
AdaCore Technologies for
Railway Software

Version 2.1

Jean-Louis Boulanger
and Quentin Ochem

Nov 30, 2025

CONTENTS

1 Introduction 5
1.1 CENELEC safety-related railway standards . 5
1.2 Safety Integrity Levels . 6
1.3 AdaCore technologies for railway software . 6

2 CENELEC EN 50128 9
2.1 Overview . 9
2.2 Structure of the standard . 10
2.3 Tool qualification . 14

2.3.1 Tool classes . 14
2.3.2 AdaCore tool qualification support . 15

3 AdaCore Tools and Technologies Overview 17
3.1 Ada . 17

3.1.1 Background . 17
3.1.2 Language Overview . 17

3.1.2.1 Scalar Ranges . 18
3.1.2.2 Contract-Based Programming . 18
3.1.2.3 Programming in the large . 19
3.1.2.4 Generic Templates . 19
3.1.2.5 Object-Oriented Programming (OOP) 19
3.1.2.6 Concurrent Programming . 19
3.1.2.7 Systems Programming . 20
3.1.2.8 Real-Time Programming . 20
3.1.2.9 High-Integrity Systems . 20
3.1.2.10Summary . 21

3.2 SPARK . 21
3.2.1 Flexibility . 21
3.2.2 Powerful Static Verification . 21
3.2.3 Ease of Adoption . 22
3.2.4 Hybrid Verification . 22
3.2.5 Reduced Cost and Improved Efficiency of Executable Object Code Ver-

ification . 22
3.3 GNAT Pro Assurance . 22

3.3.1 Sustained Branches . 22
3.3.2 Language and Tool Support . 23
3.3.3 Configurable Run-Time Libraries . 23
3.3.4 Full Implementation of Ada Standards . 24
3.3.5 Source to Object Traceability . 24
3.3.6 Safety-Critical Support and Expertise . 24
3.3.7 Libadalang . 24
3.3.8 GNATstack . 25

3.4 GNAT Static Analysis Suite (GNAT SAS) . 26
3.4.1 Defects and Vulnerability Analyzer . 26

i

3.4.2 GNATmetric . 26
3.4.3 GNATcheck . 26

3.5 GNAT Dynamic Analysis Suite (GNAT DAS) . 27
3.5.1 GNATtest . 27
3.5.2 GNATemulator . 27
3.5.3 GNATcoverage . 27
3.5.4 GNATfuzz . 28
3.5.5 TGen . 28

3.6 GNAT Pro for Rust . 28
3.7 Integrated Development Environments (IDEs) . 29

3.7.1 GNAT Studio . 29
3.7.2 VS Code Extensions for Ada and SPARK 29
3.7.3 Eclipse Support – GNATbench . 30
3.7.4 GNATdashboard . 30

4 AdaCore Contributions to the Software Quality Assurance Plan 31
4.1 Table A.3 – Software Architecture (7.3) . 31
4.2 Table A.4 – Software Design and Implementation (7.4) 33
4.3 Table A.5 – Verification and Testing (6.2 and 7.3) 35
4.4 Table A.6 – Integration (7.6) . 36
4.5 Table A.7 – Overall Software Testing (6.2 and 7.7) 36
4.6 Table A.8 – Software Analysis Techniques (6.3) 37
4.7 Table A.9 – Software Quality Assurance (6.5) . 38
4.8 Table A.10 – Software Maintenance (9.2) . 38
4.9 Table A.11 – Data Preparation Techniques (8.4) 39
4.10 Table A.12 – Coding Standards . 39
4.11 Table A.13 – Dynamic Analysis and Testing . 41
4.12 Table A.14 – Functional/Black Box Test . 41
4.13 Table A.15 – Textual Programming Language . 42
4.14 Table A.17 – Modeling . 42
4.15 Table A.18 – Performance Testing . 43
4.16 Table A.19 – Static Analysis . 44
4.17 Table A.20 – Components . 45
4.18 Table A.21 – Test Coverage for Code . 46
4.19 Table A.22 – Object Oriented Software Architecture 46
4.20 Table A.23 – Object Oriented Detailed Design . 47

5 Technology Usage Guide 49
5.1 Analyzable Programs (D.2) . 49
5.2 Boundary Value Analysis (D.4) . 50
5.3 Control Flow Analysis (D.8) . 50
5.4 Data Flow Analysis (D.10) . 51
5.5 Defensive Programming (D.14) . 52

5.5.1 Data should be range checked . 52
5.5.2 Data should be dimension-checked . 53
5.5.3 Read-only and read-write parameters should be separated and their

access checked . 53
5.6 Functions should treat all parameters as read-only 53

5.6.1 Literals and constants should not be write-accessible 54
5.6.2 Using GNAT SAS and SPARK to drive defensive programming 54

5.7 Coding Standards and Style Guide (D.15) . 55
5.8 Equivalence Classes and Input Partition Testing (D.18) 55
5.9 Error Guessing (D.20) . 56
5.10 Failure Assertion Programming (D.24) . 56
5.11 Formal Methods (D.28) . 56
5.12 Impact Analysis (D.32) . 57
5.13 Information Encapsulation (D.33) . 57
5.14 Interface Testing (D.34) . 60

ii

5.15 Language Subset (D.35) . 60
5.16 Metrics (D.37) . 60
5.17 Modular Approach (D.38) . 61

5.17.1 Connections between modules shall be limited and defined, coherence
shall be strong . 61

5.17.2 Collections of subprograms shall be built providing several level of
modules . 61

5.17.3 Subprograms shall have a single entry and single exit only 62
5.17.4 Modules shall communicate with other modules via their interface . . . 62
5.17.5 Module interfaces shall be fully documented 62
5.17.6 Interfaces shall contain the minimum number of parameters necessary 62
5.17.7 A suitable restriction of parameter number shall be specified, typically 5 62
5.17.8 Unit Proof and Unit Test . 62

5.18 Strongly Typed Programming Languages (D.49) 62
5.19 Structure Based Testing (D.50) . 63
5.20 Structured Programming (D.53) . 63
5.21 Suitable Programming Languages (D.54) . 63
5.22 Object Oriented Programming (D.57) . 63
5.23 Procedural Programming (D.60) . 64

6 Technology Annex 65
6.1 Ada Programming Language . 65

6.1.1 Qualification . 65
6.1.2 Annex D References . 65

6.2 GNAT Pro Assurance Toolsuite . 66
6.2.1 Qualification . 66
6.2.2 Run-Time Certification . 66
6.2.3 Annex D References . 66

6.3 SPARK Language and Toolsuite . 66
6.3.1 Qualification . 66
6.3.2 Annex D References . 66

6.4 GNAT Static Analysis Suite . 67
6.4.1 Defects and Vulnerability Analysis . 67

6.4.1.1 Qualification . 67
6.4.1.2 Annex D References . 67

6.4.2 Basic Static Analysis tools . 67
6.4.2.1 Qualification . 67
6.4.2.2 Annex D References . 68

6.5 GNAT Dynamic Analysis Suite . 68
6.5.1 Qualification . 68
6.5.2 Annex D References . 68

Index 69

iii

iv

AdaCore Technologies for Railway Software

Copyright © 2015 – 2025, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

AdaCore Technologies for Railway Software

About the Authors

Jean-Louis Boulanger
Since the late 1990s Jean-Louis Boulanger has been an independent safety assessor for the
CERTIFER certification authority in France, for safety-critical software in railway systems. He
is an experienced safety expert in both the railway industries with the CENELEC standard
and the automotive domain with ISO 26262. He has published a number of books on the
industrial use of formal methods, as well as a book on safety for hardware architectures and
a recent book on the application of the CENELEC EN 50128 and IEC 62279 standards. He
has also served as a professor and researcher at the University of Technology of Compiègne.
Quentin Ochem
Quentin Ochem is the Chief Product and Revenue Officer at AdaCore, where he oversees
marketing, sales, and product management while steering the company's strategic initia-
tives. He joined AdaCore in 2005 to work on the company's Integrated Development En-
vironments and cross-language bindings. With an extensive background in software engi-
neering in high-integrity domains such as avionics and defense, he has served leading roles
in technical sales, customer training, and product development. Notably, he has conducted
training on the Ada language, AdaCore tools, and the DO ‑ 178B/ED ‑ 12B and DO ‑ 178C/ED
‑ 12C software certification standards. In 2021 he stepped into his current role, directing
the company's strategic initiatives.

Foreword

The guidance in the CENELEC standard EN 50128:2011 helps achieve confidence that rail-
way control and protection software meets its safety requirements. Certifying compliance
with this standard is a challenging task, especially for the testing and verification activities,
but appropriate usage of qualified tools and specialized run-time libraries can significantly
simplify the effort. This document explains how a number of technologies offered by Ada-
Core — tools, libraries, and supplemental services — can help. The content is based on the
authors' many years of practical experience with the certification of railway software and
with the Ada and SPARK programming languages.

Jean-Louis Boulanger
October 2015

Quentin Ochem, AdaCore
October 2015

Foreword to V2.1

In the years since the initial version of this document was published, the EN 50128:2011
standard has been amended twice, and AdaCore's products have evolved to meet the grow-
ing demands for, and challenges to, high assurance in mission-critical real-time software.
This revised edition reflects the current (2025) versions of EN 50128 and AdaCore's offer-
ings. Among other updates and enhancements to the company's products, the static anal-
ysis tools supplementing the GNAT Pro development environment have been integrated
into a cohesive toolset (the GNAT Static Analysis Suite). The dynamic analysis tools have
likewise been consolidated, and the resulting GNAT Dynamic Analysis Suite has introduced
a fuzzing tool — GNATfuzz — which exercises the software with invalid input and checks for
failsafe behavior.
As editor of this revised edition, I would like to thank Vasiliy Fofanov (AdaCore) for his
detailed and helpful review and suggestions.

2 CONTENTS

AdaCore Technologies for Railway Software

For up-to-date information on AdaCore support for developers of rail software, please visit
[].

Ben Brosgol, AdaCore
September 2025

CONTENTS 3

AdaCore Technologies for Railway Software

4 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 CENELEC safety-related railway standards
Railway projects are subject to a legal framework (laws, decrees, etc.) and also a norma-
tive process based on certification standards. In Europe, these standards are issued and
maintained by CENELEC (European Committee for Electrotechnical Standardization). This
document explains the usage of AdaCore's technologies in conjunction with EN 50128:2011
[] — Railway applications - Communication, signalling and processing systems - Software
for railway control and protection systems — as modified by amendments EN 50128/A1 []
and EN 50128/A2 []. (For ease of exposition, the 2011 edition of the standard, as modified
by the A1 and A2 amendments, will simply be referred to as EN 50128.)
EN 50128 is concerned with the safety-related aspects of a railway system, down to the
hardware and/or software elements used. This document will cover where AdaCore's tech-
nologies fit best and how they can best be applied to meet various requirements in this
standard.
EN 50128 is based on fundamentals described in other CENELEC railway standards:

• EN 50126-1 [] — Railway applications - The specification and demonstration of relia-
bility, availability, maintainability and safety (RAMS) - Part 1: Generic RAMS process
(subsequently modified by EN 50126-1/A1 [])

• EN 50126-2 [] — Railway applications - The specification and demonstration of reli-
ability, availability, maintainability and safety (RAMS): Part 2: systems approach to
safety

• EN 50129 [] — Railway applications - Communication, signalling and processing sys-
tems - Safety related electronic systems for signalling

As noted in EN 50128, page 7:
EN 50126-1 addresses system issues on the widest scale, while EN 50129 ad-
dresses the approval process for individual systems which can exist within the
overall railway control and protection system. ... [EN 50128] concentrates on
the methods which need to be used in order to provide software which meets the
demands of safety integrity which are placed upon it by these wider considera-
tions.

In addition to EN 50126 and EN 50129, several other CENELEC standards relate to software's
role in the safety of a railway system:

• EN 50657:2017 [] as modified by amendment EN 50657/A1 [] — Railways applications
- Rolling stock applications - Software on Board Rolling Stock

This standard extends the principles of EN 50128 into the rolling stock domain, focus-
ing on onboard systems such as braking, door control, and driver interfaces.
It retains RAMS goals but tailors them for embedded systems in motion, where envi-
ronmental and operational variables are more dynamic.

5

AdaCore Technologies for Railway Software

• EN 50716:2023 [] — Railway Applications - Requirements for software development

This standard is a successor to EN 50128 and EN 50657, providing better alignment
with EN 50126‑1 and EN 50126‑2. As of 2025 it is at the early adoption stage but is
intended to supersede both EN 50128 and EN 50657.

Fig. 1 depicts the relationships among the various standards.

Fig. 1: Relationships among the various standards

1.2 Safety Integrity Levels
A key concept in EN 50128 is the Safety Integrity Level (SIL) of a software component, which
reflects the risk of a hazard occurring if the software fails. If there is no impact on safety,
the level is referred to as "Basic Integrity" (earlier known as SIL 0). Otherwise the level has
a value between 1 and 4, where 4 is the most critical; i.e., with the highest risk of a hazard
in case of software failure.
EN 50128 defines the techniques/measures that need to be used at various software life
cycle stages, based on the applicable SIL.

1.3 AdaCore technologies for railway software
AdaCore's technologies revolve around programming activities, as well as the closely re-
lated design and verification activities. This is the bottom of the "V" cycle as defined in
EN 50128, sub-clause 5.3, Figure 4 (see Fig. 2 below). The company's tools exploit the fea-
tures of the Ada language (highly recommended by table A.15) and its formally verifiable
SPARK subset. In particular, the 2012 version of the Ada standard includes some significant
capabilities in terms of specification and verification.
AdaCore's technologies bring two main benefits to the software life cycle processes defined
by the CENELEC railway standards.

• Expressing software interface specifications and software component specifications
directly in the source code.

6 Chapter 1. Introduction

AdaCore Technologies for Railway Software

Interfaces can be precisely expressed through standard syntax for features such as
strong typing, parameter constraints, and subprogram contracts. These help to clar-
ify interface documentation, to enforce program constraints and invariants, and to
provide an extensive foundation for software component and integration verification.

• Reducing the verification costs.

Bringing additional specification at the language level allows verification activities to
run earlier in the software life cycle, during the software component implementation
itself. Tools provided by AdaCore support this effort and are designed to be equally
usable by both the development team and the verification team. Allowing developers
to use verification tools greatly reduces the number of defects found at the verification
stage and thus reduces costs related to change requests identified in the ascending
stages of the cycle.

AdaCore's technologies can be used at all Safety Integrity Levels, from Basic Integrity to
SIL 4. At lower levels, the full Ada language is suitable, independent of platform. At higher
levels, specific subsets will be needed, for example the Ravenscar Profile ([], []) for con-
currency support with analyzable semantics and a reduced footprint, or the Light Profile []
for a subset with no run-time library requirements. At the highest level (SIL 4) the SPARK
language ([], []) and its verification toolsuite enable mathematical proof of properties in-
cluding correct information flow, absence of run-time exceptions, and, for the most critical
code, correctness of the implementation against a formally defined specification.
The following technologies will be presented:

• Ada, a compilable programming language supporting imperative, object-oriented, and
functional programming styles and offering strong specification and verification fea-
tures. Unless otherwise indicated, "Ada" denotes the 2012 version of the Ada language
standard.

• SPARK, an Ada language subset and toolset supporting formal verification of program
properties such as Absence of Run-Time Errors

• GNAT Pro Assurance, a specialized edition of AdaCore's GNAT Pro language develop-
ment environments that is oriented towards projects with long maintenance cycles or
certification requirements

• The GNAT Static Analysis Suite ("GNAT SAS"), comprising several tools:
– A "bug finder" engine that identifies potential defects and vulnerabilities in Ada
code

– GNATmetric — a metric computation tool
– GNATcheck — a coding standard checker

• The GNAT Dynamic Analysis Suite ("GNAT DAS"), comprising several tools:
– GNATtest — a unit testing framework generator
– GNATemulator — a processor emulator
– GNATcoverage — a structural code coverage analyzer
– GNATfuzz — a fuzzing tool that helps uncover potential faults
– TGen — an experimental run-time library for automating test case generation

• GNAT Pro for Rust, a professionally supported complete development environment for
the Rust programming language

• Several Integrated Development Environments (IDEs):
– GNAT Studio — a robust, flexible, and extensible IDE
– VS Code support — extensions for Ada and SPARK
– GNATbench — an Ada-knowlegeable Eclipse plug-in

1.3. AdaCore technologies for railway software 7

AdaCore Technologies for Railway Software

– GNATdashboard — a metric integration and management platform

Fig. 2: Contributions of AdaCore technology to the "V" Cycle

8 Chapter 1. Introduction

CHAPTER

TWO

CENELEC EN 50128

2.1 Overview
EN 50128 governs software used in railway control and protection applications, i.e., systems
that ensure the safe and efficient movement of trains. Examples include:

• Automatic Train Protection (ATP), which ensure automatic braking to avoid collisions
or overspeed;

• Interlocking Systems, which prevent conflicting train movements through tracks, sig-
nals, and switches;

• Train Control Management Systems (TCMS), which coordinate control of subsystems
(doors, brakes, traction);

• Level Crossing Protection, which manages gates and warnings at road-rail intersec-
tions; and

• Centralized Traffic Control (CTC), which oversee train routing and dispatch across large
regions.

