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Copyright © 2025, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This course describes how to implement selected programming idioms in the Ada language.
Prior knowledge of Ada is required, although some explanations of the underlying semantics
are provided when appropriate.
This document was written by Patrick Rogers.

Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.
You can find all code examples in a zip file, which you can download from the learn
website2. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

• Project: Courses.Intro_To_Ada.Imperative_Language.Greet
• MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:
projects/Courses/Intro_To_Ada/Imperative_Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;
3. Start GNAT Studio on this directory;
4. Build (or compile) the project;
5. Run the application (if a main procedure is available in the project).

1 http://creativecommons.org/licenses/by-sa/4.0
2 https://learn.adacore.com/zip/learning-ada_code.zip
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CHAPTER

ONE

INTRODUCTION

This course describes how to implement selected programming idioms in the Ada language.
What is an idiom? Some would say that an idiom is a workaround for an expressive defi-
ciency in a programming language. That is not what we mean.
What we have in mind are answers to the question "In this situation, what is the most
elegant implementation approach?". Elegant software is comprehensible, efficient, concise,
reliable, and, as a result, maintainable, so elegance is an economically and technically
desirable characteristic.
Design patterns12 are intended to answer that question, and indeed some would equate
idioms with design patterns. But what we have in mind is more general in scope.
For example, Reference Counting3 is a well-known approach to tracking and managing the
storage for objects and is conceptually independent of the programming language. How-
ever, reference counting is not a design pattern.
Likewise, Resource Acquisition Is Allocation (RAII)4, type punning5, interface inheritance6,
and implementation inheritance7 are not design patterns.
Those are the kinds of situations and solutions we focus upon.
That said, we may refer to a design pattern to illustrate an idiom's purpose and/or imple-
mentation. For example, in the idiom for controlling object creation and initialization, the
implementation approach happens to be the same as for expressing a Singleton12.
In addition to language-independent situations, we also include solutions for situations spe-
cific to the Ada language. These idioms are best practices in situations that arise given the
extensive capabilities of the language.
For example, Ada directly supports tasks (threads) via a dedicated construct consisting of
local objects and a sequence of statements. Tasks can also be defined as types, and then
used to define components for other composite types. As a result, there is an idiom showing
how to associate a task type with an enclosing composite type so that the task components
have visibility to the enclosing object's other components.
In all the idioms we want to apply the fundamental principles of software engineering, es-
pecially those of abstraction and information hiding. Therefore, we include an idiom for
expressing abstractions as types, with compile-time visibility control over the representa-
tion. These are the well-known Abstract Data Types, something the Ada language directly
supports but using building blocks instead of a single construct. For that same reason we
include another idiom for defining abstractions that manage global data (Abstract Data Ma-
chines). Most of the idioms' solutions will be defined using these abstraction techniques as
their starting point.
12 E. Gamma, R. Helm, and others. Design Patterns: Elements of Reusable Object-Oriented Software. Reading,

MA, Addison-Wesley Publishing Company, 1995.
3 https://en.wikipedia.org/wiki/Reference_counting
4 https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
5 https://en.wikipedia.org/wiki/Type_punning
6 https://en.wikipedia.org/wiki/Subtyping
7 https://en.wikipedia.org/wiki/Implementation_inheritance
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1.1 Assumptions
We assume the reader knows Ada to some degree, including some advanced topics. For
those lacking significant familiarity, we hope these solutions will at least give a sense for
how to apply the language. We direct such readers to the online Learn courses dedicated
to the Ada language itself8.

1.2 Definitions
For the sake of avoiding duplication in the idiom entries, the following terms are defined
here. Note that the Ada Language Manual includes a glossary in Section 1.39 (located in
Annex N prior to Ada 2022). Some of the following expand on the definitions found there.

1.2.1 Suppliers and Clients
Suppliers are software units that provide programming entities to other software units, the
users. These users are the clients of the supplied units. The concept is simple and intuitive,
but by defining these terms we can convey these roles quickly in the idioms' discussions.
For example, a unit that defines a type and associated operations would be a sup-
plier. Client units could use that type to declare objects, and/or apply the operations
to such objects. The language-defined package Ada.Text_IO is an example of a sup-
plier. Similarly, the unit that defines a library, such as a math library, is a supplier.
Callers to the math library routines are the clients. The generic package Ada.Numerics.
Generic_Complex_Elementary_Functions, once instantiated, would be an example sup-
plier. (Arguably, the generic package itself would be a supplier to the client that instanti-
ates it, but instantiation is the only possibility in that narrow case. Only the routines in the
instances can be called.)
Betrand Meyer's book on OOP13 limits these terms specifically to the case of a type used in
an object declaration. Our definitions cover that case but others as well.
Units can be both suppliers and clients, because a given supplier's facility, i.e., the interface
and/or implementation, may be built upon the facilities defined by other suppliers.

1.2.2 Compile-time Visibility
In the definitions of supplier and client above, we gave an example in which a supplier's
type was used by clients to declare objects of the type. For the client to legally do so — that
is, for the compiler to accept this usage and process the code — the use of the supplier's
type has to satisfy the scope and visibility rules of the programming language.
Good implementations harness these visibility rules to adhere to the software engineering
principles of information hiding and abstraction, both of which require that nothing of the
implementation be made visible to clients unless necessary. Compiler enforcement ensures
rigorous adherence to those principles.
Therefore, modern languages provide some way to express this control. For example, in
Ada, a package can have both a public part and a private part. Clients have no compile-time
visibility to the private part, nor to the package body, as both parts contain implementation
artifacts. In class-oriented languages, parts of the class can be marked as public, private,
and protected (the details depend on the specific language).
The idioms Abstract Data Types (page 11) and Abstract Data Machines (page 17) are prime
examples used throughout the other idioms.

8 https://learn.adacore.com/courses/advanced-ada/index.html#advanced-ada-course-index
9 http://www.ada-auth.org/standards/22rm/html/RM-1-3.html

13 B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.
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The idioms explored in Fundamental Packages (page 7) are largely variations on expressing
this control in Ada.
More details on the topic are provided in those idioms.

1.2.3 Views
In Ada, a view of an entity defines what the developer can legally do with that entity. For
example, the declaration of an object defines a view of that object. The operations allowed
by that view are determined by the type used to declare the object: a signed integer type
would allow signed integer numeric operations, but not, say, bit-level operations, nor array
indexing, and so on. Furthermore, the view includes whether the object is a constant.
An entity can have more than one view, depending on where in the text of the source
code a view of that entity is considered. For example, let's say that the integer object
introduced above is in fact a variable. Within the scope of that variable, we can refer to it
by that name and update the value using assignment statements. However, if we pass that
variable as the argument to a procedure call, within that subprogram (for that call) the view
specifies a different name for the argument, i.e., the formal parameter name. Moreover, if
that formal parameter is a mode-in parameter, within that procedure body the view of the
actual parameter is as if it were a constant rather than a variable. No assignments via the
formal parameter name are allowed because the view at that point in the text — within that
procedure body — doesn't allow them, unlike the view available at the point of the call.
As another example, consider a tagged type named Parent, and a type derived from it
via type extension, named Child. It is common for a derived type to have either additional
components, or additional operations, or both. For a given object of the Child type, the view
via type Child allows the developer to refer to the extended components and/or operations.
But we can convert the Child object to a value of the Parent type using what is known
as a view conversion. With that Parent view of the Child object, we can only refer to
those components and operations defined for the Parent type. The compiler enforces this
temporary view.
For further details about view conversions, please refer to that specific section of the Ad-
vanced Ada course10.
Views are a fundamental concept in Ada. Understanding them will greatly facilitate under-
standing the rules of the language in general.

1.2.4 Partial and Full Views
Like objects, types also can have more than one view, again determined by the place in
the program text that a view is considered. These views can be used to apply information
hiding and abstraction.
The declaration of a private type defines a partial view of a type that reveals only some of
its properties: the type name, primarily, but in particular not the type's representation. For
example:

type Rotary_Encoder is private;

Private type declarations must occur in the public part of a package declaration. Anything
declared there is compile-time visible to clients of the package so the type's name is visible,
and potentially some other properties as well. Clients can therefore declare objects of the
type name, for example, but must adhere to their partial view's effect on what is compile-
time visible.
The private type's full representation must be specified within the private part of that same
package declaration. For example:
10 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types.html#adv-ada-view-conversion
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type Rotary_Encoder is record ... end record;

Therefore, within that package private part and within the package body the full view is
available because full representation information is compile-time visible in those regions.
(Parts of child units have the full view as well.) This view is necessary in those two regions
of the package because the representation details are required in order to implement the
corresponding operations, among other possibilities.
Because the clients only have the partial view they do not have compile-time visibility to
the type's internal representation. Consequently, the compiler will not allow representation-
specific references or operations in client code. The resulting benefit is that clients are in-
dependent of the type's representation and, therefore, it can be changed without requiring
coding changes in the clients. Clients need only be recompiled in that case.
This application of information hiding has real-world cost benefits because changing client
code can be prohibitively expensive. That's one reason why the maintenance phase of a
project is by far the most expensive phase. Another reason is that maintenance is often a
euphemism for new development. Either way, change is involved.
As a result, when defining types, developers should use private types by default, only avoid-
ing themwhen they are not appropriate. Not using them should be an explicit design choice,
a line item in code reviews. Not defining a major abstraction as a private type should be
suspect, just as using a struct rather than a class in C++ should be suspect in that case.
(In C++ anything a struct contains is compile-time visible to clients by default.)
For further details about type views, please refer to that specific section of the Advanced
Ada course11.

11 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types.html#adv-ada-type-view
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CHAPTER

TWO

ESSENTIAL DESIGN IDIOMS FOR PACKAGES

2.1 Motivation
Packages, especially library packages, are modules, and as such are the fundamental build-
ing blocks of Ada programs. There is no language-prescribed way to use packages when
designing an application, the language just specifies what is legal. However, some legal
approaches are more advisable than others.
Specifically, packages should exhibit high cohesion and loose coupling14. Cohesion is the
degree to which the declarations within a module are related to one another, in the context
of the problem being solved. Unrelated entities should not be declared in the same module.
This allows the reader to focus on one primary concept, which should be the subject of the
package. Coupling is the degree to which a module depends upon other modules. Loose
coupling enhances comprehension and maintenance because it allows readers and future
developers to examine and modify the module in relative isolation. Coupling and cohesion
are interrelated: higher cohesion tends to result in less coupling.

2.2 Implementation(s)
Three idioms for packages were envisioned when the language was first designed. They
were introduced and described in detail in the Rationale document for the initial language
design15 and were further developed in Grady Booch's book Software Engineering with
Ada16, a foundational work on design with the (sequential part of the) language. Booch
added a fourth idiom, the Abstract Data Machine, to the three described by the Rationale.
These four idioms have proven themselves capable of producing packages that exhibit high
cohesion and loose coupling, resulting in more comprehensible and maintainable source
code.
These idioms pre-date later package facilities, such as private packages and hierarchical
packages. We describe idioms for those kinds of packages separately.
Two of the simpler idioms are described here. The other two, that are more commonly used,
are described in two separate, dedicated entries within this document.
Generic packages are not actually packages, but their instantiations are, so these design
idioms apply to generic packages as well.
Because these are idioms for modules, we differentiate them by what the package decla-
rations will contain. But as you will see, what they can contain is a reflection of the degree
of information hiding involved.
14 E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program and

System Design. Prentice-Hall, 1979.
15 J. Ichbiah, J. Barnes, and others. Rationale for the Design of the Ada Programming Language. 1986.
16 G. Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
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2.2.1 Named Collection of Declarations
In the first idiom, the package declaration can contain other declarations only for the fol-
lowing:

• Objects (constants and variables)
• Types
• Exceptions

The idea is to factor out common content required by multiple clients. Declaring common
content in one place and letting clients reference the one unit makes the most sense.
For example, the following package declares several physical constants used in a high-
fidelity aircraft simulator. These constants are utilized throughout the simulator code, so
they are declared in one place and then referenced as needed:

package Physical_Constants is
Polar_Radius : constant := 20_856_010.51; -- feet
Equatorial_Radius : constant := 20_926_469.20; -- feet
Earth_Diameter : constant :=
2.0 * ((Polar_Radius + Equatorial_Radius)/2.0);

Gravity : constant := 32.1740_4855_6430_4; -- feet/second**2
Sea_Level_Air_Density : constant := 0.002378; -- slugs/foot**3
Altitude_Of_Tropopause : constant := 36089.0; -- feet
Tropopause_Temperature : constant := -56.5; -- degrees-C

end Physical_Constants;

No information hiding is occurring when using this idiom.

2.2.1.1 Pros

Packages designed with this idiom will have high cohesion and low coupling.
The idiom also enhances maintainability because changes to the values, if necessary, need
only be made in one place, although in this particular example, we would hope that no such
changes will be made.

2.2.1.2 Cons

When a library package contains variable declarations, these variables comprise global
data. In this sense, global means potential visibility to multiple clients. Global data should
be avoided by default, because the effects of changes are potentially pervasive, throughout
the entire set of clients that have visibility to it. In effect the developer must understand
everything before changing anything. The introduction of new bugs is a common result. But
if, for some compelling reason, the design really called for global data, this idiom provides
the way to declare it. Note also that global constants are less problematic than variables
because they can't be changed.

2.2.2 Groups of Related Program Units
In this idiom, the package can contain all of the declarations allowed by the first idiom, but
also contains declarations for operations. These are usually subprograms but other kinds of
declarations are also allowed such as protected types and objects. Hence these packages
can contain:

• Objects (constants and variables)
• Types
• Exceptions
• Operations

8 Chapter 2. Essential Design Idioms for Packages
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Our intent is that the types declared in the package are used by the operations declared
in the package, typically in their formal parameters and/or function return types. In this
idiom, however, the types are not private.
For example:

package Linear_Algebra is
type Vector is array (Positive range <>) of Real;
type Matrix is array (Positive range <>, Positive range <>) of Real;
function "+" (Left, Right : Vector) return Vector;
function "*" (Left, Right : Vector) return Matrix;
-- ...

end Linear_Algebra;

In this example, Vector and Matrix are the types under consideration. The type Realmight
be declared here too, but it might be better declared in a Named Collection of Declarations
(page 8) package referenced in a with_clause. In any case, this package declares types and
subprograms that manipulate values of those types.
One might also declare variables in the package, but those should not be the central pur-
pose of the package. For example, perhaps we want to have a variable whose value is used
as the default for some formal parameters. Clients can change the default for subsequent
calls by first assigning a different value to the variable, unlike a hardcoded literal chosen
by the developer. It would look like this:

Default_Debounce_Time : Time_Span := Milliseconds (75);
-- The default amount of time used to debounce an input pin.
-- This value is tunable.

procedure Await_Active
(This : Discrete_Input;
Debounce_Time : Time_Span := Default_Debounce_Time);

With this idiom, information hiding applies to the implementation of the visible subpro-
grams in the package body as well as any internal entities declared in the body and used
in implementing the visible subprograms.
Asmentioned, these idioms apply to generic packages as well. For example, amore realistic
approach would be to make type Real be a generic formal type:

generic
type Real is digits <>;

package Linear_Algebra is
type Vector is array (Positive range <>) of Real;
type Matrix is array (Positive range <>, Positive range <>) of Real;
function "+" (Left, Right : Vector) return Vector;
function "*" (Left, Right : Vector) return Matrix;
-- ...

end Linear_Algebra;

2.2.2.1 Pros

The types and the associated operations are grouped together and are hence highly cohe-
sive. Such packages usually can be loosely coupled as well.
Clients have all the language-defined operations available that the type representations
provide. In the case of Vector and Matrix, clients have compile-time visibility to the fact
they are array types. Therefore, clients can manipulate Vector and Matrix values as ar-
rays: for example, they can create values via aggregates and use array indexing to access
specific components.

2.2. Implementation(s) 9
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2.2.2.2 Cons

Clients can write code that depends on the type's representation, and can be relied upon to
do so. Consequently, a change in the representation will potentially require redeveloping
the client code, which could be extensive and expensive. That is a serious disadvantage.
However, compile-time visibility to the type representations may be necessary to meet
client expectations. For example, engineers expect to use indexing with vectors and matri-
ces. As of Ada 2012, developers can specify themeaning of array indexing but the approach
is fairly heavy.

2.3 Notes
1. The rules for what these idiomatic packages contain are not meant to be iron-clad; hy-

brids are possible but should be considered initially suspect and reviewed accordingly.
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CHAPTER

THREE

ABSTRACT DATA TYPES

3.1 Motivation
In the Groups of Related Program Units (page 8) idiom, client compile-time visibility to the
type's representation is both an advantage and a disadvantage. Visibility to the represen-
tation makes available the expressiveness of low-level syntax, such as array indexing and
aggregates, but in so doing allows client source code to be dependent on the representa-
tion. In many cases, the resulting economic and engineering disadvantages of visibility on
the representation will outweigh the expressiveness advantages.
For the sake of illustration, let's create a stack type that can contain values of type Integer.
(We use type Integer purely for the sake of convenience.) Let's also say that any given
Stack object can contain at most a fixed number of values, and arbitrarily pick 100 for that
upper bound. The likely representation for the Stack type will require both an array for the
contained values and a stack pointer indicating the top of the stack. Hence this will be a
composite type, probably a record type. If we use the Groups of Related Program Units
(page 8) idiom the code might look like this:

package Integer_Stacks is
Capacity : constant := 100;
type Content is array (1 .. Capacity) of Integer;
type Stack is record

Values : Content;
Top : Integer range 0 .. Capacity := 0;

end record;
procedure Push (This : in out Stack; Item : in Integer);
procedure Pop (This : in out Stack; Item : out Integer);
function Empty (This : Stack) return Boolean;

end Integer_Stacks;

With this design the compiler will allow client code to directly read and update the two
components within any Stack object. For example, given some Stack variable named X,
the client can read the value of X.Top, say to determine if X is empty. But by the same
token, the client code could change X.Top to some arbitrary value unrelated to the logical
top of the stack, completely violating stack semantics.
As a result, where would one look in the source code to find a bug in the handling of some
Stack object? It could be literally anywhere in all the client code that uses package Inte-
ger_Stacks.
Similarly, changes to the internal representation of a type may become necessary as new
requirements are identified. At best, the client code will now fail to compile, making identifi-
cation of the problem areas simple. At worst, the client code will remain legal but no longer
functional. Perhaps an additional component was added that the original components now
rely upon, or the original components are used in new ways. Conceivably every client use
of Integer_Stacks might need to be changed. Once we find them all we'll have to rewrite
them to address the changes in the representation. That's potentially very expensive, per-
haps prohibitively so. Worse, our fixes will likely introduce new bugs.

11
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These disadvantages argue for an alternative. That is the purpose of this next idiom, known
as the Abstract Data Type (ADT)17,18.

3.2 Implementation(s)
Abstraction is one of the central principles of software engineering because it is one of the
primary ways that humans manage complexity. The idea is to focus on the essentials, in
effect the what, while ignoring all the inessential implementation details, i.e., the how. For
example, when we drive a car and want to stop, we press the brake pedal. We don't also
think about how the pedal makes the car stop, just that it does so. That's an example of
abstraction. In the same way, we know that pressing the accelerator pedal increases the
speed of the car, that rotating the steering wheel changes the direction of travel, and so
on. If to control the car we had to think about how each part actually works — the brake
cylinder and brake pads, the fuel injectors, the spark plugs, the steering shaft, the tie rods,
and everything else — we'd certainly crash.
We use abstraction in programming for the same reason. In higher-level languages, an
array is an abstraction for the combination of a base address and offset. A file system is
composed of a number of layered abstractions, including files (at the top), then tracks, then
sectors, then blocks, and ultimately down to individual bytes. A data structure, such as a
stack, a queue, or a linked list, is an example of an abstraction, as is a valve, an air-lock, and
an engine when represented in software. Even procedures and functions are abstractions
for lower-level operations. Decomposing via abstractions allows us to manage complexity
because at any given layer we can focus on what is being done, rather than how.
Therefore, an abstract data type is a type that is abstract in the sense that18:

• It is a higher level of abstraction than the built-in programming language types.
• It is functionally characterized entirely by the operations defined by the ADT itself,
along with the common basic operations such as assignment, object declarations, pa-
rameter passing, and so on. In particular, clients are not allowed to perform operations
that are determined by the type's internal representation. Ideally, this protection is
enforced by tools.

The ADT may also be abstract in the sense of object-oriented programming but that is an
unrelated issue.
In Ada we use private types to define abstract data types because private types make the
type's name, but not its representation, visible to clients. These types are composed using
syntactical building blocks: a package declaration, separated into two parts, containing
a type declared in two parts, and containing declarations for subprograms to manipulate
objects of the type via parameters. The compiler uses the building-blocks' compile-time
visibility rules to enforce the protections against representation-based operations. (We
assume the reader is familiar with private types, but this is such an important, central
facility in Ada that we will explain them in some detail anyway.)
Therefore, an ADT package declaration may contain any of the following:

• Constants (but probably not variables)
• A private type
• Ancillary Types
• Exceptions
• Operations

17 G. Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
18 B. Liskov and S. Zilles. Programming with Abstract Data Types. ACM SIGPLAN symposium on Very high level

languages, 1974.
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If possible, you should declare at most one private type per ADT package. This keeps things
simple and follows the "cohesive" principle. (Note that the limited-with construct directly
facilitates declaring mutually-dependent private types that are each declared in their own
dedicated packages). However, it's not unreasonable to declare more than one private type
in the same package, especially if one of the types is clearly the primary type and the other
private type is related to the first. For example, in defining an ADT for a maze, we could
declare a private type named Maze to be the primary abstraction. But mazes have positions
within them, and as clients have no business knowing how positions are represented, both
Maze and Position could reasonably be declared as private types in the same package.
You may use any form of private type with this idiom: basic private types,
tagged/abstract/limited private types, private type extensions, and so forth. What's im-
portant is that the representation occurs in the private part so that it's not compile-time
visible to clients.
The abstraction's operations consist of subprograms that each have one or more formal
parameters of the type. Clients will declare objects of the type and pass these objects as
formal parameters to manipulate those objects.
The operations are known as primitive operations because they have the compile-time
visibility to the private type's representation necessary to implement the required behavior.
Clients can create their own operations by calling the type's primitive operations, but
client's can't compile any operation that manipulates the internal representation.
Consider the following revision to the package Integer_Stacks, now as an ADT:

package Integer_Stacks is
type Stack is private;
procedure Push (This : in out Stack; Item : in Integer);
procedure Pop (This : in out Stack; Item : out Integer);
function Empty (This : Stack) return Boolean;
Capacity : constant := 100;

private
type Content is array (1 .. Capacity) of Integer;
type Stack is record

Values : Content;
Top : Integer range 0 .. Capacity := 0;

end record;
end Integer_Stacks;

The package declaration now includes the private reserved word, about half-way down
by itself in the example above, thus dividing the package declaration into the public part
and the private part. The compiler only allows clients compile-time visibility to the pack-
age public part. No client code that references anything in the private part will compile
successfully.
The declaration for the type Stack now has two pieces, one in the package visible part and
one in the package private part. The visible piece introduces the type name and ends with
the keyword private to indicate that its representation is not provided to clients.
Client code can use the type name to declare objects because the name is visible. Likewise,
clients can declare their own subprogramswith parameters of type Stack, or use type Stack
as the component type in a composite type declaration. Clients can use a private type in
any way that's consistent with the rest of the visible type declaration, except they can't see
anything representation-dependent.
The full type definition is in the package private part. Therefore, for any given object of
the type, the representation details — the two record components in this example — can't
be referenced in client code. Clients must instead only use the operations defined by the
package, passing the client objects as the actual parameters. Only the bodies of these
operations have compile-time visibility to the representation of the Stack parameters, so
only they can implement the functionality for those parameters.

