
Introduction to GNAT Toolchain
Release 2021-02

Gustavo A. Hoffmann

May 14, 2021

CONTENTS:

1 GNAT Community 3
1.1 Installation . 3
1.2 Basic commands . 4
1.3 Compiler warnings . 4

1.3.1 -gnatwa switch and warning suppression . 4
1.3.2 Style checking . 7

2 GPRbuild 9
2.1 Basic commands . 9
2.2 Project files . 9

2.2.1 Basic structure . 9
2.2.2 Customization . 10

2.3 Project dependencies . 11
2.3.1 Simple dependency . 11
2.3.2 Dependencies to dynamic libraries . 13

2.4 Configuration pragma files . 13
2.5 Configuration packages . 14

3 GNAT Studio 17
3.1 Start-up . 17

3.1.1 Windows . 17
3.1.2 Linux . 17

3.2 Creating projects . 17
3.3 Building . 18
3.4 Debugging . 18

3.4.1 Debug information . 18
3.4.2 Improving main application . 19
3.4.3 Debugging the application . 20

3.5 Formal verification . 20

4 GNAT Tools 23
4.1 gnatchop . 23
4.2 gnatprep . 24
4.3 gnatmem . 26
4.4 gnatmetric . 27
4.5 gnatdoc . 27
4.6 gnatpp . 29
4.7 gnatstub . 30

i

ii

Introduction to GNAT Toolchain, Release 2021-02

Copyright © 2019 – 2020, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redistribute,
remix, transform, and build upon the content for any purpose, even commercially, as long as you
give appropriate credit, provide a link to the license, and indicate if changes were made. If you
remix, transform, or build upon the material, you must distribute your contributions under the
same license as the original. You can find license details on this page1

This course presents an introduction to the GNAT toolchain, which is included in the GNAT Commu-
nity 2020 edition. The course includes first steps to get started with the toolchain and some details
on the project manager (GPRbuild) and the integrated development environment (GNAT Studio).

This document was written by Gustavo A. Hoffmann, with contributions and review from Richard
Kenner and Bob Duff.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0

Introduction to GNAT Toolchain, Release 2021-02

2 CONTENTS:

CHAPTER

ONE

GNAT COMMUNITY

This chapter presents the steps needed to install the GNAT Community toolchain and how to use
basic commands from the toolchain.

1.1 Installation

These are the basics steps to install GNAT Community on all platforms:

• Go to the AdaCore Community page2.

• Download the GNAT installer.

• Run the GNAT installer.

– Leave all options checked on the "Select Components" page.

On Windows platforms, continue with the following steps:

• Add C:\GNAT\2020\bin to your Path environment variable.

– The environment variables can be found in the System Properties window of the
Control Panel.

• You might need to restart your computer for the settings to take effect.

On Linux platforms, perform the following steps:

• Make sure the GNAT installer has execution permissions before running it.

• Select the directory where you want to install the toolchain.

– For example: /home/me/GNAT/2020

• Add the path to the bin directory (within the toolchain directory) as the first directory in your
PATH environment variable.

– For example: /home/me/GNAT/2020/bin.
2 https://www.adacore.com/community

3

https://www.adacore.com/community

Introduction to GNAT Toolchain, Release 2021-02

1.2 Basic commands

Now that the toolchain is installed, you can start using it. From the command line, you can compile
a project using gprbuild. For example:

gprbuild -P project.gpr

You can find the binary built with the command above in the obj directory. You can the run it in
the same way as you would do with any other executable on your platform. For example:

obj/main

A handy command-line option for gprbuild you might want to use is -p, which automatically
creates directories such as obj if they aren't in the directory tree:

gprbuild -p -P project.gpr

Ada source-code are stored in .ads and .adb files. To view the content of these files, you can use
GNAT Studio. To open GNAT Studio, double-click on the .gpr project file or invoke GNAT Studio
on the command line:

gps -P project.gpr

To compile your project using GNAT Studio, use the top-level menu to invoke Build � Project
� main.adb (or press the keyboard shortcut F4). To run the main program, click on Build � Run
� main (or press the keyboard shortcut Shift + F2).

1.3 Compiler warnings

One of the strengths of the GNAT compiler is its ability to generate many useful warnings. Some
are displayed by default but others need to be explicitly enabled. In this section, we discuss some
of these warnings, their purpose, and how you activate them.

1.3.1 -gnatwa switch and warning suppression

Section author: Bob Duff

We first need to understand the difference between a warning and an error. Errors are violations
of the Ada language rules as specified in the Ada Reference Manual; warnings don't indicate viola-
tions of those rules, but instead flag constructs in a program that seem suspicious to the compiler.
Warnings are GNAT-specific, so other Ada compilers might not warn about the same things GNAT
does or might warn about them in a different way. Warnings are typically conservative; meaning
that some warnings are false alarms. The programmer needs to study the code to determine if
each warning is describing a real problem.

