structural code coverage with
GNATcoverage (page 47), Cov-
erage in the case of generics
(page 53)

6 Test coverage of
software structure
(design coverage) is
achieved.

6.4.4.2.a,
6.4.4.2.b

See Structural code coverage with
GNATcoverage (page 47), Cov-
erage in the case of generics
(page 53)

7 Test coverage of
software structure
(statement cover-
age) is achieved.

6.4.4.2.a,
6.4.4.2.b

See Structural code coverage with
GNATcoverage (page 47), Cov-
erage in the case of generics
(page 53)

continues on next page
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Table 7 – continued from previous page
8 Test coverage of soft-

ware structure (data
coupling and control
coupling) is achieved.

See
Data
and
control
cou-
pling
cov-
erage
with
GNAT-
cov-
erage
(page 49)

See Data and control coupling
coverage with GNATcoverage
(page 49), Dispatching as a new
module coupling mechanism
(page 59)

See Data and control coupling
coverage with GNATcoverage
(page 49)

9 Verification of ad-
ditional code, that
cannot be traced
to Source Code, is
achieved.

6.4.4.2.b See Demonstrating traceability of
source to object code (page 51)

Same as #1a Same as #1a

OO
10

Verify local type con-
sistency.

OO.6.7.2 See Dealing with dynamic dis-
patching and substitutability
(page 54)

OO
11

Verify the use of dy-
namic memory man-
agement is robust.

OO.6.8.2 See Memory management is-
sues (page 60)

FM
1

Formal analysis cases
and procedures are
correct.

See Contributions to Low-
Level Requirement reviews
(page 67)

FM
2

Formal analysis re-
sults are correct
and discrepancies
explained.

See Contributions to Low-
Level Requirement reviews
(page 67)

FM
3

Coverage of high-
level requirements is
achieved.

In this use case, only LLR are
used for formal analysis

continues on next page
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Table 7 – continued from previous page
FM
4

Coverage of low-
level requirements is
achieved.

See Alternatives to code cov-
erage when using proofs
(page 72)

FM
5-
8

Verification coverage
of software structure
is achieved.

FM.6.7.1.2,
FM.6.7.1.3,
FM.6.7.1.4,
FM.6.7.1.5

See Alternatives to code cov-
erage when using proofs
(page 72)

FM
9

Verification of ad-
ditional code, that
cannot be traced
to Source Code, is
achieved.

FM.6.7 See Property preservation
between source code and
object code (page 72)

FM
10

Formal method is
appropriately de-
fined, justified and
appropriate.

FM.6.2.1.a,
FM.6.2.1.b,
FM.6.2.1.c

See Using SPARK for design
data development (page 65)

5.3 AdaCore Tool Qualification and Library Certification
Qualification material can be developed for GNATstack and is available for GNATcheck and GNATcoverage:

Tool TQL DO ‑ 178C/ED ‑ 12C Objectives / Activities DO ‑ 330/ED ‑ 215 Objectives / Activities
GNATstack TQL-5 A-5[6]: 6.3.4.f

GNATcheck TQL-5 A-5[4]: 6.3.4.d T-5[1..6y]: 6.1.3.4.d
GNATcoverage TQL-5 A-7[5..9]: 6.4.4.2 T-7[5..9]: 6.1.4.3.2.a

Certification material up to Software Level A can be developed for the Light and Light-Tasking run-time libraries.
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