3.2. Implementation(s) 13
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Because package-defined subprograms are the only code that can access the internals of
objects of the type, the designer's intended abstract operations are strictly enforced. They
are the only manipulations that a client can perform. As we mentioned, basic operations
such as assignment are allowed, unless the ADT is limited as well as private, but these basic
operations do not violate the abstraction.
You may, of course, also require other ancillary type declarations in the package, either for
the implementation or as types for additional parameters for the visible operations. The
array type Content is an example of the former case. When it is strictly an implementation
artifact, as in this case, it should be in the private part so that it's hidden from clients.
The ADT idiom extends the information hiding applied by the Groups of Related Program
Units (page 8) idiom to include the type's representation.
The compile-time lack of visibility to the representation means that clients no longer have
a way to construct ADT values from the constituent parts. For example, record aggregates
are no longer possible for clients using the Stack ADT. Likewise, clients no longer have
a way to read the individual constituent components. (Whether doing so is appropriate
will be addressed below.) Therefore, an ADT package may include constructor and selec-
tor/accessor subprograms. (The term constructor is only conceptually related to the same
term in some other languages, such as C++.)
For an example of an abstraction that includes constructors and selectors, imagine there is
no language-defined Complex number type. We could use the following ADT approach:

package Complex_Numbers is
type Complex_Number is private;
-- function operating on Complex_Number, eg "+" ...
-- constructors and selectors/accessors
function Make (Real_Part, Imaginary_Part : Float) return Complex_Number;
function Real_Part (This : Complex_Number) return Float;
function Imaginary_Part (This : Complex_Number) return Float;

private
type Complex_Number is record

Real_Part : Float;
Imaginary_Part : Float;

end record;
end Complex_Numbers;

In the above, the function Make is a constructor that replaces the use of aggregates for
constructing Complex_Number values. Callers pass two floating-point values to be assigned
to the components of the resulting record type. In the Stack ADT, a constructor for Stack
objects wasn't required because any stack has a known initial state, i.e., empty, and the
component default initialization is sufficient to achieve that state. Complex numbers don't
have any predeterminable state so the constructor is required.
Likewise, functions Real_Part and Imaginary_Part are selector/accessor functions that
return the corresponding individual component values of an argument of type Com-
plex_Number. They are needed because the mathematical definition of complex numbers
has those two parts, so clients can reasonably expect to be able to get such values from
a given object. (The function names need not be distinct from the component names, but
can be if desired.)
However, by default, selector/accessor functions are not included in the ADT idiom, and
especially not for every component of the representation. There are no getter operations
if you are familiar with that term.
There may be cases when what looks like an accessor function is provided, when in fact the
function computes the return value. Similarly, there may be functions that simply return the
value of a component but are part of the abstraction and happen to be implementable by
returning the value of a component. For example, a real stack's ADT package would include
a function indicating the extent of the object — that is, the number of values currently
contained. In our example implementation the Top component happens to indicate that
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value, in addition to indicating the current top of the stack. The body of the Extent function
can then be as follows:

function Extent (This : Stack) return Natural is (This.Top);

But a different representation might not have a Top component, in which case the function
would be implemented in some other way. (For example, we could have declared a subtype
of Natural, using Capacity as the upper bound, for the function result type.)
You should not include true getter functions that do not meet an abstraction-defined re-
quirement and exist purely to provide client access to the otherwise hidden representation
components included. Their usage makes the client code dependent on the representation,
just as if the client had direct access. For the same reason, by default there are no setter
procedures for the representation components. Both kinds of operations should be consid-
ered highly suspect. There's no point in hiding the representation if these operations will
make it available to clients, albeit indirectly.

3.3 Pros
The advantages of an ADT are due to the strong interface presented, with guaranteed
enforcement by the compiler rather than by reliance on clients' good behavior. The ADT
designer can rely on client adherence to the intended abstraction because client code that
violates the designer's abstraction by directly manipulating the internals of the type will
not compile; clients must call the designer's operations to manipulate the objects.
A package defining a strong interface will exhibit high cohesion, thereby aiding comprehen-
sion and consequently easing both development and maintenance.
An ADT enhances maintainability because a bug in the ADT implementation must be in
the package that defines the ADT itself. The rest of the application need not be explored
because nothing elsewhere that accessed the representation would compile. (We ignore
child packages for the time-being.) The maintenance phase is the most expensive of the
project phases for correcting errors, so this is a significant benefit.
Although changes to the internal representation of an ADT may become necessary, the
scope of those changes is limited to the ADT package declaration and body because legal
client code cannot depend on the representation of a private type. Consequently, changes
to the type's representation can only require recompilation (and hence relinking) of client
code, but not rewriting.
A change in representation may have non-functional considerations that prompt a change
in client usage, such as performance changes, but it will not be a matter of the legality of
the client code. Illegal client usage of an ADT wouldn't have compiled successfully in the
first place.
The private type is the fundamental approach to creating abstractions in Ada, just as the use
of the public, private, and protected parts of classes is fundamental to creating abstractions
in class-oriented languages. Not every type can be private, as illustrated by the client
expectation for array indexing in Ada prior to Ada 2012. Not every type should be private,
for example those that are explicitly numeric. But the ADT should be the default design
idiom when composing a solution.

3.4 Cons
There is more source code text required in an ADT package compared to the idiom in which
the representation is not hidden (theGroups of Related Program Units (page 8)). The bulk of
the additional text is due to the functions and procedures required to provide the capabilities
that the low-level representation-based syntax might have provided, i.e., the constructor
and selector/accessor functions. We say might have provided because these additional
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operations are by no means necessarily included. In general, the additional text required
for private types is worth the protections afforded.

3.5 Relationship With Other Idioms
The package-oriented idioms described here and previously (page 7) are the foundational
program composition idioms because packages are the primary structuring unit in Ada.
That is especially true of the Abstract Data Type (page 11) idiom, which is the primary type
specification facility in Ada. We will describe additional package-oriented idioms, especially
regarding hierarchical packages, but those kinds of packages are optional.
The basic package is not optional in Ada for a program of any significant size or complexity.
(One could have a program consisting entirely of the main program, but either that program
is relatively simple and small or it is badly structured.) As a consequence, other idioms will
exist within packages designed using one of these idioms or some other package idiom.

3.6 Notes
1. With the package idioms that declare one or more types, especially the ADT idiom, the

principle of Separation of Concerns dictates that objects of the type used by clients be
declared by clients in client units, not in the same package that declares the type or
types.

2. The Ada Rationale document did not introduce the concept of Abstract Data Types.
The ADT concept had already been introduced and recognized as effective when the
first version of Ada was being designedPage 12, 18. The Ada language requirements doc-
ument, Steelman19, uses the term "Encapsulated Definitions" and describes the infor-
mation hiding to be provided. Steelman does not specify the implementation syntax
because requirements documents do not include such directives. The language de-
signers implemented those requirements via package private parts and private types.

3. The ADT is the conceptual foundation for the class construct's visibility control in some
class-oriented languages.

19 HOLWG.Department of Defense Requirements for High Order Computer Programming Language "STEELMAN".
Department of Defense, 1978.
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FOUR

ABSTRACT DATA MACHINES

4.1 Motivation
In some systems, only one logical "instance" of an abstraction should exist in the software.
This requirement may stem from the functionality involved. For example, a subsystem-
level software logging facility should be unique at that level. Likewise, the function of a
hardware device may be such that only one instance should exist in both the system and
the software. A security device that validates users would be an example. Another reason
can be simple physical reality. There might be only one on-board or on-chip device of some
sort. Execution on that board or chip entails there being only one such device present.
How can the software representing the abstraction best implement this requirement?
The Abstract Data Type (ADT) Abstract Data Type (page 11) idiom is the primary abstraction
definition facility in Ada. Given an ADT that provides the required facility you could simply
declare a single object of the type. But how could you ensure that some other client,
perhaps in the future, doesn't declare another object of the type, either accidentally or
maliciously?
As a general statement about program design, if there is something that must not be al-
lowed, the ideal approach is to use the language rules to make it impossible. That's far
better than debugging. For example, we don't want clients to have compile-time access to
internal representation artifacts, so we leverage the language visibility rules to make such
access illegal. The compiler will then reject undesired references, rigorously.
The occasional need to control object creation is well-known, so much so that there is a
design pattern for creating an ADT in which only one instance can ever exist. Known as the
"singleton" pattern, the given programming language's rules are applied such that only the
ADT implementation can create objects of the type. Clients cannot do so. The implemen-
tation only creates one such object, so multiple object declarations are precluded.
Singletons can be expressed easily in Ada Controlling Object Initialization and Creation
(page 35) but there is an alternative in this specific situation.
This idiom entry describes the alternative, known as the Abstract Data Machine (ADM). The
Abstract Data Machine was introduced by Grady Booch21 as the Abstract State Machine, but
that name, though appropriate, encompasses more in computer science than we intend to
evoke.

4.2 Implementation(s)
The ADM is similar to the ADT idiom in that it presents an abstraction that doesn't already
exist in the programming language. Furthermore, like the ADT, operations are provided to
clients to manipulate the abstraction state, which is not otherwise compile-time visible to
client code.
21 G. Booch. Software Engineering with Ada. Benjamin/Cummings Publishing Company, 1983.
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Unlike the ADT, however, the ADM does not define the abstraction as a type. To understand
this difference, first recall that type declarations are descriptions for objects that will contain
data (the state). For example, our earlier Stack ADT was represented as a record containing
two components: an array to hold the values logically contained by the Stack and an integer
indicating the logical top of that array (the stack pointer). No data actually exists, i.e., is
allocated storage, until objects of the type are declared. Clients can declare asmany objects
of type Stack as they require and each object has a distinct, independent copy of the data.
Continuing the Stack example, clients could choose to declare only one object of the Stack
type, in which case only one instance of the data described by the Stack type will exist:

Integer_Stack : Stack;

But, other than convenience, there is no functional difference from the client declaring
individual variables of the representational component types directly, one for the array and
one for the stack pointer:

Capacity : constant := 100;
type Content is array (1 .. Capacity) of Integer;
Values : Content;
Top : Integer range 0 .. Capacity := 0;

or even this, using an anonymously-typed array:

Capacity : constant := 100;
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

If there is to be only one logical stack, these two variables will suffice.
That's what the ADM does. The state variables are declared directly within a package, rather
than as components of a type. In that way the package, usually a library package, declares
the necessary state for a single abstraction instance. But, as an abstraction, those data
declarations must not be compile-time visible to clients. Therefore, the state is declared in
either the package private part or the package body. Doing so requires that visible opera-
tions be made available to clients, as with the ADT. Hence the combination of a package,
the encapsulated variables, and the operations is the one instance of the abstraction. That
combination is the fundamental concept for the ADM idiom.
Therefore, the package declaration's visible section contains only the following:

• Constants (but almost certainly not variables)
• Ancillary Types
• Exceptions
• Operations

The package declaration's private part and the package bodymay contain all the above, but
one or the other (or both) will contain variable declarations representing the abstraction's
state.
Consider the following ADM version of the package Integer_Stacks, now renamed to In-
teger_Stack for reasons we will discuss shortly. In this version we declare the state in the
package body.

package Integer_Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
Capacity : constant := 100;

end Integer_Stack;

(continues on next page)
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(continued from previous page)
package body Integer_Stack is

Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;
procedure Push (Item : in Integer) is
begin

-- ...
Top := Top + 1;
Values (Top) := Item;

end Push;
procedure Pop (Item : out Integer) is ... end Pop;
function Empty return Boolean is (Top = 0);

end Integer_Stack;

Note how the procedure and function bodies directly access the local variables hidden in
the package body.
For those readers familiar with programming languages that can declare entities to be
"static," the effect is as if the two variables in the package body are static variables.
When using this idiom, there is only one stack (containing values of some type, in this case
type Integer). That's why we changed the name of the package from Integer_Stacks, i.e.,
from the plural form to the singular. It may help to note that what is now the package name
was the name of the client's variable name when there was a Stack type involved.
As with the ADT idiom, clients of an ADM can only manipulate the encapsulated state via the
visible operations. The difference is that the state to be manipulated is no longer an object
passed as an argument to the operations. For illustration, consider the Push procedure.
The ADT version requires the client to pass the Stack object intended to contain the new
value (i.e., the actual parameter for the formal named This):

procedure Push (This : in out Stack; Item : in Integer);

In contrast, the ADM version has one less formal parameter, the value to be pushed:

procedure Push (Item : in Integer);

Here is a call to the ADM version of Push:

Integer_Stack.Push (42);

That call places the value 42 in the (hidden) array Integer_Stack.Values located within
the package body. Compare that to the ADT approach, in which objects of type Stack are
manipulated:

Answers : Stack;
-- ...
Push (Answers, 42);

That call places the value 42 in the (hidden) array Answers.Values, i.e., within the Answers
variable. Clients can declare as many Stack objects as they require, each containing a
distinct copy of the state defined by the type. In the ADM version, there is only one stack
and therefore only one instance of the state variables. Hence the Stack formal parameter
is not required.
Rather than declare the abstraction state in the package body, we could just as easily
declare it in the package's private section:

package Integer_Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;

(continues on next page)
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(continued from previous page)
Capacity : constant := 100;

private
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

end Integer_Stack;

Doing so doesn't change anything from the client code point of view; just as clients have
no compile-time visibility to declarations in the package body, they have no compile-time
visibility to the items in the package private part. This placement also doesn't change the
fact that there is only one instance of the data. We've only changed where the data are
declared. (We will ignore the effect of child packages here.)
Because the two variables are implementation artifacts we don't declare them in the pack-
age's visible part.
Note that the private section wasn't otherwise required when we chose to declare the data
in the package body.
The ADM idiom applies information hiding to the internal state, like the ADT idiom, except
that the state is not in an object declared by the client. Also, like the Groups of Related
Program Units (page 8), the implementations of the visible subprograms are hidden in the
package body, along with any non-visible entities required for their implementation.
There are no constructor functions returning a value of the abstraction type because the
abstraction is not represented as a type. However, there could be one or more initialization
procedures, operating directly on the hidden state in the package private part or package
body. In the Stack ADM there is no need for them because of the abstraction-appropriate
default initial value, as is true of the ADT version.
The considerations regarding selectors/accessors are the same for the ADM as for the ADT
idiom, so they are not provided by default. Also like the ADT, so-called getters and setters
are highly suspect and not provided by the idiom by default.
As mentioned, the ADM idiom can be applied to hardware abstractions. For example, con-
sider a target that has a single on-board rotary switch for arbitrary use by system design-
ers. The switch value is available to the software via an 8-bit integer located at a dedicated
memory address, mapped like so:

Switch : Unsigned_8 with
Volatile,
Address => System.Storage_Elements.To_Address (16#FFC0_0801#);

Reading the value of the memory-mapped Switch variable provides the rotary switch's
current value.
However, on this target the memory at that address is read-only, and rightly so because
the only way to change the value is to physically rotate the switch. Writing to that address
has no effect whatsoever. Although doing so is a logical error no indication is provided by
the hardware, which is potentially confusing to developers. It certainly looks like a variable,
after all. Declaring it as a constant wouldn't suffice because the user could rotate the switch
during execution.
Furthermore, although mapped as a byte, the physical switch has only 16 total positions,
read as the values zero through fifteen. An unsigned byte has no such constraints.
The compiler will enforce the read-only view and the accessor operation can handle the
range constraint. The ADM is a reasonable choice because there is only one such physical
switch; a type doesn't bring any advantages in this case. The following illustrates the
approach:

with Interfaces; use Interfaces;
package Rotary_Switch is

(continues on next page)
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(continued from previous page)
subtype Values is Unsigned_8 range 0 .. 15;
function State return Values;

end Rotary_Switch;

Clients can then call the function Rotary_Switch.State to get the switch's current value,
as a constrained subtype. The body will handle all the details.

with System.Storage_Elements; use System.Storage_Elements;
package body Rotary_Switch is

Switch : Unsigned_8 with Volatile, Address => To_Address (16#FFC0_0801#);
function State return Values is
begin

if Switch in Values then
return Switch;

else
raise Program_Error;

end if;
end State;

end Rotary_Switch;

The range check in the function body might be considered over-engineering because the
switch is a physical device that cannot have more than 16 values, but physical devices have
a habit of springing surprises. Note that attribute Valid20 would not be useful here because
there are no invalid bit patterns for an unsigned integer. If, on the other hand, we were
working with an enumeration type, for example, then 'Valid would be useful.

4.3 Pros
In terms of abstraction and information hiding, the ADM idiom provides the same advan-
tages as the ADT idiom: clients have no visibility to representation details and must use
the operations declared in the package to manipulate the state. The compiler enforces this
abstract view. The ADM also has the ADT benefit of knowing where any bugs could possibly
be located. If there is a bug in the behavior, it must be in the one package defining the
abstraction itself. No other code would have the compile-time visibility necessary.
In addition, less source code text is required to express the abstraction.

4.4 Cons
The disadvantage of the ADM is the lack of flexibility.
An ADM defines only one abstraction instance. If more than one becomes necessary, the
developer must copy-and-paste the entire package and then change the new package's
unit name. This approach doesn't scale well.
Furthermore, the ADM cannot be used to compose other types, e.g., as the component type
in an array or record type. The ADM cannot be used to define the formal parameter of a
client-defined subprogram, cannot be dynamically allocated, and so on.
But if one can know with certainty that only one thing is ever going to be represented, as
in the hardware rotary switch example, the ADM limitations are irrelevant.

20 https://learn.adacore.com/courses/advanced-ada/parts/data_types/types_representation.html#
adv-ada-valid-attribute
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FIVE

PROGRAMMING BY EXTENSION

5.1 Motivation
When declaring entities in a package, developers should ensure that the client view —
the package visible part — contains no implementation artifacts. Doing so is important
conceptually, but also practically, because any declarations visible to clients inevitably will
be used by clients and, as a result, will become permanent fixtures because removal would
cause expensive changes in the client code.
The intended client API declarations must be in the package visible part, of course. The
question, then, is whether to declare implementation artifacts in the package private part
or in the package body. Those are the two parts of a package that do not make declarations
compile-time visible to client code.
Some of these entities must be declared in the package private part because they are
required in the declaration of some other entity appearing in that part. For example, when
using the ADT idiom (page 11), an ancillary type might be required for the completion of
the private type. That was the case with the ADT version (page 13) of the Integer_Stacks
package, repeated here for convenience:

package Integer_Stacks is
type Stack is private;
-- ...
Capacity : constant := 100;

private
type Content is array (1 .. Capacity) of Integer;
type Stack is record

Values : Content;
Top : Integer range 0 .. Capacity := 0;

end record;
end Integer_Stacks;

The array type Content is required for the Stack record component because anonymously-
typed array components are illegal. Clients have no business using the type Content di-
rectly so although it would be legal to declare it in the public part, declaration in the private
part is more appropriate.
Likewise, a function called to provide the default initial value for a private type's component
must be declared prior to the reference. If the function is truly only part of the implemen-
tation, we should declare it in the package private part rather than the public part.
In contrast, there may be implementation-oriented entities that are referenced only in the
package body. They could be declared in the package body but could alternatively be
declared in the package declaration's private part. Those are the entities (declarations) in
question for this idiom.
For a concrete example, here is an elided ADM version of the stack abstraction (page 18),
with the stack state declared in the package body:
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package Integer_Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
Capacity : constant := 100;

end Integer_Stack;

package body Integer_Stack is
Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;
procedure Push (Item : in Integer) is
begin

-- ...
Top := Top + 1;
Values (Top) := Item;

end Push;
procedure Pop (Item : out Integer) is ...
function Empty return Boolean is ...

end Integer_Stack;

We could add the private part to the package declaration and move the state of the ADM
(page 17) — the two variables in this case — up there without any other changes. The
subprogram bodies have the same visibility to the two variables either way. (There is no
requirement for the Content type because Values is not a record component; anonymously-
typed array objects are legal.) From the viewpoint of the language and the abstraction, the
location is purely up to the developer.

5.2 Implementation(s)
When you have a choice of placement, putting the state in either the package private part or
the package body is reasonable, but only one of the two is amenable to future requirements.
Specifically, placement in the private part of the package allows programming by exten-
sion23 via hierarchical child packages. Child packages can be written immediately after the
parent package but can also be written years later, thus accommodating changes due to
new requirements.
Programming by extension allows us to extend an existing package's facilities without hav-
ing to change the existing package at all. Avoiding source code changes to the existing
package is important because doing so might be very expensive. In certified systems, the
changed package would require re-certification, for example. Changes to the parent pack-
age are avoidable because child packages have compile-time visibility to the private part of
the ancestor package (actually the entire ancestor package hierarchy, any of which could
be useful). Thus, the extension in the child package can depend on declarations in the
existing parent package's private part.
Therefore, if the developer can know, with certainty, that no visibility beyond the one pack-
age will ever be appropriate, the declaration should go in the package body. Otherwise, it
should go in the package private part, just in case an extension becomes necessary later.
Using our ADM stack example, we could move the state from the package body to the
private part:

package Integer_Stack is
procedure Push (Item : in Integer);
procedure Pop (Item : out Integer);
function Empty return Boolean;
Capacity : constant := 100;

(continues on next page)
23 J. Barnes. Programming In Ada 95. Addison-Wesley, 1998.
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(continued from previous page)
private

Values : array (1 .. Capacity) of Integer;
Top : Integer range 0 .. Capacity := 0;

end Integer_Stack;

Note that the private part was not otherwise required by the language in this example.
With that change, a new child package could be created with extended functionality:

package Integer_Stack.Utils is
procedure Reset;

end Integer_Stack. Utils;

package body Integer_Stack.Utils is
procedure Reset is
begin

Top := 0;
end Reset;

end Integer_Stack.Utils;

These child packages are not client code, they contain extensions to the existing abstrac-
tion. Hence they are part of what may be considered a subsystem consisting of the original
package and the new child package. The child package contains an extension of the ab-
straction defined by the parent package, so the child is directly related. Given that charac-
terization of child packages we can say that the parent package private part is not visible
to client code and, therefore, does not represent a leak of implementation details to clients.

5.3 Pros
We can extend an abstraction without changing the source code defining that abstraction,
thereby meeting new requirements without incurring potentially expensive redevelopment.

5.4 Cons
Clients could abuse the hierarchical package visibility rules by creating a child package that
doesn't really extend the existing package abstraction.
Abuse of the visibility rules allows child packages that can break the abstraction. For ex-
ample, if we only change the name of procedure Reset in package Integer_Stack.Utils
to Lose_All_Contained_Data then the routine has a rather different complexion.
Similarly, abuse of the visibility rules allows child packages that can indirectly leak state
from the parent package. For example:

package Integer_Stack.Leaker is
function Current_Top return Integer;

end Integer_Stack.Leaker;

package body Integer_Stack.Leaker is
function Current_Top return Integer is (Top);

end Integer_Stack.Leaker;

We could do that without even requiring a package body, using an expression function for
the completion:

package Integer_Stack.Leaker is
function Current_Top return Integer;

(continues on next page)
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(continued from previous page)
private

function Current_Top return Integer is (Top);
end Integer_Stack.Leaker;

The function must be completed in the private part because that is where compile-time
visibility to the parent begins within a child package.
Code reviews are the only way to detect these abuses, although detection of potential cases
could be automated with an analysis tool such as Libadalang22.

5.5 Relationship With Other Idioms
We assume the use of the Abstract Data Type (page 11) or Abstract Data Machine (page 17)
idioms for the existing package abstraction, as well as for the child package.