Some warnings are produced by default while others are produced only if a switch enables them.
Use the -gnatwa switch to turn on (almost) all warnings.

Warnings are useless if you don't do anything about them. If you give your team member some
code that causes warnings, how are they supposed to knowwhether they represent real problems?
If you don't address each warning, people will soon starting ignoring warnings and there'll be lots
of things that generates warnings scattered all over your code. To avoid this, you may want to use
the -gnatwae switch to both turn on (almost) all warnings and to treat warnings as errors. This
forces you to get a clean (no warnings or errors) compilation.

4 Chapter 1. GNAT Community

Introduction to GNAT Toolchain, Release 2021-02

However, as we said, some warnings are false alarms. Use pragma Warnings (Off) to suppress
those warnings. It's best to be as specific as possible and narrow down to a single line of code and a
single warning. Then use a comment to explain why the warning is a false alarm if it's not obvious.

Let's look at the following example:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

procedure Mumble (X : Integer) is
begin

Put_Line ("Mumble processing...");
end Mumble;

end Warnings_Example;

We compile the above code with -gnatwae:

gnat compile -gnatwae ./src/warnings_example.adb

This causes GNAT to complain:

warnings_example.adb:5:22: warning: formal parameter "X" is not referenced

But the following compiles cleanly:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

pragma Warnings (Off, "formal parameter ""X"" is not referenced");
procedure Mumble (X : Integer) is
pragma Warnings (On, "formal parameter ""X"" is not referenced");

-- X is ignored here, because blah blah blah...
begin

Put_Line ("Mumble processing...");
end Mumble;

end Warnings_Example;

Here we've suppressed a specific warning message on a specific line.

If you get many warnings of a specific type and it's not feasible to fix all of them, you can suppress
that type of message so the good warnings won't get buried beneath a pile of bogus ones. For
example, you can use the -gnatwaeF switch to silence the warning on the first version of Mumble
above: the F suppresses warnings on unreferenced formal parameters. It would be a good idea to
use it if you have many of those.

As discussed above, -gnatwa activates almost all warnings, but not all. Refer to the section on
warnings3 of the GNAT User's Guide to get a list of the remaining warnings you could enable in
your project. One is -gnatw.o, which displays warnings when the compiler detects modified but
unreferenced out parameters. Consider the following example:

package Warnings_Example is

procedure Process (X : in out Integer;
B : out Boolean);

end Warnings_Example;

3 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#
warning-message-control

1.3. Compiler warnings 5

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#warning-message-control
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#warning-message-control

Introduction to GNAT Toolchain, Release 2021-02

package body Warnings_Example is

procedure Process (X : in out Integer;
B : out Boolean) is

begin
if X = Integer'First or else X = Integer'Last then

B := False;
else

X := X + 1;
B := True;

end if;
end Process;

end Warnings_Example;

with Ada.Text_IO; use Ada.Text_IO;

with Warnings_Example; use Warnings_Example;

procedure Main is
X : Integer := 0;
Success : Boolean;

begin
Process (X, Success);
Put_Line (Integer'Image (X));

end Main;

If we build the main application using the -gnatw.o switch, the compiler warns us that we didn't
reference the Success variable, which was modified in the call to Process:

main.adb:8:16: warning: "Success" modified by call, but value might not be␣
↪referenced

In this case, this actually points us to a bug in our program, since X only contains a valid value if
Success is True. The corrected code for Main is:

-- ...
begin

Process (X, Success);

if Success then
Put_Line (Integer'Image (X));

else
Put_Line ("Couldn't process variable X.");

end if;
end Main;

We suggest turning on as many warnings as makes sense for your project. Then, when you see a
warning message, look at the code and decide if it's real. If it is, fix the code. If it's a false alarm,
suppress the warning. In either case, we strongly recommend you make the warning disappear
before you check your code into your configuration management system.

6 Chapter 1. GNAT Community

Introduction to GNAT Toolchain, Release 2021-02

1.3.2 Style checking

GNAT provides many options to configure style checking of your code. The main compiler
switch for this is -gnatyy, which sets almost all standard style check options. As indicated by
the section on style checking4 of the GNAT User's Guide, using this switch "is equivalent to -
gnaty3aAbcefhiklmnprst, that is all checking options enabled with the exception of -gnatyB,
-gnatyd, -gnatyI, -gnatyLnnn, -gnatyo, -gnatyO, -gnatyS, -gnatyu, and -gnatyx."

Youmay find that selecting the appropriate coding style is useful to detect issues at early stages. For
example, the -gnatyO switch checks that overriding subprograms are explicitly marked as such.
Using this switch can avoid surprises when you didn't intentionally want to override an operation
for some data type. We recommend studying the list of coding style switches and selecting the
ones that seem relevant for your project. When in doubt, you can start by using all of them —
using -gnatyy and -gnatyBdIL4oOSux, for example — and deactivating the ones that cause too
much noise during compilation.