The goal of the standard is to provide confidence that that the software functions reliably
and safely relative to its SIL. To this end it specifies requirements in areas including the
following:

• Software development lifecycle processes;
• Verification and validation;
• Tools, techniques, and documentation;
• Risk mitigation measures; and
• Assessment of compliance with the standard.

More specifically, EN 50128 identifies the procedures and prerequisites (organization, in-
dependence and competencies management, quality management, V&V team, etc.) appli-
cable to the development of programmable electronic systems used in railway control and
protection applications. The standard therefore may apply to some software applications
in the rail sector but not necessarily to all.
EN 50128 is used in both safety-related and non-safety-related applications and applies
exclusively to software and its interaction with the whole system. (In light of its role in the
certification of non-safety-related software, the standard introduces the Safety Integrity
Level "Basic Integrity", which pertains to software that is not safety related.)
Although EN 50128 is targeted to the rail industry, it is not intrinsically domain specific. The
standard is basically a specification of sound software engineering practices for long-lived
large-scale high-assurance systems in general and could in principle be applied in other
domains.
One of the distinctive points of EN 50128 is its requirement to justify the implementation
of the resources. For this reason, it is said to be a "resources standard".

9

AdaCore Technologies for Railway Software

2.2 Structure of the standard
Fig. 3 illustrates the structure of EN 50128 (note that chapters in CENELEC standards are
referred to as clauses, and individual sections and sub-sections within a chapter are sub-
clauses).

Fig. 3: Structure of CENELEC EN 50128

Clauses 1, 2, and 3 — Scope, Normative references, and Terms, definitions and abbrevia-
tions, respectively — provide context and basic information.
Clause 4, Objectives, conformance and software safety integrity levels, identifies the five
Safety Integrity Levels and states the criterion for conformance to the standard:

To conform to this European standard it shall be shown that each of the require-
ments has been satisfied to the software safety integrity level defined and there-
fore the objective of the sub-clause in question has been met.

This clause also specifies the role of normative Annex A in the selection of techniques and
measures for satisfying the requirements, and the means for verifying compliance (inspec-
tion of the required documents, augmented when appropriate by other evidence such as
auditing and the witnessing of tests).
Clauses 5 through 9 form the core of the standard, with sub-clauses providing the following
content:

• Objective: the purpose of meeting the requirements specified in the sub-clause
• Input documents (if applicable)
• Output documents (if applicable)
• Requirements: Details on what the software supplier needs to do or provide. In some
cases the requirements reference the tables in Annex A for specific techniques or mea-
sures to be used.

Clause 5, Software management and organization, covers three topics:
• Organization, roles and responsibilities (sub-clause 5.1);

10 Chapter 2. CENELEC EN 50128

AdaCore Technologies for Railway Software

• Personnel competence (sub-clause 5.2); and
• Lifecycle-related issues (sub-clause 5.3).

The standard does not dictate a specific lifecycle, but it cites the "V" approach as a recom-
mendation, from the software specification to the overall software testing and integration,
and also imposes some requirements. For example, the chosen lifecycle model needs to ac-
count for potential iterations between phases, and detailed documentation in the Software
Quality Assurance Plan as specified in sub-clause 6.5 has to be supplied.
Clause 6, Software assurance, has the goal of achieving a software package with aminimum
level of error and involves a variety of activities and technologies:

• Software testing (sub-clause 6.1);
• Software verification (sub-clause 6.2) — defined in sub-clause 3.1.48 as "confirmation,
through the provision of objective evidence, that specified requirements have been
fulfilled";

• Software validation (sub-clause 6.3) — defined in sub-clause 3.1.46 as "confirmation,
through the provision of objective evidence, that the requirements for a specific in-
tended use or application have been fulfilled";

• Software assessment (sub-clause 6.4);
• Software quality assurance (sub-clause 6.5);
• Modification and change control (sub-clause 6.6); and
• Support tools and languages (sub-clause 6.7) — see Tool qualification (page 14) below.

As shown in [], for software applications the assessment process involves demonstrating
that the software application achieves its associated safety objectives.
EN 50128 makes a clear separation between the application software, referred to as the
generic software (Clause 7), and the data or algorithms that are used to configure the
generic software (Clause 8).
Clause 7, Generic software development, has the following sub-clauses:

• Lifecycle and documentation for generic software (sub-clause 7.1);
• Software requirements (sub-clause 7.2);
• Architecture and Design (sub-clause 7.3);
• Component design (sub-clause 7.4);
• Component implementation and testing (sub-clause 7.5);
• Integration (sub-clause 7.6); and
• Overall Software Testing / Final Validation (sub-class 7.7).

Clause 8, Development of application data or algorithms: systems configured by application
data or algorithms, ensures that the configuration parameters are verified and validated
with the same degree of assurance, based on the relevant SIL, as is needed for the generic
software that they configure.
An important part of the standard is Clause 9, Software deployment and maintenance. As
stated in sub-clauses 9.1.1 and 9.2.1, the objectives of this clause are, respectively:

To ensure that the software performs as required, preserving the required soft-
ware integrity level when it is deployed in the final environment of the application.

and
To ensure that the software performs as required, preserving the required soft-
ware integrity level and dependability when making corrections, enhancements
or adaptations to the software itself.

2.2. Structure of the standard 11

AdaCore Technologies for Railway Software

Annex A (normative), Criteria for the Selection of Techniques andMeasures, contains a set of
tables that correlate the artifacts and practices (documentation, techniques, andmeasures)
specified elsewhere in the standard, with an indication of whether, and how strongly, they
are recommended based on the software's SIL:

• M: Mandatory. Must be used
• HR: Highly Recommended. If not used, need to explain rationale for using alternative
technique

• R: Recommended
• --: No recommendation either for or against usage
• NR: Not recommended. If used, need to explain rationale for decision

Annex A consists of two sub-clauses:
• Clauses tables (A.1); the table headings identify the sub-clause(s) containing the rel-
evant requirements:
– Table A.1 – Lifecycle Issues and Documentation (5.3)
– Table A.2 – Software Requirements Specification (7.2)
– Table A.3 – Software Architecture (7.3)
– Table A.4 – Software Design and Implementation (7.4)
– Table A.5 – Verification and Testing (6.2 and 7.3)
– Table A.6 – Integration (7.6)
– Table A.7 – Overall Software Testing (6.2 and 7.7)
– Table A.8 – Software Analysis Techniques (6.3)
– Table A.9 – Software Quality Assurance (6.5)
– Table A.10 – Software Maintenance (9.2)
– Table A.11 – Data Preparation Techniques (8.4)

• Detailed tables (A.2); these are lower-level tables that expand on certain entries in the
Clauses tables:
– Table A.12 – Coding Standards
– Table A.13 – Dynamic Analysis and Testing
– Table A.14 – Functional/Black Box Test
– Table A.15 – Textual Programming Languages
– Table A.16 – Diagrammatic Languages for Application Algorithms
– Table A.17 – Modeling
– Table A.18 – Performance Testing
– Table A.19 – Static Analysis
– Table A.20 – Components
– Table A.21 – Test Coverage for Code
– Table A.22 – Object Oriented Software Architecture
– Table A.23 – Object Oriented Detailed Design

As an example, Table A.4 contains a row for the programming language(s) selection:

12 Chapter 2. CENELEC EN 50128

AdaCore Technologies for Railway Software

Technique/Measure Ref Basic In-
tegrity

SIL 1 SIL 2 SIL 3 SIL 4

...
10 Programming Lan-
guage

Table A.15 R HR HR HR HR

...

Table A.15 contains a row for Ada:

Technique/Measure Ref Basic In-
tegrity

SIL 1 SIL 2 SIL 3 SIL 4

ADA D.54 R HR HR HR HR
...

Sub-clause D.54 (Suitable Programming languages) notes the features that a suitable lan-
guage should have (e.g., run-time array bound checking), and features that it should en-
courage (e.g., definition of variable sub-ranges). On the other side, D.54 also lists features
that should be avoided because they complicate verification (e.g., implicit variable initial-
ization).
The entries in Tables A.4 and A.15 show that Ada is a Highly Recommended language at
SIL 1 through SIL 4 and a Recommended language at the Basic Integrity level. Features
that should be avoided can be detected and prevented by using AdaCore's GNATcheck tool
in the GNAT Static Analysis Suite; see GNAT Static Analysis Suite (GNAT SAS) (page 26).
Annex B (normative), Key software roles and responsibilities, consists of ten tables detailing
the responsibilities and key competencies for the various roles specified in the standard:
Requirements Manager, Designer, Implementor, Tester, Verifier, Integrator, Validator, As-
sessor, Project Manager, and Configuration Manager.
Annex C (informative), Documents Control Summary, provides a table that lists, for each
project phase, its output documents and, for each document, the responsible author and
reviewer(s). The lifecycle phases and their associated document count are:

• Planning: 5 documents
• Software requirements: 3 documents
• Architecture and design: 6 documents
• Component design: 3 documents
• Component implementation and testing: 3 documents
• Integration: 3 documents
• Overall software testing / Final validation: 4 documents
• Systems configured by application data/algorithms: 8 documents
• Software deployment: 5 documents
• Software maintenance: 4 documents
• Software assessment: 2 documents

Annex D (informative), Bibliography of techniques, details the aim and description for
seventy-one specific software engineering practices. These are applicable at various life-
cycle phases; for example:

• Coding Standards and Style Guide (sub-clause D.15) and Language Subset (sub-clause
D.35) at the design and implementation phase,

2.2. Structure of the standard 13

AdaCore Technologies for Railway Software

• Formal Methods and Formal Proof (sub-clauses D.28 and D.29) at the implementation
and verification phases, and

• Equivalence Classes and Input Partition Testing (sub-clause D.18) at the testing phase.
Annex ZZ (Informative), Relationship between this European standard and the essential
requirements of EU Directive 2016/797/EU [2016 OJ L138] aimed to be covered was intro-
duced in EN 50128/A1. It contains a table showing the relationship noted in the Annex
title.

2.3 Tool qualification
An earlier edition of the standard, EN 50128:2001, introduced a requirement that the com-
pilers employed for a project be purpose-certified, but did not give a clear indication of what
precisely was expected. Clause 6.7 in the 2011 revision formalizes this concept, which will
be referred to here as "tool qualification", and provides details on what needs to be per-
formed and/or supplied. (The standard does not use a specific term for this process, but
the "tool qualification" terminology from the airborne software standards DO ‑ 178C/ED ‑
12C [] and DO ‑ 330/ED ‑ 215 [] is appropriate.)

2.3.1 Tool classes
Tool qualification is based on the recognition that different tools need different levels of
confidence in their reliability, based on how a tool error affects the application software.
This is formalized in the concept of a "tool class". As stated in sub-clause 6.7.1:

The objective is to provide evidence that potential failures of tools do not ad-
versely affect the integrated toolset output in a safety related manner that is
undetected by technical and/or organisational measures outside the tool. To this
end, software tools are categorised into three classes namely, T1, T2 & T3 re-
spectively.

• T1 is reserved for tools that affect neither the verification of the software nor the final
executable file.

• T2 applies to tools where a fault could lead to an error in the results of the verification
or validation. Examples include tools used for verifying compliance with a coding
standard, generating quantified metrics, performing static analysis of the source code,
managing and executing tests, etc.

• T3 applies to tools where a fault could have an impact on (and, for example, intro-
duce errors into) the final executable software. This class includes compilers, code
generators, etc.

Sub-clause 6.7 of EN 50128 defines a set of recommendations for each tool class; these af-
fect the content of the tool qualification report. The standard identifies twelve requirements
(numbered from 6.7.4.1 to 6.7.4.12) concerning tool qualification. Requirement 6.7.4.12 is
a mapping from each tool class to the applicable sub-clauses in the standard. It is shown
here in the table below, which augments the version in the standard by also specifying the
lifecycle phase that is relevant for each sub-clause. The steps shown indicate the require-
ments to be met and reflect the additional effort needed as the tool level increases; for
further information, please see [], Chapter 9.

14 Chapter 2. CENELEC EN 50128

AdaCore Technologies for Railway Software

Tool class Applicable sub-clause(s) Lifecycle phase
T1 6.7.4.1 Tool identification
T2 6.7.4.1 Tool identification

6.7.4.2 Tool justification
6.7.4.3 Tool specification/manual
6.7.4.10, 6.7.4.11 Tool version management

T3 6.7.4.1 Tool identification
6.7.4.2 Tool justification
6.7.4.3 Tool specification/manual
(6.7.4.4 and 6.7.4.5) or 6.7.4.6 Tool conformity evidence
(6.7.4.7 or 6.7.4.8) and 6.7.4.9 Tool requirement fulfillment
6.7.4.10, 6.7.4.11 Tool version management

2.3.2 AdaCore tool qualification support
As will be explained below, AdaCore supports EN 50128 compliance through tools qualified
for several purposes:

• Static and dynamic analysis;
• Code verification including formal proof; and
• Compilation with traceability and reproducibility guarantees.

These capabilities reduce certification risk while improving code quality and lifecycle con-
fidence.
AdaCore's qualification packages contain the information required by EN 50128, such as
documentation, history, infrastructure, user references, recommended usage, validation
strategy, configuration management and change tracking.
Furthermore, tools can be provided through a subscription service known as "sustained
branches" (see Sustained Branches (page 22)). In this mode, a specific version of the tools
can be put into special maintenance, where AdaCore can investigate known problems and
provide repairs or work-arounds for potential issues on these branches without unrelated
updates that may risk regressions.
AdaCore's decades-long experience in software certification for embedded and safety-
critical domains, including rail and avionics, ensures that customers have access to:

• Qualification material for EN 50128 and/or DO ‑ 330/ED ‑ 215 tool assessment;
• A formally verifiable language (SPARK) for high-integrity use cases; and
• Lifecycle support aligned with the needs of long-term platform deployments

2.3. Tool qualification 15

AdaCore Technologies for Railway Software

16 Chapter 2. CENELEC EN 50128

CHAPTER

THREE

ADACORE TOOLS AND TECHNOLOGIES OVERVIEW

3.1 Ada

3.1.1 Background
Ada is a modern programming language designed for large, long-lived applications — and
embedded systems in particular — where reliability, maintainability, and efficiency are es-
sential. It was originally developed in the early 1980s (this version is generally known as
Ada 83) by a team led by Jean Ichbiah at CII-Honeywell-Bull in France. The language was
revised and enhanced in an upward compatible fashion in the early 1990s, under the lead-
ership of Tucker Taft from Intermetrics in the U.S.
The resulting language, Ada 95, was the first internationally standardized (ISO) object-
oriented language. Under the auspices of ISO, a further (minor) revision was completed
as an amendment to the standard; this version of the language is known as Ada 2005.
Additional features (including support for contract-based programming in the form of sub-
program pre- and postconditions and type invariants) were added in the Ada 2012 version
of the language standard, and a number of features to increase the language's expressive-
ness were introduced in Ada 2022 (see [], [], [], [] for information about Ada).
The name "Ada" is not an acronym; it was chosen in honor of Augusta Ada Lovelace (1815-
1852), a mathematician who is regarded as the world's first programmer because of her
work with Charles Babbage. She was also the daughter of the poet Lord Byron.
The Ada language is seeing significant usage worldwide in high-integrity / safety-critical /
high-security domains including railway systems, commercial and military aircraft avionics,
air traffic control, and medical devices.
With its embodiment of modern software engineering principles, Ada is an excellent teach-
ing language for both introductory and advanced computer science courses, and it has been
the subject of significant university research especially in the area of real-time technolo-
gies. The so-called Ravenscar Profile — a subset of the language's concurrency features
with deterministic semantics — broke new ground in supporting the use of concurrent pro-
gramming in high assurance software.
AdaCore has a long history and close connection with the Ada programming language. Com-
pany members worked on the original Ada 83 design and review and played key roles in the
Ada 95 project as well as the subsequent revisions. AdaCore's initial GNAT compiler was
essential to the growth of Ada 95; it was delivered at the time of the language's standard-
ization, thus guaranteeing that users would have a quality implementation for transitioning
to Ada 95 from Ada 83 or other languages.