5.6 Notes
This guideline will already be used when developing a subsystem (a set of related packages
in an overall hierarchy) as a structuring approach during initial development. The idiom
discussed here is yet another reason to use the private part, but in this case for the sake
of the future, rather than initial, development.
The very first version of Ada (Ada 83) did not have hierarchical library units so, typically,
anything not required in the private part was declared in the package body. Declaring them
in the private part would only clutter the code that had to be there, without any benefit.
The author's personal experience and anecdotal information confirms that after Ada 95
introduced hierarchical library units, some declarations in existing package bodies tended
to "percolate up" to the package declarations' private parts.

22 https://github.com/AdaCore/libadalang
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SIX

CONSTRUCTOR FUNCTIONS FOR ABSTRACT DATA TYPES

6.1 Motivation
In languages supporting object-oriented programming (OOP), including Ada, constructors
are not inherited when one type is derived from another. That's appropriate because, in
general, they would be unable to fully construct values for the new type. The purpose
of this idiom is to explain how Ada defines constructors, how the language rules prevent
constructor inheritance, and how to design the constructor code in light of those rules.
Ada uses tagged types to fully support dynamic OOP. Therefore, in the following, a derived
type refers to a tagged type that is declared as a so-called type extension — a form of
inheritance — based on some existing parent tagged type. The extension consists of ad-
ditional components and/or additional or changed operations beyond those inherited from
the existing parent type.
This discussion assumes these tagged types are declared in packages designed using the
Abstract Data Type (page 11) (ADT) idiom. We strongly recommend the reader be comfort-
able with that idiom before proceeding.
As abstract data types, the parent type is a private type, and the derived type is a private
extension. A private extension is a type extension declaration that does not reveal the
components added, if any. The parent type could itself be an extended type, but the point
is that these types will all be private types one way or another. Declarations as private types
and private extensions are not required by the language for inheritance, but as argued in
the ADT idiom discussion, doing so is recommended in the strongest terms. OOP doesn't
change that, and in fact the encapsulation and information hiding that are characteristic of
the ADT idiom are foundational principles for OOP types.
For an example of a private extension, given a tagged type named Graphics.Shape one
can declare a new type named Circle via type extension:

type Circle is new Graphics.Shape with private;

This declaration will be in the public part of a package, but, as a private type extension,
the additional components are not compile-time visible to client code, conforming to ADT
requirements. That's what the reserved word private indicates in the type declaration.
Instead of a distinct constructor syntax, Ada uses regular functions to construct objects.
Specifically, so-called constructor functions are functions that return an object of the type.

type Circle is new Graphics.Shape with private;

function New_Circle (Radius : Float) return Circle;

Like any function there may be formal parameters specified, but not necessarily.
Functions and procedures that manipulate objects of the private type are primitive opera-
tions for the type if they are declared in the same package as the type declaration itself.
For procedures, that means they have formal parameters of the type. For functions, that
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means they either have formal parameters of the type, or return a value of the type, or
both.
Declaration within the same package as the type itself provides the compile-time visibility
to the type's representation required to implement the subprograms.
Other operations might be declared in the same package too, but if they do not manipulate
or return values of the type they are not primitive operations for the type. (Their location
in that package is somewhat suspect and should be reviewed explicitly.)
Primitive operations, and only primitive operations, are inherited during type derivation.
If you think in terms of Abstract Data Types all these rules make sense.
Now, here's the rub.
Constructor functions require that same compile-time visibility so the intuitive approach
will be to declare them in the same package declaration as the type. As a result, they will
be primitive operations for that type.
However, that means that the constructor functions will be inherited, contrary to the expec-
tation for constructors. Therefore, Ada has rules specific to primitive constructor functions
that have the effect of preventing their inheritance.
The explanation and illustration for these rules first requires explanation of the word ab-
stract. We mentioned above that the package enclosing the type will be designed with the
Abstract Data Type (page 11) idiom. In that idiom abstract means that the type represents
an abstraction. (See that section for the details.)
The term abstract also has a meaning in OOP, one that is unrelated to an ADT. In OOP, an
abstract type is one that defines an interface but at most a partial implementation. As such,
the type can serve as the ancestor type for derived types but cannot be used to declare
objects. An abstract type in Ada includes the reserved word abstract in the declaration.
For example:

type Foo is abstract tagged private;

Similarly, subprograms can be abstract. These again define an interface, via the subpro-
gram formal parameters and result type, but are not callable units. In Ada these too include
the word abstract in their declarations, for example:

procedure Do_Something (This : in out Foo) is abstract;

Now we can explain how Ada prevents constructor inheritance.
Whenever a tagged type is extended, all inherited constructor functions automatically be-
come abstract functions for the extended type, just as if they were explicitly declared ab-
stract.
However, only abstract types can legally have abstract primitive operations. Concrete types
may not, so that we can never dynamically dispatch to a subprogram without an actual
implementation.
Therefore, unless the extended child type is itself abstract, the type extension will be illegal.
The compiler will reject the declaration of the child type, thus preventing this inappropriate
constructor inheritance.
For an example, both to illustrate the code and the Ada rules, consider this simple package
declaration that presents the tagged private type Graphics.Shape:

package Graphics is
type Shape is tagged private;
function Make (X, Y : Float) return Shape;
...

private
(continues on next page)

28 Chapter 6. Constructor Functions For Abstract Data Types



Ada In Practice

(continued from previous page)
type Shape is tagged record

X : Float := 0.0;
Y : Float := 0.0;

end record;
end Graphics;

Note in particular the primitive constructor function named Make that constructs a value of
type Shape.
Because type Shape is tagged, other types can extend it:

with Graphics;
package Geometry is

type Circle is new Graphics.Shape with private; -- a private extension
-- ...

private
type Circle is new Graphics.Shape with record

Radius : Float;
end record;

end Geometry;

Type Circle automatically inherits the components and primitive operations defined by
type Shape, including the constructor function Make. No additional declarations are re-
quired in order to inherit these operations or components. The inherited operations are
now primitive operations for the new type.
Inherited primitive operations have an unchanged formal parameter and result-type profile,
except for the controlling parameter type name, so although Make now returns a Circle
object, the function still only has parameters for the X and Y components. Hence this version
of Make could not set the Radius component in the returned Circle value to anything other
than some default.
Therefore, to prevent this inherited function from being available, two Ada rules come into
play. The first rule specifies that the implicit function is inherited as if declared explicitly
abstract:

function Make (X, Y : Float) return Circle is abstract;
-- as actually inherited, implicitly

Note the reserved word abstract in the implicit function declaration. This declaration
doesn't actually appear in the source code because all the inherited primitive operations
are implicitly declared.
Another rule specifies that only abstract types can have abstract primitive subprograms.
Type Circle is not abstract in this sense, therefore the combination of those two rules
makes the Circle type extension illegal. Package Geometry will not compile successfully.
Failing to compile is safe — it prevents clients from having a callable function that in general
cannot suffice — but requires an alternative so that sufficient constructor functions are
possible.
Therefore, a general design idiom is required for defining constructor functions for concrete
tagged Abstract Data Types.

6.2 Implementation(s)
The general approach uses functions for constructing objects but prevents these functions
from being inherited. The problem is thus circumvented entirely.
To prevent their being inherited, the implementation prevents the constructor functions
from being primitive operations. However, these functions require compile-time visibility

6.2. Implementation(s) 29



Ada In Practice

to the parent type's representation in order to construct values of the type, as this typically
involves assigning values to components in the return object. The alternative approach
must supply the compile-time visibility that primitive operations have.
Therefore, the specific implementation is to declare constructor functions in a separate
package that is a child of the package declaring the tagged type. This takes advantage of
the hierarchical library units capability introduced in Ada 95.
Operations declared in a child package are not primitive operations for the type in the
parent package, so they are not inherited when that type is extended. Consequently they
do not become abstract.
In addition, the required visibility to the parent type's representation in the private part will
be available to the functions' implementations because the private part and body of a child
package have compile-time visibility to the parent package's private part.
In this idiom, any package declaring a tagged type, either directly or by type extension, will
have a constructors child package if constructors are required. For example:

package Graphics.Constructors is
function Make (X, Y : Float) return Shape;

end Graphics.Constructors;

and similarly, for Circle:

package Geometry.Constructors is
function Make (X, Y, R : Float) return Circle;

end Geometry.Constructors;

Each of these two package declarations will have a package body containing the body of the
corresponding function. In fact such packages can declare as many constructor functions
as required, overloaded or not.
Clients that want to use a constructor function will specify the constructor package in the
context clauses for their units, as usual. The constructor package body for an extended
type might very well do so itself, as shown below:

with Graphics.Constructors; use Graphics.Constructors;
package body Geometry.Constructors is

function Make (X, Y, R : Float) return Circle is
(Circle'(Make (X, Y) with Radius => R));

end Geometry.Constructors;

Of course, the name "Constructors" is not required for the child packages. It could be
"Ctors", for example (a name common in C++), or something else. But whatever the
choice, regularity enhances comprehension so the same child package name should be
used throughout.

6.3 Pros
The issue is sidestepped entirely, and as an additional benefit, the parent packages are
that much simpler because the constructor function declarations and bodies are no longer
present there. The constructors child packages themselves will be relatively simple since
they contain only the constructor functions and any ancillary code required to implement
them. Simpler code enhances comprehension and correctness.
Having the constructors declared in separate packages applies the principle of Separation
of Concerns, between the code defining the type's semantics and the code for constructing
objects of the type. This principle also enhances comprehension.
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6.4 Cons
There will be a child package for each tagged type that requires constructors, hence more
packages and files (assuming one unit per file, which is desirable in itself, even if not re-
quired by the language).
Some developers might argue for having fewer files, presumably containing larger units.
In the author's experience larger units make comprehension, and therefore correctness,
unjustifiably difficult if smaller units are possible. Some units are unavoidably large and
complicated but often we can achieve relative simplicity.
For those developers, however, the constructor package could be declared instead as a
nested package located within the package defining the tagged type. Doing so would
achieve the same effect as using a child package because the contained functions would
not be primitive. Therefore, they would not inherited.
This alternative would reduce the number of files back to the minimum. However, the
defining package would be relatively more complicated because of this nested package.
Note that the nested package declaration would require a nested package body too.
In short, the alternative reduces the number of files at the cost of additional unit complexity.
(If the issue with the larger number of files is difficulty in locating individual entities of
interest, any decent IDE will make doing so trivial.)
The alternative also loses the distinction between clients that use objects of the type and
clients that create those objects, because, with the child package approach, the latter will
be the only clients that have context clauses for the constructor packages.

6.5 Relationship With Other Idioms
N/A

6.6 Notes
For those interested, in this section we provide a discussion of alternatives to the imple-
mentation presented, and why they are inadequate.
Changing the behavior of an inherited operation requires an explicit conforming subprogram
declaration and therefore a new subprogram body for that operation. This change is known
as overriding the inherited operation.
Package Geometry could declare a function with the additional parameters required to fully
construct a value of the new type. In this case the new constructor would include the
Radius parameter:

function Make (X, Y, Radius : Float) return Circle;

But such a function would not be overriding for the inherited version because the parameter
and result type profile would be different. This function Make would overload the inherited
function, not override it. The inherited function remains visible, as-is.
In fact, we could even have the compiler confirm that this is not an overriding function by
declaring it so:

not overriding function Make (X, Y, Radius : Float) return Circle;

In general, specifying that a subprogram is not overriding is less convenient than specifying
that it is overriding. We only do so in these examples to make everything explicit.
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Because that new function is not overriding, the inherited version remains implicitly ab-
stract and the type extension remains illegal. Developers could also override the inherited
function, which would make the code legal, but as we have said such a function cannot
properly construct values in general, and might be called accidentally. For example:

with Graphics;
package Geometry is

type Circle is new Graphics.Shape with private;

overriding function Make (X, Y : Float) return Circle;

not overriding function Make (X, Y, Radius : Float) return Circle;
-- overloading

...
private

-- ...
end Geometry;

Although the overridden Make does not have a Radius parameter and could only assign
some default to that component, if that default is reasonable then the overridden function
could be called on purpose, i.e., not accidentally. That's not a general approach, however.
Alternatively, developers could use procedures as their constructors, with a mode-out pa-
rameter for the result. The procedure would not become implicitly abstract in type exten-
sions, unlike a function.

package Graphics is
type Shape is tagged private;
procedure Make (Value : out Shape; X, Y : in Float);

private
-- ...

end Graphics;

And then the client extension would inherit the procedure:

with Graphics;
package Geometry is

type Circle is new Graphics.Shape with private;
-- procedure Make (Value : out Circle; X, Y : in Float); -- inherited

private
-- ...

end Geometry;

However, although now legal, the inherited procedure would not suffice, lacking the re-
quired parameter for the Radius component.
Developers might then add an overloaded version with the additional parameter:

with Graphics;
package Geometry is

type Circle is new Graphics.Shape with private;

-- procedure Make (Value : out Circle; X, Y : in Float);
-- inherited

not overriding procedure Make (Value : out Circle; X, Y, R : in Float);
-- not inherited

private
-- ...

end Geometry;

But the same issues arise as with functions. Clients might accidentally call the wrong proce-
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dure, i.e., the inherited routine that doesn't have a parameter for the Radius. That routine
would not even mention the Radius component, much less assign a default value, so it
would have to be overridden in order to do so. This too is not a general approach.
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SEVEN

CONTROLLING OBJECT INITIALIZATION AND CREATION

7.1 Motivation
Developers are responsible for ensuring that no uninitialized objects are read in Ada pro-
grams. Default initialization is a good way to meet this requirement because it is guaran-
teed to happen and requires no actions on the part of the client code. But of the many
kinds of types provided by Ada, only access types have a language-defined default initial
value. Fortunately, Ada supports user-defined default initialization for user-defined types.
Default initialization is conveniently expressed, especially because components of record
types can have default initial values. Record types are perhaps the most commonly used
non-numeric type in the language. Sometimes a given type was wrapped inside a record
type purely for the sake of default component initialization, e.g., numeric types. That wrap-
ping approach is less common than in earlier versions of the language, given the compara-
tively more recent aspect Default_Value for scalar types, and Default_Component_Value
for scalar array components.
These facilities are often sufficient to express an abstraction's initial state. For example, we
can expect that container objects will be initially empty. Consider a bounded stack ADT. The
representation is likely a record type containing an array component and a Top component
indicating the index of the last array component used. We can default initialize objects to
the empty state simply by setting Top to zero in the record component's declaration:

type Content is array (Positive range <>) of Element;
type Stack (Capacity : Positive) is record

Values : Content (1 .. Capacity);
Top : Natural := 0;

end record;

For an unbounded container such as a simple binary tree, if the representation is an access
type, the automatic default value null initializes Tree objects to the empty state.

package Binary_Trees is
type Tree is limited private;
...

private
type Leaf_and_Branch is record ...
type Tree is access Leaf_and_Branch;
...

end Binary_Trees;

In both cases, simply declaring an object in the client code is sufficient to ensure it is initially
empty.
However, not all abstractions have a meaningful default initial state. Default initialization
will not suffice to fully initialize objects in these cases, so explicit initialization is required.
An explicit procedure call could be used to set the initial state of an object (passed to a
mode-out parameter), but there is no guarantee that the call will occur and no way to force
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a client to make it.
In contrast, the declaration of the object is guaranteed to occur, and as part of the declara-
tion the object can be given an explicit initial value. The initial value can be specified by a
literal for the type, by the value of another object of that type, or by the value of that type
returned from a function call.

declare
X : Integer := Some_Existing_Integer_Object;
Prompt : constant String := "Name? ";
Reply : constant String := Response (Prompt);

begin
...

end;

The initial value can also specify constraints, if required. In the code above, the object
Prompt has a lower bound of Positive'First and an upper bound set to the length of the
literal. The specific bounds of Reply are determined by the function, and need not start at
Positive'First.
An object cannot be used before it is declared. Since this explicit initial value is part of the
declaration, the object cannot be read before it is initialized. That fact is the key to the
implementation approaches.
However, although the object declaration is guaranteed to occur, explicit initialization is
optional. But unlike a procedure call, we can force the initial value to be given. There are
two ways to force it, so there are two implementations presented.
In addition, a specific form of explicit initialization may be required because not all forms
of initialization are necessarily appropriate for a given abstraction. Imagine a type repre-
senting a thread lock, implemented in such a way that default initialization isn't an option.
Unless we prevent it, initialization by some other existing object will be possible:

declare
X : Thread_Lock := Y; -- Y is some other Thread_Lock object

begin
-- ...

end;

This would amount to a copy, which might not make sense. Imagine the lock type contains
a queue of pending callers...
More generally, if a type's representation includes access type components, initialization
by another object will create a shallow copy of the designated objects. That is typically
inappropriate.
Using an existing object for the initial value amounts to a complete copy of that other object,
perhaps more of a copy than required. For example, consider a bounded container type,
e.g., another stack, backed by an array and an index component named Top. At any time,
for any stack, the contained content is in the slice of the array from 1 up to Top. Any array
component at an index greater than Top has a junk value. Those components may never
even have been assigned during use. Now consider the declaration of a Stack object, A,
whose initial value is that of another existing Stack named B.

A : Stack := B;

The entire value of B is copied into A, so B.Top is copied to A.Top, which makes sense.
But likewise, the entire array in B will be copied to the array in A. For a stack with a large
backing array that might take a significant amount of time. If B is logically full then the time
required for the full array copy is unavoidable. But if only a few values are contained by B,
the hit could be avoided by only copying up to Top.
And of course, the initial value might require client-specific information.
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Calling a constructor function (page 27) for the initial value would be the right approach
in these cases, returning an object of the type. The function might even take an existing
object as a parameter, creating a new object with only the necessary parts copied.
Therefore, for some abstractions, not only do we need to guarantee explicit object initial-
ization, we may also need to restrict the form of initial value to a function call.
The other purpose of the idiom is controlling, for some type, whether object creation itself
is to be allowed by clients. As you will see, controlling object initialization can be used to
control object creation.
Preventing object creation is not typical but is not unknown. The singleton design pattern24
is an example, in which a type is defined but corresponding object creation by clients is not
intended. Instead, the abstraction implementation creates a single object of the type. The
abstraction is a type, rather than an ADM (page 17), for the sake of potential extension via
inheritance. We will illustrate this design pattern and implementation using a real-world
hardware device.

7.2 Implementation(s)
There are two ways to force an explicit initial value as part of an object declaration. One is
a matter of legality at compile-time so it is enforced by the compiler. The other is enforced
by a run-time check.
Note that both approaches are type-specific, so when we say objects we mean objects
of a type that has been designed with one of these two idiom implementations. Neither
implementation applies to every object of every type used in the client code. (SPARK, a
formal language based closely on Ada, statically ensures all objects are initialized before
read.)
The ADT idiom (page 11) describes Ada building blocks that developers can use to compose
types with semantics that we require. We can declare a type to be private, for example, so
that the implementation is not compile-time visible to clients.
In addition to private types, we can decorate a type declaration with the reserved word
limited so that assignment is not allowed (among other things) for client objects of the
type. We can combine the two building blocks, creating a type that is both private and
limited.
Throughout this discussion we will assume that these designs are based on Abstract Data
Types (page 11), hence we assume the use of private types. That's a general, initial design
assumption but in this case private types are required by the two idiom implementations.
The types are not necessarily limited as well, but in one situation they will be limited too.
But in both implementations the primary types will be private types.

7.2.1 Compile-Time Legality
We can combine the private type and limited type building blocks with another, known as
unknown discriminants, to force explicit object initialization by clients, to control the form
of explicit initialization, and, when required, to control client object creation itself. Limited
and private types are fairly common building blocks, but unknown discriminants are less
common so we will first explain them, and then show how to utilize the combinations for
this idiom.
Discriminants are useful for our purpose because types with discriminants are indefinite
types (under certain circumstances). Indefinite types do not allow object declarations with-
out also specifying some sort of constraints for those objects. Unconstrained array types,
such as String, are good examples. We cannot simply declare an object of type String
without also specifying the array bounds, one way or another:
24 https://en.wikipedia.org/wiki/Singleton_pattern
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with Ada.Text_IO; use Ada.Text_IO;
procedure Initialization_Demo is

S1 : String (1 .. 11) := (others => ' ');
S2 : String := "Hello World";
S3 : String := S1;

begin
Put_Line ('"' & S1 & '"');
Put_Line ('"' & S2 & '"');
Put_Line ('"' & S3 & '"');

end Initialization_Demo;

In the code above, String objects S1, S2, and S3 all have the same constraints: a lower
bound of Positive'First and an upper bound of 11. S1 gives the bounds directly, whereas
S2 and S3 take their constraints from their initial values. A function that returned a String
value would suffice for the initial value too and would thus serve to specify the array bounds.
There are other ways to specify a constraint as well, but we can ignore them in this idiom
because the building blocks we'll use preclude them.
Types with discriminants are indefinite types unless the discriminants have default values.
That fact will not apply in this idiom because of the characteristics of the building blocks. You
will see why in a moment. The important idea is that we can leverage the object constraint
requirements of indefinite types to force explicit initialization on declarations.
Discriminants come in two flavors. So-called known discriminants are the most common.
These discriminants are known in the sense that they are compile-time visible to client
code. Clients then have everything needed for declaring objects of the corresponding type.
For example, here is the type declaration for a bounded stack ADT:

type Stack (Capacity : Positive) is private;

In the above, Capacity is the physical number of components in the array backing the
bounded implementation. Clients can, therefore, have different objects of the type with
different capacities:

Trays : Stack (Capacity => 10);
Operands : Stack (100);

The existence of Capacity is known to clients via the partial view, so the requirement for
the constraint is visible and can be expressed.
In contrast, types may have unknown discriminants in the client's view. The syntax reflects
their confidential nature:

type Foo (<>) is private;

The parentheses are required as usual, but the box symbol appears inside, instead of one
or more discriminant declarations. The box symbol always indicates not specified here so in
this case no discriminants are included in the view. There may or may not be discriminants
in the full view, but client's don't have compile-time visibility to that information because
the type is private.
Unknown discriminants can be specified for various kinds of types, not only private types.
See the Notes section (page 52) for the full list. That said, combining them with private
type declarations, or private type extension declarations, is the most common usage when
composing abstraction definitions. For example:

package P is
type Q (<>) is private;

private
type Q is range 0 .. 100;

end P;
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Clients of package P must use type Q as if Q requires discriminant constraints, even though
clients don't have compile-time visibility to whatever constraints are actually required, if
any. In the above, Q is just an integer type in the full view. No constraint is required to
create objects of type Q, but clients cannot take advantage of that fact because they only
have the partial view. Only the package private part, the package body, and child units
have the visibility required to treat Q as an integer type.
Q might actually be completed as an indefinite type, but the constraint required need not
be a discriminant constraint. In the following, objects of type Q require an array bounds
constraint:

package P is
type Q (<>) is private;

private
type Q is array (Positive range <>) of Integer;

end P;

Code with the full view must respect the index bounds requirement, but the semantics of
the partial view remain the same.
As illustrated, the consequence of combining indefinite types with private types is that,
when declaring objects, clients must express a constraint but cannot do so directly. The
constraints must instead be provided by the initial value. Hence, for these types, the initial
value is now a requirement that the compiler enforces on client object declarations.
But because the type is private, the initial value cannot be specified by a literal. Instead,
the initial value must be either an existing object of the type, or the result of a call to a
function that returns an object of the type.
Consider the following:

package P is
type Q (<>) is private;
function F return Q;

private
type Q is range 0 .. 100;

end P;

package body P is
function F return Q is (42);
-- since that is the answer to everything...

end P;

with P;
procedure Demo is

Obj1 : P.Q; -- not legal, requires initial value for constraint
Obj2 : P.Q := 42; -- not legal, per client's partial view
Obj3 : P.Q := P.F;
Obj4 : P.Q := Obj3;

begin
null;

end Demo;

The declaration for Obj1 is illegal because no constraint is provided. Because P.Q is also
private, the declaration of Obj2 is illegal because clients don't have the full view supporting
integer usage. But the initial value can be provided by a function result (Obj3), thereby
also specifying the required constraint. And an existing object can be used to give the
constraints to other objects during their declarations (Obj4). Explicit client initialization in
these two ways is required by the compiler for indefinite private types.
But as illustrated by the spin-lock example, initialization by an existing object is not always
appropriate. We can restrict the initial value to a function call result by making the type
limited as well as private and indefinite. Then only constructor functions can be used legally
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for the initial values, and the compiler will require them to be called during object declara-
tions (e.g., Obj3 above). That's what we'd do for the spin-lock type. We'd make the type
limited in the completion too, to prevent copying in any form, including the function result.
(The function result would then be built in place instead of copied.)
To recap, the primary purpose of the idiom, for a given type, is to ensure that clients initialize
objects of that type as part of the object declarations. In this first implementation we meet
the requirement by composing the type via building blocks that:
1. require a constraint to be given when declaring any object of the type, and
2. require an initial value to give that constraint, and
3. allow only objects and function call results as the initial values, and
4. when necessary, allow only function call results to be used for the initial values.