4 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#
style-checking

1.3. Compiler warnings 7

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#style-checking

Introduction to GNAT Toolchain, Release 2021-02

8 Chapter 1. GNAT Community

CHAPTER

TWO

GPRBUILD

This chapter presents a brief overview of GPRbuild, the project manager of the GNAT toolchain.
It can be used to manage complex builds. In terms of functionality, it's similar to make and cmake,
just to name two examples.

For a detailed presentation of the tool, please refer to the GPRbuild User’s Guide5.

2.1 Basic commands

As mentioned in the previous chapter, you can build a project using gprbuild from the command
line:

gprbuild -P project.gpr

In order to clean the project, you can use gprclean:

gprclean -P project.gpr

2.2 Project files

You can create project files using GNAT Studio, which presents many options on its graphical
interface. However, you can also edit project files manually as a normal text file in an editor, since
its syntax is human readable. In fact, project files use a syntax similar to the one from the Ada
language. Let's look at the basic structure of project files and how to customize them.

2.2.1 Basic structure

Themain element of a project file is a project declaration, which contains definitions for the current
project. A project filemay also include other project files in order to compose a complex build. One
of the simplest form of a project file is the following:

project Default is

for Main use ("main");
for Source_Dirs use ("src");

end Default;

5 https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

9

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

Introduction to GNAT Toolchain, Release 2021-02

In this example, we declare a project named Default. The for Main use expression indicates
that the main.adb file is used as the entry point (main source-code file) of the project. The main
file doesn't necessary need to be called main.adb; we could use any source-code implementing a
main application, or even have a list of multiple main files. The for Source_Dirs use expression
indicates that the src directory contains the source-file for the application (including themain file).

2.2.2 Customization

GPRbuild support scenario variables, which allow you to control the way binaries are built. For
example, you may want to distinguish between debug and optimized versions of your binary. In
principle, you could pass command-line options to gprbuild that turn debugging on and off, for
example. However, defining this information in the project file is usually easier to handle and to
maintain. Let's define a scenario variable called ver in our project:

project Default is

Ver := external ("ver", "debug");

for Main use ("main");
for Source_Dirs use ("src");

end Default;

In this example, we're specifying that the scenario variable Ver is initialized with the external vari-
able ver. Its default value is set to debug.

We can now set this variable in the call to gprbuild:

gprbuild -P project.gpr -Xver=debug

Alternatively, we can simply specify an environment variable. For example, on Unix systems, we
can say:

export ver=debug

Value from environment variable "ver" used in the following call:

gprbuild -P project.gpr

In the project file, we can use the scenario variable to customize the build:

project Default is
Ver := external ("ver", "debug");

for Main use ("main.adb");
for Source_Dirs use ("src");

-- Using "ver" variable for obj directory
for Object_Dir use "obj/" & Ver;

package Compiler is
case Ver is

when "debug" =>
for Switches ("Ada") use ("-g");

when "opt" =>
for Switches ("Ada") use ("-O2");

when others =>
null;

end case;
end Compiler;

(continues on next page)

10 Chapter 2. GPRbuild

Introduction to GNAT Toolchain, Release 2021-02

(continued from previous page)

end Default;

We're now using Ver in the for Object_Dir clause to specify a subdirectory of the obj directory
that contains the object files. Also, we're using Ver to select compiler options in the Compiler
package declaration.

We could also specify all available options in the project file by creating a typed variable. For ex-
ample:

project Default is

type Ver_Option is ("debug", "opt");
Ver : Ver_Option := external ("ver", "debug");

for Source_Dirs use ("src");
for Main use ("main.adb");

-- Using "ver" variable for obj directory
for Object_Dir use "obj/" & Ver;

package Compiler is
case Ver is

when "debug" =>
for Switches ("Ada") use ("-g");

when "opt" =>
for Switches ("Ada") use ("-O2");

when others =>
null;

end case;
end Compiler;

end Default;

The advantage of this approach is thatgprbuild can now checkwhether the value that you provide
for the ver variable is available on the list of possible values and give you an error if you're entering
a wrong value.

2.3 Project dependencies

GPRbuild supports project dependencies. This allows you to reuse information from existing
projects. Specifically, the keyword with allows you to include another project within the current
project.