3.1.2 Language Overview
Ada is multi-faceted. From one perspective it is a classical stack-based general-purpose
language, not tied to any specific development methodology. It has a simple syntax, struc-
tured control statements, flexible data composition facilities, strong type checking, tradi-
tional features for code modularization (subprograms), and a mechanism for detecting and

17

AdaCore Technologies for Railway Software

responding to exceptional run-time conditions (exception handling). But it also includes
much more:

3.1.2.1 Scalar Ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada allows the program-
mer to simply and explicitly specify the range of values that are permitted for variables of
scalar types (integer, floating-point, fixed-point, and enumeration types). The attempted
assignment of an out-of-range value causes a run-time error. The ability to specify range
constraints makes programmer intent explicit and makes it easier to detect a major source
of coding and user input errors. It also provides useful information to static analysis tools
and facilitates automated proofs of program properties.
Here's an example of an integer scalar range:

declare
Score : Integer range 1..100;
N : Integer;

begin
... -- Code that assigns a value to N
Score := N;
-- A run-time check verifies that N is within the range 1..100
-- If this check fails, the Constraint_Error exception is raised

end;

3.1.2.2 Contract-Based Programming

A feature introduced in Ada 2012 allows extending a subprogram specification or a
type/subtype declaration with a contract (a Boolean assertion). Subprogram contracts take
the form of preconditions and postconditions, type contracts are used for invariants, and
subtype contracts provide generalized constraints (predicates). Through contracts the de-
veloper can formalize the intended behavior of the application, and can verify this behavior
by testing, static analysis or formal proof.
Here's a skeletal example that illustrates contact-based programming; a Table object is a
fixed-length container for distinct Float values.

package Table_Pkg is
type Table is private; -- Encapsulated type

procedure Insert (T : in out Table; Item: in Float)
with Pre => not Is_Full(T) and not Contains(T, Item),

Post => Contains(T, Item);

procedure Remove (T : in out Table; Item: out Float);
with Pre => Contains(T, Item),

Post => not Contains(T, Item);

function Is_Full (T : in Table) return Boolean;
function Contains (T : in Table; Item: in Float) return Boolean;
...

private
... -- Full declaration of type Table

end Table_Pkg;

package body Table_Pkg is
... -- Implementation of Insert, Remove, Is_Full, and Contains

end Table_Pkg;

A compiler option controls whether the pre- and postconditions are checked at run time. If

18 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

checks are enabled, any pre- or postcondition failure — i.e., the contract's Boolean expres-
sion evaluating to False — raises the Assertion_Error exception.

3.1.2.3 Programming in the large

The original Ada 83 design introduced the package construct, a feature that supports en-
capsulation (information hiding) and modularization, and which allows the developer to
control the namespace that is accessible within a given compilation unit. Ada 95 intro-
duced the concept of child units, adding considerable flexibility and easing the design of
very large systems. Ada 2005 extended the language's modularization facilities by allowing
certain kinds of mutual references between package specifications, thus making it easier
to interface with languages such as Java.

3.1.2.4 Generic Templates

A key to reusable components is a mechanism for parameterizing modules with respect
to data types and other program entities, for example a stack package for an arbitrary
element type. Ada meets this requirement through a facility known as generics; since the
parameterization is done at compile time, run-time performance is not penalized.

3.1.2.5 Object-Oriented Programming (OOP)

Ada 83 was object-based, allowing the partitioning of a system into modules corresponding
to abstract data types or abstract objects. Full OOP support was not provided since, first,
it seemed not to be required in the real-time domain that was Ada's primary target, and,
second, the apparent need for automatic garbage collection in an Object-Oriented language
would have interfered with predictable and efficient performance.
However, large real-time systems often have components such as GUIs that do not have
real-time constraints and that could be most effectively developed using OOP features. In
part for this reason, Ada 95 supplies comprehensive support for OOP, through its tagged
type facility: classes, polymorphism, inheritance, and dynamic binding. Ada 95 does not
require automatic garbage collection but rather supplies definitional features allowing the
developer to supply type-specific storage reclamation operations (finalization). Ada 2005
brought additional OOP features including Java-like interfaces and traditional obj.op(...)
operation invocation notation.
Ada is methodologically neutral and does not impose a distributed overhead for OOP. If an
application does not need OOP, then the OOP features do not have to be used, and there
is no run-time penalty. See [] or [] for more details..

3.1.2.6 Concurrent Programming

Ada supplies a structured, high-level facility for concurrency. The unit of concurrency is
a program entity known as a task. Tasks can communicate implicitly via shared data or
explicitly via a synchronous control mechanism known as the rendezvous. A shared data
item can be defined abstractly as a protected object (a feature introduced in Ada 95), with
operations executed under mutual exclusion when invoked from multiple tasks. Protected
objects provide the functionality of semaphores and condition variables but more clearly
and reliably (e.g., avoiding subtle race conditions).
Ada supports asynchronous task interactions for timeouts, software event notifications, and
task termination. Such asynchronous behavior is deferred during certain operations, to pre-
vent the possibility of leaving shared data in an inconsistent state. Mechanisms designed
to help take advantage of multi-core architectures were introduced in Ada 2012.

3.1. Ada 19

AdaCore Technologies for Railway Software

3.1.2.7 Systems Programming

Both in the core language and the Systems Programming Annex, Ada supplies the neces-
sary features for hardware-specific processing. For example, the programmer can specify
the bit layout for fields in a record, define alignment and size properties, place data at spe-
cific machine addresses, and express specialized code sequences in assembly language.
Interrupt handlers can be written in Ada, using the protected type facility.

3.1.2.8 Real-Time Programming

Ada's tasking facility and the Real-Time Systems Annex support common idioms such as
periodic or event-driven tasks, with features that can help avoid unbounded priority inver-
sions. A protected object locking policy is defined that uses priority ceilings; this has an
especially efficient implementation in Ada (mutexes are not required) since protected op-
erations are not allowed to block. Ada 95 defined a task dispatching policy that basically
requires tasks to run until blocked or preempted. Subsequent versions of the language
standard introduced several other policies, such as Earliest Deadline First.

3.1.2.9 High-Integrity Systems

With its emphasis on sound software engineering principles, Ada supports the develop-
ment of high-integrity applications, including those that need to be certified against safety
standards such EN 50128 for rail systems, DO ‑ 178C/ED ‑ 12C [] for avionics, and security
standards such as the Common Criteria []. Key to Ada's support for high-assurance software
is the language's memory safety; this is illustrated by a number of features, including:

• Strong typing

Data intended for one purpose will not be accessed via inappropriate operations; errors
such as treating pointers as integers (or vice versa) are prevented.

• Array bounds checking

A run-time check guarantees that an array index is within the bounds of the array.
This prevents buffer overflow vulnerabilities that are common in C and C++. In many
cases a a compiler optimization can detect statically that the index is within bounds
and thus eliminate any run-time code for the check.

• Prevention of null pointer dereferences

As with array bounds, pointer dereferences are checked to make sure that the pointer
is not null. Again, such checks can often be optimized out.

• Prevention of dangling references

A scope accessibility checks ensures that a pointer cannot reference an object on the
stack after exit/return from the scope (block or subprogram) in which the object is
declared. Such checks are generally static, with no run-time overhead.

However, the full language may be inappropriate in a safety-critical application, since the
generality and flexibility could interfere with traceability / certification requirements. Ada
addresses this issue by supplying a compiler directive, pragma Restrictions, that allows
constraining the language features to a well-defined subset (for example, excluding dy-
namic OOP facilities).
The evolution of Ada has seen the continued increase in support for safety-critical and high-
security applications. Ada 2005 standardized the Ravenscar Profile, a collection of concur-
rency features that are powerful enough for real-time programming but simple enough to
make certification and formal analysis practical.
Ada 2012 introduced contract-based programming facilities, allowing the programmer to
specify preconditions and/or postconditions for subprograms, and invariants for encapsu-
lated (private) types. These can serve both for run-time checking and as input to static
analysis tools.

20 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

The most recent version of the standard, Ada 2022, has added several contract-based pro-
gramming constructs inspired by SPARK (Contract_Cases, Global, and Depends aspects)
and, more generally, has enhanced the language's expressiveness. For example, Ada 2022
has introduced some new syntax in its concurrency support and has defined the Jorvik task-
ing profile, which is more inclusive than Ravenscar.

3.1.2.10 Summary

In brief, Ada is an internationally standardized language combining object-oriented pro-
gramming features, well-engineered concurrency facilities, real-time support, and built-in
reliability through both compile-time and run-time checks. As such it is an appropriate lan-
guage for addressing the real issues facing software developers today. Ada has a long and
successful history and is used throughout a number of major industries to design software
that protects life and property.

3.2 SPARK
SPARK is a software development technology (programming language and verification
toolset) specifically designed for engineering ultra-low defect level applications, for exam-
ple where safety and/or security are key requirements. SPARK Pro is AdaCore's commercial-
grade offering of the SPARK technology. The main component in the toolset is GNATprove,
which performs formal verification on SPARK code.
SPARK has an extensive industrial track record. Since its inception in the late 1980s it has
been used worldwide in a range of industrial applications such as railway signaling, civil
and military avionics, air traffic management / control, cryptographic software, and cross-
domain solutions.
The SPARK language has been stable over the years, with periodic enhancements. The
2014 version of SPARK represented a major revision [], []), incorporating contract-based
programming syntax from Ada 2012, and subsequent upgrades included support for point-
ers (access types) based on the Rust ownership model.

3.2.1 Flexibility
SPARK offers the flexibility of configuring the language on a per-project basis. Restrictions
can be fine-tuned based on the relevant coding standards or run-time environments. SPARK
code can easily be combined with full Ada code or with C, so that new systems can be built
on and reuse legacy codebases.

3.2.2 Powerful Static Verification
The SPARK language supports a wide range of static verification techniques. At one end
of the spectrum is basic data and control flow analysis, i.e., exhaustive detection of errors
such as attempted reads of uninitialized variables, and ineffective assignments (where a
variable is assigned a value that is never read). For more critical applications, dependency
contracts can constrain the information flow allowed in an application. Violations of these
contracts — potentially representing violations of safety or security policies — can then be
detected even before the code is compiled.
In addition, the language supports mathematical proof and can thus provide high confi-
dence that the software meets a range of assurance requirements: from the absence of
run-time errors (AORTE), to the enforcement of safety or security properties, to compliance
with a formal specification of the program's required behavior.

3.2. SPARK 21

AdaCore Technologies for Railway Software

3.2.3 Ease of Adoption
User experience has shown that the language and the SPARK Pro toolset do not require a
steep learning curve. Training material such as AdaCore's online AdaLearn course for SPARK
[] can quickly bring developers up to speed; users are assumed to be experts in their own
application domain such as railway software and do not need to be familiar with formal
methods or the proof technology implemented by the toolset. In effect, SPARK Pro is an
advanced static analysis tool that will detect many logic errors very early in the software
life cycle. It can be smoothly integrated into an organization's existing development and
verification methodology and infrastructure.
SPARK uses the standard Ada 2012 contract syntax, which both simplifies the learning pro-
cess and also allows new paradigms of software verification. Programmers familiar with
writing executable contracts for run-time assertion checking can use the same approach but
with additional flexibility: the contracts can be verified either dynamically through classical
run-time testing methods or statically (i.e., pre-compilation and pre-test) using automated
tools.

3.2.4 Hybrid Verification
SPARK supports hybrid verification, which combines testing and formal proofs. As an ex-
ample, an existing project in Ada and C can adopt SPARK to implement new functionality
for critical components. The SPARK units can be analyzed statically to achieve the desired
level of verification, with testing performed at the interfaces between the SPARK units and
the modules in the other languages.

3.2.5 Reduced Cost and Improved Efficiency of Executable Object
Code Verification

Software verification typically involves extensive testing, including unit tests and integra-
tion tests. Traditional testing methodologies are a major contributor to the high delivery
costs for safety-critical software. Furthermore, they may fail to detect errors. SPARK ad-
dresses this issue by allowing automated proof to be used to demonstrate functional cor-
rectness at the subprogram level, either in combination with or as a replacement for unit
testing. In the high proportion of cases where proofs can be discharged automatically, the
cost of writing unit tests is completely avoided. Moreover, verification by proofs covers all
execution conditions and not just a sample.

3.3 GNAT Pro Assurance

3.3.1 Sustained Branches
GNAT Pro Assurance is a specialized version of the GNAT Pro development environment,
available for any of the products in the GNAT Pro family: GNAT Pro for Ada, GNAT Pro for C,
GNAT Pro for C++, and GNAT Pro for Rust. It is targeted to projects requiring customized
support, including bug fixes and known problems analyses, on a specific version of the
toolchain. This service is especially suitable for applications with long maintenance cycles
or certification requirements, since critical updates to the compiler or other product compo-
nents may become necessary years after the initial release. Such customized maintenance
of a specific version of the product is known as a sustained branch.
A project on a sustained branch can monitor relevant known problems, analyze their impact
and, if needed, update to a newer version of the product on the same development branch
(i.e., not incorporating changes introduced in later versions of the product).
Sustained branches are a practical solution to the problem of ensuring toolchain stability
while allowing flexibility in case an upgrade is needed to correct a critical problem.

22 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

3.3.2 Language and Tool Support
GNAT Pro Assurance for Ada supports all versions of the Ada language standard as well as
multiple versions of C (C89, C99, and C11). It provides an Integrated Development Envi-
ronment (see Integrated Development Environments (IDEs) (page 29)), a comprehensive
toolsuite including a visual debugger, and an extensive set of libraries and bindings. De-
tails on the GNAT Pro for Ada toolchain may be found in []. AdaCore's GNAT project facility,
based on a multi-language builder for systems organized into subsystems and libraries, is
documented in [].

3.3.3 Configurable Run-Time Libraries
Two specific GNAT-defined run-time libraries have been designed with certification in mind
and are known as the Certifiable Profiles (see []):

• Light Profile

• Light-Tasking Profile

The Light Profile provides a flexible Ada subset that is supported by a certifiable Ada run-
time library. Depending on application requirements, this profile can be further restricted
through the Restrictions pragma, with the application only including run-time code that
is used by the application.
These run-time libraries can also be customized directly to suit certification requirements:
unneeded packages can be removed to allow for self-certification of the runtime, while the
-nostdlib linker switch can be used to prevent the use of the runtime. Even when the
run-time library is suppressed, some run-time sources are still required to provide compile-
time definitions. While this code produces no object code, the certification protocol may
still require tests to ensure correct access to these definitions.
The Light-Tasking Profile expands the Light Profile to include Ravenscar tasking support,
allowing developers to use concurrency in their certification applications.
Although limited in terms of dynamic Ada semantics, all Certifiable Profiles fully support
static Ada constructs such as private types, generic templates, and child units. Some dy-
namic semantics are also supported. For example, these profiles allow the use of tagged
types (at library level) and other Object-Oriented Programming features, including dynamic
dispatching. The general use of dynamic dispatching at the application level can be pre-
vented through pragma Restrictions.
A traditional problem with predefined profiles is their inflexibility: if a feature outside a
given profile is needed, then it is the developer's responsibility to address the certification
issues deriving from its use. GNAT Pro Assurance accommodates this need by allowing the
developer to define a profile for the specific set of features that are used. Typically this will
be for features with run-time libraries that require associated certification materials. Thus
the program will have a tailored run-time library supporting only those features that have
been specified.
More generally, the configurable run-time capability allows specifying support for Ada's
dynamic features in an à la carte fashion ranging from none at all to full Ada. The units
included in the executable may be either a subset of the standard libraries provided with
GNAT Pro, or specially tailored to the application. This latter capability is useful, for example,
if one of the predefined profiles implements almost all the dynamic functionality needed
in an existing system that has to meet new safety-critical requirements, and where the
costs of adapting the application without the additional run-time support are considered
prohibitive.

3.3. GNAT Pro Assurance 23

AdaCore Technologies for Railway Software

3.3.4 Full Implementation of Ada Standards
GNAT Pro provides a complete implementation of the Ada language from Ada 83 to Ada
2012, and support for selected features from Ada 2022. Developers of safety-critical and
high-security systems can thus take advantage of features such as contract-based pro-
gramming, which effectively embed requirements in the source program text and simplify
verification.

3.3.5 Source to Object Traceability
A compiler option can limit the use of language constructs that generate object code that
is not directly traceable to the source code. As an add-on service, AdaCore can perform
an analysis that demonstrates this traceability and justifies any remaining cases of non-
traceable code.

3.3.6 Safety-Critical Support and Expertise
At the heart of every AdaCore subscription are the support services that AdaCore provides
to its customers. AdaCore staff are recognized experts on the Ada language, software cer-
tification standards in several domains, compilation technologies, and static and dynamic
verification. They have extensive experience in supporting customers in railway, avionics,
space, energy, air traffic management/control, automotive, and military projects. Every
AdaCore product comes with front-line support provided directly by these experts, who are
also the developers of the technology. This ensures that customers' questions (requests for
guidance on feature usage, suggestions for technology enhancements, or defect reports)
are handled efficiently and effectively.
Beyond this bundled support, AdaCore also provides Ada language and tool training as well
as on-site consulting on topics such as how to best deploy the technology, and assistance on
start-up issues. On-demand tool development and ports to new platforms are also available.