The compiler will reject declarations that do not adhere to these rules. Explicit initialization
in the client code is thus guaranteed.
For a concrete example, consider a closed loop process controller, specifically a
proportional–integral–derivative (PID) controller25. A PID controller examines the differ-
ence between an intended value, such as the desired speed of your automobile, and the
current value (the actual speed). In response to that difference the controller increases or
decreases the throttle setting. This measurement and resulting control output response
happens iteratively at some rate. This is a sophisticated ADT, and explaining how a PID
controller actually works is beyond the scope of this document. There are numerous web
sites available that describe them in detail. What you should know for our purpose is that
they are used to control physical processes, such as your car's cruise control system, that
affect our lives directly. Ensuring proper initialization is part of ensuring correct use.
The PID controller must be explicitly initialized because there is no default initial state that
would allow subsequent safe use. Only a partial meaningful state can be defined by de-
fault. Specifically, a PID controller can be enabled and disabled by the user (the external
process control engineer) at arbitrary times. We can define default initialization such that
the objects are initially in the disabled state. When disabled, the output computation actu-
ally affects nothing, so starting from that state would be safe. However, there is nothing to
prevent the user from enabling the controller object without first configuring it. Configuring
the various parameters is essential for safe and predictable behavior.
To address that problem, we could add operation preconditions requiring the object to be
in some configured state, but that isn't always appropriate. Such a precondition would
just raise an exception, which isn't in the use-cases. (Statically proving prior configuration
in the client code would be a viable alternative, but that's also beyond the scope of this
document.)
Therefore, default initialization doesn't really suffice for this ADT. We need to force initial-
ization (configuration) during object creation so that enabling the ADT output will always
be safe. This idiom implementation does exactly that.
The following is a cut-down version of the package declaration using this idiom implemen-
tation, with some operations and record components elided for the sake of simplicity. In the
full version the unit is a generic package for the sake of not hard-coding the floating point
types. We use a regular package and type Float here for convenience. The full version is
here:

• AdaCore/Robotics_with_Ada/src/control_systems (GitHub)26

package Process_Control is

type PID_Controller (<>) is tagged limited private;
(continues on next page)

25 https://en.wikipedia.org/wiki/Proportional–integral–derivative_controller
26 https://github.com/AdaCore/Robotics_with_Ada/blob/master/src/control_systems/
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(continued from previous page)

type Bounds is record
Min, Max : Float;

end record with
Predicate => Min < Max;

type Controller_Directions is (Direct, Reversed);

type Millisecond_Units is mod 2**32;

subtype Positive_Milliseconds is
Millisecond_Units range 1 .. Millisecond_Units'Last;

function Configured_Controller
(Proportional_Gain : Float;
Integral_Gain : Float;
Derivative_Gain : Float;
Invocation_Period : Positive_Milliseconds;
Output_Limits : Bounds;
Direction : Controller_Directions := Direct)

return PID_Controller;

procedure Enable
(This : in out PID_Controller;
Process_Variable : Float; -- current input value from the process
Control_Variable : Float); -- current output value

procedure Disable (This : in out PID_Controller);

procedure Compute_Output
(This : in out PID_Controller;
Process_Variable : Float; -- the input, Measured Value/Variable
Setpoint : Float;
Control_Variable : in out Float); -- the output, Manipulated Variable

-- ...

function Enabled (This : PID_Controller) return Boolean;

private

type PID_Controller is tagged limited record
-- ...
Enabled : Boolean;

end record;

end Process_Control;

As you can see, the PID controller type is indefinite limited private:

type PID_Controller (<>) is tagged limited private;

It is also tagged, primarily for the sake of the distinguished receiver call syntax. We don't
really expect type extensions in this specific ADT, although nothing prevents them.
Therefore, the language requires an initial value when creating objects of the type, and
because the type is limited, a function must be used for that initial value. The compiler will
not compile the code containing the declaration otherwise. The only constructor function
provided is Configured_Controller so it is guaranteed to be called. (A later child package
could add another constructor function (page 27). For that matter, we probably should have
declared this one in a child package. In any case one of them is guaranteed to be called.)
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Here is an example declaration taken from the steering control module for an RC car written
in Ada27.
The PID controller, named Steering_Computer, is declared within the body of a task Servo
that controls amotor, Steering_Motor, in response to requested directions from the remote
control. Steering_Motor is an instance of an ADT named Basic_Motors, and is declared
elsewhere. The Servo task is declared within the body of a package that contains various
values referenced within the task, such as the various PID gain parameters, that are not
shown.

task body Servo is
Next_Release : Time;
Target_Angle : Float;
Current_Angle : Float := 0.0;
-- zero for call to Steering_Computer.Enable
Steering_Power : Float := 0.0;
-- zero for call to Steering_Computer.Enable
Motor_Power : NXT.Motors.Power_Level;
Rotation_Direction : NXT.Motors.Directions;
Steering_Offset : Float;
Steering_Computer : PID_Controller :=
Configured_Controller
(Proportional_Gain => Kp,
Integral_Gain => Ki,
Derivative_Gain => Kd,
Invocation_Period => System_Configuration.Steering_Control_Period,
Output_Limits => Power_Level_Limits,
Direction => Closed_Loop.Direct);

begin
Global_Initialization.Critical_Instant.Wait (Epoch => Next_Release);
Initialize_Steering_Mechanism (Steering_Offset);
Steering_Computer.Enable (Process_Variable => Current_Angle,

Control_Variable => Steering_Power);
loop

Current_Angle := Current_Motor_Angle (Steering_Motor) -
Steering_Offset;

Target_Angle := Float (Remote_Control.Requested_Steering_Angle);
Limit (Target_Angle, -Steering_Offset, +Steering_Offset);
Steering_Computer.Compute_Output

(Process_Variable => Current_Angle,
Setpoint => Target_Angle,
Control_Variable => Steering_Power);

Convert_To_Motor_Values (Steering_Power,
Motor_Power,
Rotation_Direction);

Steering_Motor.Engage (Rotation_Direction, Motor_Power);

Next_Release := Next_Release + Period;
delay until Next_Release;

end loop;
end Servo;

Because Steering_Computermust be declared before it can be passed as a parameter, the
call to configure the object's state necessarily precedes any other operation (e.g., Enable).

7.2.2 Run-Time Checks
Ada 2022 adds another building block, Default_Initial_Condition (DIC), that can be
used as an alternative to the unknown discriminants used above. We must still have a
private type or private type extension, and the typemay ormay not be limited, but unknown
discriminants will not be involved. The compiler would not allow the combination, in fact.
27 https://blog.adacore.com/making-an-rc-car-with-ada-and-spark
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DIC is an aspect applied to a private type or private extension declaration. Developers use
it to specify a developer-defined Boolean condition that will be true at run-time after the
default initialization of an object of the type. Specifically, if Default_Initial_Condition
is specified for a type, a run-time check is emitted for each object declaration of that type
that uses default initialization. The check consists of the evaluation of the DIC expression.
The exception Assertion_Error is raised if the check fails. You can think of this aspect
as specifying the effects of default initialization for the type, with a verification at run-time
when needed. No check is emitted for those declarations that use explicit initialization.
For example, the following is a partial definition of a Stack ADT. It is only a partial definition
primarily because Pop is not provided, but other operations would be included as well.
Moreover, a fully realistic version would be a generic package. We have used a subtype
named Element as a substitute for the generic formal type what would have had that name.
Note that there is a Default_Initial_Condition aspect specifying that any object of type
Stack is initially empty as a result of default initialization. The argument to the function call
is the corresponding type name, representing the current instance object, thus any object
of the type.

package Bounded_Stacks is

subtype Element is Integer;
-- arbitrary substitute for generic formal type

type Stack (Capacity : Positive) is limited private with
Default_Initial_Condition => Empty (Stack);

procedure Push (This : in out Stack; Value : Element) with
Pre => not Full (This),
Post => not Empty (This);

function Full (This : Stack) return Boolean;

function Empty (This : Stack) return Boolean;

private

type Contents is array (Positive range <>) of Element;

type Stack (Capacity : Positive) is limited record
Content : Contents (1 .. Capacity);
Top : Natural :=0;

end record;

function Full (This : Stack) return Boolean is
(This.Top = This.Capacity);

function Empty (This : Stack) return Boolean is
(This.Top = 0);

end Bounded_Stacks;

package body Bounded_Stacks is

procedure Push (This : in out Stack; Value : Element) is
begin

This.Top := This.Top + 1;
This.Content (This.Top) := Value;

end Push;

end Bounded_Stacks;

with Ada.Text_IO; use Ada.Text_IO;
(continues on next page)
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(continued from previous page)
with Bounded_Stacks; use Bounded_Stacks;

procedure Demo is
S : Stack (Capacity => 10);

begin
Push (S, 42);
Put_Line ("Done");

end Demo;

The function Empty returns Truewhen Top is zero, and zero is assigned to Top during default
initialization. Consequently, Assertion_Error is not raised when Demo executes because
the object S was indeed default initialized to the empty state.
We said that when DIC is applied to a type, the run-time check is emitted for all object
declarations of that type that rely on default initialization. But suppose the type does not
define any default initialization. We can detect these uninitialized objects at run-time if we
set the DIC Boolean expression to indicate that there is no default initialization defined for
this type. The checks will then fail for those objects. That's the second implementation
approach to the initialization requirement.
Specifically, we can express the lack of default initialization by a DIC condition that is hard-
coded to the literal False. The evaluation during the check will then necessarily fail, raising
Assertion_Error. Hence, for this type, explicit initialization is guaranteed in a program
that does not raise Assertion_Error for this cause.
The following is an example of the DIC set to False:

package P is

type Q is limited private with
Default_Initial_Condition => False;

function F return Q;

private

type Q is range -1 .. 100;

end P;

package body P is

function F return Q is (42);

end P;

with Ada.Text_IO; use Ada.Text_IO;

with P; use P;

procedure Main is
Obj1 : constant Q := F;
Obj2 : Q; -- triggers Assertion_Error

begin
Put_Line (Obj1'Image);
Put_Line (Obj2'Image);
Put_Line ("Done");

end Main;

In the above, Assertion_Error is raised by the elaboration of Obj2 because the DIC check
necessarily fails. There is no check on the declaration of Obj1 because it is initialized,
explicitly.
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To recap, we can ensure initialization for objects of the type by detecting, during elaboration
at run-time, any objects not explicitly initialized.
This approach is sufficient because when elaboration of an object declaration raises an ex-
ception, no use of that object is possible. That's guaranteed because the frame containing
that declarative part is immediately abandoned and the exception is propagated up to the
previous level. A local handler never can apply. But even if there is a matching handler in
the previous level, there's really nothing much to be done. Re-entering the frame contain-
ing the declaration will raise the exception all over again, necessarily. Thus the code will
have to be changed and recompiled, meeting the goal of the idiom.
We can illustrate this assurance using Storage_Error. Consider the following program, in
which the main procedure calls an inner procedure P:

with Text_IO; use Text_IO;

procedure Main is

procedure P (Output : out Float) is
N : array (Positive) of Float; -- Storage_Error is likely

begin
Put_Line ("P's body assigns N's components and uses them");
-- The following indexes and component values are arbitrary
-- and used purely for illustration...
N := (others => 0.0);
-- other computations and assignments to N ...
Output := N (5);

exception
when Storage_Error =>

Output := N (1);
end P;

X : Float;

begin
P (X);
Put_Line (X'Image);
Put_Line ("Done");

exception
when Storage_Error =>

Put_Line ("Main completes abnormally");
end Main;

When Main calls P, the elaboration of the declarative part of P almost certainly fails because
there is insufficient storage to allocate to the object P.N, hence Storage_Error is raised.
(If your machine can handle the above, congratulations.) Even though procedure P has a
handler specifically for Storage_Error, that handler never applies because the declarative
part is immediately abandoned. Instead, the exception is raised in the caller, where it can
be caught. This behavior is essential to ensure that problematic objects are not referenced
in the local handlers. In the above, the handler in P for Storage_Error references the
object P.N to assign the P.Output parameter. If that assignment could happen — again, it
cannot — what would it mean, functionally? No one knows.
Handling Storage_Error is a little tricky anyway. Does the OS give the program a chance
to execute a handler? If so, is there sufficient storage remaining to execute the exception
handler's statements? In any case you can see the problem that the declaration failure
semantics preclude.
Therefore, although the DIC approach is not enforced at compile-time, it is nevertheless
sufficient to ensure no uninitialized object of the type can be used.
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7.2.3 Preventing Object Creation by Clients
The other idiom requirement is the ability to control object creation itself. The implemen-
tation is trivially achieved using an indefinite limited private type: we can prevent client
object creation simply by not providing any constructor functions. Doing so removes any
means for initializing objects of the type, and since the type is indefinite there is then no
way for clients to declare objects at all. The compiler again enforces this implementation.
For a concrete example, we can apply the Singleton design pattern to represent the time
stamp counter (TSC28) provided by x86 architectures. The TSC is a 64-bit hardware register
incremented once per clock cycle, starting from zero at power-up. We can use it to make
a timestamp abstraction. As explained by Wikipedia page29, some care is required when
using the register for that purpose on modern hardware, but it will suffice to illustrate the
idiom implementation. Note that the Singleton pattern is itself somewhat controversial in
the OOP community, but that's beyond the scope of this document.
Why use the Singleton pattern in this case? Ordinarily, clients of some ADT will reasonably
expect that the states of distinct objects are independent of each other. When using an
ADT to represent a single piece of hardware, however, this presumption of independence
will not hold because the device is shared by all the objects, unavoidably. The singleton
idiom prevents the resulting problems by precluding the existence of multiple objects in
the first place.
In this specific case, the time stamp counter hardware is read-only, so the lack of indepen-
dence is not an issue. Multiple objects would not be a problem. But many devices are not
read-only, so the singleton pattern is worth knowing.
First we'll define a singleton ADT representing the TSC register itself, then we will extend
that type to add convenience operations for measuring elapsed times. We'll use the design
approach of indefinite limited private types without any constructor functions in order to
ensure clients cannot create objects of the type. The type will also be tagged for the sake
of allowing type extensions. Adding the tagged characteristic doesn't change anything
regarding the idiom implementation.

with Interfaces;

package Timestamp is

type Cycle_Counter (<>) is tagged limited private;

type Cycle_Counter_Reference is access all Cycle_Counter;

function Counter return not null Cycle_Counter_Reference;

type Cycle_Count is new Interfaces.Unsigned_64;

function Sample (This : not null access Cycle_Counter) return Cycle_Count;

private

type Cycle_Counter is tagged limited null record;

function Read_TimeStamp_Counter return Cycle_Count with
Import,
Convention => Intrinsic,
External_Name => "__rdtsc",
Inline;

-- This gcc builtin issues the machine instruction to read the time-stamp
-- counter, i.e., RDTSC, which returns a 64-bit count of the number of
-- system clock cycles since power-up.

(continues on next page)
28 https://en.wikipedia.org/wiki/Time_Stamp_Counter
29 https://en.wikipedia.org/wiki/Time_Stamp_Counter
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(continued from previous page)

function Sample (This : not null access Cycle_Counter)
return Cycle_Count is

(Read_TimeStamp_Counter);
-- The formal parameter This is not referenced

end Timestamp;

Note also that the primitive function named Counter is not a constructor — it doesn't return
an object of the Cycle_Counter type. As such, it cannot be used as an initial value for a
Cycle_Counter object declaration. Clients cannot, therefore, create their own objects of
type Cycle_Counter.
Instead, function Counter returns an access value designating an object of the type. Be-
cause clients cannot declare objects themselves the function is the only way to get an
object, albeit indirectly. Therefore, the function can control how many objects are created.
As you will see, the function only creates a single object of the type.
The type Cycle_Counter is completed as a null record because the state is maintained in
the hardware register we're reading.
The function Sample reads the timestamp counter register by calling the
Read_TimeStamp_Counter function. That second function accesses the TSC register
by executing an assembly language instruction dedicated to that purpose. We could have
Sample issue that instruction instead, without declaring a separate function, but there
is no run-time cost (due to the inlining) and separating them emphasizes that one is a
member of the API and the other is an implementation artifact. Note that Sample does not
actually reference the formal parameter This. The parameter exists just to make Sample
a primitive function. Assuming we don't have a use-clause for Timestamp, to call Sample
we could say:

TimeStamp.Counter.Sample

for example:

with Timestamp;
with Ada.Text_IO; use Ada.Text_IO;

procedure Demo_TimeStamp is
begin

for K in 1 .. 10 loop
Put_Line (Timestamp.Counter.Sample'Image);

end loop;
end Demo_TimeStamp;

The above calls the Timestamp.Counter function and then implicitly dereferences the re-
sulting access value to call the Sample function using the distinguished receiver syntax.
The resulting number is then converted to a String value and output to Standard_Output.
We could have instead used positional call notation for the call to Sample:

Timestamp.Sample (Timestamp.Counter)

In that case we need the package name on the references, or we'd add a use-clause.
The package body is shown below. Only the function Counter has a body because Sample
is completed in the package declaration's private part and Read_TimeStamp_Counter is an
imported intrinsic, i.e., without a body.

package body Timestamp is

(continues on next page)
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(continued from previous page)
The_Instance : Cycle_Counter_Reference;

-------------
-- Counter --
-------------

function Counter return not null Cycle_Counter_Reference is
begin

if The_Instance = null then
The_Instance := new Cycle_Counter;

end if;
return The_Instance;

end Counter;

end Timestamp;

Function Counter creates the single object that this singleton implementation creates. It
does so by lazily allocating an object dynamically. If Counter is never called (because some
subclass is used instead) then no object of type Cycle_Counter is created. At most one
Cycle_Counter object is ever created.
We could instead declare The_Instance as a Cycle_Counter object in the package body,
mark it as aliased, and return a corresponding access value designating it. But when objects
are large, declaring one that might never be used is wasteful. The indirection avoids that
wasted storage at the cost of an access object, which is small. On the other hand, now the
heap is involved.
Note that we could have declared The_Instance in the private part of the package decla-
ration. Type extensions in child packages could then use it, if needed. Presumably we'd
make The_Instance be of some access to class-wide type so that extensions could use it to
allocate objects of their specific type, otherwise extensions in child packages would have
no need for it. But that only saves the storage for an access object in the child packages, so
we leave the declaration in the parent package body. See the Programming by Extension
idiom (page 23) for a discussion of whether to declare an entity in the package private part
or the package body.
Next, we declare a type extension in a child package. The child package body will contain
its own object named The_Instance, returning an access value designating the specific
extension type. The client API in the package declaration follows that of the parent type
Cycle_Counter, but with additional primitives for working with samples.

package Timestamp.Sampling is

type Timestamp_Sampler is new Cycle_Counter with private;

type Timestamp_Sampler_Reference is access all Timestamp_Sampler;

function Counter return not null Timestamp_Sampler_Reference with Inline;
-- returns an access value designating the single instance

procedure Take_First_Sample (This : not null access Timestamp_Sampler)
with Inline;

procedure Take_Second_Sample (This : not null access Timestamp_Sampler)
with Inline;

function First_Sample (This : not null access Timestamp_Sampler)
return Cycle_Count;

function Second_Sample (This : not null access Timestamp_Sampler)
return Cycle_Count;

function Elapsed (This : not null access Timestamp_Sampler)
return Cycle_Count;

(continues on next page)
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(continued from previous page)

private

type Timestamp_Sampler is new Cycle_Counter with record
First : Cycle_Count := 0;
Second : Cycle_Count := 0;

end record;

end Timestamp.Sampling;

package body Timestamp.Sampling is

The_Instance : Timestamp_Sampler_Reference;

-------------
-- Counter --
-------------

function Counter return not null Timestamp_Sampler_Reference is
begin

if The_Instance = null then
The_Instance := new Timestamp_Sampler;

end if;
return The_Instance;

end Counter;

-----------------------
-- Take_First_Sample --
-----------------------

procedure Take_First_Sample (This : not null access Timestamp_Sampler) is
begin

This.First := Sample (This);
end Take_First_Sample;

------------------------
-- Take_Second_Sample --
------------------------

procedure Take_Second_Sample (This : not null access Timestamp_Sampler) is
begin

This.Second := Sample (This);
end Take_Second_Sample;

------------------
-- First_Sample --
------------------

function First_Sample (This : not null access Timestamp_Sampler)
return Cycle_Count is

(This.First);

-------------------
-- Second_Sample --
-------------------

function Second_Sample (This : not null access Timestamp_Sampler)
return Cycle_Count is

(This.Second);

-------------
(continues on next page)
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(continued from previous page)
-- Elapsed --
-------------

function Elapsed (This : not null access Timestamp_Sampler)
return Cycle_Count is

(This.Second - This.First + 1);

end Timestamp.Sampling;

The inherited Sample function is called in the two procedures that take the two samples of
the timestamp register. The formal parameter This is passed to the calls, but as mentioned
earlier the argument is not referenced within Sample. All the formal parameter does is
participate in dispatching the calls to Sample, in this casemeaning that the inherited version
of Sample is the one called because This is of the extended type.
But Sample is not overridden in this child package, therefore effectively we are calling the
parent version. Is Sample ever likely to be overridden? Arguably not, because it is so
directly dependent on the underlying hardware. Of course, some future type extension
may override Sample for some unforeseen reason — that's the point of making it possible,
after all. Presumably the overridden version would also call the parent version, otherwise
the timestamp counter would not be accessed. Because we can't say for certain that it will
never need to be overridden, we have made Sample a primitive function, thus overridable.
Suppose we came to the opposite conclusion, that Timestamp.Sample would never need
to be overridden. In that case we have some options worth exploring.
Clearly function Sample must be part of the client API, but that doesn't force it to be a
primitive function.
We could have declared Sample in Timestamp as a visible non-primitive operation, i.e.,
without a formal parameter or function result of the ADT type:

function Sample return Cycle_Count with Inline;

As a non-primitive function it would be neither inherited nor overridable. But we'd still be
able to call it in client code.
Yet, as a non-primitive, this version looks like an implementation artifact, hence out of place
as part of the visible client API. It isn't illegal by any means, it just looks wrong.
Furthermore, if we are going to make Sample a non-primitive function, why not re-
move it and replace it with the other non-primitive function Read_Timestamp_Counter?
Or make the body of Sample call the imported intrinsic, and do away with function
Read_Timestamp_Counter? There is no clear winner here.
An attractive alternative would be to make Sample be a class-wide operation. To do so, we
make the formal parameter class-wide instead of removing it:

function Sample (This : not null access Cycle_Counter'Class)
return Cycle_Count

with Inline;