2.3.1 Simple dependency

Let's look at a very simple example. Wehave a package called Test_Pkg associatedwith the project
file test_pkg.gpr, which contains:

project Test_Pkg is
for Source_Dirs use ("src");
for Object_Dir use "obj";

end Test_Pkg;

This is the code for the Test_Pkg package:

2.3. Project dependencies 11

Introduction to GNAT Toolchain, Release 2021-02

package Test_Pkg is

type T is record
X : Integer;
Y : Integer;

end record;

function Init return T;

end Test_Pkg;

package body Test_Pkg is

function Init return T is
begin

return V : T do
V.X := 0;
V.Y := 0;

end return;
end Init;

end Test_Pkg;

For this example, we use a directory test_pkg containing the project file and a subdirectory
test_pkg/src containing the source files. The directory structure looks like this:

|- test_pkg
| | test_pkg.gpr
| |- src
| | | test_pkg.adb
| | | test_pkg.ads

Suppose we want to use the Test_Pkg package in a new application. Instead of directly including
the source files of Test_Pkg in the project file of our application (either directly or indirectly), we
can instead reference the existing project file for the package by using with "test_pkg.gpr".
This is the resulting project file:

with "../test_pkg/test_pkg.gpr";

project Default is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb");

end Default;

And this is the code for the main application:

with Test_Pkg; use Test_Pkg;

procedure Main is
A : T;

begin
A := Init;

end Main;

When we build the main project file (default.gpr), we're automatically building all dependent
projects. More specifically, the project file for the main application automatically includes the in-
formation from the dependent projects such as test_pkg.gpr. Using a with in the main project
file is all we have to do for that to happen.

12 Chapter 2. GPRbuild

Introduction to GNAT Toolchain, Release 2021-02

2.3.2 Dependencies to dynamic libraries

We can structure project files to make use of dynamic (shared) libraries using a very similar ap-
proach. It's straightforward to convert the project above so that Test_Pkg is now compiled into a
dynamic library and linked to our main application. All we need to do is to make a few additions to
the project file for the Test_Pkg package:

library project Test_Pkg is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Library_Name use "test_pkg";
for Library_Dir use "lib";
for Library_Kind use "Dynamic";

end Test_Pkg;

This is what we had to do:

• We changed the project to library project.

• We added the specification for Library_Name, Library_Dir and Library_Kind.

We don't need to change the project file for the main application because GPRbuild automatically
detects the dependency information (e.g., the path to the dynamic library) from the project file for
the Test_Pkg package. With these small changes, we're able to compile the Test_Pkg package to
a dynamic library and link it with our main application.

2.4 Configuration pragma files

Configuration pragma files contain a set of pragmas that modify the compilation of source files ac-
cording to external requirements. For example, youmay use pragmas to either relax or strengthen
requirements depending on your environment.

In GPRbuild, we can use Local_Configuration_Pragmas (in the Compiler package) to indicate
the configuration pragmas file we want GPRbuild to use with the source files in our project.

The file gnat.adc shown here is an example of a configuration pragma file:

pragma Suppress (Overflow_Check);

We can use this in our project by declaring a Compiler package. Here's the complete project file:

project Default is

for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb");

package Compiler is
for Local_Configuration_Pragmas use "gnat.adc";

end Compiler;

end Default;

Each pragma contained in gnat.adc is used in the compilation of each file, as if that pragma was
placed at the beginning of each file.

2.4. Configuration pragma files 13

Introduction to GNAT Toolchain, Release 2021-02

2.5 Configuration packages

You can control the compilation of your source code by creating variants for various cases and
selecting the appropriate variant in the compilation package in the project file. One example where
this is useful is conditional compilation using Boolean constants, shown in the code below:

with Ada.Text_IO; use Ada.Text_IO;

with Config;

procedure Main is
begin

if Config.Debug then
Put_Line ("Debug version");

else
Put_Line ("Release version");

end if;
end Main;

In this example, we declared the Boolean constant in the Config package. By having multiple
versions of that package, we can create different behavior for each usage. For this simple example,
there are only two possible cases: either Debug is True or False. However, we can apply this
strategy to create more complex cases.

In our next example, we store the packages in the subdirectories debug and release of the source
code directory. Here's the content of the src/debug/config.ads file:

package Config is

Debug : constant Boolean := True;

end Config;

Here's the src/release/config.ads file:

package Config is

Debug : constant Boolean := False;

end Config;

In this case, GPRbuild selects the appropriate directory to look for the config.ads file according
to information we provide for the compilation process. We do this by using a scenario type called
Mode_Type in our project file:

gprbuild -P default.gpr -Xmode=release

project Default is

type Mode_Type is ("debug", "release");

Mode : Mode_Type := external ("mode", "debug");

for Source_Dirs use ("src", "src/" & Mode);
for Object_Dir use "obj";
for Main use ("main.adb");

end Default;

We declare the scenario variable Mode and use it in the Source_Dirs declaration to add the de-

14 Chapter 2. GPRbuild

Introduction to GNAT Toolchain, Release 2021-02

sired path to the subdirectory containing the config.ads file. The expression "src/" & Mode
concatenates the user-specified mode to select the appropriate subdirectory. For more complex
cases, we could use either a tree of subdirectories or multiple scenario variables for each aspect
that we need to configure.