3.3.7 Libadalang
Libadalang is a library included with GNAT Pro that gives applications access to the complete
syntactic and semantic structure of an Ada compilation unit. This library is typically used
by tools that need to perform some sort of static analysis on an Ada program.
AdaCore can assist customers in developing libadalang-based tools to meet their specific
needs, as well as develop such tools upon request.
Typical libadalang applications include:

• Static analysis (property verification)
• Code instrumentation
• Design and document generation tools
• Metric testing or timing tools
• Dependency tree analysis tools
• Type dictionary generators
• Coding standard enforcement tools
• Language translators (e.g., to CORBA IDL)
• Quality assessment tools
• Source browsers and formatters
• Syntax directed editors

24 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

3.3.8 GNATstack
Included with GNAT Pro is GNATstack, a static analysis tool that enables an Ada/C software
developer to accurately predict the maximum size of the memory stack required for pro-
gram execution.
GNATstack statically predicts the maximum stack space required by each task in an appli-
cation. The computed bounds can be used to ensure that sufficient space is reserved, thus
guaranteeing safe execution with respect to stack usage. The tool uses a conservative anal-
ysis to deal with complexities such as subprogram recursion, while avoiding unnecessarily
pessimistic estimates.
This static stack analysis tool exploits data generated by the compiler to compute worst-
case stack requirements. It performs per-subprogram stack usage computation combined
with control flow analysis.
GNATstack can analyze object-oriented applications, automatically determining maximum
stack usage on code that uses dynamic dispatching in Ada. A dispatching call challenges
static analysis because the identity of the subprogram being invoked is not known until run
time. GNATstack solves this problem by statically determining the subset of potential tar-
gets (primitive operations) for every dispatching call. This significantly reduces the analysis
effort and yields precise stack usage bounds on complex Ada code.
GNATstack's analysis is based on information known at compile time. When the tool indi-
cates that the result is accurate, the computed bound can never be exceeded.
On the other hand, there may be cases in which the results will not be accurate (the tool will
report such situations) because of some missing information (such as the maximum depth
of subprogram recursion, indirect calls, etc.). The user can assist the tool by specifying
missing call graph and stack usage information.
GNATstack's main output is the worst-case stack usage for every entry point, together with
the paths that result in these stack sizes. The list of entry points can be automatically
computed (all the tasks, including the environment task) or can be specified by the user (a
list of entry points or all the subprograms matching a given regular expression).
GNATstack can also detect and display a list of potential problems when computing stack
requirements:

• Indirect (including dispatching) calls. The tool will indicate the number of indirect calls
made from any subprogram.

• External calls. The tool displays all the subprograms that are reachable from any entry
point for which there is no stack or call graph information.

• Unbounded frames. The tool displays all the subprograms that are reachable from any
entry point with an unbounded stack requirement. The required stack size depends
on the arguments passed to the subprogram. For example:

procedure P(N : Integer) is
S : String (1..N);

begin
...

end P;

• Cycles. The tool can detect all the cycles (i.e., potential recursion) in the call graph.
GNATstack allows the user to supply a text file with the missing information, such as the po-
tential targets for indirect calls, the stack requirements for external calls, and the maximal
size for unbounded frames.

3.3. GNAT Pro Assurance 25

AdaCore Technologies for Railway Software

3.4 GNAT Static Analysis Suite (GNAT SAS)

3.4.1 Defects and Vulnerability Analyzer
GNAT SAS features an Ada source code analyzer that detects run-time and logic errors. It
assesses potential bugs and vulnerabilities before program execution, serving as an auto-
mated peer reviewer, helping to find errors easily at any stage of the development life-cycle.
It helps improve code quality and makes it easier to perform safety and/or security analysis.
The defects and vulnerability analyzer can detect several of the "Top 25 Most Dangerous
Software Errors" in the Common Weakness Enumeration. It is a stand-alone tool that runs
on Windows and Linux platforms and may be used with any standard Ada compiler or fully
integrated into the GNAT Pro development environment.

3.4.2 GNATmetric
The GNATmetric tool analyzes source code to calculate a set of commonly used industry
metrics, thus allowing developers to estimate the size and better understand the structure
of the source code. This information also facilitates satisfying the requirements of certain
software development frameworks.

3.4.3 GNATcheck
GNATcheck is a coding standard verification tool that is extensible and rule-based. It allows
developers to completely define a project-specific coding standard as a set of rules, for ex-
ample a subset of permitted language features and/or code formatting and style conven-
tions. It verifies a program's conformance with the resulting rules and thereby facilitates
demonstration of a system's compliance with a certification standard's requirements on
language subsetting.
GNATcheck provides:

• An integrated "Ada Restrictions" mechanism for banning specific features from an ap-
plication. This can be used to restrict features such as tasking, exceptions, dynamic
allocation, fixed- or floating point, input/output, and unchecked conversions.

• Restrictions specific to GNAT Pro, such as banning features that result in the generation
of implicit loops or conditionals in the object code, or in the generation of elaboration
code.

• Additional Ada semantic rules resulting from customer input, such as ordering of pa-
rameters, normalized naming of entities, and subprograms with multiple returns.

• An easy-to-use interface for creating and using a complete coding standard.
• Generation of project-wide reports, including evidence of the level of compliance with
a given coding standard.

• Over 30 compile-time warnings from GNAT Pro that detect typical error situations,
such as local variables being used before being initialized, incorrect assumptions about
array lower bounds, infinite recursion, incorrect data alignment, and accidental hiding
of names.

• Style checks that allow developers to control indentation, casing, comment style, and
nesting level.

AdaCore's GNATformat tool [], which formats Ada source code according to the GNAT coding
style [], can help avoid having code that violates GNATcheck rules. GNATformat is included
in the GNAT Pro for Ada toolchain.
GNATcheck comes with a query language (LKQL, for Language Kit Query Language) that
lets developers define their own checks for any in-house rules that need to be followed.

26 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

GNATcheck can thus be customized to meet an organization's specific requirements, pro-
cesses and procedures.

3.5 GNAT Dynamic Analysis Suite (GNAT DAS)

3.5.1 GNATtest
The GNATtest tool helps create and maintain a complete unit testing infrastructure for com-
plex projects. It captures the simple idea that each public subprogram (these are known
as visible subprograms in Ada) should have at least one corresponding unit test. GNATtest
takes a project file as input, and produces two outputs:

• The complete harnessing code for executing all the unit tests under consideration.
This code is generated completely automatically.

• A set of separate test stubs for each subprogram to be tested. These test stubs are to
be completed by the user.

GNATtest handles Ada's Object-Oriented Programming features and can be used to help
verify tagged type substitutability (the Liskov Substitution Principle) that can be used to
demonstrate consistency of class hierarchies.
Testing a private subprogram is outside the scope of GNATtest but can be implemented by
defining the relevant testing code in a private child of the package that declares the private
subprogram. Additionally, hybrid verification can help (see Hybrid Verification (page 22)):
augmenting testing with the use of SPARK to formally prove relevant properties of the pri-
vate subprogram.

3.5.2 GNATemulator
GNATemulator is an efficient and flexible tool that provides integrated, lightweight target
emulation.
Based on the QEMU technology, a generic and open-source machine emulator and virtu-
alizer, GNATemulator allows software developers to compile code directly for their target
architecture and run it on their host platform, through an approach that translates from the
target object code to native instructions on the host. This avoids the inconvenience and
cost of managing an actual board, while offering an efficient testing environment compati-
ble with the final hardware.
There are two basic types of emulators. The first can serve as a surrogate for the final
hardware during development for a wide range of verification activities, particularly those
that require time accuracy. However, they tend to be extremely costly, and are often very
slow. The second, which includes GNATemulator, does not attempt to be a complete time-
accurate target board simulator, and thus it cannot be used for all aspects of testing. But
it does provide a very efficient and cost-effective way to execute the target code very
early in the development and verification processes. GNATemulator thus offers a practical
compromise between a native environment that lacks target emulation capability, and a
cross configuration where the final target hardware might not be available soon enough or
in sufficient quantity.

3.5.3 GNATcoverage
GNATcoverage is a code coverage analysis tool. Its results are computed from trace files
that show which program constructs have been exercised by a given test campaign. With
source code instrumentation, the tool produces these files by executing an alternative ver-
sion of the program, built from source code instrumented to populate coverage-related
data structures. Through an option to GNATcoverage, the user can specify the granularity

3.5. GNAT Dynamic Analysis Suite (GNAT DAS) 27

AdaCore Technologies for Railway Software

of the analysis: statement coverage, decision coverage, or Modified Condition / Decision
Coverage (MC/DC).
Source-based instrumentation brings several major benefits: efficiency of tool execution
(much faster than alternative coverage strategies using binary traces and target emulation,
especially on native platforms), compact-size source trace files independent of execution
duration, and support for coverage of shared libraries.

3.5.4 GNATfuzz
GNATfuzz is a fuzzing tool; i.e., a tool that automatically and repeatedly executes tests and
generates new test cases at a very high frequency to detect faulty behavior of the system
under test. Such anomalous behavior is captured by monitoring the system for triggered
exceptions, failing built-in assertions, and signals such as SIGSEGV.
Fuzz testing has proven to be an effective mechanism for finding corner-case vulnerabilities
that traditional human-driven verification mechanisms, such as unit and integration test-
ing, can miss. Since such vulnerabilities can often lead to malicious exploitations, fuzzing
technology can help meet security verification requirements.
However, fuzz-testing campaigns are complex and time-consuming to construct, execute
and monitor. GNATfuzz simplifies the process by analyzing a code base and identifying
subprograms that can act as fuzz-test entry points. GNATfuzz then automates the creation
of test harnesses suitable for fuzzing. In addition, GNATfuzz will automate the building,
executing and analyzing of fuzz-testing campaigns.
GNATfuzz can serve a useful role as part of the software development and verification life
cycle processes. For example, by detecting anomalous behavior such as data corruption
due to task or interrupt conflicts, GNATfuzz can help prevent defects from being introduced
into the source code.

3.5.5 TGen
TGen is an experimental run-time library / marshalling technology that can be used by
GNATtest and/or GNATfuzz to automate the production of test cases for Ada code. It per-
forms type-specific low-level processing to generate test vectors for subprogram parame-
ters, such as uniform value distribution for scalar types and analogous strategies for uncon-
strained arrays and record discriminants. A command-line argument specifies the number
of test values to be generated, and these can then be used as input to test cases created
by GNATtest.
TGen can also be used with GNATfuzz, to help start a fuzz-testing campaign when the user
supplies an initial set of test cases where some may contain invalid data. GNATfuzz will uti-
lize coverage-driven fuzzer mutations coupled with TGen to convert invalid test cases into
valid ones. TGen represents test data values compactly, removing a large amount of mem-
ory padding that would otherwise be present for alignment of data components. With its
space-efficient representation, TGen significantly increases the probability of a successful
mutation that results in a new valid test case.

3.6 GNAT Pro for Rust
The Rust language was designed for software that needs to meet stringent requirements for
both assurance and performance: Rust is a memory-safe systems-programming language
with software integrity guarantees (in both concurrent and sequential code) enforced by
compile-time checks. The language is seeing growing use in domains such as automotive
systems and is a viable choice for railway software.
AdaCore's GNAT Pro for Rust is a complete development environment for the Rust program-
ming language, supporting both native builds and cross compilation to embedded targets.

28 Chapter 3. AdaCore Tools and Technologies Overview

AdaCore Technologies for Railway Software

The product is not a fork of the Rust programming language or the Rust tools. Instead, GNAT
Pro for Rust is a professionally supported build of a selected version of rustc and other core
Rust development tools that offers stability for professional and high-integrity Rust projects.
Critical fixes to GNAT Pro for Rust are upstreamed to the Rust community, and critical fixes
made by the community to upstream Rust tools are backported as needed to the GNAT
Pro for Rust code base. Additionally, the Assurance edition of GNAT Pro for Rust includes
the "sustained branch" service (see Sustained Branches (page 22)) that strikes the balance
between tool stability and project flexibility.

3.7 Integrated Development Environments (IDEs)

3.7.1 GNAT Studio
GNAT Studio is a powerful and simple-to-use IDE that streamlines software development
from the initial coding stage through testing, debugging, system integration, and mainte-
nance. It is designed to allow programmers to get the most out of GNAT Pro technology.
Tools
GNAT Studio's extensive navigation and analysis tools can generate a variety of useful in-
formation including call graphs, source dependencies, project organization, and complexity
metrics, giving a thorough understanding of a program at multiple levels. It allows interfac-
ing with third-party version control systems, easing both development and maintenance.
Robust, Flexible and Extensible
Especially suited for large, complex systems, GNAT Studio can import existing projects from
other Ada implementations while adhering to their file naming conventions and retaining
the existing directory organization. Through the multi-language capabilities of GNAT Stu-
dio, components written in C and C++ can also be handled. The IDE is highly extensible;
additional tools can be plugged in through a simple scripting approach. It is also tailorable,
allowing various aspects of the program's appearance to be customized in the editor.
Easy to learn, easy to use
GNAT Studio is intuitive to new users thanks to its menu-driven interface with extensive
online help (including documentation on all the menu selections) and tool tips. The Project
Wizard makes it simple to get started, supplying default values for almost all of the project
properties. For experienced users, it offers the necessary level of control for advanced
purposes; e.g., the ability to run command scripts. Anything that can be done on the
command line is achievable through the menu interface.
Remote Programming
Integrated into GNAT Studio, Remote Programming provides a secure and efficient way for
programmers to access any number of remote servers on a wide variety of platforms while
taking advantage of the power and familiarity of their local PC workstations.

3.7.2 VS Code Extensions for Ada and SPARK
AdaCore's extensions to Visual Studio Code (VS Code) enable Ada and SPARK development
with a lightweight editor, as an alternative to the full GNAT Studio IDE. Functionality in-
cludes:

• Syntax highlighting for Ada and SPARK files
• Code navigation
• Error diagnostics (errors reported in the Problems pane)
• Build integration (execution of GNAT-based toolchains from within VS Code)
• Display of SPARK proof results (green/red annotations from GNATprove)

3.7. Integrated Development Environments (IDEs) 29

AdaCore Technologies for Railway Software

• Basic IntelliSense (completion and hover information for known symbols)

3.7.3 Eclipse Support – GNATbench
GNATbench is an Ada development plug-in for Eclipse and Wind River's Workbench envi-
ronment. The Workbench integration supports Ada development on a variety of VxWorks
real-time operating systems. The Eclipse version is primarily for native applications, with
some support for cross development. In both cases the Ada tools are tightly integrated.

3.7.4 GNATdashboard
GNATdashboard serves as a one-stop control panel for monitoring and improving the qual-
ity of Ada software. It integrates and aggregates the results of AdaCore's various static and
dynamic analysis tools (GNATmetric, GNATcheck, GNATcoverage, SPARK Pro, among oth-
ers) within a common interface, helping quality assurance managers and project leaders
understand or reduce their software's technical debt, and eliminating the need for manual
input.
GNATdashboard fits naturally into a continuous integration environment, providing users
with metrics on code complexity, code coverage, conformance to coding standards, and
more.

30 Chapter 3. AdaCore Tools and Technologies Overview

CHAPTER

FOUR

ADACORE CONTRIBUTIONS TO THE SOFTWARE QUALITY
ASSURANCE PLAN

This chapter identifies AdaCore's tools and technologies that support the techniques and
measures defined in the EN 50128 Annex A tables and that can be cited accordingly in the
Software Quality Assurance Plan. The information is presented in the form of annotations on
the relevant tables in Annex A. These annotations indicate whether a technique or measure
is covered by an AdaCore tool or technology and, if so, a comment on how the tool or
technology contributes is provided.
Summary of abbreviations:

• M → Mandatory
• HR → Highly Recommended
• R → Recommended
• --- → Optional (neither Recommended nor Not Recommended)
• NR → Not Recommended

4.1 Table A.3 – Software Architecture (7.3)
The Ada language and AdaCore technology do not provide support for software architecture
per se, but rather are more targeted towards software component design. However, the
presence of some capabilities at the lower level may enable certain design decisions at a
higher level. This table offers some guidance on how that can be done.

31

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Defensive Program-
ming

D.14 HR HR Yes Defensive programming ismore a component or a program-
ming activity than an architecture activity per se, but as it
is recorded in this table, it's worth mentioning that the Ada
language provides several features addressing various ob-
jectives of defensive programming techniques (e.g., excep-
tion handling). In addition, the GNAT Static Analysis Suite
and SPARK tools help identify pieces of code that should be
protected by defensive code.

Fault Detection & Di-
agnosis

D.26 R R No

Error Correcting
Codes

D.19 — — No

Error Detecting Codes D.19 R HR No
Failure Assertion Pro-
gramming

D.24 R HR Yes The Ada language allows formalizing assertions and con-
tracts in various places in the code.

Safety Bag Tech-
niques

D.47 R R No

Diverse Programming D.16 R HR Yes Using Ada along with another language and a different code
generation technology can be used to contribute to the di-
verse programming argument.

Recovery Block D.44 R R No
Backward Recovery D.5 NR NR No
Forward Recovery D.30 NR NR No
Retry Fault Recovery
Mechanisms

D.46 R R No

Memorising Executed
Cases

D.36 R HR No

Artificial Intelligence –
Fault Correction

D.1 NR NR No

Dynamic Reconfigura-
tion of software

D.17 NR NR No

Software Error Effect
Analysis

D.25 R HR No

continues on next page

32
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 1 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Graceful Degradation D.31 R HR No
Information Hiding /
Encapsulation

D.33 HR HR Yes The Ada language provides the necessary features to sepa-
rate the interface of a module from its implementation and
enforce this separation.