In the version above, the formal parameter type is now (anonymous) access to
Cycle_Counter'Class, i.e., class-wide, so in this version Sample can be passed a value
designating an object of type Cycle_Counter or any type derived from it. We don't want
to have a null access value passed so we add that to the parameter specification.
In this version the function is again not a primitive operation and so is neither inherited nor
overridable, but because it mentions type Cycle_Counter it looks like a reasonable part of
an Abstract Data Type. As it happens this version of Sample also doesn't actually reference
the formal parameter, so it is somewhat unusual. Ordinarily in the body we'd expect the
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class-wide formal to be used in dynamic dispatching calls to primitive operations, but that's
not required by the language.
Ultimately whether to make Sample a primitive operation is a judgment call. We don't know
that Sample will never need to be overridden so we declare it as a primitive op.
With all that said, here is an example program using the child type. Because the timestamp
register is updated once per clock cycle, if we know the system clock frequency we can use
the counter to measure elapsed time. In the demo below we measure the accuracy of the
delay statement by delaying for a known time, with samples taken before and after the
delay statement. We can then compare the known delay time to the measured elapsed
time, printing the difference.
Note the constant Machine_Cycles_Per_Second. Before you run the demo you will likely
need to change it in the source code to your machine's clock frequency.

with Timestamp.Sampling; use Timestamp.Sampling;
with Ada.Text_IO; use Ada.Text_IO;

procedure Demo_Sampling_Cycle_Counter is

Delay_Interval : constant Duration := 1.0;
-- arbitrary, change if desired
Elapsed_Time : Duration;

GHz : constant := 1_000_000_000;

Machine_Cycles_Per_Second : constant := 1.9 * GHz;
-- This is the system clock rate on the machine running this executable.
-- It corresponds to the rate at which the time stamp counter hardware is
-- incremented. Change it according to your target.

use type Timestamp.Cycle_Count; -- for "<"
begin

Put_Line ("Using" & Machine_Cycles_Per_Second'Image
& " Hertz for system clock");

Put_Line ("Delaying for" & Delay_Interval'Image & " second(s) ...");

Counter.Take_First_Sample;
delay Delay_Interval;
Counter.Take_Second_Sample;

Put_Line ("First sample :" & Counter.First_Sample'Image);
Put_Line ("Second sample :" & Counter.Second_Sample'Image);

if Counter.Second_Sample < Counter.First_Sample then
Put_Line ("RDTSC counter wrapped around!?");
return;

end if;

Elapsed_Time := Duration (Elapsed (Counter)) / Machine_Cycles_Per_Second;

Put_Line ("Elapsed count :" & Elapsed (Counter)'Image);
Put_Line ("Specified delay interval:" & Delay_Interval'Image);
Put_Line ("Measured delay interval :" & Elapsed_Time'Image);

end Demo_Sampling_Cycle_Counter;

In the above, Delay_Interval is set to 1.0 so the program will delay for 1 second, with
samples taken from the TSC before and after. Delay statement semantics are such that at
least the amount of time requested is delayed, so some value slightly greater than 1 second
is expected. There will be overhead too, so an elapsed time slightly larger than requested
should be seen. The value of Delay_Interval is arbitrary, change it to whatever you like.
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If you have set the Machine_Cycles_Per_Second properly but still get elapsed measure-
ment values that are much larger than expected or don't make sense at all, it may be that
your machine does not support using the TSC30 this way reliably.

7.3 Pros
Ensuring explicit initialization is easily achieved. The abstraction should likely be a private
type anyway, and the syntax for the required additional building blocks is light: all are
just additional decorations on the declaration of the private type or private extension. The
compiler does the rest, either at compile-time itself or via a generated check verified at
run-time.
Likewise, ensuring that only the implementation can create objects of a type is straight-
forward. We take the same approach for ensuring initialization via function calls in object
declarations, but then don't provide any such functions. Only the implementation will have
the required visibility to create objects of the type, and can limit that number of objects to
one (or any other number). Client access to this hidden object must be indirect, but that is
not a heavy burden.

7.4 Cons
None.

7.5 Relationship With Other Idioms
The Abstract Data Type (page 11) is assumed, in the form of a private type.

7.6 Notes
Only certain types can have unknown discriminants. For completeness here is the list:

• A private type
• A private extension
• An incomplete type
• A generic formal private type
• A generic formal private type extension
• A generic formal derived type
• Descendants of the above

The types above will either have a corresponding completion or a generic actual parameter
to either define the discriminants or specify that there are none.
As we mentioned, Default_Initial_Condition is new in Ada 2022. The other implemen-
tation, based on indefinite private types, is supported by Ada 2022 but also by earlier ver-
sions of the language. However, if the type is also limited, Ada 2005 is the earliest version
allowing that implementation. Prior to that version an object of a limited type could not be
initialized in the object's declaration.

30 https://en.wikipedia.org/wiki/Time_Stamp_Counter
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CHAPTER

EIGHT

TYPE PUNNING

8.1 Motivation
When declaring an object, the type chosen by the developer is presumably one that meets
the operational requirements. Sometimes, however, the chosen type is not sufficient for
clients of that object. Normally that situation would indicate a design error, but not neces-
sarily.
Consider a device driver that receives external data, such as a network or serial I/O driver.
Typically the driver presents incoming data to clients as arrays of raw bytes. That's how the
data enter the receiving machine, so that's the most natural representation at the lowest
level of the device driver code. However, that representation is not likely sufficient for the
higher-level clients. These clients are not necessarily at the application level, they may be
lower than that, but they are clients because they use the data presented.
For example, the next level of the network processing code must interpret the byte arrays
in order to implement the network protocol. Interpreting the data requires reading headers
that are logically contained within slices of those bytes. These headers are naturally repre-
sented as record types containing multiple fields. How, then, can the developer apply such
record types? An array of bytes contains bytes, not headers.
Stated generally, on occasion a developer needs to manipulate or access the value of a
given object in a manner not supported by the object's type. The issue is that the compiler
will enforce the type model defined by the language, to some degree of rigor, potentially
resulting in the rejection of the alternative access and manipulation code. In such cases
the developer must circumvent this enforcement. That's the purpose of this idiom.
A common circumvention technique, across programming languages, is to apply multiple
distinct types to a single given object. Doing so makes available additional operations
or accesses not provided by the type used to declare the object in the first place. The
technique is known as type punning31 in the programming community because different
types are used for the same object in much the same way that a pun in natural languages
uses different meanings for words that sound the same when spoken.
Ada is accurately described as "a language with inherently reliable features, only compro-
mised via explicit escape hatches having well-defined and portable semantics when used
appropriately."35 The foundation for this reliability is static named typing with rigorous en-
forcement by the compiler.
Specifically, the Ada compiler checks that the operations and values applied to an object are
consistent with the one type specified when the object is declared. Any usage not consistent
with that type is rejected by the compiler. Similarly, the Ada compiler also checks that
any type conversions involve only those types that the language defines as meaningfully
convertible.
31 https://en.wikipedia.org/wiki/Type_punning
35 S. Tucker Taft. Post in Internet Relay Chat on Comp.Lang.Ada channel.

https://groups.google.com/g/comp.lang.ada/c/9WXgvv8Xjuw/m/JMyo9_P7nxAJ, 1993.
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By design, this strong typing model does not lend itself to circumvention (thankfully). That's
the point of Ada's escape hatches — they provide standard ways to circumvent these and
other checks. To maintain the integrity of the type model not many escape hatches exist.
The most commonly used of these, unchecked conversion, allows type conversion between
arbitrary types. Unchecked conversions remain explicit, but the compiler does not limit
them to the types defined as reasonable by the language.

8.2 Implementation(s)
There are two common approaches for expressing type punning in Ada. We show both in
the following subsections. The purpose in both approaches is to apply a different type,
thereby making available a different type-specific view of the storage.

8.2.1 Overlays
The first approach applies an alternative type to an existing object by declaring another
object at the same location in memory but with a different type. Given an existing object,
the developer:
1. declares (or reuses) an alternative type that provides the required operations and

values not provided by the existing object's type, and
2. declares another object of this alternative type, and
3. as part of the new object's declaration, specifies that this new object shares some or

all of the storage occupied by the existing object.
The result is a partial or complete storage overlay. Because there are now multiple dis-
tinct types involved, there are multiple views of that shared storage, each view providing
different operations and values. Thus, the shared storage can be legally manipulated in
distinct ways. As usual, the Ada compiler verifies that the usage corresponds to the type
view presented by the object name referenced.
For example, let's say that we have an existing object, and that a signed integer is most
appropriate for its type. On some occasions let's also say we need to access individual bits
within that existing object. Signed integer types don't support bit-level operations, unlike
unsigned integers, but we've said that a signed type is the best fit for the bulk of the usage.
One of the ways to enable bit access, then, is to apply another type that does have bit-level
operations. We could overlay the existing object with an unsigned integer type of the same
size, but let's take a different approach for the sake of illustration. Instead, we'll declare
an array type with components that can be represented as a single bit. The length of the
array type will reflect the number of bits used by the signed integer type so that the entire
object will be overlaid. (A record type would work too, with a component allocated to each
bit.)
The type Boolean will suffice for the array component type as long as we force the single-
bit representation. Boolean array components are likely to be represented as individual
bytes otherwise. Alternatively, we could just make up an integer type with range 0 .. 1
but that seems unnecessary, unless numeric values would make the code clearer. (Maybe
the requirements specify ones and zeros for the bit values.) In any case we'll need to force
single bits for the components.
Assuming values of type Integer require exactly 32 bits, the following code illustrates the
approach:

type Bits32 is array (0 .. 31) of Boolean with Component_Size => 1;

X : aliased Integer;
Y : Bits32 with Address => X'Address;
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In the above, we use X'Address to query the starting address of object X. We use that
address to specify the location of the overlay object Y. As a result, X and Y start at the same
address.
We marked X as explicitly aliased because Integer is not a by-reference type. The Ad-
dress attribute is not required to provide a useful result otherwise. (Maybe the compiler
would have put X into a register, for example.) The compiler, seeing 'Address applied,
would probably do the right thing anyway, but this makes it certain.
Here is a simple main program that illustrates the approach.

Listing 1: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Main is
4

5 X : aliased Integer := 42;
6

7 type Bits32 is array (0 .. 31) of Boolean
8 with Component_Size => 1;
9

10 Y : Bits32 with Address => X'Address;
11

12 begin
13 X := Integer'First;
14 Put_Line (X'Image);
15 for Bit in Bits32'Range loop
16 Put (if Y (Bit) then '1' else '0');
17 end loop;
18 New_Line;
19 end Main;

Object Y starts at the same address as X and has the same size, so all references to X and Y
refer to the same storage. The source code can manipulate that memory as either a signed
integer or as an array of bits, including individual bit access, using the two object names.
The compiler will ensure that every reference via X is compatible with the integer view, and
every reference via Y is compatible with the array view.
In the above example, we've ignored the endianess issue. If you wanted to change the sign
bit, for example, or display the bits in the "correct" order, you'd need to handle that detail.
This expression of type-punning does not use an escape hatch but does achieve the effect.
(We don't include address clauses as an escape hatch because address clauses aren't ded-
icated to overlaying multiple objects of different types. On the other hand, even one Ada
object with an address specified overlays that object's view with the machine storage view
of that address...)

8.2.2 Unchecked Conversions on Address Values
The common implementation of type punning, across multiple languages, involves con-
verting the address of a given object into a pointer designating the alternative type to be
applied. Dereferencing the resulting pointer provides a different compile-time view of the
object. Thus, the operations defined by the alternative type are made applicable to the
object.
Expressing this approach in Ada requires unchecked conversion because, in Ada, address
values are semantically distinct from pointer values (access values). An access value might
be represented by an address value, but because architectures vary, that implementation
in not guaranteed. Therefore, the language does not define checked conversions between
addresses and access values. We need the escape hatch.

8.2. Implementation(s) 55



Ada In Practice

Unchecked conversion requires instantiation of the generic function Ada.
Unchecked_Conversion, including a context clause for that unit, making it a relatively
heavy mechanism. This heaviness is intentional, and the with_clause at the top of the
client unit makes it noticeable. Although ubiquitous use strongly suggests abuse of the
type model, in this case unchecked conversion is necessary. Nevertheless, we'd hide its
use within the body of some visible unit.
Let's start with a simple example. There is an accelerometer that provides three signed 16-
bit acceleration values, one for each axis. Accelerations can be both positive and negative
so the signed type is appropriate. These values are read from the device as two unsigned
bytes. The two bytes are read individually so two reads are required per acceleration value.
(This is an actual, real-world device.) Because the acceleration values are signed 16-bit
integers, we need to convert two unsigned bytes into a single signed 16-bit quantity. We
can use type punning, based on a pointer designating the 16-bit signed type, to achieve
that effect. There are certainly other ways to do this, but we're starting with something
simple for the sake of illustrating this idiom.
In the following fragment, type Acceleration is a signed 16-bit integer type already de-
clared elsewhere:

type Acceleration_Pointer is access all Acceleration
with Storage_Size => 0;

function As_Acceleration_Pointer is new Ada.Unchecked_Conversion
(Source => System.Address, Target => Acceleration_Pointer);

The access type is general, not pool-specific, but that is optional. We tell the compiler to
reserve no storage for the access type because an allocation would be an error that we
want the compiler to catch. Whether or not the compiler actually reserves storage for an
individual access type is implementation-dependent, but this way we can be sure. In any
case the compiler will reject any allocations.
Given this access type declaration we can then instantiate Ada.Unchecked_Conversion.
The resulting function name is a matter of style but is appropriate because the function
allows us to treat an address as a pointer to an Acceleration value. We aren't changing
the address value, we're only providing another view of that value, which is why the function
name is not To_Acceleration_Pointer.
The following is the device driver routine for getting the scaled accelerations from the de-
vice. The type Three_Axis_Accelerometer is the device driver ADT (page 11), and type
Axes_Accelerations is a record type containing the three axis values. The procedure gets
the raw acceleration values from the device and scales them per the current device sensi-
tivity, returning all three in the mode-out record parameter.

procedure Get_Accelerations
(This : Three_Axis_Accelerometer;
Axes : out Axes_Accelerations)

is

Buffer : array (0 .. 5) of UInt8 with Alignment => 2, Size => 48;
Scaled : Float;

type Acceleration_Pointer is access all Acceleration
with Storage_Size => 0;

function As_Acceleration_Pointer is new Ada.Unchecked_Conversion
(Source => System.Address, Target => Acceleration_Pointer);

begin
This.Loc_IO_Read (Buffer (0), OUT_X_L);
This.Loc_IO_Read (Buffer (1), OUT_X_H);
This.Loc_IO_Read (Buffer (2), OUT_Y_L);

(continues on next page)
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(continued from previous page)
This.Loc_IO_Read (Buffer (3), OUT_Y_H);
This.Loc_IO_Read (Buffer (4), OUT_Z_L);
This.Loc_IO_Read (Buffer (5), OUT_Z_H);

Get_X : declare
Raw : Acceleration renames

As_Acceleration_Pointer (Buffer (0)'Address).all;
begin

Scaled := Float (Raw) * This.Sensitivity;
Axes.X := Acceleration (Scaled);

end Get_X;

Get_Y : declare
Raw : Acceleration renames

As_Acceleration_Pointer (Buffer (2)'Address).all;
begin

Scaled := Float (Raw) * This.Sensitivity;
Axes.Y := Acceleration (Scaled);

end Get_Y;

Get_Z : declare
Raw : Acceleration renames

As_Acceleration_Pointer (Buffer (4)'Address).all;
begin

Scaled := Float (Raw) * This.Sensitivity;
Axes.Z := Acceleration (Scaled);

end Get_Z;
end Get_Accelerations;

This procedure first reads the six bytes representing all three acceleration values into the
array Buffer. Procedure Loc_IO_Read is defined by the driver ADT (page 11). The con-
stants OUT_n_L and OUT_n_H, also defined by the driver, specify the low-order and high-
order bytes requested for the given n axis. Then the declare blocks do the actual scaling
and that's where the type punning is applied to the Buffer content.
In each block, the address of one of the bytes in the array is converted into an access value
designating a two-byte Acceleration value. The X acceleration is first in the buffer, so the
address of Buffer (0) is converted. Likewise, the address of Buffer (2) is converted
for the Y axis value, and for the Z value, Buffer (4) is converted. (We could have said
Buffer'Address instead of Buffer (0)'Address, theymean the same thing, but an explicit
index seemed more clear, given the need for the other indexes.)
But we want the designated axis acceleration value, not the access value, so we also deref-
erence the converted access value via .all, and rename the result for convenience. The
name is Raw because the value needs to be scaled. Each dereference reads two bytes, i.e.,
the bytes at indexes 0 and 1, or 2 and 3, or 4 and 5.
That's the way the device driver is written currently, but it could be simpler. Clients al-
ways get all three accelerations via this procedure, so we could have used unchecked con-
version to directly convert the entire array of six bytes into a value of the record type
Axes_Accelerations containing the three 16-bit components. Type punning would not be
required in that case. (The components would still need scaling, of course.)
Note that to get individual values we can't just convert a slice of the array because that's
illegal: array slices cannot be converted. We'd need some other way to refer to a two-byte
pair within the array. Type punning would be an appropriate approach.
For that matter we could use type punning but have the record type be the designated
type returned from the address conversion, rather than a single axis value. Then we'd just
convert Buffer'Address and not need to specify array indexes as all. This would be the
same as converting the array to the record type, but with a level of indirection added.
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For the network packet example, we want to apply record type views to arbitrary sequences
within an array of raw bytes, so indexing will be required. Just as we indexed into the
accelerometer Buffer for the addresses of the individual 16-bit acceleration values, we
can index into the network packet array to get the starting addresses of the individual
headers. Regular record component access syntax can then be used. Reading the record
components reads the corresponding raw bytes in the array.
For a specific example, we can read the IP header in a packet's array of bytes using the
header's record type and an access type designating that record type:

Min_IP_Header_Length : constant := 20;

-- IP packet header RFC 791.
type IP_Header is record

Version : UInt4;
Word_Count : UInt4;
Type_of_Service : UInt8;
Total_Length : UInt16;
Identifier : UInt16;
Flags_Offset : UInt16;
Time_To_Live : UInt8;
Protocol : Transport_Protocol;
Checksum : UInt16;
Source : IP_Address;
Destination : IP_Address;

end record with
Alignment => 2,
Size => Min_IP_Header_Length * 8;

for IP_Header use record
Version at 0 range 4 .. 7;
Word_Count at 0 range 0 .. 3;
Type_of_Service at 1 range 0 .. 7;
Total_Length at 2 range 0 .. 15;
Identifier at 4 range 0 .. 15;
Flags_Offset at 6 range 0 .. 15;
Time_To_Live at 8 range 0 .. 7;
Protocol at 9 range 0 .. 7;
Checksum at 10 range 0 .. 15;
Source at 12 range 0 .. 31;
Destination at 16 range 0 .. 31;

end record;
for IP_Header'Bit_Order use System.Low_Order_First;
for IP_Header'Scalar_Storage_Order use System.Low_Order_First;

type IP_Header_Access is access all IP_Header;
pragma No_Strict_Aliasing (IP_Header_Access);

-- and so on, for the other kinds of headers...

Note that pragma No_Strict_Aliasing stops the compiler from doing some optimizations,
based on the assumption of a lack of aliasing, that could cause unexpected results in this
approach.

function As_IP_Header_Access is new Ada.Unchecked_Conversion
(Source => System.Address, Target => IP_Header_Access);

function As_ARP_Header_Access is new Ada.Unchecked_Conversion
(Source => System.Address, Target => ARP_Packet_Access);

-- and so on, for the other kinds of headers...

We can then implement a function, visible to clients, for acquiring the access value from a
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given memory buffer's data:

function IP_Hdr (This : Memory_Buffer) return IP_Header_Access is
(As_IP_Header_Access (This.Packet.Data (IP_Pos)'Address));

In the function, Data is the packet's array of raw bytes, and IP_Pos is a constant specifying
the index into the array corresponding to the first byte of the IP header. As you can see,
this is the same approach as shown earlier for working with an array of bytes containing
acceleration values.
Similar functions support ARP32 headers, TCP33 headers, and so on.

8.3 Pros
Both approaches work and are fairly simple, although the first is simplest. The second ap-
proach, based on converting addresses to access values, is more flexible. That's because
the address to be converted can be changed at run-time, whereas the object overlay spec-
ifies the address exactly once during elaboration.

8.4 Cons
We're assuming access values are represented as addresses. There's no guarantee of that.
But on typical architectures it will likely work.
That said, not all types can support the address conversion approach. In particular, un-
constrained array types may not work correctly because of the existence of the additional
in-memory representation of the bounds. An access value designating such an object might
point at the bounds of the array whereas the address of the object would point to the first
element.
In either approach, the developer is responsible for the correctness of the address values
applied, either for the second object's declaration or for the pointer conversion. For exam-
ple, this includes the alternative type's alignment. Otherwise, all bets are off.

8.5 Relationship With Other Idioms
None.

8.6 Notes
Generic package System.Address_To_Access_Conversions is an obvious alternative to
our use of unchecked conversions between addresses and access values. The generic is
convenient: it provides the access type as well as functions for converting in both directions.
But it will require an instantiation for each designated type, so it offers no reduction in
the number of instantiations required over that of Ada.Unchecked_Conversion. (For more
details on this generic package, please refer to the section on access and address34.)
Moreover, because that generic package is defined by the language, the naïve user might
think it will work for all types. It might not. Unconstrained array types remain a potential
problem. For that reason, the GNAT implementation issues a warning in such cases.

32 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
33 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
34 https://learn.adacore.com/courses/advanced-ada/parts/resource_management/access_types.html#
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CHAPTER

NINE

USING BUILDING BLOCKS TO EXPRESS INHERITANCE
IDIOMS

9.1 Motivation

Betrand Meyer's magisterial book on OOP38 includes a taxonomy of inheritance idioms. Two
especially well-known entries in that taxonomy are Subtype Inheritance36 and Implemen-
tation Inheritance37. The name of the first idiom is perhaps confusing from an Ada point of
view because Ada subtypes have a different meaning. In Ada terms we are talking about
derived types. A derived type is a new, distinct type based on (i.e., derived from) some
existing type. We will informally refer to the existing ancestor type as the parent type, and
the new type as the child type. The term Subtype in the idiom name refers to the child
type.
Subtype Inheritance is the most well-known idiom for inheritance because it's based on the
notion of a taxonomy, in which categories and disjoint subcategories are identified. For
example, we can say that dogs, cats, and dolphins are mammals, and that all mammals
are animals:
38 B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.
36 https://en.wikipedia.org/wiki/Subtyping
37 https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
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By saying that the subcategories are disjoint we mean that, for example, dogs are neither
cats nor dolphins and cannot be treated as if they are.
In software, we use various constructs to represent the categories and subcategories and
use inheritance to organize them. As mentioned above, in Ada, we express that inheritance
via derived types representing the categories and subcategories. Ada's strong typing en-
sures they are treated as disjoint entities.
Although the derived child type is distinct from the parent type, the child is the same kind
as the parent type. Some authors use kind of as the name for the relationship between the
child and parent. Meyer uses the term is-aPage 61, 38, a popular term that we will use too. For
example, a cat is a mammal, and also is an animal.
The fundamental difference between Subtype Inheritance (page 65) and Implementation
Inheritance (page 68) is whether clients have compile-time visibility to the is-a relationship
between the parent and child types. The relationship exists in both idioms but is only
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visible to clients in one. In Subtype Inheritance, clients do have compile-time visibility to
the relationship, while in Implementation Inheritance, clients don't have that visibility.
Consequently, with Subtype Inheritance, all of the inherited operations become part of
the child type's visible interface. In contrast, with Implementation Inheritance, none of
those parent capabilities are part of the visible interface: the inherited parent capabilities
are only available internally, to implement the child type's representation and its primitive
operations.