2.5. Configuration packages 15

Introduction to GNAT Toolchain, Release 2021-02

16 Chapter 2. GPRbuild

CHAPTER

THREE

GNAT STUDIO

This chapter presents an introduction to the GNAT Studio, which provides an IDE to develop ap-
plications in Ada. For a detailed overview, please refer to the GNAT Studio tutorial6. Also, you can
refer to the GNAT Studio product page7 for some introductory videos.

In this chapter, all indications using "�" refer to options from the GNAT Studio menu that you can
click in order to execute commands.

3.1 Start-up

The first step is to start-up the GNAT Studio. The actual step depends on your platform.

3.1.1 Windows

• You may find an icon (shortcut to GNAT Studio) on your desktop.

• Otherwise, start GNAT Studio by typing gnatstudio on the command prompt.

3.1.2 Linux

• Start GNAT Studio by typing gnatstudio on a shell.

3.2 Creating projects

After starting-up GNAT Studio, you can create a project. These are the steps:

• Click on Create new project in the welcome window

– Alternatively, if the wizard (which let's you customize new projects) isn't already opened,
click on File � New Project... to open it.

– After clicking on Create new project, you should see a window with this title: Create
Project from Template.

• Select one of the options from the list and click on Next.

– The simplest one is Basic > Simple Ada Project, which creates a project containing
a main application.

• Select the project location and basic settings, and click on Apply.
6 https://docs.adacore.com/live/wave/gps/html/gps_tutorial/index.html
7 https://www.adacore.com/gnatpro/toolsuite/gps

17

https://docs.adacore.com/live/wave/gps/html/gps_tutorial/index.html
https://www.adacore.com/gnatpro/toolsuite/gps

Introduction to GNAT Toolchain, Release 2021-02

– If you selected "Simple Ada Project" in the previous step, you may now select the name
of the project and of the main file.

– Note that you can select any name for the main file.

You should now have a working project file.

3.3 Building

As soon as you've created aproject file, you canuse it to build an application. These are the required
steps:

• Click on Build � Project � Build All

– You can also click on this icon:

• Alternatively, you can click on Build � Project � Build & Run � <name of your main
application>

– You can also click on this icon:

• You can also use the keyboard for building and running the main application:

– Press F4 to open a window that allows you to build the main application and click on
Execute.

– Then, press Shift + F2 to open a window that allows you to run the application, and
click on Execute.

3.4 Debugging

3.4.1 Debug information

Before you can debug a project, you need tomake sure that debugging symbols have been included
in the binary build. You can do this by manually adding a debug version into your project, as
described in the previous chapter (see GPRbuild (page 9)).

Alternatively, you can change the project properties directly in GNAT Studio. In order to do that,
click on Edit � Project Properties..., which opens the following window:

18 Chapter 3. GNAT Studio

Introduction to GNAT Toolchain, Release 2021-02

Click on Build � Switches � Ada on this window, and make sure that the Debug Information
option is selected.

3.4.2 Improving main application

If you selected "Simple Ada Project" while creating your project in the beginning, you probably still
have a very simple main application that doesn't do anything useful. Therefore, in order to make
the debugging activity more interesting, please enter some statements to your application. For
example:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
begin

Put_Line ("Hello World!");
Put_Line ("Hello again!");

end Main;

3.4. Debugging 19

Introduction to GNAT Toolchain, Release 2021-02

3.4.3 Debugging the application

You can now build and debug the application by clicking on Build � Project � Build & Debug
� <name of your main application>.

You can then click on Debug � Run... to open a window that allows you to start the application.
Alternatively, you can press Shift + F9. As soon as the application has started, you can press
F5 to step through the application or press F6 to execute until the next line. Both commands are
available in the menu by clicking on Debug � Step or Debug � Next.

When you've finished debugging your application, you need to terminate the debugger. To do this,
you can click on Debug � Terminate.

3.5 Formal verification

In order to see how SPARK can detect issues, let's creating a simple application that accumulates
values in a variable A:

procedure Main
with SPARK_Mode is

procedure Acc (A : in out Natural;
V : Natural) is

begin
A := A + V;

end Acc;

A : Natural := 0;
begin

Acc (A, Natural'Last);
Acc (A, 1);

end Main;

You can now click on SPARK � Prove All, which opens a window with various options. For ex-
ample, on this window, you can select the proof level — varying between 0 and 4 — on the Proof
level list. Next, click on Execute. After the prover has completed its analysis, you'll see a list of
issues found in the source code of your application.