Fully Defined Inter-
face

D.38 HR M Yes The Ada language provides the necessary features to sepa-
rate the interface of a module from its implementation and
enforce this separation.

Formal Methods D.28 R HR Yes SPARK can be used to formally define architectural proper-
ties, such as data flow, directly in the code and provides the
means to verify them.

Modeling Table
A.17

R HR Yes Ada and SPARK allow defining certain modeling properties
in the code and provide means to verify them.

Structured Methodol-
ogy

D.52 HR HR Yes Structured Methodology designs can be implemented with
Ada.

Modeling supported
by computer aided
design and specifica-
tion tools

Table
A.17

R HR No

4.2 Table A.4 – Software Design and Implementation (7.4)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Formal Methods D.28 R HR Yes Component requirements and interfaces can be written in
the form of formal boolean properties, using the Ada or
SPARK languages. These properties are verifiable.

Modeling Table
A.17

HR HR Yes Ada and SPARK allow defining certain modeling properties
in the code and provide means to verify them.

Structured methodol-
ogy

D.52 HR HR Yes Structured Methodology designs can be implemented with
Ada.

continues on next page

4.2.
Table

A
.4

–
Softw

are
D
esign

and
Im

plem
entation

(7.4)
33

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 2 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Modular Approach D.38 M M Yes A module can be represented as an Ada package, with a
cohesive and well-defined functionality, a clear external in-
terface in the visible part of the package spec, a private
part whose visibility is limited to to its child units, and a
body containing the implementation (which is only visible
to its subunits).

Components Table
A.20

HR HR Yes A component can be defined as a set of Ada packages,
which can clearly define the interface to access the inter-
nal data, and the interfaces can be fully and unambiguously
defined. This set of packages is typically identified within a
project file (GPR file) and can be put into a version control
system.

Design and Coding
Standards

Table
A.12

HR M Yes There are available references for the coding standard. Ver-
ification can be automated in different ways: the GNAT
compiler can define base coding standard rules to be
checked at compile-time, with GNATcheck implementing a
wider range of rules.

Analyzable Programs D.2 HR HR Yes The Ada language provide native features to improve pro-
gram analysis, such as type ranges, parameter modes, and
encapsulation. Tools such as GNATmetric and GNATcheck
can help monitor the complexity of the code and prevent
the use of overly complex code. GNAT SAS allows making
an assessment of program analyzability during its develop-
ment. For higher SILs, the use of SPARK ensures that the
subset of the language used is suitable for most the rigor-
ous analysis.

Strongly Typed Pro-
gramming Language

D.49 HR HR Yes Ada is a strongly typed language.

Structured Program-
ming

D.53 HR HR Yes Ada supports all the usual paradigms of structured pro-
gramming. In addition, GNATcheck can control additional
design properties, such as explicit control flows, where sub-
programs have single entry and single exit points, and
structural complexity is reduced.

continues on next page

34
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 2 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Programming Lan-
guage

Table
A.15

HR HR Yes Ada can be used for most of the development, while facili-
tating interfacing to other languages such as C or assembly.

Language Subset D.35 — HR Yes Ada is designed to support subsetting, possibly under the
control of specific runtimes, GNATcheck, or with SPARK. An-
other possibility is to follow the recommendations in [].

Object-Oriented Pro-
gramming

Table
A.22,
D.57

R R Yes If needed, Ada supports all the usual paradigms of object-
oriented programming, in addition to safety-related fea-
tures such as the Liskov Substitution Principle.

Procedural Program-
ming

D.60 HR HR Yes Ada supports all the usual paradigms of procedural pro-
gramming.

Metaprogramming D.59 R R No

4.3 Table A.5 – Verification and Testing (6.2 and 7.3)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Formal Proof D.29 R HR Yes When Ada pre- and post-conditions are used, together with
the SPARK subset of the language, formal methods can for-
mally verify compliance of the implementation with these
contracts.

Static Analysis Table
A.19

HR HR Yes See Table A.19

Dynamic Analysis and
Testing

Table
A.13

HR HR Yes See Table A.13

Metrics D.37 R R Yes GNATmetric can compute and report metrics, such as code
size, comment percentage, cyclomatic complexity, unit
nesting, and loop nesting. These can then be compared
with standards.

Traceability D.58 HR M No
continues on next page

4.3.
Table

A
.5

–
Verification

and
Testing

(6.2
and

7.3)
35

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 3 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Software Error Effect
Analysis

D.25 R HR Yes GNAT Studio supports code display and navigation. GNAT
SAS can identify likely error locations in the code. This
supports potential software error detection and analysis
throughout the code.

Test Coverage for
code

Table
A.21

HR HR Yes See Table A.21

Functional / Black-Box
Testing

Table
A.14

HR HR Yes See Table A.14

Performance Testing Table
A.18

HR HR No

Interface Testing D.34 HR HR Yes Ada's strong typing, together with its contract-based
programming support, provides increased assurance to
demonstrate that the software interfaces are correct. This
can help improve software-to-software integration testing.

4.4 Table A.6 – Integration (7.6)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Functional and Black-
box testing

Table
A.14

HR HR Yes GNATtest can generate a framework for testing.

Performance Testing Table
A.18

R HR Yes Stack consumption can be statically computed using the
GNATstack tool.

4.5 Table A.7 – Overall Software Testing (6.2 and 7.7)

36
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Performance Testing Table
A.18

HR M Yes Stack consumption can be statically computed using the
GNATstack tool.

Functional and Black-
box Testing

Table
A.14

HR M Yes GNATtest can generate a testing framework for testing.

Modeling Table
A.17

R R No

4.6 Table A.8 – Software Analysis Techniques (6.3)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Static Software Analy-
sis

D.13,
D.37,
Table
A.19

HR HR Yes See Table A.19.

Dynamic Software
Analysis

Tables
A.13,
A.14

R HR Yes See Tables A.13 and A.14.

Cause Consequence
Diagrams

D.6 R R No

Event Tree Analysis D.22 R R No
Software Error Effect
Analysis

D.25 R HR Yes GNAT Studio supports code display and navigation. GNAT
SAS can identify likely error locations in the code. These
tools support both detection of potential software errors
and analysis throughout the code.

4.6.
Table

A
.8

–
Softw

are
A
nalysis

Techniques
(6.3)

37

A
daCore

Technologies
for

R
ailw

ay
Softw

are

4.7 Table A.9 – Software Quality Assurance (6.5)
Although AdaCore doesn't directly provide services for ISO 9001 or configuration management, it follows standards to enable tool qualification
and/or certification. The following table only lists items that can be useful to third parties.

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Accredited to EN ISO
9001

7.1 HR HR No

Compliant with EN ISO
9001

7.1 M M No

Compliant with
ISO/IEC 90003

7.1 R R No

Company Quality Sys-
tem

7.1 M M No

Software Configura-
tion Management

D.48 M M No

Checklists D.7 HR M No
Traceability D.58 HR M No
Data Recording and
Analysis

D.12 HR M Yes The data produced by tools can be written to files and
placed under configuration management.

4.8 Table A.10 – Software Maintenance (9.2)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Impact Analysis D.32 HR M Yes GNAT SAS contributes to identifying the impact of a code
change between two baselines.

Data Recording and
Analysis

D.12 HR M Yes AdaCore tools can be invoked from the command line. They
produce result files including the date and version of the
tool used.

38
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

4.9 Table A.11 – Data Preparation Techniques (8.4)

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Tabular Specification
Methods

D.68 R R Yes Tables of data can be expressed using the Ada language, to-
gether with type-wide contracts (predicates or invariants).

Application specific
language

D.69 R R No

Simulation D.42 HR HR No
Functional testing D.42 M M No
Checklists D.7 HR M No
Fagan inspection D.23 HR HR No
Formal design reviews D.56 HR HR Yes GNAT Studio can display code and navigate through the

code as a support for walkthrough activities.
Formal proof of cor-
rectness

D.29 — HR Yes When contracts are expressed within the SPARK subset,
their correctness can be formally verified.

Walkthrough D.56 R HR Yes GNAT Studio can display code and navigate through the
code as a support for walkthrough activities.

4.10 Table A.12 – Coding Standards
There are available references for coding standards. Their verification can be automated through different ways: the GNAT compiler can
define base coding standard rules to be checked at compile time, and GNATcheck implements a wider range of rules and is tailorable to
support project-specific coding standards.

4.9.
Table

A
.11

–
D
ata

Preparation
Techniques

(8.4)
39

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Coding Standard D.15 HR M Yes GNATcheck allows implementing and verifying a coding
standard.

Coding Style Guide D.15 HR HR Yes GNATcheck allows implementing and verifying a coding
style guide.

No Dynamic Objects D.15 R HR Yes GNATcheck can forbid the use of dynamic objects.
No Dynamic Variables D.15 R HR Yes GNATcheck can forbid the use of dynamic variables.
Limited Use of Point-
ers

D.15 R R Yes GNATcheck can forbid the use of pointers or force justifica-
tion of their usage.

Limited Use of Recur-
sion

D.15 R HR Yes GNATcheck can forbid the use of recursion or force justifica-
tion of their usage.

No Unconditional
Jumps

D.15 HR HR Yes GNATcheck can forbid the use of unconditional jumps.

Limited size and
complexity of Func-
tions, Subroutines
and Methods

D.38 HR HR Yes GNATmetric can compute complexity measures, and
GNATcheck can report excessive complexity.

Entry/Exit Point strat-
egy for Functions,
Subroutines and
Methods

D.38 HR HR Yes GNATcheck can verify rules related to exit points.

Limited number of
subroutine parame-
ters

D.38 R R Yes GNATcheck can limit the number of parameters for subrou-
tines and report when that number is exceeded.

Limited use of Global
Variables

D.38 HR M Yes GNATcheck can flag global variable usage and enforce their
justification. SPARK forbids function side effects and en-
forces documentation and verification of uses of global vari-
ables. GNAT Studio allows analyzing usage of global vari-
ables.

40
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

4.11 Table A.13 – Dynamic Analysis and Testing

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Test Case Execution
from Boundary Value
Analysis

D.4 HR HR Yes GNATtest can generate and execute a testing framework
for tests written by developers from requirements.

Test Case Execution
from Error Guessing

D.20 R HR Yes GNAT fuzz can automate the generation of large numbers
of test cases at a high frequency.

Test Case Execution
from Error Seeding

D.21 R HR No

Performance Model-
ing

D.39 R HR No

Equivalence Classes
and Input Partition
Testing

D.18 R HR Yes Ada and SPARK provide specific features for partitioning
function input and verifying that this partitioning is well
formed (i.e., no overlap and no gaps).

Structure-Base Test-
ing

D.50 R HR Yes See Table A.21

4.12 Table A.14 – Functional/Black Box Test
GNATtest can generate and execute a testing framework, with the actual tests being written by developers from requirements.

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Test Case Execution
from Cause Conse-
quence Diagrams

D6 — R No

Prototyping/ Anima-
tion

D.43 — R No

continues on next page

4.11.
Table

A
.13

–
D
ynam

ic
A
nalysis

and
Testing

41

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 12 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Boundary Value Anal-
ysis

D.4 R HR Yes GNATtest can be used to implement tests coming from
boundary value analysis.

Equivalence Classes
and Input Partitioning
Testing

D.18 R HR Yes Ada and SPARK provide specific features for partitioning
function input and verifying that this partitioning is well
formed (i.e., no overlap and no gaps).

Process Simulation D.42 R R No

4.13 Table A.15 – Textual Programming Language

Technique/Measure SIL 2 SIL 3/4 Covered Comment
Ada HR HR Yes GNAT Pro tools support all versions of the Ada language.
MODULA-2 HR HR No
PASCAL HR HR No
C or C++ R R Yes GNAT Pro for C and GNAT Pro for C++ support these lan-

guages
PL/M R NR No
BASIC NR NR No
Assembler R R No
C# R R No
Java R R No
Statement List R R No

4.14 Table A.17 – Modeling

42
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Data Modeling D.65 R HR Yes Ada allows modeling data constraints, in the form of type
predicates.

Data Flow Diagram D.11 R HR Yes SPARK allows defining data flow dependencies at subpro-
gram specification.

Control Flow Diagram D.66 R HR No
Finite State Machine
or State Transition
Programs

D.27 HR HR No

Time Petri Nets D.55 R HR No
Decision/Truth Tables D.13 R HR No
Formal Methods D.28 R HR Yes SPARK allows defining formal properties on the code that

can be verified by the SPARK toolset.
Performance Model-
ing

D.39 R HR No

Prototyp-
ing/Animation

D.43 R R No

Structure Diagrams D.51 R HR No
Sequence Diagrams D.67 R HR No

4.15 Table A.18 – Performance Testing

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Avalanche/Stress
Testing

D.3 R HR No Ada allows modeling data constraints, in the form of type
predicates.

Response Timing and
Memory Constraints

D.45 HR HR Yes GNATstack can statically analyze stack usage.

Performance Require-
ments

D.40 HR HR No

continues on next page

4.15.
Table

A
.18

–
Perform

ance
Testing

43

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 15 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

4.16 Table A.19 – Static Analysis

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Boundary Value Anal-
ysis

D.4 R HR Yes GNAT SAS can compute boundary values for variables and
parameters from the source code. GNAT SAS and SPARK
can verify various properties by analyzing potential values
and boundary values of variables. This includes detecting
errors such as dereferencing a pointer that could be null,
generating a value outside the bounds of an Ada type or
subtype, violating a memory safety constraint (buffer over-
run), generating a numeric overflow or wraparound, and
dividing by zero. GNAT SAS and SPARK also help to con-
firm expected boundary values of variables and parameters
coming from the design.

Checklists D.7 R R No
Control Flow Analysis D.8 HR HR Yes GNAT SAS and SPARK can detect suspicious and potentially

incorrect control flows, such as unreachable code, redun-
dant conditionals, loops that either run forever or fail to
terminate normally, and subprograms that never return.
GNATstack can analyze control flow and compute the max-
imum amount of stack memory for each task. More gener-
ally, GNAT Studio provides visualization for call graphs and
call trees.

continues on next page

44
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

Table 16 – continued from previous page
Technique/Measure Ref SIL 2 SIL 3/4 Cov-

ered
Comment

Data Flow Analysis D.10 HR HR Yes GNAT SAS and SPARK can detect suspicious and potentially
incorrect data flow, such as variables being read before
they are written (uninitialized variables), and values that
are written to variables without being read (redundant as-
signments).

Error Guessing D.20 R R Yes Although realized through dynamic rather than static anal-
ysis, GNAT fuzz can automatically generate test cases to
support Error Guessing.

Walkthroughs/Design
Reviews

D.56 HR HR Yes GNAT Studio can display and navigate the code, supporting
walkthrough activities.

4.17 Table A.20 – Components

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Information Hiding D.33 — — Yes See Information Encapsulation below.
Information Encapsu-
lation

D.33 HR HR Yes Ada provides the necessary features to separate the inter-
face of a module from its implementation, and enforce this
separation.

Parameter Number
Limit

D.38 R R Yes GNATcheck can limit the number of parameters for subrou-
tines, and report violations.

Fully Defined Inter-
face

D.38 HR M Yes Ada offers many features to support interface definition,
including behavior specification through pre- and post-
conditions.

4.17.
Table

A
.20

–
Com

ponents
45

A
daCore

Technologies
for

R
ailw

ay
Softw

are

4.18 Table A.21 – Test Coverage for Code

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Statement D.50 HR HR Yes GNATcoverage provides statement-level coverage capabil-
ities.

Branch D.50 R HR Yes GNATcoverage provides branch-level coverage capabilities.
Compound Condition D.50 R HR Yes GNATcoverage provides MC/DC (Modified Condi-

tion/Decision Coverage) capabilities, which can be used as
an efficient alternative to Compound Condition coverage.

Data Flow D.50 R HR No
Path D.50 R NR No

4.19 Table A.22 – Object Oriented Software Architecture

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Traceability of the
concept of the ap-
plication domain to
the classes of the
architecture

— R HR No

Use of suitable
frames, commonly
used combinations of
classes and design
patterns

— R HR Yes The conventional OO design patterns can be implemented
in Ada.

Object Oriented De-
tailed Design

Table
A.23

R HR Yes See Table A.23

46
Chapter

4.
A
daCore

Contributions
to

the
Softw

are
Q
uality

A
ssurance

Plan

A
daCore

Technologies
for

R
ailw

ay
Softw

are

4.20 Table A.23 – Object Oriented Detailed Design

Technique/Measure Ref SIL 2 SIL 3/4 Cov-
ered

Comment

Class should have
only one objective

— R HR Yes It's possible in Ada to write classes with a unique objective.

Inheritance used only
if the derived class is a
refinement of its basic
class

— HR HR Yes Ada and SPARK can enforce respecting the Liskov Substitu-
tion Principle, ensuring inheritance consistency.

Depth of inheritance
limited by coding
standards

— R HR Yes GNATcheck can limit inheritance depth.