9.1.1 Building Blocks
Ada uses distinct building block constructs to compose types that have specific character-
istics and capabilities. In particular, Ada packages, with their control over compile-time
visibility, are modules. Private types are combined with packages to define abstract data
types (page 11) having hidden representations. Sets of related types are presented explic-
itly by class-wide types.
In addition, simple reserved wordsmay be attached to a type declaration to refine or expand
the capabilities of the type. These type declarations include declarations for derived types,
providing considerable flexibility and expressive power for controlling the client's view of
the child and parent types.
For example, in Ada, full dynamic OOP capabilities require type declarations to be decorated
with the reserved word tagged. However, from its earliest days, Ada has also supported a
static form of inheritance, using types that are not tagged. The implementation we describe
below works with both forms of inheritance.
The developer also has a choice of whether the parent type and/or the child type is a private
type. Using private types is the default design choice, for the sake of designing in terms of
abstract data types, but is nevertheless optional.
In addition, a type can be both private and tagged. This possibility raises the question
of whether the type is visibly tagged, i.e., whether the client view of the type includes
the tagged characteristic, and hence the corresponding capabilities. Recall that a private
type is declared in two steps: the first part occurs in the visible part of the package and
introduces the type name to clients. The second part — the type completion — appears
in the package private part and specifies the type's actual representation. The question
arises because the first step, i.e., the declaration in the package's visible part, need not be
tagged, yet can be tagged in the completion in the package private part. For example:

package P is
type Foo is private; -- not visibly tagged for clients
-- operations on type Foo

private
type Foo is tagged record -- tagged completion

...
end record;

end P;

In the above, Foo is not visibly tagged except in the package private part and the package
body. As a consequence, the capabilities of tagged types are not available to clients using
type Foo. Clients cannot refer to Foo'Class, for example. (The opposite arrangement —
tagged in the visible client view but not actually tagged in the private view — is not legal,
because clients would be promised capabilities that are not actually available.)
When the parent type is tagged, the type derivation syntax for the child is a type extension
declaration that introduces the child type's name, specifies the parent type, and then ex-
tends the parent representation with child-specific record components, if any. For example:

type Child is new Parent with record ... end record;
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Even though the child type declaration does not include the reserved word tagged the child
will be a tagged type because the parent type is tagged. The compiler would not allow the
extension construct for a non-tagged parent type.
Just as a private type can be visibly tagged or not, a private type can be visibly derived or
not. When it is visibly derived, clients have a view of the private type that includes the fact
of the derivation from the parent type. Otherwise, clients have no view of the parent type.
Whether or not the child is visibly derived, the representation is not compile-time visible to
clients, as for any private type. For example, type Foo is not visibly derived in the following:

package P is
type Foo is tagged private; -- visibly tagged but not visibly derived
-- ...

end P;

To be visibly derived, we declare the child type as a private type using a private extension.
A private extension is like a type extension, in that it introduces the child type name and
the parent type. But like any private type declaration, it does not specify the type's repre-
sentation. This is the first of the two steps for declaring a private type; hence it appears in
the package visible part. For example:

with ...
package P is

type Child is new Parent with private; -- visibly derived from Parent
private

type Child is new Parent with record ... end record;
end P;

The representation additions are not expressed until the private type's completion in the
package private part, using a type extension. The steps are the same two for any private
type: a declaration in the package visible part, with a completion in the package private
part. The difference is the client visibility to the parent type.

9.2 Implementation(s)
There are two implementations presented, one for each of the two inheritance idioms un-
der discussion. First, we will specify our building block choices, then show the two idiom
expressions in separate subsections.

• We use tagged types for the sake of providing full OOP capabilities. That is the most
common choice when inheritance is involved. The static form of inheritance has cases
in which it is useful, but those cases are very narrow in applicability.

• We assume that the parent type and the child type are both private types, i.e., ab-
stract data types, because that is the best practice. See the Abstract Data Type idiom
(page 11) for justification and details.

• To provide the most general capabilities, we assume the parent type is visibly tagged.
• We're going to declare the child type in a distinct, dedicated package, following the
ADT idiom (page 11). This package may or may not be a child of the parent package.
This implementation's approach does not require a child package's special compile-
time visibility, although a child package is often necessary for the sake of that visibility.

• Whether the child type is visibly derived will vary with the inheritance idiom (page 68)
implementation.

To avoid unnecessary code duplication, we use the same parent type, declared as a simple
tagged private type, in the examples for the two idiom implementations. The parent type
could itself be derived from some other tagged type, but that changes nothing conceptually
significant. We declare parent type in package P as follows:
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package P is
type Parent is tagged private; -- visibly tagged
-- primitive operations with type Parent as the
-- controlling formal parameter

private
type Parent is tagged record ... end record;

end P;

9.2.1 Subtype Inheritance
Recall that Subtype Inheritance requires clients to have compile-time visibility to the is-a
relationship between the child and parent types. We can satisfy that requirement if we
make the child visibly derived from the parent. Hence we declare the private type as a
private extension in the visible part of the package:

with P; use P;
package Q is
type Child is new Parent with private;
-- implicit, inherited primitive Parent operations declared here,
-- now for type Child
-- additional primitives for Child explicitly declared, if any

private
type Child is new Parent with record ... end record;

end Q;

The primitive operations from the parent type are implicitly declared immediately after the
private extension declaration. That means those operations are in the visible part of the
package, hence clients can invoke them. Any additional operations for the client interface
will be explicitly declared in the visible part as well, as will any overriding declarations for
those inherited operations that are to be changed.
For example, here is a basic bank account ADT (page 11) that we will use as the parent
type in a derivation:

Listing 1: bank.ads
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 with Ada.Containers.Doubly_Linked_Lists;
3

4 package Bank is
5

6 type Basic_Account is tagged private
7 with Type_Invariant'Class => Consistent_Balance (Basic_Account);
8

9 function Consistent_Balance (This : Basic_Account) return Boolean;
10

11 type Currency is delta 0.01 digits 12;
12

13 procedure Deposit (This : in out Basic_Account;
14 Amount : Currency) with
15 Pre'Class => Open (This) and Amount > 0.0,
16 Post'Class => Balance (This) = Balance (This)'Old + Amount;
17

18 procedure Withdraw (This : in out Basic_Account;
19 Amount : Currency) with
20 Pre'Class => Open (This) and Funds_Available (This, Amount),
21 Post'Class => Balance (This) = Balance (This)'Old - Amount;
22

23 function Balance (This : Basic_Account) return Currency
24 with Pre'Class => Open (This);

(continues on next page)
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(continued from previous page)
25

26 procedure Report_Transactions (This : Basic_Account)
27 with Pre'Class => Open (This);
28

29 procedure Report (This : Basic_Account)
30 with Pre'Class => Open (This);
31

32 function Open (This : Basic_Account) return Boolean;
33

34 procedure Open
35 (This : in out Basic_Account;
36 Name : String;
37 Initial_Deposit : Currency)
38 with Pre'Class => not Open (This),
39 Post'Class => Open (This);
40

41 function Funds_Available (This : Basic_Account;
42 Amount : Currency) return Boolean is
43 (Amount > 0.0 and then Balance (This) >= Amount)
44 with Pre'Class => Open (This);
45

46 private
47

48 package Transactions is new
49 Ada.Containers.Doubly_Linked_Lists (Element_Type => Currency);
50

51 type Basic_Account is tagged record
52 Owner : Unbounded_String;
53 Current_Balance : Currency := 0.0;
54 Withdrawals : Transactions.List;
55 Deposits : Transactions.List;
56 end record;
57

58 function Total (This : Transactions.List) return Currency is
59 (This'Reduce ("+", 0.0));
60

61 end Bank;

We could then declare an interest-bearing bank account using Subtype Inheritance:

Listing 2: bank-interest_bearing.ads
1 package Bank.Interest_Bearing is
2

3 type Account is new Basic_Account with private;
4

5 overriding
6 function Consistent_Balance (This : Account) return Boolean;
7

8 function Minimum_Balance (This : Account) return Currency;
9

10 overriding
11 procedure Open
12 (This : in out Account;
13 Name : String;
14 Initial_Deposit : Currency)
15 with Pre => Initial_Deposit >= Minimum_Balance (This);
16

17 overriding
18 procedure Withdraw (This : in out Account; Amount : Currency);
19

(continues on next page)
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(continued from previous page)
20 function Penalties_Accrued (This : Account) return Currency;
21 function Interest_Accrued (This : Account) return Currency;
22

23 private
24

25 type Account is new Basic_Account with record
26 Penalties : Transactions.List;
27 Interest_Earned : Transactions.List;
28 Days_Under_Minimum : Natural := 0;
29 end record;
30

31 end Bank.Interest_Bearing;

The new type Bank.Interest_Bearing.Account inherits all the Basic_Account operations
in the package visible part. They are, therefore, available to clients. Some of those inherited
operations are overridden so that their behavior can be changed. Additional operations
specific to the new type are also declared in the visible part so they are added to the client
API.
The package private part and the body of package Bank.Interest_Bearing have visibility
to the private part of package Bank because the new package is a child of package Bank.
That makes the private function Bank.Total visible in the child package, along with the
components of the record type Basic_Account.
Note that there is no language requirement that the actual parent type in the private type's
completion be the one named in the private extension declaration presented to clients. The
parent type in the completion must only be in the same derivation class — be the same
kind of type — so that it satisfies the is-a relationship stated to clients.
For example, we could start with a basic graphics shape:

package Graphics is
type Shape is tagged private;
-- operations for type Shape ...
...

end Graphics;

We could then declare a subcategory of Shape that allows translation in some 2-D space:

package Graphics.Translatable is
type Translatable_Shape is new Graphics.Shape with private;
procedure Translate (This : in out Translatable_Shape; X, Y : in Float);

...
end Graphics.Translatable;

Given that, we could now declare another type visibly derived from Shape, but using Trans-
latable_Shape as the actual parent type:

with Graphics;
private with Graphics.Translatable;
package Geometry is

type Circle is new Graphics.Shape with private;
-- operations for type Circle, inherited from Shape,
-- and any new ops added ...

private
use Graphics.Translatable;
type Circle is new Translatable_Shape with record ... end record;

end Geometry;

In the type extension that completes type Circle in the package private part above, the
extended parent type is not the one presented to clients, i.e., Graphics.Shape. Instead,
the parent type is another type that is derived from type Shape. That substitution is legal
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and reasonable because Translatable_Shape necessarily can do anything that Shape can
do. To understand why that is legal, it is helpful to imagine that there is a contract between
the package public part and the private part regarding type Circle. As long as Circle
can do everything promised to clients — i.e., inherited Shape operations — the contract
is fulfilled. Circle inherits Shape operations because Translatable_Shape inherits those
operations. The fact that Circle can do more than is contractually required by the client
view is perfectly fine.

9.2.2 Implementation Inheritance
Recall that with Implementation Inheritance clients do not have compile-time visibility to
the is-a relationship between the parent and child types. We meet that requirement by not
making the child visibly derived from the parent. Therefore, we declare the child type as
a simple tagged private type and only mention the parent in the child type's completion in
the package private part:

with P; use P;
package Q is
type Child is tagged private;
-- explicitly declared primitives for Child

private
type Child is new Parent with record ...
-- implicit, inherited primitive operations with type Child
-- as the controlling formal parameter

end Q;

The primitive operations from the parent type are implicitly declared immediately after
the type extension, but these declarations are now located in the package private part.
Therefore, the inherited primitive operations are not compile-time visible to clients. Hence
clients cannot invoke them. These operations are only visible (after the type completion)
in the package private part and the package body, for use with the implementation of the
explicitly declared primitive operations.
For example, wemight use a controlled type in the implementation of a tagged private type.
These types have procedures Initialize and Finalize defined as primitive operations.
Both are called automatically by the compiler. Clients generally don't have any business
directly calling them so we usually use implementation inheritance with controlled types.
But if clients did have the need to call them we would use Subtype Inheritance instead, to
make them visible to clients.
For example, the following is a generic package providing an abstract data type for un-
bounded queues. As such, the Queue type uses dynamic allocation internally. This specific
version automatically reclaims the allocated storage when objects of the Queue type cease
to exist:

Listing 3: unbounded_sequential_queues.ads
1 with Ada.Finalization;
2 generic
3 type Element is private;
4 package Unbounded_Sequential_Queues is
5

6 type Queue is tagged limited private;
7

8 procedure Insert (Into : in out Queue; Item : Element) with
9 Post => not Empty (Into) and

10 Extent (Into) = Extent (Into)'Old + 1;
11 -- may propagate Storage_Error
12

13 procedure Remove (From : in out Queue; Item : out Element) with
(continues on next page)
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(continued from previous page)
14 Pre => not Empty (From),
15 Post => Extent (From) = Natural'Max (0, Extent (From)'Old - 1);
16

17 procedure Reset (This : in out Queue) with
18 Post => Empty (This) and Extent (This) = 0;
19

20 function Extent (This : Queue) return Natural;
21

22 function Empty (This : Queue) return Boolean;
23

24 private
25

26 type Node;
27

28 type Link is access Node;
29

30 type Node is record
31 Data : Element;
32 Next : Link;
33 end record;
34

35 type Queue is new Ada.Finalization.Limited_Controlled with
36 record
37 Count : Natural := 0;
38 Rear : Link;
39 Front : Link;
40 end record;
41

42 overriding procedure Finalize (This : in out Queue) renames Reset;
43

44 end Unbounded_Sequential_Queues;

The basic operation of assignment usually does not make sense for an abstraction repre-
sented as a linked list, so we declare the private type as limited, in addition to tagged and
private, and then use the language-defined limited controlled type for the type extension
completion in the private part.
Procedures Initialize and Finalize are inherited immediately after the type extension.
Both are null procedures that do nothing. We can leave Initialize as-is because initial-
ization is already accomplished via the default values for the Queue components. On the
other hand, we want finalization to reclaim all allocated storage so we cannot leave Final-
ize as a null procedure. By overriding the procedure, we can change the implementation.
That change is usually accomplished by placing the corresponding procedure body in the
package body. However, in this case we have an existing procedure named Reset that is
part of the visible (client) API. Reset does exactly what we want Finalize to do, so we
implement the overridden Finalize by saying that it is just another name for Reset. No
completion body for Finalize is then required or allowed. This approach has the same
semantics as if we explicitly wrote a body for Finalize that simply called Reset, but this is
more succinct. Clients can call Reset whenever they want, but the procedure will also be
called automatically, via Finalize, when any Queue object ceases to exist.

9.3 Pros
The two idioms are easily composed simply by controlling where in the enclosing package
the parent type is mentioned: either in the declaration of the private child type in the
package visible part or in the child type's completion in the package private type.
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9.4 Cons
Although the inheritance expressions are simple by themselves, the many ancillary design
choices can make the design effort seem more complicated than it really is.

9.5 Relationship With Other Idioms
We assume the Abstract Data Type idiom (page 11), so we are using private types through-
out. That includes the child type, and, as we saw, allows us to control the compile-time
visibility to the parent type.
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CHAPTER

TEN

PROVIDING COMPONENT ACCESS TO ENCLOSING
RECORD OBJECTS

10.1 Motivation
In some design situations we want to have a record component that is of a task or protected
type. That in itself is trivially accomplished because task types and protected types can be
used to declare record components. But there's more to this idiom.
We would want a task type or protected type record component when:
a) a task or protected object (PO) is required to implement part — but not all — of the

record type's functionality, and
b) each such task or PO is intended to implement its functionality only for the object

logically containing that specific task object or protected object. The record object
and contained task/PO object pair is a functional unit, independent of all other such
units.

This idiom applies to both enclosed task types and protected types, but for simplicity let's
assume the record component will be of a protected type.
As part of a functional unit, the PO component will almost certainly be required to reference
the other record components in the enclosing record object. That reference will allow the
PO to read and/or update those other components. Note that these record components
include discriminants, if any.
To be a functional unit, the record object referenced by a given PO in this relationship must
be the same record object at run-time that contains that specific PO instance. That will allow
the PO instance to implement the functionality for the specific record object containing that
PO instance.
Unless we arrange it, that back-reference from the protected object to the record object
isn't provided. Consider the following:

package Q is
protected type P is ... end P;
type R is record
...
Y : P;

end record;
end Q;

During execution, whenever an object of type Q.R is declared or allocated, at run-time we
will have two objects, instances of two distinct types — the record object and the protected
object. Let's say that a client declares an object Obj of type R. There is only one reference
direction defined, from the record denoted by Obj to the component protected object de-
noted by Obj.Y. This idiom, however, requires a reference in the opposite direction, from
Oby.Y to Obj.
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This may seem like an unrealistic situation, but it is not. An IO device type that involves
interrupt handling is just one real-world example, one that we will show in detail.
The idiom context is a type because there will often be multiple real-world entities being
represented in software. Representing these entities as multiple objects declared of a single
type is by far the most reasonable approach.
We assume the functional unit will be implemented as an Abstract Data Type (ADT)
(page 11). Strictly speaking, the ADT idiom is not required here, but that is the best ap-
proach for defining major types, for the good reasons given in that idiom entry. There's no
reason not to use an ADT in this case so we will.

10.2 Implementation(s)
As mentioned, the implementation approach applies to enclosed components of both task
types and protected types. We will continue the discussion in terms of protected types.
The implementation has two parts:
1. An access discriminant on the PO type, designating the enclosing record's type. That

part is straightforward.
2. A value given to that discriminant that designates the object of the enclosing record

type, i.e., the record object that contains that PO. That part requires a relatively ob-
scure language construct.

Given those two parts, the PO can then dereference its access discriminant to read or update
the other components in the same enclosing record object.
Consider the following (very artificial) package declaration illustrating these two parts:

package P is
type Device is tagged limited private;

private

protected type Controller (Encloser : not null access Device) is
-- Part 1

procedure Increment_X;
end Controller;

type Device is tagged limited record
X : Integer; -- arbitrary type

C : Controller (Encloser => ...);
-- Part 2, not fully shown yet

end record;

end P;

The record type named Device contains a component named X, arbitrarily of type Integer,
and another component C that is of protected type Controller. Part #1 of the implemen-
tation is the access discriminant on the declaration of the protected type Controller:

protected type Controller (Encloser : not null access Device) is

Given a value for the discriminant Encloser, the code within the spec and body of type
Controller can then reference some Device object via that discriminant.
But not just any object of type Device will suffice. For Part #2, we must give the Encloser
discriminant a value that refers to the current instance of the record object containing this
same PO object. In the package declaration above, the value passed to Encloser is elided.
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The following is that code again, now showing just the declaration for Device, but also
including the construct that is actually passed. This is where the subtlety comes into play:

type Device is tagged limited record
...
C : Controller (Encloser => Device'Access);

end record;

The subtlety is the expression Device'Access. Within a type declaration, usage of the
type name denotes the current instance of that type. The current instance of a type is the
object of the type that is associated with the execution that evaluates the type name. For
example, during execution, when an object of type Device is elaborated, the name Device
refers to that object.
It isn't compiler-defined magic, the semantics are defined by the Ada standard so it is com-
pletely portable. (There are other cases for expressing the current instance of task types,
protected types, and generics.)
Therefore, within the declaration of type Device, the expression Device'Access provides
an access value designating the current instance of that type. This is exactly what we want
and is the crux of the idiom expression. With that discriminant value, the enclosed PO spec
and body can reference the other record components of the same object that contains the
PO.
To illustrate that, here is the package body for this trivial example. Note the value refer-
enced in the body of procedure Increment_X:

package body P is

protected body Controller is

procedure Increment_X is
begin

Encloser.X := Encloser.X + 1;
end Increment_X;

end Controller;

end P;

Specifically, the body of procedure Increment_X can use the access discriminant Encloser
to get to the current instance's X component. (We could express it as Encloser.all.X but
why bother. Implicit dereferencing is a wonderful thing.)
That's the implementation. Now for some necessary details.
Note that we declared type Device as a limited type, first in the visible part of the package:

type Device is tagged limited private;

and again in the type completion in the package private part:

type Device is tagged limited record ... end record;

We declare Device as a limited type because we want to preclude assignment statements
for client objects of the type. Assignment of the enclosing record object would leave the
PO Encloser discriminant designating the prior (right-hand side) enclosing object. If the PO
is written with the assumption that the enclosing object is always the one identified during
creation of the PO, that assumption will no longer hold. We didn't state it up-front, but that
is the assumption underlying the idiom as described, and in fact, only limited types may
have a component that uses the Access attribute in this way. Also note that any type that
includes a protected or task object is limited, so a type like Device will necessarily be limited
in any case.
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The type need not be tagged for this approach, but it must be limited in both its partial view
and its full view. More generally, a tagged type must be limited in both views if it is limited
in either view.
For the idiom implementation to be legal, the type's completion in the private part must not
merely be limited, but actually immutably limited, meaning that it is always truly limited.
There are various ways to make that happen (see AARM22 7.5 (8.1/3)39 ) but the easiest
way to is to include the reserved word limited in the type definition within the full view, as
we did above. That is known as making the type explicitly limited. It turns out having a task
or protected component also makes it immutably limited, so this requirement is naturally
satisfied in this use case.
Why does the compiler require the type to be immutably limited?
Recall that a (non-tagged) private type need not be limited in both views. It can be limited
in the partial client view but non-limited in its full view:

package Q is
type T is limited private;
-- the partial view for clients in package visible part
...

private
type T is record -- the full view in the package private part

...
end record;

end Q;

Clients must treat type Q.T as if it is limited, but Q.T isn't really limited because the full
view defines reality. Clients simply have a more restricted view of the type than is really
the case.
Types that are immutably limited are necessarily limited in all views. That's important
because the current instance of the type given in type_name'Access must be aliased for
'Access to be legal. But if the type's view could change between limited and not limited,
its current instance would be aliased in some contexts and not aliased in others. To prevent
that complexity, the language requires the type to be immutably limited so that the current
instance of the type will be aliased in every view. In practice, we're working with record
types and type extensions, so just make the full type definition explicitly limited and all will
be well:

package Q is
type T is limited private;
...

private
type T is limited record

...
end record;

end Q;

Then, as mentioned, you can choose whether the type will also be tagged.