For the example above, the prover complains about an overflow check that might fail. This is due
to the fact that, in the Acc procedure, we're not dealing with the possibility that the result of the
addition might be out of range. In order to fix this, we could define a new saturating addition
Sat_Add that makes use of a custom type T with an extended range. For example:

procedure Main
with SPARK_Mode is

function Sat_Add (A : Natural;
V : Natural) return Natural

is
type T is range Natural'First .. Natural'Last * 2;

A2 : T := T (A);
V2 : constant T := T (V);
A_Last : constant T := T (Natural'Last);

begin
A2 := A2 + V2;

-- Saturate result if needed
if A2 > A_Last then

(continues on next page)

20 Chapter 3. GNAT Studio

Introduction to GNAT Toolchain, Release 2021-02

(continued from previous page)

A2 := A_Last;
end if;

return Natural (A2);
end Sat_Add;

procedure Acc (A : in out Natural;
V : Natural) is

begin
A := Sat_Add (A, V);

end Acc;

A : Natural := 0;
begin

Acc (A, Natural'Last);
Acc (A, 1);

end Main;

Now, when running the prover again with the modified code, no issues are found.

3.5. Formal verification 21

Introduction to GNAT Toolchain, Release 2021-02

22 Chapter 3. GNAT Studio

CHAPTER

FOUR

GNAT TOOLS

In chapter we present a brief overview of some of the tools included in the GNAT Community
toolchain.

For further details on how to use these tools, please refer to the GNAT User's Guide8.

4.1 gnatchop

gnatchop renames files so they match the file structure and naming convention expected by the
rest of the GNAT toolchain. The GNAT compiler expects specifications to be stored in .ads files
and bodies (implementations) to be stored in .adb files. It also expects file names to correspond
to the content of each file. For example, it expects the specification of a package Pkg.Child to be
stored in a file named pkg-child.ads.

However, we may not want to use that convention for our project. For example, we may have mul-
tiple Ada packages contained in a single file. Consider a file example.ada containing the following:

with Ada.Text_IO; use Ada.Text_IO;

package P is
procedure Test;

end P;

package body P is
procedure Test is
begin

Put_Line("Test passed.");
end Test;

end P;

with P; use P;

procedure P_Main is
begin

P.Test;
end P_Main;

To compile this code, we first pass the file containing our source code to gnatchop before we call
gprbuild:

gnatchop example.ada
gprbuild p_main

This generates source files for our project, extracted from example_ada, that conform to the de-
fault naming convention and then builds the executable binary p_main from those files. In this

8 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn.html

23

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn.html

Introduction to GNAT Toolchain, Release 2021-02

example gnatchop created the files p.ads, p.adb, and p_main.adb using the package names in
example.ada.

When we use this mechanism, any warnings or errors the compiler displays refers to the files gen-
erated by gnatchop. We can, however, instruct gnatchop to instrument the generated files so the
compiler refers to the original file (example.ada in our case) when displaying messages. We do
this by using the -r switch:

gnatchop -r example.ada
gprbuild p_main

If, for example, we had an unused variable in example.ada, the compiler warning would now refer
to the line in the original file, not in one of the generated ones.

For documentation of other switches available for gnatchop, please refer to the gnatchop chapter9
of the GNAT User's Guide.

4.2 gnatprep

We may want to use conditional compilation in some situations. For example, we might need a
customized implementation of a package for a specific platform or need to select a specific version
of an algorithm depending on the requirements of the target environment. A traditional way to
do this uses a source-code preprocessor. However, in many cases where conditional compilation
is needed, we can instead use the syntax of the Ada language or the functionality provided by
GPRbuild to avoid using a preprocessor in those cases. The conditional compilation section10 of
the GNAT User's Guide discusses how to do this in detail.

Nevertheless, using a preprocessor is often the most straightforward option in complex cases.
When we encounter such a case, we can use gnatprep, which provides a syntax that reminds us
of the C and C++ preprocessor. However, unlike in C and C++, this syntax is not part of the Ada
standard and can only be used with gnatprep. Also, you'll notice some differences in the syntax
from that preprocessor, such as shown in the example below:

#if VERSION'Defined and then (VERSION >= 4) then
-- Implementation for version 4.0 and above...

#else
-- Standard implementation for older versions...

#end if;

Of course, in this simple case, we could have used the Ada language directly and avoided the pre-
processor entirely:

package Config is
Version : constant Integer := 4;

end Config;

with Config;
procedure Do_Something is
begin

if Config.Version >= 4 then
null;
-- Implementation for version 4.0 and above...

else
null;
-- Standard implementation for older versions...

(continues on next page)

9 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#
renaming-files-with-gnatchop

10 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#
conditional-compilation

24 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#renaming-files-with-gnatchop
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#conditional-compilation

Introduction to GNAT Toolchain, Release 2021-02

(continued from previous page)

end if;
end Do_Something;

But for the sake of illustrating the use of gnatprep, let's use that tool in this simple case. This is
the complete procedure, which we place in file do_something.org.adb:

procedure Do_Something is
begin

#if VERSION'Defined and then (VERSION >= 4) then
-- Implementation for version 4.0 and above...
null;
#else
-- Standard implementation for older versions...
null;
#end if;

end Do_Something;