Overriding of opera-
tions (methods) under
strict control

— R HR Yes Ada can enforce explicit syntax for overriding methods.

Multiple inheritance
used only for interface
classes

— HR HR Yes Ada only allows multiple inheritance from interfaces.

Inheritance from un-
known classes

— — NR Yes Ada only allows inheritance from known classes.

4.20.
Table

A
.23

–
O
bject

O
riented

D
etailed

D
esign

47

AdaCore Technologies for Railway Software

48 Chapter 4. AdaCore Contributions to the Software Quality Assurance Plan

CHAPTER

FIVE

TECHNOLOGY USAGE GUIDE

This chapter explains how AdaCore's tools and technologies support a variety of techniques
from Annex D.

5.1 Analyzable Programs (D.2)
The Ada language has been designed to increase program specification expressiveness
and verification. Explicit constraints at the code level can be used as the basis of both
manual analysis (inspection), such as code reviews, and automatic analysis, ranging from
the compiler's semantic consistency checks to the SPARK tools' formal proof of program
properties.
Examples of Ada language features supporting analysis include:

• type and subtype ranges and predicates
• parameter modes and subprogram contracts
• packages and private types (encapsulation)
• the Ravenscar concurrency profile
• minimal set of implicit or undefined behaviors

Tools such as GNATmetric and GNATcheck allow monitoring the complexity and quality of
the code and identifying potentially problematic constructs. This is accomplished through
techniques such as basic code size metrics, cyclomatic complexity computation, and cou-
pling analysis.
GNAT SAS identifies potential run-time errors in the code. The number of false positive
results depends on the code complexity. A high number of false positives is often a symptom
of overly-complicated code. Using GNAT SAS during development allows finding locations in
the code that are overly complex and provides information on what needs to be improved.
The SPARK language is much more ambitious in analyzing programs, at the extreme sup-
porting full correctness proofs against formally specified requirements. It structurally for-
bids features such as exceptions, which complicate or prevent formal analysis. Code that is
hard to analyze is often hard to understand and maintain, and conversely. Using SPARK as
part of the development phase thus results in code that is not only maximally analyzable
but also clear and readable.
During code review phases, GNAT Studio offers a variety of features that can be used for
program analysis, in particular call graphs, reference searches, and other code organization
viewers.

49

AdaCore Technologies for Railway Software

5.2 Boundary Value Analysis (D.4)
The objective of this technique is to verify and test the behavior of a subprogram at the
limits and boundaries values of its parameters. AdaCore's technologies can provide com-
plementary assurance on the quality of this analysis and potentially decrease the number
of tests that need to be performed.
Ada's strong typing allows refining types and variables boundaries. For example:

type Temperature is new Float range -273.15 .. 1_000;
V : Temperature;

Additionally, it's possible to define the specific behavior of values at various locations in the
code. For example, it's possible to define relationships between the input and output of a
subprogram, in the form of a partitioning of the input domain:

function Compute (J : Integer) return Integer
with Contract_Cases => (J = Integer'First => Compute'Result = -1,

J = Integer'Last => Compute'Result = 1,
others => J - 1);

The above shows an input partition of one parameter (but it can also be a combination of
several parameters). The behavior on the boundaries of J is specified and can then either
be tested (for example, with enabled assertions) or formally proven with SPARK. Further
discussion of input partitioning can be found in the context of Equivalence Classes and
Input Partition Testing (D.18) (page 55).
Another possibility is to use GNAT SAS to identify possible values for variables, and propa-
gate those values from call to call, constructing lists and/or ranges of potential values for
each variable at each point of the program. These are used as the input to run-time error
analysis. When used in full-soundness mode, GNAT SAS provides guarantees that the loca-
tions it reports on the code are the only ones that may have run-time errors, thus allowing
a reduction of the scope of testing and review to only these places.
However, it's important to stress that GNAT SAS is only performing this boundary value
analysis with respect to potential exceptions and robustness. No information is provided
regarding the correctness of the values produced by subprograms.
GNAT SAS also has the capacity to display the possible values of variables and parameters.
This can be used as a mechanism to increase confidence that testing has taken into account
all possible boundaries for values.
SPARK has the ability to perform similar absence of run-time errors (AORTE) analysis, thus
reaching the same objectives. In addition to the above, when requirements can be de-
scribed in the form of boolean contracts, SPARK can demonstrate correctness of the relation
between input and output on the entire range of values.

5.3 Control Flow Analysis (D.8)
Control flow analysis requires identifying poor and incorrect data structures, including un-
reachable code and useless tests in the code (such as conditions that are always true).
GNAT Studio can display call graphs between subprograms, allowing visualization and anal-
ysis of control flow in the application.
GNAT SAS contributes to control flow analysis by identifying unreachable code, as well
as conditions being always true or always false. This analysis is partial and needs to be
completed with other techniques such as code review or code coverage analysis, which
together will allow reaching higher levels of confidence.

50 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

GNATmetric can compute coupling metrics between units, helping to identify loosely or
tightly coupled units.
GNATstack computes worst-case stack consumption based on the application's call graph.
This can help identify poorly structured code which consumes too much memory on some
sequences of calls.

5.4 Data Flow Analysis (D.10)
The GNAT Pro toolchain can be configured to detect uninitialized variables at run-time
through the use of the pragma Initialize_Scalars. With this pragma, all scalars are
automatically initialized to either an out-of-range value (if there is one) or to an unusual
value (either the largest or smallest). This significantly improves detection at test time.
GNAT SAS can detect suspicious and potentially incorrect data flows, such as variables
that are read before they are written (uninitialized variables), variables written more than
once without being read (redundant assignments), and variables that are written but never
read. This analysis is partial and needs to be completed with other techniques such as
formal proof, code review or code coverage analysis, which together allow reaching higher
levels of confidence.
SPARK performs this analysis and much more, allowing the specification and verification of
data flow. This is used in the following activities:

• verification that all inputs and outputs have been specified, including possible side
effects

• verification that all dependencies between inputs and outputs are specified
• verification that the implemented dataflow corresponds to the one specified

Here's an example:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)
with Depends => (R1 => (A, B),

R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin

R1 := A + B;
R2 := A + B - C;

end Compute;

R1 is required to be computed from A and B, and R2 from B and C. However, in the procedure
body, R2 also depends on A. SPARK's formal proof detects this error.
The error is likewise detected in the presence of branches:

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin

R1 := A + B;
if A = 0 then

R2 := B + C;
else

R2 := B - C;
end if;

end Compute;

Here R2 depends on the result of the expression A = 0, so its value is actually computed
from A, B and C, and not just B and C. As in the previous case, SPARK's formal analysis
detects the error.

5.4. Data Flow Analysis (D.10) 51

AdaCore Technologies for Railway Software

A similar result occurs when the dependence is indirect, through a subprogram call. Here's
an example based on a logging procedure that has a global state, Screen, which is written
to by the procedure:

procedure Log (V : String)
with Global => (Output => Screen),

Depends => (Screen => V)

procedure Compute (A, B, C : Integer; R1, R2 : out Integer)
with Depends => (R1 => (A, B),

R2 => (B, C));

procedure Compute (A, B, C : Integer; R1, R2 : out Integer) is
begin

R1 := A + B;
R2 := B + C;

if A = 0 then
Log ("A is 0");

end if;
end Compute;

The data flow does not correspond to the specification: Compute should specify that it
modifies Screen. So the incorrect code is detected. The error is detected whether or not
a branch is present, serving as a useful complement to structural code coverage in many
cases.

5.5 Defensive Programming (D.14)
As stated in sub-clause D.14, the goal of defensive programming is to "detect anomalous
control flow, data flow, or data values ... and react to them in a predetermined and accept-
able manner".
Ada's strong typing will avoid the need for many situations where constraints would be
expressed in the form of defensive code. However, in some situations strong typing is
not enough. This can be the case, for example, when accessing an element of an array.
In this case, Ada allows expressing constraints in the specification, through preconditions,
postconditions or predicates.
Beyond this, Ada provides specific support for a subset of what's specified in the D.14 annex.
GNAT SAS and SPARK will allow the development of defensive programming in places where
it makes the most sense.
Specific defensive code rules can also be defined in the coding standard and their verifica-
tion can then be automated through code analysis using, for example, GNATcheck.

5.5.1 Data should be range checked
Ada offers types and subtypes that are naturally associated with ranges, e.g.:

subtype Percent is Integer range 0 .. 100;
-- Percent is the same type as Integer but with a run-time constraint on its range

X, Y : Integer;
V : Percent;
...
V := X + Y; -- Raises exception Constraint_Error if X + Y is not in 0 .. 100
...

It's then the task of the developer to react to potential exceptions. Alternatively, it's possible
to write explicit verification in the code to ensure that the expression is within its boundary:

52 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

V_Int : Integer;
V_Pct : Percent;
...
V_Int := X+Y;
if V_Int in Percent then

V_Pct := V_Int;
else
... -- Respond to out-of-range result

end if;

Another way to proactively ensure the absence of range check failure is to use tools such as
GNAT SAS or SPARK, which statically identify the only possible locations in the code where
such failures can happen.
Note that run-time checks can be deactivated if needed for performance reasons, for ex-
ample once thorough testing or formal proof has been performed.

5.5.2 Data should be dimension-checked
The GNAT Pro compiler provides a language extension for dimensional consistency analysis,
which ensures that variables are properly typed according to their dimension. The system
is implemented based on the seven base dimensions (meter, kilogram, second, ampere,
kelvin, mole, candela), and will check that operations between these types are consistent.
For example, a type Speed can be defined to represent time per distance. Consistency
between these types is checked at compile time so that dimension errors will be reported
as errors. For example:

D : Distance := 10;
T : Time := 1;
S : Speed := D / T; -- OK
My_Time : Time := 100;
...
Distance_Traveled := S / My_Time;
-- Error, resulting dimension is Distance / Time**2
-- The expression should be S * My_Time

5.5.3 Read-only and read-write parameters should be separated
and their access checked

In Ada, the parameter mode is specified in parameter specifications and is checked by
the compiler. For example, a read-only parameter is passed as mode in and may not be
modified. A read-write parameter is passed either as mode in out or as mode out and is
modifiable. (The out mode is appropriate if the parameter is written before being read).
The compiler will produce an error for an attempted modification of in parameters and
detect when an in out or out parameter is not modified and so could have been passed
as in. For example:

procedure P (V : in Integer) is
begin

V := 5; -- ERROR, V is mode "in"
end P;

5.6 Functions should treat all parameters as read-only
The original version of Ada required that functions could only have in parameters. This
restriction was relaxed in a later version of the standard, but the original behavior can be

5.6. Functions should treat all parameters as read-only 53

AdaCore Technologies for Railway Software

reverted through a GNATcheck rule. The SPARK Ada subset forbids functions with writable
(i.e., out or in out parameters).

5.6.1 Literals and constants should not be write-accessible
Ada provides many kinds of literals (e.g. numeric, character, enumeration, string) and
allows declaring constants of any type but ensures that their values can not be updated.

type Color is (Red, Blue, Green);
Answer : constant Integer := 42;
One_Third : constant := 1.0 / 3.0;
Greeting : String := "Hello";

The literals and constants are read-only as per language definition. For example, trying to
pass Red or Answer to a subprogram as an out or in out parameter would be illegal. Note
that Greeting is a variable and can be assigned to, but the literal "Hello" is immutable.

5.6.2 Using GNAT SAS and SPARK to drive defensive programming
GNAT SAS and SPARK identify locations where there are potential run-time errors — in other
words, places where code is either wrong or where defensive programming should be de-
ployed. This helps guide the writing of defensive code. For example:

procedure P (S : String; V : Integer) is
C : Character;

begin
...
C := S (V);
...

end P;

In the above code, there's a use of V as an index into the String S. GNAT SAS and SPARK
will detect the potential for a run-time error. Protection of the code to prevent the error can
take several forms:

Explicit test

The application code checks that V is in range before using its value as an index into the
String. If the check fails, the appropriate recovery action can be taken (here the procedure
simply returns).

procedure P (S : String; V : Integer) is
C : Character;

begin
...
if V not in S'Range then

return;
end if;
C := S (V)
...

end P;

Precondition

Here the error is detected at call time. If assertion checking is enabled and the check fails,
the Assertion_Check exception is raised.

54 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

procedure P (S : String; V : Integer)
with Pre => V in S'Range

is
C : Character;

begin
...
C := S (V);
...

end P;

The main difference between GNAT SAS and SPARK is that GNAT SAS may miss some poten-
tial run-time errors (except when run only on small pieces of code if configured in "sound"
mode), while SPARK requires the use of the appropriate Ada subset but is a sound technol-
ogy (i.e., it will detect all potential run-time errors).
In general, the recommended Ada style is to use contracts instead of defensive code.

5.7 Coding Standards and Style Guide (D.15)
A coding standard can be defined using a combination of predefined rules (using GNAT
options and GNATcheck rules) and appropriate arguments to pragma Restrictions.

5.8 Equivalence Classes and Input Partition Testing
(D.18)

This technique involves partitioning the various potential inputs to subprograms and creat-
ing a testing and verification strategy based on this partitioning.
Ada extensions included in GNAT Pro for Ada can support partitioning at the source code
level. The partition is a list of conditions for inputs together with their associated expected
output, verifying the following criteria:

• The full set of all potential values is covered
• There is no overlap between partitions

These criteria can be verified either dynamically, by verifying at test time that all inputs
exercised fall into one and only one partition, or formally by SPARK, proving that the partition
are indeed complete and disjoint.
Here's a simple example of such partitioning with two input variables:

function ArcTan (X, Y : Float) return Float with
Contract_Cases =>

(X >= 0 and Y >= 0 => ArcTan'Result >= 0 and ArcTan'Result <= PI/2,
X < 0 and Y >= 0 => ArcTan'Result >= PI/2 and ArcTan'Result <= PI,
X < 0 and Y < 0 => ArcTan'Result >= PI and ArcTan'Result <= 3 * PI/

↪2,
X >= 0 and Y < 0 => ArcTan'Result >= 3 * PI/2 and ArcTan'Result <= 2 * PI);

The presence of these contracts enable further verification. At run time, they act as asser-
tions and allow verification that the form of the output indeed corresponds to the expected
input. If SPARK is used, it's possible to formally verify the correctness of the relation be-
tween the input and properties.

5.7. Coding Standards and Style Guide (D.15) 55

AdaCore Technologies for Railway Software

5.9 Error Guessing (D.20)
The GNATfuzz tool for fuzz testing (part of the GNAT Dynamic Analysis Suite) supports the
Error Guessing technique and can provide evidence for a system's robustness. GNATfuzz
exercises a program with a large number of automatically generated test values, often
random or malformed, and checks for crashes, hangs, and other anomalous behavior.

5.10 Failure Assertion Programming (D.24)
Ada offers a large variety of assertions (contracts) that can be defined in the code, either
through pragmas or aspects.

• Pragma Assert

This pragma allows verification within a sequence of statements:

A := B + C;
pragma Assert (A /= 0);
D := X / A;

• Pre- and postcondition contracts
Pre- and postconditions can be defined as subprogram aspects:

procedure Double (X : in out Integer)
with Pre => X < 100,

Post => X = X'Old * 2;

• Predicates and invariants
Predicate and invariant contracts can be defined on types:

type Even is new Integer
with Dynamic_Predicate => Even mod 2 = 0;

These contracts can be checked dynamically, for example, during testing. The developer
has fine control over which contracts can be removed (e.g. for improved performance) and
which should remain in the deployed software.
The contracts can be used by the static analysis and formal proof tools. GNAT SAS uses
contracts to refine its analysis and exploits them as assertions, even if it may not be able to
demonstrate that they are correct. In this manner, contracts provide the tool with additional
information on the code behavior. SPARK can go further and either prove their correctness,
or else report its inability to do so. (In the latter case, the issue is either that the contract or
the code is incorrect, or that the proof engine is not powerful enough to construct a proof.)

5.11 Formal Methods (D.28)
With SPARK, formal methods are used to define and check certain architectural properties,
in particular for data coupling specification and verification. For example:

G : Integer;

procedure P (X, Y : Integer)
with Global => (Output => G),

Depends => (G => (X, Y));

In the above example, the side effect of the subprogram is fully defined: P is modifying G.
SPARK will check that this side effect, and no other, is present. G is specified as depending

56 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

on the values of X and Y. Again, SPARK will analyze the code to check that the variable
relationships specified are correct.
In this example, an actual variable is used to define data flow. It's also possible to create
an abstract state, implemented by a set of variables. Generally speaking, although these
notations and verifications are quite useful on the lower levels of the architecture, they may
not be that pertinent at higher levels. SPARK is flexible with regard to where this should be
checked or and where it should not.
At the lower level of the design phases, some properties and requirements can be refined
or specified in the form of boolean expressions. SPARK will allow expressing these prop-
erties, including the formalism of first-order logic (quantifiers). These properties can be
expressed in the form of subprogram preconditions, postconditions, type invariants and
type predicates. For example:

-- P must have an input greater or equal to 10, and then has to modify V.
procedure P (V : in out Integer)
with Pre => V >= 10,

Post => V'Old /= V;

-- Variables of type Even must be even
type Even is new Integer
with Dynamic_Predicate => Even mod 2 = 0;

-- Arrays of this type are always sorted in ascending order
type Sorted_Array is array (Integer range <>) of Integer
with Dynamic_Predicate =>

Sorted_Array'Size <= 1 or else
(for all I in Sorted_Array'First .. Sorted_Array'Last - 1 =>

Sorted_Array (I) <= Sorted_Array (I + 1));

These properties can be formally verified through the SPARK toolset, using state of the
art theorem proving methodologies. Testing aimed at verifying the correctness of these
properties can then be simplified, if not entirely removed.