10.3 Real-World Example
For a concrete, real-world example, suppose we have a serial IO device on an embedded
target board. The device can be either a UART or USART40. For the sake of brevity let's
assume we have USARTs available.
Many boards have more than one USART resident, so it makes sense to represent them
in software as instances of an ADT. This example uses the USART ADT supported in the
39 http://www.ada-auth.org/standards/22aarm/html/AA-7-5.html
40 https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
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Ada Drivers Library (ADL)41 that is named, imaginatively, USART. (We don't show package
STM32.USARTs, but you will see it referenced in the example's context clauses.) Each of
these USART devices can support either a polling implementation or an interrupt-driven
implementation. We will first define a basic USART ADT, and then extend that to a new one
that works with interrupts.
At the most basic level, to work with a given USART device we must combine it with some
other hardware, specifically the IO pins that connect it to the outside world. That combina-
tion will be represented by a new ADT, the type Device defined in package Serial_IO.
Any given Serial_IO.Device object will be associated permanently with one USART. There-
fore, type Device will have a discriminant named Transceiver designating that USART ob-
ject.
There are some low-level operations that a Serial_IO.Device will implement, such as
initializing the hardware and setting the baud rate and so forth. We can also implement the
hardware-oriented input and output routines in this package because both are independent
of the polling or interrupt-driven designs.
Here's the resulting package declaration for the serial IO device ADT. Parts of the package
are elided for simplicity (the full code is at the end of this idiom entry (page 79)):

with STM32; use STM32;
with STM32.GPIO; use STM32.GPIO;
with STM32.USARTs; use STM32.USARTs;
with HAL; -- the ADL's Hardware Abstraction Layer

package Serial_IO is

type Device (Transceiver : not null access USART) is tagged limited private;

procedure Initialize
(This : in out Device;
Tx_Pin : GPIO_Point;
Rx_Pin : GPIO_Point;
...);

procedure Configure (This : in out Device; Baud_Rate : Baud_Rates; ...);
...
procedure Put (This : in out Device; Data : HAL.UInt8) with Inline;
procedure Get (This : in out Device; Data : out HAL.UInt8) with Inline;

private

type Device (Transceiver : not null access USART) is tagged limited record
Tx_Pin : GPIO_Point;
Rx_Pin : GPIO_Point;
...

end record;

end Serial_IO;

When called, procedure Initialize does the hardware setup required, such as enabling
power for the USART and pins. We can ignore those details for this discussion.
Given this basic Device type we can then use inheritance (type extension) to define distinct
types that support the polling and interrupt-driven facilities. These types will themselves
be ADTs. Let's focus on the new interrupt-driven ADT, named Serial_Port. This type will
be declared in the child package Serial_IO.Interrupt_Driven.
When interrupts are used, each USART raises a USART-specific interrupt for sending and
receiving. Each interrupt occurrence is specific to one device. Therefore, the interrupt
41 https://github.com/AdaCore/Ada_Drivers_Library
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handler code is specific to each Serial_Port object instance. We use protected objects
as interrupt handlers in (canonical) Ada, hence each Serial_Port object will contain a
dedicated interrupt handling PO as a record component.
As a controller and handler for a USART's interrupts, the PO will require a way to access the
USART and pins being driven. Our idiom design provides that access.
Here is the client view of the ADT for the interrupt-driven implementation:

with Ada.Interrupts; use Ada.Interrupts;
with HAL;
with System; use System;

package Serial_IO.Interrupt_Driven is

type Serial_Port
(Transceiver : not null access USART;
IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority)

is new Serial_IO.Device with private;

-- The procedures Initialize and Configure, among others, are
-- implicitly declared here as operations inherited from
-- Serial_IO.Device.

overriding
procedure Put (This : in out Serial_Port; Data : HAL.UInt8)
with Inline;

overriding
procedure Get (This : in out Serial_Port; Data : out HAL.UInt8)
with Inline;

private
...

end Serial_IO.Interrupt_Driven;

The declaration of type Serial_Port uses Interface Inheritance (page 61) to extend
Serial_IO.Device with both visible and hidden components. The three visible extension
components are the discriminants Transceiver, IRQ, and IRQ_Priority. Transceiver will
designate the USART to drive (discussed in a moment). IRQ is the Interrupt_ID indicating
the interrupt that the associated USART raises. IRQ_Priority is the priority for that inter-
rupt. (IRQ in a common abbreviation for Interrupt ReQuest.) These two interrupt-oriented
discriminants are used within the PO declaration to configure it for interrupt handling.
Clients will know which USART they are working with so they will be able to determine which
interrupt ID and priority to specify, presumably by consulting the board documentation.
Now let's examine the Serial_Port type completion in the package's private part.
We've said we will use a PO interrupt handler as a component of the Serial_Port record
type. This PO type, named IO_Manager, will include discriminants for the two interrupt-
specific values it requires as an interrupt handler. It will also have a discriminant providing
access to the enclosing Serial_Port record type.

protected type IO_Manager
(IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority;
Port : not null access Serial_Port)

with
Interrupt_Priority => IRQ_Priority

is
entry Put (Datum : HAL.UInt8);

(continues on next page)
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(continued from previous page)
entry Get (Datum : out HAL.UInt8);

private
...
procedure IRQ_Handler with Attach_Handler => IRQ;

end IO_Manager;

Note how the first two discriminants are used within the type declaration to give the pri-
ority of the PO and to attach the interrupt handler procedure IRQ_Handler to the interrupt
indicated by IRQ. The Port discriminant will be the back-reference to the enclosing record
object.
We can then, finally, provide the Serial_Port type completion, in which the record object
and protected object are connected whenever a Serial_Port object is declared:

type Serial_Port
(Transceiver : not null access USART;
IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority)

is new Serial_IO.Device (Transceiver) with record
Controller : IO_Manager (IRQ, IRQ_Priority, Serial_Port'Access);

end record;

The type completion repeats the declaration in the public part, up to the point where the
Serial_Port.Transceiver discriminant is passed to the Serial_IO.Device.Transceiver
discriminant. Type Device must be constrained with a discriminant value here, so we just
pass the discriminant defined for Serial_Port.
Why does Serial_Port also have a Transceiver discriminant? Just as Serial_IO.Device
is a complete wrapper for the combination of a USART and IO pins, Serial_Port is a stand-
alone wrapper for Serial_IO.Device. Hence Serial_Port also needs a discriminant des-
ignating a USART to be complete.
The full definition of type Serial_Port contains the declaration of the component named
Controller, of the protected type IO_Manager. The two interrupt-oriented discriminants
from Serial_Port are passed to the discriminants defined for this PO component. The third
IO_Manager discriminant value, Serial_Port'Access, denotes the current instance of the
Serial_Port type. Thus the idiom requirements are achieved.
Let's see that back-reference in use within the protected body.
As mentioned, there is one interrupt used for both sending and receiving, per USART. Strictly
speaking, the device itself does use two dedicated interrupts, one indicating that a 9-bit
value has been received, and one indicating that transmission for a single 9-bit value has
completed. But these two are signaled to the software on one interrupt line, and that is the
value indicated by IRQ.
Therefore, there is one interrupt handling protected procedure, named IRQ_Handler. In
response to this interrupt, IRQ_Handler determines which event has occurred by checking
one of the Transceiver status registers. The back-reference through Port makes that
possible. Other Transceiver routines are also called via Port, and Port.all is passed to
the Put and Get calls:

procedure IRQ_Handler is
begin

-- check for data arrival
if Port.Transceiver.Status (Read_Data_Register_Not_Empty) and then

Port.Transceiver.Interrupt_Enabled (Received_Data_Not_Empty)
then -- handle reception

-- call the Serial_IO.Device version:
Get (Serial_IO.Device (Port.all), Incoming);

(continues on next page)
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(continued from previous page)
Await_Reception_Complete : loop

exit when not Port.Transceiver.Status (Read_Data_Register_Not_Empty);
end loop Await_Reception_Complete;
Port.Transceiver.Disable_Interrupts (Received_Data_Not_Empty);
Port.Transceiver.Clear_Status (Read_Data_Register_Not_Empty);
Incoming_Data_Available := True;

end if;

-- check for transmission ready
if Port.Transceiver.Status (Transmission_Complete_Indicated) and then

Port.Transceiver.Interrupt_Enabled (Transmission_Complete)
then -- handle transmission

-- call the Serial_IO.Device version:
Put (Serial_IO.Device (Port.all), Outgoing);

Port.Transceiver.Disable_Interrupts (Transmission_Complete);
Port.Transceiver.Clear_Status (Transmission_Complete_Indicated);
Transmission_Pending := False;

end if;
end IRQ_Handler;

In this example, although the PO only accesses the Transceiver component in the enclos-
ing record object, additional functionality might need to access more components, for this
example perhaps using some of the inherited IO pin components.

10.4 Pros
The implementation is directly expressed, requiring only an access discriminant and the
current instance semantics of type_name'Access.
Although the real-word example is complex — multiple discriminants are involved, and a
type extension — the implementation itself requires little text. Interrupt handling is rela-
tively complex in any language.

10.5 Cons
The record type must be truly a limited type, but that is not the severe limitation it was in
earlier versions of Ada. Note that although access discriminants are required, there is no
dynamic allocation involved.

10.6 Relationship With Other Idioms
This idiom is useful when we have a record type enclosing a PO or task object. If the Abstract
Data Machine (ADM) (page 17) would instead be appropriate, the necessary visibility can
be achieved without requiring this implementation approach because there would be no
enclosing record type. But as described in the ADM discussion, the ADT approach (page 11)
is usually superior.

10.7 Notes
As a wrapper abstraction for a USART, package Serial_IO is still more hardware-specific
than absolutely necessary, as reflected in the parameters' types for procedure Initialize
and the corresponding record component types. We could use the Hardware Abstraction
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Layer (HAL) to further isolate the hardware dependencies, but that doesn't affect the idiom
expression itself.

10.8 Full Source Code for Selected Units
We did not show some significant parts of the code discussed above, for the sake of not
obscuring the points being made. Doing so, however, means that the interested reader
cannot see how everything fits together and works, such as the actual IO using interrupts.
The code below shows the relevant packages in their entirety. Note that the ADL STM32 hi-
erarchy packages and the HAL (Hardware Abstraction Layer) package are in the Ada Drivers
Library on GitHub42.
First, the basic Serial_IO abstraction:

with STM32; use STM32;
with STM32.GPIO; use STM32.GPIO;
with STM32.USARTs; use STM32.USARTs;
with HAL;

package Serial_IO is

type Device (Transceiver : not null access USART) is tagged limited private;

procedure Initialize
(This : in out Device;
Transceiver_AF : GPIO_Alternate_Function;
Tx_Pin : GPIO_Point;
Rx_Pin : GPIO_Point;
CTS_Pin : GPIO_Point;
RTS_Pin : GPIO_Point);

-- must be called before Configure

procedure Configure
(This : in out Device;
Baud_Rate : Baud_Rates;
Parity : Parities := No_Parity;
Data_Bits : Word_Lengths := Word_Length_8;
End_Bits : Stop_Bits := Stopbits_1;
Control : Flow_Control := No_Flow_Control);

procedure Set_CTS (This : in out Device; Value : Boolean) with Inline;
procedure Set_RTS (This : in out Device; Value : Boolean) with Inline;

procedure Put (This : in out Device; Data : HAL.UInt8) with Inline;
procedure Get (This : in out Device; Data : out HAL.UInt8) with Inline;

private

type Device (Transceiver : not null access USART) is tagged limited record
Tx_Pin : GPIO_Point;
Rx_Pin : GPIO_Point;
CTS_Pin : GPIO_Point;
RTS_Pin : GPIO_Point;

end record;

end Serial_IO;

And the package body:
42 https://github.com/AdaCore/Ada_Drivers_Library
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with STM32.Device; use STM32.Device;

package body Serial_IO is

----------------
-- Initialize --
----------------

procedure Initialize
(This : in out Device;
Transceiver_AF : GPIO_Alternate_Function;
Tx_Pin : GPIO_Point;
Rx_Pin : GPIO_Point;
CTS_Pin : GPIO_Point;
RTS_Pin : GPIO_Point)

is
IO_Pins : constant GPIO_Points := Rx_Pin & Tx_Pin;

begin
This.Tx_Pin := Tx_Pin;
This.Rx_Pin := Rx_Pin;
This.CTS_Pin := CTS_Pin;
This.RTS_Pin := RTS_Pin;

Enable_Clock (This.Transceiver.all);

Enable_Clock (IO_Pins);

Configure_IO
(IO_Pins,
Config => (Mode_AF,

AF => Transceiver_AF,
AF_Speed => Speed_50MHz,
AF_Output_Type => Push_Pull,
Resistors => Pull_Up));

Enable_Clock (RTS_Pin & CTS_Pin);

Configure_IO (RTS_Pin, Config => (Mode_In, Resistors => Pull_Up));

Configure_IO
(CTS_Pin,
Config => (Mode_Out,

Speed => Speed_50MHz,
Output_Type => Push_Pull,
Resistors => Pull_Up));

end Initialize;

---------------
-- Configure --
---------------

procedure Configure
(This : in out Device;
Baud_Rate : Baud_Rates;
Parity : Parities := No_Parity;
Data_Bits : Word_Lengths := Word_Length_8;
End_Bits : Stop_Bits := Stopbits_1;
Control : Flow_Control := No_Flow_Control)

is
begin

This.Transceiver.Disable;

(continues on next page)
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(continued from previous page)
This.Transceiver.Set_Baud_Rate (Baud_Rate);
This.Transceiver.Set_Mode (Tx_Rx_Mode);
This.Transceiver.Set_Stop_Bits (End_Bits);
This.Transceiver.Set_Word_Length (Data_Bits);
This.Transceiver.Set_Parity (Parity);
This.Transceiver.Set_Flow_Control (Control);

This.Transceiver.Enable;
end Configure;

-------------
-- Set_CTS --
-------------

procedure Set_CTS (This : in out Device; Value : Boolean) is
begin

This.CTS_Pin.Drive (Value);
end Set_CTS;

-------------
-- Set_RTS --
-------------

procedure Set_RTS (This : in out Device; Value : Boolean) is
begin

This.RTS_Pin.Drive (Value);
end Set_RTS;

---------
-- Put --
---------

procedure Put (This : in out Device; Data : HAL.UInt8) is
begin

This.Transceiver.Transmit (HAL.UInt9 (Data));
end Put;

---------
-- Get --
---------

procedure Get (This : in out Device; Data : out HAL.UInt8) is
Received : HAL.UInt9;

begin
This.Transceiver.Receive (Received);
Data := HAL.UInt8 (Received);

end Get;

end Serial_IO;

Next, the interrupt-driven extension.

with Ada.Interrupts; use Ada.Interrupts;
with HAL;
with System; use System;

package Serial_IO.Interrupt_Driven is
pragma Elaborate_Body;

type Serial_Port
(Transceiver : not null access USART;

(continues on next page)
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(continued from previous page)
IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority)

is new Serial_IO.Device with private;
-- A serial port that uses interrupts for I/O. Extends the Device
-- abstraction that is itself a wrapper for the USARTs hardware.

-- The procedures Initialize and Configure, among others, are implicitly
-- declared here, as operations inherited from Serial_IO.Device

overriding
procedure Put (This : in out Serial_Port; Data : HAL.UInt8)
with Inline;

-- Non-blocking, ie the caller can return before the Data goes out,
-- but does block until the underlying UART is not doing any other
-- transmitting. Does no polling. Will not interfere with any other I/O
-- on the same device.

overriding
procedure Get (This : in out Serial_Port; Data : out HAL.UInt8)
with Inline;

-- Blocks the caller until a character is available! Does no polling.
-- Will not interfere with any other I/O on the same device.

private

-- The protected type defining the interrupt-based I/O for sending and
-- receiving via the USART attached to the serial port designated by
-- Port. Each serial port object of the type defined by this package has
-- a component of this protected type.
protected type IO_Manager
(IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority;
Port : not null access Serial_Port)

-- with
-- Interrupt_Priority => IRQ_Priority -- compiler bug :-(

is
pragma Interrupt_Priority (IRQ_Priority);

entry Put (Datum : HAL.UInt8);

entry Get (Datum : out HAL.UInt8);

private

Outgoing : HAL.UInt8;
Incoming : HAL.UInt8;

Incoming_Data_Available : Boolean := False;
Transmission_Pending : Boolean := False;

procedure IRQ_Handler with Attach_Handler => IRQ;

end IO_Manager;

type Serial_Port
(Transceiver : not null access USART;
IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority)

is
new Serial_IO.Device (Transceiver) with

record
(continues on next page)

82 Chapter 10. Providing Component Access to Enclosing Record Objects



Ada In Practice

(continued from previous page)
Controller : IO_Manager (IRQ, IRQ_Priority, Serial_Port'Access);
-- Note that Serial_Port'Access provides the Controller with a view
-- to the current instance's components, including the discriminant
-- components

end record;

end Serial_IO.Interrupt_Driven;

And the package body:

with STM32.Device; use STM32.Device;

package body Serial_IO.Interrupt_Driven is

---------
-- Put --
---------

overriding
procedure Put (This : in out Serial_Port; Data : HAL.UInt8) is
begin

This.Controller.Put (Data);
end Put;

---------
-- Get --
---------

overriding
procedure Get (This : in out Serial_Port; Data : out HAL.UInt8) is
begin

This.Transceiver.Enable_Interrupts (Received_Data_Not_Empty);
This.Controller.Get (Data);

end Get;

----------------
-- IO_Manager --
----------------

protected body IO_Manager is

-----------------
-- IRQ_Handler --
-----------------

procedure IRQ_Handler is
begin

-- check for data arrival
if Port.Transceiver.Status (Read_Data_Register_Not_Empty) and then

Port.Transceiver.Interrupt_Enabled (Received_Data_Not_Empty)
then -- handle reception

-- call the Serial_IO.Device version:
Get (Serial_IO.Device (Port.all), Incoming);

Await_Reception_Complete : loop
exit when not

Port.Transceiver.Status (Read_Data_Register_Not_Empty);
end loop Await_Reception_Complete;
Port.Transceiver.Disable_Interrupts (Received_Data_Not_Empty);
Port.Transceiver.Clear_Status (Read_Data_Register_Not_Empty);
Incoming_Data_Available := True;

(continues on next page)
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(continued from previous page)
end if;

-- check for transmission ready
if Port.Transceiver.Status (Transmission_Complete_Indicated) and then

Port.Transceiver.Interrupt_Enabled (Transmission_Complete)
then -- handle transmission

-- call the Serial_IO.Device version:
Put (Serial_IO.Device (Port.all), Outgoing);

Port.Transceiver.Disable_Interrupts (Transmission_Complete);
Port.Transceiver.Clear_Status (Transmission_Complete_Indicated);
Transmission_Pending := False;

end if;
end IRQ_Handler;
---------
-- Put --
---------

entry Put (Datum : HAL.UInt8) when not Transmission_Pending is
begin

Transmission_Pending := True;
Outgoing := Datum;
Port.Transceiver.Enable_Interrupts (Transmission_Complete);

end Put;

---------
-- Get --
---------

entry Get (Datum : out HAL.UInt8) when Incoming_Data_Available is
begin

Datum := Incoming;
Incoming_Data_Available := False;

end Get;

end IO_Manager;

end Serial_IO.Interrupt_Driven;
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ELEVEN

INTERRUPT HANDLING

11.1 Motivation
Recall that, in Ada, protected procedures are the standard interrupt-handling mechanism.
The canonical interrupt handling and management model is defined in the Systems Pro-
gramming Annex, section C.3 of the Reference Manual43. We assume that this optional
annex is supported, and indeed effectively all compilers do support it. Likewise, we as-
sume that the Real-Time Annex, annex D44, is supported (which would require Annex C45

to be supported anyway). Finally, we assume that either the Ravenscar or the Jorvik us-
age profile is applied. These two profiles define configurations of the two annexes that are
appropriate for typical embedded systems that handle interrupts.
The definition of a canonical model mitigates differences imposed by the target, but some
remain. For example, the number of different priority values, including interrupt priorities,
differs with the targets involved. The model supports blocking of those interrupts at a lower
priority than the currently executing interrupt handler, but the hardware might not support
that behavior, although many do. None of these variations affect the expression of the
idioms themselves.
The response to interrupts is often arranged in logical levels. The first level is the protected
procedure handler itself. In some cases, everything required to handle the interrupt is
performed there. However, some applications require more extensive, asynchronous pro-
cessing of the data produced by the first level interrupt handler. In this case a second-level
response can be defined, consisting of a task triggered by the first level. For example, the
interrupt handler could respond to the first arrival of a character on a USART46, poll for the
remainder (or not), and then notify a task to perform analysis of the entire string received.
But even if no second-level interrupt processing is required, the interrupt handler may be
required to notify the application that the event has occurred. Because interrupts are asyn-
chronous, and logically concurrent with the application code, the association of an applica-
tion task to a given interrupt-driven event is convenient and common.
Hence a task is often involved. How the handler procedure notifies the task leads to a
couple of different idiom implementations. In both cases notification amounts to releasing
the previously suspended task for further execution.
In the following section we show how to express these three idioms: one for using protected
procedures alone, and two in which a protected procedure handler notifies a task.
43 http://www.ada-auth.org/standards/12rm/html/RM-C-3.html
44 http://www.ada-auth.org/standards/12rm/html/RM-D.html
45 http://www.ada-auth.org/standards/12rm/html/RM-C.html
46 https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
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11.2 Implementation(s)

11.2.1 First Level Handler Alone
In this approach the interrupt handler protected procedure does everything necessary and
does not require a second-level handler.
An interrupt handler that simply copies data from one location to another is a good example
of a necessary and sufficient first-level handler. The enclosing application assumes the
copying is occurring as required and needs no explicit notification. If the copying isn't
happening the failure will be obvious.
So, given that, why discuss such a scenario? Two reasons: to show how it is done in gen-
eral, and especially, to show how double-buffering can be implemented very elegantly with
interrupts.
For a concrete example, consider an audio streaming device that takes PCM samples from
Ethernet via incoming UDP packets and transfers them to an audio CODEC device47 on
the target board. The CODEC output is physically connected to a high-quality amplifier
and speakers. No upper-level application thread requires notification of the copying: if the
transfer is working the audio output occurs, otherwise it does not.
In our implementation the CODEC device is fed from a buffer named Outgo-
ing_PCM_Samples. The buffer must always have new samples available when the CODEC
is ready for them, because delays or breaks would introduce audible artifacts. The timing is
determined by the sampling rate used by the audio source, prior to transmission. To match
that rate and to provide it efficiently, we use DMA to transfer the data from the buffer to the
CODEC. In addition, Outgoing_PCM_Samples is double-buffered to help ensure the samples
are always available upon demand.
However, the incoming UDP packets don't arrive at exact intervals. Because of this jitter in
the arrival times, we cannot directly insert the PCM samples from these incoming packets
into the Outgoing_PCM_Samples buffer. The delays would be audible. Therefore, we use a
jitter buffer to deal with the arrival time variations. This jitter buffer holds the PCM samples
as they arrive in the UDP packets, in sufficient amounts to de-couple the arrival time jitter
from the outgoing data. A jitter buffer can do much more than this, such as correcting the
order of arriving packets, but in this specific case the additional functionality is not required.
We use two DMA interrupts to copy data from the jitter buffer to the Outgoing_PCM_Samples
buffer. The rationale for using two interrupts, rather than one, is given momentarily. The
figure below illustrates the overall approach, with the jitter buffer on the left, the two inter-
rupt handlers in the middle, and the Outgoing_PCM_Samples buffer on the right.
47 https://en.wikipedia.org/wiki/Audio_codec
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Each UDP packet contains 576 PCM samples, used as the single buffer length for the double-
buffered Outgoing_PCM_Samples and the Jitter_Buffer.
The advantage of double-buffering is that the producer can be filling one buffer while the
consumer is removing data from the other. These directions switch when the current output
buffer becomes empty. The result is a fast, continuous output stream. Many audio and video
devices use double-buffering for that reason.
To express double-buffering you could use two physically distinct array objects, switching
between them when the DMA controller signals that the current outgoing buffer is empty.
That would require keeping track of which buffer is being filled and which is being emptied.
There is an elegant, simpler alternative that uses two different DMA interrupts instead of
one. (The DMA device must support this approach directly.)
In this alternative, there is one physical array (Outgoing_PCM_Samples), containing twice
the number of components as a single physical buffer would contain. We can then use the
two interrupts to treat the one physical array as two logical buffers.
The two DMA interrupts are triggered as the DMA transfer consumes the content within
this single array. One interrupt is triggered when the transfer reaches the physical half-way
point in the array. The other interrupt is triggered when the transfer reaches the physical
end of the array. Therefore, because the array is twice the size of a single buffer, each
interrupt corresponds to one of the two logical buffers becoming empty.
Furthermore, the DMA device generating these interrupts is configured so that it does not
stop. After triggering the half transfer complete interrupt the DMA continues reading, now
from the second logical buffer. After triggering the transfer complete interrupt the DMA
device starts over at the beginning of the array, reading from the first logical buffer again.
Therefore, we have two distinct interrupt handlers, one for each of the two interrupts. When
the half transfer complete handler is invoked, the upper logical buffer is now empty, so the
handler for that half fills it. Likewise, the transfer complete interrupt handler fills the lower
logical buffer at the bottom half of the array. There's no need to keep track of which buffer
is being filled or emptied. It's all being emptied, and the handlers always fill the same upper
or lower halves of the array. As long as each handler completes filling their half before the
DMA transfer begins reading it, all is well.
Here's the declaration of the protected object containing the DMA interrupt handling code.