To preprocess this file and build the application, we call gnatprep followed by GPRbuild:

gnatprep do_something.org.adb do_something.adb
gprbuild do_something

If we look at the resulting file after preprocessing, we see that the #else implementation was
selected by gnatprep. To cause it to select the newer "version" of the code, we include the symbol
and its value in our call to gnatprep, just like we'd do for C/C++:

gnatprep -DVERSION=5 do_something.org.adb do_something.adb

However, a cleaner approach is to create a symbol definition file containing all symbols we use in
our implementation. Let's create the file and name it prep.def:

VERSION := 5

Now we just need to pass it to gnatprep:

gnatprep do_something.org.adb do_something.adb prep.def
gprbuild do_something

When we use gnatprep in that way, the line numbers of the output file differ from those of the
input file. To preserve line numbers, we can use one of these command-line switches:

• -b: replace stripped-out code by blank lines

• -c: comment-out the stripped-out code

For example:

gnatprep -b do_something.org.adb do_something.adb prep.def
gnatprep -c do_something.org.adb do_something.adb prep.def

When we use one of these options, gnatprep ensures that the output file do_something.adb
has the same line numbering as the original file (do_something.org.adb).

The gnatprep chapter11 of the GNAT User's Guide contains further details about this tool, such as
how to integrate gnatprep with project files for GPRbuild and how to replace symbols without
using preprocessing directives (using the $symbol syntax).

11 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#
preprocessing-with-gnatprep

4.2. gnatprep 25

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#preprocessing-with-gnatprep

Introduction to GNAT Toolchain, Release 2021-02

4.3 gnatmem

Memory allocation errors involving mismatches between allocations and deallocations are a com-
mon source of memory leaks. To test an application for memory allocation issues, we can use
gnatmem. This tool monitors all memory allocations in our application. We use this tool by linking
our application to a special version of the memory allocation library (libgmem.a).

Let's consider this simple example:

procedure Simple_Mem is
I_Ptr : access Integer := new Integer;

begin
null;

end Simple_Mem;

To generate a memory report for this code, we need to:

• Build the application, linking it to libgmem.a;

• Run the application, which generates an output file (gmem.out);

• Run gnatmem to generate a report from gmem.out.

For our example above, we do the following:

Build application using gmem
gnatmake -g simple_mem.adb -largs -lgmem

Run the application and generate gmem.out
./simple_mem

Call gnatmem to display the memory report based on gmem.out
gnatmem simple_mem

For this example, gnatmem produces the following output:

Global information

Total number of allocations : 1
Total number of deallocations : 0
Final Water Mark (non freed mem) : 4 Bytes
High Water Mark : 4 Bytes

Allocation Root # 1

Number of non freed allocations : 1
Final Water Mark (non freed mem) : 4 Bytes
High Water Mark : 4 Bytes
Backtrace :

simple_mem.adb:2 simple_mem

This shows all the memory we allocated and tells us that we didn't deallocate any of it.

Please refer to the chapter on gnatmem12 of the GNAT User's Guide for a more detailed discussion
of gnatmem.

12 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#
the-gnatmem-tool

26 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#the-gnatmem-tool

Introduction to GNAT Toolchain, Release 2021-02

4.4 gnatmetric

We can use the GNAT metric tool (gnatmetric) to compute various programming metrics, either
for individual files or for our complete project.

For example, we can compute the metrics of the body of package P above by running gnatmetric
as follows:

gnatmetric p.adb

This produces the following output:

Line metrics summed over 1 units
all lines : 13
code lines : 11
comment lines : 0
end-of-line comments : 0
comment percentage : 0.00
blank lines : 2

Average lines in body: 4.00

Element metrics summed over 1 units
all statements : 2
all declarations : 3
logical SLOC : 5

2 subprogram bodies in 1 units

Average cyclomatic complexity: 1.00

Please refer to the section on gnatmetric13 of the GNAT User's Guide for the many switches avail-
able for gnatmetric, including the ability to generate reports in XML format.

4.5 gnatdoc

Use GNATdoc to generate HTML documentation for your project. It scans the source files in the
project and extracts information from package, subprogram, and type declarations.

The simplest way to use it is to provide the name of the project or to invoke GNATdoc from a
directory containing a project file:

gnatdoc -P some_directory/default.gpr

Alternatively, when the :file:`default.gpr` file is in the same directory

gnatdoc

Just using this command is sufficient if your goal is to generate a list of the packages and a list of
subprograms in each. However, to createmoremeaningful documentation, you can annotate your
source code to add a description of each subprogram, parameter, and field. For example:

package P is
-- Collection of auxiliary subprograms

function Add_One
(continues on next page)

13 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#
the-gnat-metrics-tool-gnatmetric

4.4. gnatmetric 27

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-metrics-tool-gnatmetric

Introduction to GNAT Toolchain, Release 2021-02

(continued from previous page)

(V : Integer
-- Coefficient to be incremented
) return Integer;

-- @return Coefficient incremented by one

end P;

package body P is

function Add_One (V : Integer) return Integer is
begin

return V + 1;
end Add_One;

end P;

with P; use P;

procedure Main is

I : Integer;

begin
I := Add_One (0);

end Main;

Whenwe run this example, GNATdocwill extract the documentation from the specification of pack-
age P and add the description of each element, which we provided as a comment in the line below
the actual declaration. It will also extract the package description, which we wrote as a comment
in the line right after package P is. Finally, it will extract the documentation of function Add_One
(both the description of the V parameter and the return value).