5.12 Impact Analysis (D.32)
Identifying the effect of a change on entire software component requires the combination
of various techniques, including reviews, testing and static analysis. GNAT SAS has specific
features to identify the impact of a change from the perspective of potential run-time er-
rors. It can establish a baseline with regard to potential failure analysis and filter only the
potential defects that have been introduced or repaired following a change in the code.
GNAT Studio can provide call graphs and call trees, allowing the developer to see how a
function is called in the software. This can be directly used in impact analysis.

5.13 Information Encapsulation (D.33)
Information encapsulation is good software engineering practice, enforcing access to data
on a "need to know" basis and preventing hard-to-detect bugs from erroneous updates to
global variables. Encapsulation has been intrinsic to the Ada design since the earliest ver-
sion of the language and is embodied in the syntax and semantics of a variety of language
features.
Ada's approach to encapsulation achieves similar methodological benefits to Object-
Oriented Programming, but with a different syntax. In most OO languages, a class is both a
type (which can be instantiated to produce objects) and a module (which can be separately
compiled). Ada separates these concepts, modeling a class by a type (typically a private

5.12. Impact Analysis (D.32) 57

AdaCore Technologies for Railway Software

type, as will be shown below) defined with a package (the main unit of modularization in
Ada).

Separation of specification and body

The various program units in Ada — packages, tasks, subprograms, generic templates —
have a structure that supports the separation of the unit's specification (its interface to
other units) and its implementation (inaccessible externally). This physical separation not
only supports encapsulation but also facilitates independent development of the two parts.
For example, a package specification can be produced during the detailed design phase,
with the body fleshed out later, perhaps by a different developer, during the implementation
phase.

Package structure

A package comprises at least a specification and, if necessary, a body that implements the
subprograms and other entities whose specifications are in the package specification. The
package specification in general consists of a visible part and a private part. In a typical
scenario, the visible part declares a type as private, along with subprogram specifications
for the operations that are relevant to that type. The type and operations form the interface
for that type. The private part of the package specification then provides the full declaration
of the type, and the package body supplies the bodies for the subprograms defined for the
type.
External to the package, the type name and the operations defined for the type are acces-
sible, but the representational details for the full type declaration are hidden. This allows
the designer of the package to modify the representation of the type during development
or maintenance, without requiring source code changes to client code. This principle is
sometimes referred to as data abstraction. Here is an example:

package Counters is
type Counter is private;
-- We don't want to give access to the representation of the counter here

procedure Increment (C : in out Counter);
procedure Print (C : in out Counter);

private

type Counter is new Integer;
-- Here, Counter is an Integer, but it could change to something
-- else if needed without disturbing the interface.

end Counters;

with Ada.Text_IO;
package body Counters is

procedure Increment (C : in out Counter) is
begin

C := C + 1;
end Increment;

procedure Print (C : in out Counter) is
begin

Ada.Text_IO.Put_Line (C'Img);
end Print;

end Counters;

As a variation on this example, Ada supports encapsulation through getter and setter sub-
programs. Rather than directly manipulating a global variable declared in a package speci-
fication, the program can be structured to enforce accesses through a procedural interface:

58 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

package Data is
function Value return Integer; -- "Getter" function
procedure Set (New_Value : Integer); -- "Setter" procedure

end Data;

package body Data is
Global : Integer := 0;

function Value return Integer is
begin

return Global;
end Value;

procedure Set (New_Value : Integer) is
begin

Value := New_Value;
end Set;

end Data;

Concurrency

Both of Ada's tasking constructs — the task and the protected object — enforce encapsu-
lation.

• A task object or task type specification defines its interface (its entries, which are used
for synchronization and communication), and its body defines the implementation.

• A protected object or protected type specification defines its interface (entries and
procedures, which are executed with mutual exclusion), and its body defines the im-
plementation. The private part of a protected object/type specification encapsulates
the data that is being protected: it can only be accessed externally through the entries
and procedures that it defines.

Representation clauses

As another form of encapsulation, Ada's representation clause facility separates an entity's
logical properties — its interface to client code — and its representation. For example:

type Alert is (Low, Medium, High);

type Packet is record
Flag : Boolean;
Danger : Alert;
Data : Interfaces.Unsigned_8;

end record;

Byte : constant := 8;

for Alert use (Low => 0, Medium => 5, High => 10);
for Alert'Size use 4;

for Packet use record
Flag at 0*Byte range 3 .. 3; -- Bits 1..2 are unused
Danger at 0*Byre range 4 .. 7;
Data at 1*Byte range 0 .. 7;

end Packet;
for Packet'Size use 2*Byte;

5.13. Information Encapsulation (D.33) 59

AdaCore Technologies for Railway Software

5.14 Interface Testing (D.34)
Ada allows extending the expressiveness of an interface specification at the code level,
allowing constraints such as:

• parameter passing modes
• pre- and postconditions
• input partitioning
• typing

These are each described in other sections of this document. These specifications can help
the development of tests around the interface, formalize constraints on how the interface is
supposed to be used, and activate additional dynamic checking or formal proofs (through
SPARK), all ensuring that users are indeed respecting the expectations of the interface
designer.
In addition, GNATtest can generate a testing framework to implement interface testing, and
GNATfuzz can help by probing the robustness of the system when interface requirements
are violated.

5.15 Language Subset (D.35)
The Ada language has been designed to facilitate subsetting, since its targeted domain —
long-lived safety-critical embedded systems — often involves small-footprint applications
that need to be certified under demanding software standards. The full language would
be inappropriate with such constraints, and Ada provides a general feature — pragma Re-
strictions — to allow subsetting on a user-selectable basis. For example, with pragma
Restrictions (No_Abort_Statements) the program will be rejected by the compiler if it
contains an abort statement.
Going one step further, the language standard has bundled a set of restrictions into a so-
called profile — the Ravenscar Profile — that supports common concurrency idioms (e.g.
periodic and sporadic tasks) and can make a tasking program deterministic and statically
analyzable.
SPARK is a natural Ada language subset, constraining the language so that programs can
be subject to formal analysis (e.g., safe pointers, no aliasing, and no exceptions).
Other language subsets can be supplied by the implementation, such as the features im-
plemented by the GNAT Pro Certifiable Profiles. And with GNATcheck the user can in effect
define a subset in an à la carte fashion, to specify prohibited constructs and verify that they
are not present in the code.

5.16 Metrics (D.37)
The GNATmetric tool reports various metrics on the code, from simple structural metrics
such as lines of code or number of entities to more complex computations such as cyclo-
matic complexity or coupling.
Custom metrics can be computed based on these first-level metrics. In particular, the
GNATdashboard environment allows gathering all metrics into a database that can then
accessed through Python or SQL.
These metrics can be viewed through various interfaces.

60 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

5.17 Modular Approach (D.38)

5.17.1 Connections between modules shall be limited and defined,
coherence shall be strong

Ada allows the developer to define group of packages that have different levels of coupling,
through the notions of child packages and private packages as described below. In addition,
the GNAT Pro technology provides the notion of a project, which defines a group of packages,
possibly with a defined interface. These constructs can be used to define a tool-supported
notion of component or module at the software level.
There are three main types of dependence between compilation units:

• Loose coupling through with clauses. If unit Q withs unit P, then Q can only access the
entities in the visible part of P.

• Medium coupling through public child units. If P is a package, then child P.Q has visibil-
ity privileges that would not be available to a unit that only withs P. More specifically,
P.Q, which is said to be a public child, can access the entities in the visible part of P.
However, only the private part and body of P.Q can access the entities in the private
part of P. And the entities declared in the body of P are only accessible in the package
body itself.

• Tight coupling through private child units. As a generalization of public child units,
if P.Q is declared as a private child, then the visible part of P.Q can also access the
entities in the private part of P. This does not compromise encapsulation; the only
units that can with a private child are units that otherwise would have access to the
entities that the private child can see.

Ada's expressiveness makes it easier to develop large software systems, with precise con-
trol over the coupling between modules, and guaranteeing that data are only accessed by
the intended units.
A typical example is the implementation of a complex system that needs to be spread
across several packages. For example, suppose that packages Communication and Inter-
faces, contribute to the implementation of a signaling protocol. In Ada, this design can be
implemented in three (or more) distinct files:

package Signaling is ...
private package Signaling.Communication is .
private package Signaling.Interfaces is ...

The two private packages are defined in separate files. They are private children of Sig-
naling, which means they can only be used by the implementation of Signaling, and not
by any module outside of the hierarchy.
In addition, tools can provide metrics on coupling between packages. GNATmetric has built-
in support for retrieving these numbers.
At a coarser granularity, packages can be grouped together into a GNAT Project file (GPR),
with a clear interface. An application architecture can be defined as a combination of project
files.

5.17.2 Collections of subprograms shall be built providing several
level of modules

Following the above example, it's possible to create public sub-modules as well, creating a
hierarchy of services. Public child units are accessible to client code.

5.17. Modular Approach (D.38) 61

AdaCore Technologies for Railway Software

5.17.3 Subprograms shall have a single entry and single exit only
The GNATcheck tool has specific rules to verify this property on any Ada code.

5.17.4 Modules shall communicate with other modules via their in-
terface

This is built-in to the Ada language. It's not possible to circumvent a package's interface.
If a module is implemented using a coarser granularity, e.g. as a group of packages or at
project level, then the project file description allows identifying those packages that are
part of the interface and those packages that are not.

5.17.5 Module interfaces shall be fully documented
Although this is mostly the responsibility of the developer, Ada contracts can be used to
formalize part of the documentation associated with a package interface, using a formal
notation that can be checked for consistency by the compiler. This addresses the part of the
documentation that can be expressed through boolean properties based on the software-
visible entities.

5.17.6 Interfaces shall contain the minimum number of parameters
necessary

The GNAT Pro compiler will warn about parameters not used by a subprogram implemen-
tation.

5.17.7 A suitable restriction of parameter number shall be speci-
fied, typically 5

GNATcheck allows specifying a maximum number of parameters per subprogram.

5.17.8 Unit Proof and Unit Test
GNATtest can be used to generate a unit testing framework for Ada applications.
SPARK performs a modular formal verification: it proves the postcondition of a subprogram
according to its own precondition and the precondition and postconditions of its callees,
whether or not these callees are themselves proven.
For a complete proof, all the subprograms of an application need to be formally proven.
Where this is not possible, one subset can be proven and the other can be assumed to
be true. These assumptions can then be verified using traditional testing methodology,
allowing for a hybrid test / proof verification system.

5.18 Strongly Typed Programming Languages (D.49)
Ada is, from its inception, a strongly typed language, which supports both static and dy-
namic verification.
From a static verification point of view, each type is associated with a representation and
a semantic interpretation. Two types with similar representations but different semantics
will still be considered different by the compiler. For example:

type Kilometers is new Float;
type Miles is new Float:

62 Chapter 5. Technology Usage Guide

AdaCore Technologies for Railway Software

These are distinct types. the compiler will not allow mixed operations, for example assign-
ing a Kilometers value to a Miles variable, or adding a Kilometers value and a Miles
value, unless explicit conversions are used. Mixing floating point and integer values is sim-
ilar: the developer is responsible for deciding where and how conversion should be made.
From a dynamic verification point of view, types can be associated with constraints, such
as value ranges or arbitrary boolean predicates. These type ranges and predicates will be
verified at specific points in the application, allowing the early detection of inconsistencies.

5.19 Structure Based Testing (D.50)
AdaCore provides three tools to support structure based testing:

• GNATtest is a unit testing framework generator. It will run on Ada specifications, and
generate a skeleton for each subprogram. The actual test can then bemanually written
into that skeleton.

• GNATemulator allows emulating code for a given target (e.g. PowerPC and Leon) on a
host platform such as Windows or Linux. It's particularly well suited for running unit
tests.

• GNATcoverage performs structural coverage analysis from an instrumented platform
(GNATemulator or Valgrind on Linux or directly on a board through a Nexus probe). It
supports statement coverage and decision coverage as well as MC/DC. Note that al-
though EN 50128 requires compound condition coverage, Modified Condition/Decision
Coverage (MC/DC) is usually accepted as a means of compliance.

5.20 Structured Programming (D.53)
The Ada language supports all the usual paradigms of structured programming. Complexity
can be controlled with various tools, see Analyzable Programs (D.2) (page 49) for more
details.

5.21 Suitable Programming Languages (D.54)
Ada is noted as "Highly Recommended" in the list of programming languages. Some fea-
tures may, however, not be suitable for the highest SIL. To enforce the detection and re-
jection of specific features, the developer can specify a language subset; see Language
Subset (D.35) (page 60).
One of the advantage of the Ada language is that it is precisely defined in a interna-
tional document, ISO/IEC 8652. This document specifies the required effect as well as any
implementation-defined behavior for the core language, the standard Ada libraries (known
as the "predefined environment"), and the specialized needs annexes.

5.22 Object Oriented Programming (D.57)
Ada supports the usual constructs for object-oriented programming, but, for reasons of
simplicity and reliability, with multiple inheritance limited to interface types. In addition,
the Liskov Substitution Principle can be verified through class-wide contracts and SPARK
formal verification, allowing the verification of class hierarchy consistency and the safety
of dispatching operations.
Ada's OOP model is particularly well suited to safety-critical applications, as it allows in-
stantiating objects on the stack. For example:

5.19. Structure Based Testing (D.50) 63

AdaCore Technologies for Railway Software

type Base_Class is tagged ...; -- Base_Class is the root of a class hierarchy
procedure P (X : Base_Class);
...
type Subclass is new Base_Class with ...;
overriding procedure P (X : Subclass);

B : Base_Class := ... -- on the stack
S : Subclass := ... -- on the stack

X : Some_Type'Class := (if .. then B else S):
P (X); -- Dispatches to appropriate version of P

In the above code, X is a polymorphic object that can be initialized with a value from any
class in the hierarchy rooted at Base_Class; here it will be a value from either Base_Class
or Subclass. Storage for X is reserved on the stack, and the invocation P (X) will dispatch
to the appropriate version of P.
The booklet [] provides additional information on how to use object-oriented features in a
certified context.

5.23 Procedural Programming (D.60)
Ada implements all the usual features of procedural programming languages, with a
general-purpose data type facility and a comprehensive set of control constructs.

64 Chapter 5. Technology Usage Guide

CHAPTER

SIX

TECHNOLOGY ANNEX

This annex summarizes how AdaCore's tools and technologies support the various tech-
niques and measures defined in Annex D of EN 50128. The qualification status for tools,
and certifiability for run-time libraries, are also noted.

6.1 Ada Programming Language
See Ada (page 17).

6.1.1 Qualification
Although there is no qualification of a language per se, the Ada language is standardized
through an official process managed by an ISO committee, IEC/ISO 8652. AdaCore's Ada
compilers and tools have reference and user documentation that precisely describes the
expected behavior, including the effects of implementation-defined features.

6.1.2 Annex D References
• D.2 Analyzable Programs
• D.4 Boundary Value Analysis
• D.14 Defensive Programming
• D.18 Equivalence Classes and Input Partition Testing
• D.24 Failure Assertion Programming
• D.33 Information Hiding / Encapsulation
• D.34 Interface Testing
• D.35 Language Subset
• D.38 Modular Approach
• D.49 Strongly Typed Programming Languages
• D.53 Structured Programming
• D.54 Suitable Programming Languages
• D.57 Object Oriented Programming
• D.60 Procedural Programming

65

AdaCore Technologies for Railway Software

6.2 GNAT Pro Assurance Toolsuite

6.2.1 Qualification
GNAT Pro compiler family

The GNAT Pro compilers for Ada and for C are qualified at class T3. AdaCore can provide
documentation attesting to various aspects such as service history, development standard,
and testing results. This documentation has been submitted and accepted in past certifi-
cation activities. T3 qualification material can also be developed for the GNAT Pro for C++
and GNAT Pro for Rust compilers.
Since compilers are large and complex pieces of software, bugs can be detected (and subse-
quently corrected) after a particular version has been chosen. Following the requirements
stated in 6.7.4.11, however, a corrected version of the compiler cannot be deployed with-
out specific justification. AdaCore offers a dedicated service – GNAT Pro Assurance – on a
specified version of the technology, which provides critical problem fixes (or workaround
suggestions) as well as detailed descriptions of the changes. Using GNAT Pro Assurance, a
customer can integrate a corrected version of a specific compiler release into their devel-
opment infrastructure without the risk of regressions from unwanted updates.
See GNAT Pro Assurance (page 22).

GNATstack

GNATstack can be qualified as a class T2 tool.

6.2.2 Run-Time Certification
Certification material up to SIL 4 can be developed for the Light and Light-Tasking run-time
libraries.
See Configurable Run-Time Libraries (page 23).

6.2.3 Annex D References
• D.10 Data Flow Analysis
• D.15 Coding Standards and Style Guide
• D.18 Equivalence Classes and Input Partition Testing
• D.35 Language Subset

6.3 SPARK Language and Toolsuite
See SPARK (page 21).

6.3.1 Qualification
The SPARK Pro toolsuite can be qualified at class T2.

6.3.2 Annex D References
The SPARK language and toolset can contribute to the deployment or implementation of
the following techniques:

• D.2 Analyzable Programs

66 Chapter 6. Technology Annex

AdaCore Technologies for Railway Software

• D.4 Boundary Value Analysis
• D.10 Data Flow Analysis
• D.14 Defensive Programming
• D.18 Equivalence Classes and Input Partition Testing
• D.24 Failure Assertion Programming
• D.28 Formal Methods
• D.29 Formal Proof
• D.34 Interface Testing
• D.35 Language Subset
• D.38 Modular Approach
• D.57 Object Oriented Programming

6.4 GNAT Static Analysis Suite
See GNAT Static Analysis Suite (GNAT SAS) (page 26).

6.4.1 Defects and Vulnerability Analysis
6.4.1.1 Qualification

GNAT SAS's defects and vulnerability analysis tool can be qualified at class T2. It has a long
cross-industry track record and has been qualified under other standards in the past, such
as DO-178B/C as a verification tool/TQL5.

6.4.1.2 Annex D References

GNAT SAS's defects and vulnerability analysis tool can contribute to the deployment or
implementation of the following techniques:

• D.2 Analyzable Programs
• D.4 Boundary Value Analysis
• D.8 Control Flow Analysis
• D.10 Data Flow Analysis
• D.14 Defensive Programming
• D.18 Equivalence Classes and Input Partition Testing
• D.24 Failure Assertion Programming
• D.32 Impact Analysis

6.4.2 Basic Static Analysis tools
The basic tools are GNATcheck and GNATmetric.

6.4.2.1 Qualification

These tools can be qualified at class T2. GNATcheck has been qualified under other stan-
dards as well, such as DO-178B/C as a verification tool/TQL5.

6.4. GNAT Static Analysis Suite 67

AdaCore Technologies for Railway Software

6.4.2.2 Annex D References

• D.2 Analyzable Programs
• D.14 Defensive Programming
• D.15 Coding Standard and Style Guide
• D.35 Language Subset
• D.37 Metrics

6.5 GNAT Dynamic Analysis Suite
This suite comprises GNATtest, GNATemulator, GNATcoverage, GNATfuzz, and TGEN.
See GNAT Dynamic Analysis Suite (GNAT DAS) (page 27).

6.5.1 Qualification
GNATtest, GNATemulator and GNATcoverage can be qualified at class T2. GNATcoverage has
been qualified under other standards as well, such as DO-178B/C as a verification tool/TQL5.

6.5.2 Annex D References
• D.50 Structure Based Testing

68 Chapter 6. Technology Annex

INDEX

A
Absence of Run-Time Errors (AORTE), 50
Ada language, 7

Concurrent programming, 19, 59
Contract-based programming, 18, 20
Coupling between modules, 61
Generic templates, 19
High-integrity systems, 20
History, 17
Memory safety, 20
Object-Oriented Programming (OOP),

19, 57
Package feature, 58
Parameter checking, 53
Postconditions, 18
pragma Restrictions, 20
Preconditions, 18
Prevention of buffer overflow, 20
Prevention of dangling references,

20
Prevention of null pointer deref-

erencing, 20
Prevention of vulnerabilities, 20
Programming in the large, 19
Protected object / Protected type,

59
Real-time programming, 20
Representation clause, 59
Scalar ranges, 18
Strong typing, 20
Support for Analyzable Programs

(D.2), 49
Support for Annex D techniques

(summary), 65
Support for Boundary Value Analy-

sis (D.4), 50
Support for Defensive Programming

(D.14), 52, 53
Support for Information Encapsula-

tion (D.33), 57
Support for Interface Testing

(D.34), 59
Support for Modular Approach (D.38),

61, 62
Support for Object Oriented Pro-

gramming Languages (D.57), 63

Support for Procedural Programming
(D.60), 64

Support for Strongly Typed Pro-
gramming Languages (D.49), 62

Support for Structured Programming
(D.53), 63

Support for Suitable Programming
Languages (D.54), 63

Systems programming, 19
Task object / task type, 59

AdaCore
Support services, 24
Training and consulting services,

24
Annex D

Analyzable Programs (D.2), 49
Boundary Value Analysis (D.4), 49
Coding Standards and Style Guide

(D.15), 55
Control Flow Analysis (D.8), 50
Data Flow Analysis (D.10), 51
Defensive Programming (D.14), 52
Error Guessing (D.20), 55
Failure Assertion Programming

(D.24), 56
Formal Methods (D.28), 56
Impact Analysis (D.32), 57
Information Encapsulation (D.33), 57
Interface Testing (D.34), 59
Language Subset (D.35), 60
Metrics (D.37), 60
Modular Approach (D.38), 60
Object Oriented Programming (D.57),

63
Procedural Programming (D.60), 64
Structure Based Testing (D.50), 63
Structured Programming (D.53), 63
Suitable Programming Languages

(D.54), 63

B
Babbage (Charles), 17
Buffer overflow, 20
Byron (Lord George), 17

C
C language support, 22

69

AdaCore Technologies for Railway Software

C++ language support, 22
CENELEC, 5
Certifiable profile, 23

Support for Language Subset (D.35),
60

Child package
Support for Modular Approach (D.38),

61
Common Criteria security standard, 20
Contract_Cases aspect, 55
Contract-based programming, 20

Support for Failure Assertion Pro-
gramming (D.24), 56

D
Defects and Vulnerability Analysis

Qualification, 67
Support for Annex D techniques

(summary), 67
Defects and vulnerability analysis (in

GNAT SAS), 26
Dimension consistency analysis, 53

E
Eclipse IDE, 7, 30
EN 50126, 5
EN 50128

Annex A (Criteria for the Selection of
Techniques and Measures), 12

Annex B (Key software roles and respon-
sibilities), 13

Annex C (Documents Control Summary),
13

Annex D (Bibliography of techniques), 13
Annex ZZ, 14
Clause 4 (Objectives, conformance and

software safety integrity levels), 10
Clause 5 (Software management and

organization), 10
Clause 6 (Software assurance), 11
Clause 7 (Generic software develop-

ment), 11
Clause 8 (Development of application

data or algorithms), 11
Clause 9 (Software deployment and

maintenance), 11
Structure of the standard, 9

EN 50129, 5
EN 50657, 5
EN 50716, 5

G
GNAT Dynamic Analysis Suite (GNAT DAS),

7, 27
GNATcoverage, 7, 27
GNATemulator, 7, 27
GNATfuzz, 7, 28
GNATtest, 7, 27

TGen, 7, 28
GNAT Pro Assurance, 7, 22

Configurable Run-Time Libraries, 23
GNAT Pro for Ada, 22
GNAT Pro for C, 22
GNAT Pro for C++, 22
GNAT Pro for Rust, 22
GNATstack, 24
Libadalang, 24
Qualification, 66
Source-to-object traceability, 24
Support for Annex D techniques

(summary), 66
Support for Coding Standards and

Style Guide (D.15), 55
Support for Data Flow Analysis

(D.10), 51
Support for Defensive Programming

(D.14), 53
Sustained branch, 22

GNAT Pro for Rust, 7, 28
GNAT Static Analysis Suite (GNAT SAS),

7, 25
Defects and vulnerability analy-

sis, 7, 26
GNATcheck, 7, 26
GNATmetric, 7, 26
Support for Analyzable Programs

(D.2), 49
Support for Boundary Value Analy-

sis (D.4), 50
Support for Control Flow Analysis

(D.8), 50
Support for Data Flow Analysis

(D.10), 51
Support for Defensive Programming

(D.14), 53, 54
Support for Impact Analysis (D.32),

57
GNAT Studio IDE, 7, 29

Support for Analyzable Programs
(D.2), 49

Support for Control Flow Analysis
(D.8), 50

Support for Impact Analysis (D.32),
57

GNATbench IDE, 7, 30
GNATcheck, 7, 26

Qualification, 67
Support for Analyzable Programs

(D.2), 49
Support for Annex D techniques

(summary), 67
Support for Coding Standards and

Style Guide (D.15), 55
Support for Defensive Programming

(D.14), 52
Support for Language Subset (D.35),

70 Index

AdaCore Technologies for Railway Software

60
Support for Modular Approach (D.38),

62
GNATcoverage, 7, 27

Qualification, 68
Support for Annex D techniques

(summary), 68
Support for Structure Based Test-

ing (D.50), 63
GNATdashboard IDE, 7, 30
GNATemulator, 7, 27

Qualification, 68
Support for Annex D techniques

(summary), 68
Support for Structure Based Test-

ing (D.50), 63
GNATformat, 26
GNATfuzz, 7, 28

Support for Error Guessing (D.20),
55

GNATmetric, 7, 26
Metrics on inter-package coupling,

61
Qualification, 67
Support for Analyzable Programs

(D.2), 49
Support for Annex D techniques

(summary), 67
Support for Control Flow Analysis

(D.8), 50
Support for Metrics (D.37), 60

GNATprove, 21
GNATstack, 24

Support for Control Flow Analysis
(D.8), 51

Tool qualification, 66
GNATtest, 7, 27, 28

Qualification, 68
Support for Annex D techniques

(summary), 68
Support for Interface Testing

(D.34), 60
Support for Modular Approach (D.38),

62
Support for Structure Based Test-

ing (D.50), 63

H
Hybrid verification, 22

I
Ichbiah (Jean), 17
Integrated Development Environments

(IDEs), 7, 29
Eclipse, 30
GNAT Studio, 7, 29
GNATbench, 7, 30
GNATdashboard, 7, 30

VS Code support, 7, 29
Workbench, 30

J
Jorvik profile, 21

L
Libadalang, 24
Light Profile, 7, 23

Certification material, 66
Light-Tasking Profile, 23

Certification material, 66
Liskov Substitution Principle, 35, 47,

63
Lovelace (Augusta Ada), 17

M
Memory safety, 20

P
pragma Assert

Support for Failure Assertion Pro-
gramming (D.24), 56

pragma Restrictions
Support for Coding Standards and

Style Guide (D.15), 55
Support for Language Subset (D.35),

60
Private package

Support for Modular Approach (D.38),
61

Project (GNAT Pro)
GPR files, 61
Support for Modular Approach (D.38),

61

R
Range checking, 52
Ravenscar Profile, 7, 17, 20, 21, 23

Support for Language Subset (D.35),
60

Rust language support, 22, 28

S
Safety Integrity Level (SIL), 6
Software Quality Assurance Plan, 30
SPARK language, 21

Formal verification, 21
Hybrid verification, 22
Reduced cost of verification, 22
Static verification, 21
Support for Language Subset (D.35),

60
Usage, 21

SPARK Pro toolsuite, 21
GNATprove, 21
Qualification, 66

Index 71

AdaCore Technologies for Railway Software

SPARK technology, 7
Absence of Run-Time Errors (AORTE),

21, 50
Support for Analyzable Programs

(D.2), 49
Support for Annex D techniques

(summary), 66
Support for Boundary Value Analy-

sis (D.4), 50
Support for Coding Standards and

Style Guide (D.15), 55
Support for Data Flow Analysis

(D.10), 51
Support for Defensive Programming

(D.14), 53, 54
Support for Failure Assertion Pro-

gramming (D.24), 56
Support for Formal Methods (D.28),

56
Support for Modular Approach (D.38),

62
Sustained branch, 22

T
T1 tool class, 14
T2 tool class, 14
T3 tool class, 14
Taft (Tucker), 17
TGen, 7, 28
Tool classes, 14
Tool qualification, 14

AdaCore support, 15
Defects and Vulnerability Analy-

sis, 67
GNAT Pro Assurance, 66
GNATcheck, 67
GNATcoverage, 68
GNATemulator, 68
GNATmetric, 67
GNATstack, 66
GNATtest, 68
SPARK Pro toolsuite, 66

V
V software life cycle, 6
VS Code support, 7, 29

W
Workbench IDE (Wind River), 30

72 Index

	Introduction
	CENELEC safety-related railway standards
	Safety Integrity Levels
	AdaCore technologies for railway software

	CENELEC EN 50128
	Overview
	Structure of the standard
	Tool qualification
	Tool classes
	AdaCore tool qualification support

	AdaCore Tools and Technologies Overview
	Ada
	Background
	Language Overview
	Scalar Ranges
	Contract-Based Programming
	Programming in the large
	Generic Templates
	Object-Oriented Programming (OOP)
	Concurrent Programming
	Systems Programming
	Real-Time Programming
	High-Integrity Systems
	Summary

	SPARK
	Flexibility
	Powerful Static Verification
	Ease of Adoption
	Hybrid Verification
	Reduced Cost and Improved Efficiency of Executable Object Code Verification

	GNAT Pro Assurance
	Sustained Branches
	Language and Tool Support
	Configurable Run-Time Libraries
	Full Implementation of Ada Standards
	Source to Object Traceability
	Safety-Critical Support and Expertise
	Libadalang
	GNATstack

	GNAT Static Analysis Suite (GNAT SAS)
	Defects and Vulnerability Analyzer
	GNATmetric
	GNATcheck

	GNAT Dynamic Analysis Suite (GNAT DAS)
	GNATtest
	GNATemulator
	GNATcoverage
	GNATfuzz
	TGen

	GNAT Pro for Rust
	Integrated Development Environments (IDEs)
	GNAT Studio
	VS Code Extensions for Ada and SPARK
	Eclipse Support – GNATbench
	GNATdashboard

	AdaCore Contributions to the Software Quality Assurance Plan
	Table A.3 – Software Architecture (7.3)
	Table A.4 – Software Design and Implementation (7.4)
	Table A.5 – Verification and Testing (6.2 and 7.3)
	Table A.6 – Integration (7.6)
	Table A.7 – Overall Software Testing (6.2 and 7.7)
	Table A.8 – Software Analysis Techniques (6.3)
	Table A.9 – Software Quality Assurance (6.5)
	Table A.10 – Software Maintenance (9.2)
	Table A.11 – Data Preparation Techniques (8.4)
	Table A.12 – Coding Standards
	Table A.13 – Dynamic Analysis and Testing
	Table A.14 – Functional/Black Box Test
	Table A.15 – Textual Programming Language
	Table A.17 – Modeling
	Table A.18 – Performance Testing
	Table A.19 – Static Analysis
	Table A.20 – Components
	Table A.21 – Test Coverage for Code
	Table A.22 – Object Oriented Software Architecture
	Table A.23 – Object Oriented Detailed Design

	Technology Usage Guide
	Analyzable Programs (D.2)
	Boundary Value Analysis (D.4)
	Control Flow Analysis (D.8)
	Data Flow Analysis (D.10)
	Defensive Programming (D.14)
	Data should be range checked
	Data should be dimension-checked
	Read-only and read-write parameters should be separated and their access checked

	Functions should treat all parameters as read-only
	Literals and constants should not be write-accessible
	Using GNAT SAS and SPARK to drive defensive programming

	Coding Standards and Style Guide (D.15)
	Equivalence Classes and Input Partition Testing (D.18)
	Error Guessing (D.20)
	Failure Assertion Programming (D.24)
	Formal Methods (D.28)
	Impact Analysis (D.32)
	Information Encapsulation (D.33)
	Interface Testing (D.34)
	Language Subset (D.35)
	Metrics (D.37)
	Modular Approach (D.38)
	Connections between modules shall be limited and defined, coherence shall be strong
	Collections of subprograms shall be built providing several level of modules
	Subprograms shall have a single entry and single exit only
	Modules shall communicate with other modules via their interface
	Module interfaces shall be fully documented
	Interfaces shall contain the minimum number of parameters necessary
	A suitable restriction of parameter number shall be specified, typically 5
	Unit Proof and Unit Test

	Strongly Typed Programming Languages (D.49)
	Structure Based Testing (D.50)
	Structured Programming (D.53)
	Suitable Programming Languages (D.54)
	Object Oriented Programming (D.57)
	Procedural Programming (D.60)

	Technology Annex
	Ada Programming Language
	Qualification
	Annex D References

	GNAT Pro Assurance Toolsuite
	Qualification
	Run-Time Certification
	Annex D References

	SPARK Language and Toolsuite
	Qualification
	Annex D References

	GNAT Static Analysis Suite
	Defects and Vulnerability Analysis
	Qualification
	Annex D References

	Basic Static Analysis tools
	Qualification
	Annex D References

	GNAT Dynamic Analysis Suite
	Qualification
	Annex D References

	Index