In addition to the approach we've just seen, GNATdoc also supports the tagged format that's com-
monly found in tools such as Javadoc and uses the @ syntax. We could rewrite the documentation
for package P as follows:

package P is
-- @summary Collection of auxiliary subprograms

function Add_One
(V : Integer
) return Integer;

-- @param V Coefficient to be incremented
-- @return Coefficient incremented by one

end P;

You can control what parts of the source-code GNATdoc parses to extract the documentation. For
example, you can specify the -b switch to request that the package body be parsed for additional
documentation and you can use the -p switch to request GNATdoc to parse the private part of
package specifications. For a complete list of switches, please refer to the GNATdoc User's Guide14.

14 http://docs.adacore.com/gnatdoc-docs/users_guide/_build/html/index.html

28 Chapter 4. GNAT Tools

http://docs.adacore.com/gnatdoc-docs/users_guide/_build/html/index.html

Introduction to GNAT Toolchain, Release 2021-02

4.6 gnatpp

The term 'pretty-printing' refers to the process of formatting source code according to a pre-defined
convention. gnatpp is used for the pretty-printing of Ada source-code files.

Let's look at this example, which contains very messy formatting:

PrOcEDuRE Main
IS

FUNCtioN
Init_2

RETurn
inteGER iS

(2);

I : INTeger;

BeGiN
I := Init_2;

ENd;

We can request gnatpp to clean up this file by using the command:

gnatpp main.adb

gnatpp reformats the file in place. After this command, main.adb looks like this:

procedure Main is

function Init_2 return Integer is (2);

I : Integer;

begin
I := Init_2;

end Main;

We can also process all source code files from a project at once by specifying a project file. For
example:

gnatpp -P default.gpr

gnatpp has an extensive list of options, which allow for specifying the formatting of many aspects
of the source and implementingmany coding styles. These are extensively discussed in the section
on gnatpp15 of the GNAT User's Guide.

15 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#
the-gnat-pretty-printer-gnatpp

4.6. gnatpp 29

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-pretty-printer-gnatpp
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-pretty-printer-gnatpp

Introduction to GNAT Toolchain, Release 2021-02

4.7 gnatstub

Suppose you've created a complex specification of an Ada package. You can create the correspond-
ing package body by copying and adapting the content of the package specification. But you can
also have gnatstub domuch of that job for you. For example, let's consider the following package
specification:

package Aux is

function Add_One (V : Integer) return Integer;

procedure Reset (V : in out Integer);

end Aux;

We call gnatstub, passing the file containing the package specification:

gnatstub aux.ads

This generates the file aux.adb with the following contents:

pragma Ada_2012;
package body Aux is

-- Add_One --

function Add_One (V : Integer) return Integer is
begin

-- Generated stub: replace with real body!
pragma Compile_Time_Warning (Standard.True, "Add_One unimplemented");
return raise Program_Error with "Unimplemented function Add_One";

end Add_One;

-- Reset --

procedure Reset (V : in out Integer) is
begin

-- Generated stub: replace with real body!
pragma Compile_Time_Warning (Standard.True, "Reset unimplemented");
raise Program_Error with "Unimplemented procedure Reset";

end Reset;

end Aux;

Aswe can see in this example, not only has gnatstub created a package body fromall the elements
in the package specification, but it also created:

• Headers for each subprogram (as comments);

• Pragmas and exceptions that prevent us from using the unimplemented subprograms in our
application.

This is a good starting point for the implementation of the body. Please refer to the section on
gnatstub16 of the GNAT User's Guide for a detailed discussion of gnatstub and its options.

16 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#
the-body-stub-generator-gnatstub

30 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-body-stub-generator-gnatstub
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-body-stub-generator-gnatstub

	GNAT Community
	Installation
	Basic commands
	Compiler warnings
	-gnatwa switch and warning suppression
	Style checking

	GPRbuild
	Basic commands
	Project files
	Basic structure
	Customization

	Project dependencies
	Simple dependency
	Dependencies to dynamic libraries

	Configuration pragma files
	Configuration packages

	GNAT Studio
	Start-up
	Windows
	Linux

	Creating projects
	Building
	Debugging
	Debug information
	Improving main application
	Debugging the application

	Formal verification

	GNAT Tools
	gnatchop
	gnatprep
	gnatmem
	gnatmetric
	gnatdoc
	gnatpp
	gnatstub