protected DMA_Interrupt_Controller with
Interrupt_Priority => DMA_Interrupt_Priority

is
private

(continues on next page)
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(continued from previous page)
procedure DMA_IRQ_Handler with

Attach_Handler => STM32.Board.Audio_Out_DMA_Interrupt;
end DMA_Interrupt_Controller;

A few points are worth highlighting.
First, DMA_Interrupt_Priority is an application-defined constant. The actual value isn't
important to this discussion. The handler procedure is attached to an interrupt that is
specific to the target board, so it is defined in the package STM32.Board in the Ada Drivers
Library. Each target board supported by the library has such a package, always with the
same package name. This particular STM32 board has dedicated audio DMA support, along
with the CODEC.
Second, there's nothing declared in the visible part of the PO. More to the point, everything
is declared in the optional private part. That placement is a matter of style, but it's good
style. No software client should ever call the protected procedure — only the hardware
should call it, via the runtime library — so we make it impossible for any client to call it
accidentally. That placement also informs the reader of our intent.
Third, we said there are two interrupts, but only one interrupt handler procedure is declared
and attached. There's nothing inherently wrong with one routine handling multiple inter-
rupts, although conceptually it is not ideal. In this case it is necessary because on this target
both device interrupts arrive at the MCU on one external interrupt line. Therefore, the one
protected procedure handler handles both device interrupts, querying the DMA status flags
to see which interrupt is active. This approach is shown below. Note that there must be an
enclosing package, with multiple context clauses, but we do not show them so that we can
focus on the interrupt handler itself.

protected body DMA_Interrupt_Controller is

procedure DMA_IRQ_Handler is
use STM32.Board; -- for the audio DMA

begin
if Status (Audio_DMA,

Audio_DMA_Out_Stream,
DMA.Half_Transfer_Complete_Indicated)

then
-- The middle of the double-buffer array has been reached by the
-- DMA transfer, therefore the "upper half buffer" is empty.
Fill_Logical_Buffer (Outgoing_PCM_Samples,

Starting_Index => Upper_Buffer_Start);
Clear_Status (Audio_DMA,

Audio_DMA_Out_Stream,
DMA.Half_Transfer_Complete_Indicated);

end if;

if Status (Audio_DMA,
Audio_DMA_Out_Stream,
DMA.Transfer_Complete_Indicated)

then
-- The bottom of the double-buffer array has been reached by the
-- DMA transfer, therefore the "lower half buffer" is empty.
Fill_Logical_Buffer (Outgoing_PCM_Samples,

Starting_Index => Lower_Buffer_Start);
Clear_Status (Audio_DMA,

Audio_DMA_Out_Stream,
DMA.Transfer_Complete_Indicated);

end if;
end DMA_IRQ_Handler;

end DMA_Interrupt_Controller;
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In both cases Fill_Logical_Buffer is called to insert samples from the jitter buffer into
one of the logical buffers. The difference is the value passed to the formal parame-
ter Starting_Index. This is the array index at which filling should begin within Outgo-
ing_PCM_Samples. Upper_Buffer_Start corresponds to Outgoing_PCM_Samples'First,
and Lower_Buffer_Start is Outgoing_PCM_Samples'First + Single_Buffer_Length.
That's all the software has to do. Offloading work to the hardware, in this case the DMA
controller, is always a good idea, but that's especially true for less powerful targets, e.g.,
microcontrollers. Note that the availability of the half transfer complete interrupt varies
across different DMA devices.
The implementation of Fill_Logical_Buffer is straightforward and need not be shown.
However, the procedure declares a local variable named Incoming_PCM_Samples that has
ramifications worth noting. In particular, the representation may require altering and re-
building the underlying Ada run-time library.
The object Incoming_PCM_Samples is declared within Fill_Logical_Buffer like so:

Incoming_PCM_Samples : Jitter_Buffer.Sample_Buffer_Slice;

The alteration might be required because Fill_Logical_Buffer executes entirely in the
interrupt handler procedure's context. Hence the storage used by the procedure's execution
comes from the interrupt handler stack. Interrupt handlers typically do relatively little, and,
as a result, a relatively small stack allocation is typically defined for them. The storage for
Incoming_PCM_Samples might exceed that allocation.
Specifically, we said that Fill_Logical_Buffer fills an entire half of the double-buffer, i.e.,
it works in terms of Single_Buffer_Length. If Sample_Buffer_Slice is an actual array,
the required storage might be considerable.
The interrupt stack allocation is set by the run-time library source code in GNAT, as is com-
mon. You could increase the allocation and rebuild the run-time.
On the other hand, Sample_Buffer_Slice need not be an actual array. It could be a record
type containing a (read-only) pointer to the jitter buffer array and an index indicating where
in that array the slice to be transferred begins. That representation would obviously require
much less stack space, obviating the run-time library change and rebuild. Moreover, that
representation would allow Fill_Logical_Buffer to copy directly from the jitter buffer into
the final destination, i.e., Outgoing_PCM_Samples. If Incoming_PCM_Samples is an array,
we'd have to copy from the jitter buffer into Incoming_PCM_Samples, and then again from
there to Outgoing_PCM_Samples. That's an extra copy operation we can avoid.
A related issue, perhaps requiring a run-time change, is the secondary stack allocation for
interrupt handlers. The secondary stack is a common approach to implementing calls to
functions that return values of unconstrained subtypes (usually, unconstrained array types,
such as String). Because the result size is not known at the point of the call, using the
primary call stack for holding the returned value is messy. The function's returned value
would follow the stack space used for the call itself. But on return, only the call space is
popped, leaving a hole in the stack because the value returned from the function remains
on the stack. Therefore, another separate stack is commonly used for these functions.
(GNAT does so.) The interrupt handler code could exhaust this allocation as well. The
allocation amount is also specified in the run-time library source code. But, as with the
situation above, the source code can be changed, in this case to avoid calling functions
with unconstrained result types. The trade-off is whether that change is more costly than
changing and rebuilding the run-time, as well as maintaining the change.

11.2.2 Task Notification Introduction
The first idiom implementation did not require notifying a task, but these next idiom im-
plementations will do so. As we mentioned earlier, how the interrupt handler achieves this
notification leads to two distinct idioms. Ultimately the difference between them is whether
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or not the interrupt handler must communicate with the task. In both cases the handler
synchronizes with the task because of the notification required.

11.2.3 Task Notification With Communication
In this implementation the interrupt handler releases a task but also communicates with
it when doing so. Therefore, a protected entry is used, and the entry parameters are the
communication medium. The approach is depicted in the figure below:

The interrupt handler stores data within the PO and only enables the entry barrier when
ready to either produce it or consume it via the entry parameters. The dashed lines in the
figure represent this data flow.
By coincidence, this is the notification approach used in the idiom entry Providing Compo-
nent Access to Enclosing Record Objects (page 71). In that implementation, client tasks call
two entries to Put and Get single characters, so the data stored in the PO consists of those
characters. We did not mention it there because we were focused on that other idiom, i.e.,
how to give visibility within a PO/task component to an enclosing record object.
Be sure to understand the code for the other idiom before exploring this one. We will repeat
elided parts of the code and only discuss the parts relevant for this current idiom. Because
we are focused now on the interrupt handling task notification, here is the full interrupt
handler PO type declaration — IO_Manager — within the elided package declaration:

package Serial_IO.Interrupt_Driven is

type Serial_Port ... is new Serial_IO.Device with private;

overriding
procedure Put (This : in out Serial_Port; Data : HAL.UInt8)
with Inline;

overriding
procedure Get (This : in out Serial_Port; Data : out HAL.UInt8)
with Inline;

private

protected type IO_Manager
(IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority;
Port : not null access Serial_Port)

(continues on next page)
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(continued from previous page)
with

Interrupt_Priority => IRQ_Priority
is

entry Put (Datum : HAL.UInt8);

entry Get (Datum : out HAL.UInt8);

private

Outgoing : HAL.UInt8;
Incoming : HAL.UInt8;

Incoming_Data_Available : Boolean := False;
Transmission_Pending : Boolean := False;

procedure IRQ_Handler with Attach_Handler => IRQ;

end IO_Manager;

...

end Serial_IO.Interrupt_Driven;

A protected object of type IO_Manager is given a discriminant value that designates the
enclosing Serial_Port object because that Serial_Port has the USART device required
to do the actual I/O. The other two discriminants are required for configuring the interrupt
handler and attaching it to the interrupt hardware.
The two octets Outgoing and Incoming are the values sent and received via the interrupt
handler's manipulation of the USART. (A USART doesn't receive characters, as such, and
we're ignoring the fact that it may work with a 9-bit value instead.)
The two Boolean components Incoming_Data_Available and Transmission_Pending are
used for the two barrier expressions. Their purpose is explained below.
The bodies of visible procedures Put and Get (shown below) call through to the interrupt
manager's protected entries, also named Put and Get. Those entries block the callers until
the interrupt manager is ready for them, via the entry barriers controlled by the interrupt
handler.

with STM32.Device; use STM32.Device;

package body Serial_IO.Interrupt_Driven is

---------
-- Put --
---------

overriding
procedure Put (This : in out Serial_Port; Data : HAL.UInt8) is
begin

This.Controller.Put (Data);
end Put;

---------
-- Get --
---------

overriding
procedure Get (This : in out Serial_Port; Data : out HAL.UInt8) is

(continues on next page)
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(continued from previous page)
begin

This.Transceiver.Enable_Interrupts (Received_Data_Not_Empty);
This.Controller.Get (Data);

end Get;

----------------
-- IO_Manager --
----------------

protected body IO_Manager is

-----------------
-- IRQ_Handler --
-----------------

procedure IRQ_Handler is
begin

-- check for data arrival
if Port.Transceiver.Status (Read_Data_Register_Not_Empty) and then

Port.Transceiver.Interrupt_Enabled (Received_Data_Not_Empty)
then -- handle reception

Get (Serial_IO.Device (Port.all), Incoming);
-- call the Serial_IO.Device version!
Await_Reception_Complete : loop

exit when not
Port.Transceiver.Status (Read_Data_Register_Not_Empty);

end loop Await_Reception_Complete;
Port.Transceiver.Disable_Interrupts (Received_Data_Not_Empty);
Port.Transceiver.Clear_Status (Read_Data_Register_Not_Empty);
Incoming_Data_Available := True;

end if;

-- check for transmission ready
if Port.Transceiver.Status (Transmission_Complete_Indicated) and then

Port.Transceiver.Interrupt_Enabled (Transmission_Complete)
then -- handle transmission

Put (Serial_IO.Device (Port.all), Outgoing);
-- call the Serial_IO.Device version!
Port.Transceiver.Disable_Interrupts (Transmission_Complete);
Port.Transceiver.Clear_Status (Transmission_Complete_Indicated);
Transmission_Pending := False;

end if;
end IRQ_Handler;

---------
-- Put --
---------

entry Put (Datum : HAL.UInt8) when not Transmission_Pending is
begin

Transmission_Pending := True;
Outgoing := Datum;
Port.Transceiver.Enable_Interrupts (Transmission_Complete);

end Put;

---------
-- Get --
---------

entry Get (Datum : out HAL.UInt8) when Incoming_Data_Available is
begin

(continues on next page)
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(continued from previous page)
Datum := Incoming;
Incoming_Data_Available := False;

end Get;

end IO_Manager;

end Serial_IO.Interrupt_Driven;

Note how IRQ_Handler checks for which interrupt is active, possibly both, does whatever is
necessary for that to be handled, and then sets the entry barriers accordingly. The barrier
expression Transmission_Pending blocks Put callers until the current transmission, if any,
completes. The barrier Incoming_Data_Available blocks Get callers until a character has
been received and can be provided to the caller. The entry bodies copy the entry formal
parameters to/from the internally stored characters and likewise set the entry barriers.
Note too how the body of procedure Get first enables the received data available interrupt
before calling the entry. The body of the entry Put does something similar. They both work
in concert with the handler procedure to manage the interrupts as required.
Using protected entries is ideal for this case because, after all, that is exactly what they
are designed to do. Note that declaring multiple protected entries in a single protected
type/object requires the Jorvik usage profile to be applied.

11.2.4 Task Notification Without Communication
In this implementation, the interrupt handler procedure is not required to communicate
with the task. It only needs to synchronize with it, to release it.
Therefore, we can use a Suspension_Object: a language-defined, thread-safe binary flag
type defined in package Ada.Synchronous_Task_Control. Objects of this type have two
values: True and False, with False as the default initial value. There are two primary
primitive operations: procedures Suspend_Until_True and Set_True. Procedure Set_True
does just what you think it does. Procedure Suspend_Until_True suspends the caller
(task) until the value of the specified argument becomes True, at which point the sus-
pended task is allowed to continue execution. (Of course, if it was already True when
Suspend_Until_True was called, the caller returns without suspending.) Critically, proce-
dure Suspend_Until_True also sets the argument back to False before returning. As a
result, those are the only two routines you're likely to need, although there are others.
The interrupt handler procedure in this approach simply calls Set_True for a Suspen-
sion_Object (an object of that type) visible to both the handler and the task. This ar-
rangement is illustrated by the following figure:

The language requires the run-time library implementation to allow calls to Set_False and
Set_True during any protected action, even one that has its ceiling priority in the Inter-
rupt_Priority range, so this approach will work for interrupt handlers as well as tasks.
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For our example we implement a facility for sending and receiving messages over a serial
port, using interrupts. The design is similar to the implementation we just explored, and
thus to the Providing Component Access to Enclosing Record Objects (page 71) idiom. In
that implementation, however, only single characters were sent and received, whereas
messages will consist of one or more characters. Although there are differences, we assume
that you are familiar enough with that idiom's approach that we don't need to go into all the
details of the serial I/O, the USART, or the interrupt handler within a PO. We'll focus instead
of the differences due to this idiom.
In this version we want to notify a task when an entire message has been sent or received,
not just a single character. We'll define amessage as a String that has amessage-specified
logical terminator character, e.g., the nul character. Transmission will cease when the ter-
minator character is encountered when sending a message object. Similarly, a message
is considered complete when the terminator character is received. (The terminator is not
stored in message content.)
In a sense the interrupt handler is again communicating with tasks, but not directly, so entry
parameters aren't applicable. Therefore, a Suspension_Object component is appropriate.
But instead of one Suspension_Object variable, each Message object will contain two:
one for notification of new content receipt, and one for notification of successful content
transmission.
For the sake of the Separation of Concerns principle, the type Message should be an ADT of
its own, in a dedicated package:

with Serial_IO; use Serial_IO;
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

package Message_Buffers is

type Message (Physical_Size : Positive) is tagged limited private;

function Content (This : Message) return String;
function Length (This : Message) return Natural;
procedure Set (This : in out Message; To : String) with
Pre => To'Length <= This.Physical_Size,
Post => Length (This) = To'Length and Content (This) = To;

...
function Terminator (This : Message) return Character;
procedure Await_Transmission_Complete (This : in out Message);
procedure Await_Reception_Complete (This : in out Message);
procedure Signal_Transmission_Complete (This : in out Message);
procedure Signal_Reception_Complete (This : in out Message);

private

type Message (Physical_Size : Positive) is tagged limited record
Content : String (1 .. Physical_Size);
Length : Natural := 0;
Reception_Complete : Suspension_Object;
Transmission_Complete : Suspension_Object;
Terminator : Character := ASCII.NUL;

end record;

end Message_Buffers;

In essence, a Message object is just the usual variable length string abstraction with a
known terminator and ways to suspend and resume clients using them. Note the two Sus-
pension_Object components.
In this example the tasks to be notified are application tasks rather than second-level inter-
rupt handlers. Client tasks can suspend themselves to await either transmission completion
or reception completion. The Message procedures simply call the appropriate routines for
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the parameter's Suspension_Object components:

procedure Await_Transmission_Complete (This : in out Message) is
begin

Suspend_Until_True (This.Transmission_Complete);
end Await_Transmission_Complete;

and likewise:

procedure Await_Reception_Complete (This : in out Message) is
begin

Suspend_Until_True (This.Reception_Complete);
end Await_Reception_Complete;

The client task could look like the following, in this case the main program's environment
task:

procedure Demo_Serial_Port_Nonblocking is

Incoming : aliased Message (Physical_Size => 1024); -- arbitrary size
Outgoing : aliased Message (Physical_Size => 1024); -- arbitrary size

procedure Send (This : String) is
begin

Set (Outgoing, To => This);
Start_Sending (COM, Outgoing'Unchecked_Access);
Outgoing.Await_Transmission_Complete;

end Send;

begin
Initialize_Hardware (COM);
Configure (COM, Baud_Rate => 115_200);

Incoming.Set_Terminator (ASCII.CR);
Send ("Enter text, terminated by CR.");
loop

Start_Receiving (COM, Incoming'Unchecked_Access);
Incoming.Await_Reception_Complete;
Send ("Received : " & Incoming.Content);

end loop;
end Demo_Serial_Port_Nonblocking;

We don't show all the context clauses, for brevity, but one of the packages declares COM
as the serial port. This demo doesn't exploit the nonblocking aspect because it does not
perform any other actions before suspending itself after initiating sending and receiving.
But it could do so, while the I/O is happening, only later suspending to await completion of
the requested operation.
The interrupt handler procedure can signal both transmission and reception completion
using the two other procedures:

procedure Signal_Transmission_Complete (This : in out Message) is
begin

Set_True (This.Transmission_Complete);
end Signal_Transmission_Complete;

procedure Signal_Reception_Complete (This : in out Message) is
begin

Set_True (This.Reception_Complete);
end Signal_Reception_Complete;

In this version of the Serial IO facility, the interrupt handler's enclosing protected type is
the type Serial_Port itself, rather than a PO enclosed by a record type:
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protected type Serial_Port
(Device : not null access Peripheral_Descriptor;
IRQ : Interrupt_ID;
IRQ_Priority : Interrupt_Priority)

with
Interrupt_Priority => IRQ_Priority

is

procedure Start_Sending (Msg : not null access Message);
procedure Start_Receiving (Msg : not null access Message);

private

Next_Out : Positive;
Outgoing_Msg : access Message;
Incoming_Msg : access Message;

procedure Handle_Transmission with Inline;
procedure Handle_Reception with Inline;
procedure ISR with Attach_Handler => IRQ;

end Serial_Port;

Procedure ISR (Interrupt Service Routine) is the handler.
The two visible protected procedures, Start_Sending and Start_Receiving, are given
non-null arguments when called (indirectly) by client tasks. Each argument is an access
value designating a Message object declared by clients. The pointers are copied into the in-
ternal components, i.e., Outgoing_Msg and Incoming_Msg, for use by the interrupt handler
procedure.
As with the earlier idiom above, there are multiple device interrupts, but they are all deliv-
ered on one external interrupt line. The handler procedure checks the status flags to see
which interrupts are active and calls dedicated internal procedures accordingly. We don't
need to see this infrastructure code again, so we can focus instead on one, the internal
Handle_Reception procedure. The routine for transmitting is similar.

procedure Handle_Reception is
Received_Char : constant Character :=
Character'Val (Current_Input (Device.Transceiver.all));

begin
if Received_Char /= Incoming_Msg.Terminator then

Incoming_Msg.Append (Received_Char);
end if;
if Received_Char = Incoming_Msg.Terminator or else

Incoming_Msg.Length = Incoming_Msg.Physical_Size
then -- reception complete

loop
-- wait for device to clear the status
exit when not Status (Device.Transceiver.all,

Read_Data_Register_Not_Empty);
end loop;
Disable_Interrupts (Device.Transceiver.all,

Source => Received_Data_Not_Empty);
Incoming_Msg.Signal_Reception_Complete;
Incoming_Msg := null;

end if;
end Handle_Reception;

Note the call to Signal_Reception_Complete for the current Message object being re-
ceived, designated by Incoming_Msg.
The alternative to a Suspension_Object is a parameterless protected entry that a task calls
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to suspend itself. That certainly works in general, but we would need two entries, hence
Jorvik. But also, the Suspension_Object approach can have a little better performance
because it does not have the functionality that a protected entry has.
Note that type Suspension_Object might very well be implemented as a protected type.
On a uniprocessor target, protected object mutual exclusion can be implemented via pri-
orities, so it won't make much difference. (GNAT's bare-board run-times use that mutual
exclusion implementation approach, as well as the PO implementation of type Suspen-
sion_Object.)

11.3 Pros
In all three idioms, the approach is directly expressed, meets the requirements, and hides
the implementation details. The implementations are efficient relative to their require-
ments, the only reasonable metric. In particular, Suspension_Objects are expected to be
faster than protected entries, but only support synchronization, and only with one caller at
a time — there's no queue. Nor do they support communication. Protected entries have no
such restrictions and are reasonably efficient given their considerable additional capabili-
ties.

11.4 Cons
None.

11.5 Relationship With Other Idioms
The idiom showing how to connect a PO or task to an enclosing record object was illustrated
by an interrupt handler PO, but that idiom is not necessary. Indeed, we used a protected
type directly in the last implementation.

11.6 What About Priorities?
The idiom expressions do not determine the actual priorities assigned to the protected
objects containing the handler procedures, nor those of the notified tasks.
The language standard requires the priorities for interrupt handler POs to be in the range
defined by the subtype System.Interrupt_Priority. Under the Ravenscar and Jorvik pro-
files they must also satisfy the Ceiling Priority Protocol requirements.
The target's interrupt hardware may dictate the specific handler priorities, or at least their
floor values. You may be able to control those hardware priorities via the target board
startup code.
But usually we have some freedom to choose, so what priorities should be assigned?
Often the values are arbitrary. However, a more rigorous approach may be required. A good
guideline is that if you need to do a timing (schedulability) analysis for the application tasks'
deadlines, you need to do it for the interrupt handlers' deadlines too. The same analyses
can be used, i.e., response-time analysis, and the same priority assignment schemes, i.e., a
shorter period gets a higher priority. (The interrupt period is the minimum interval between
the interrupt occurrences.)
In addition, ensuring interrupt handler deadlines are met is part of ensuring the tasks meet
their deadlines. That's because the interrupt handlers release the associated sporadic
(event-driven) tasks for execution. A sporadic task triggered by a device (say) usually
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will have a deadline no greater than the next occurrence of the sensor-generated interrupt,
that is, the interrupt period. The priority of the task will be set according to that period.

11.7 Notes
1. The traditional expression for an interrupt handler, i.e., a procedure, is allowed by

the language as a vendor-defined extension. However, there will likely be language-
oriented restrictions applied to those procedures, due to the context. That's true of
other languages as well.

2. You shouldn't assign interrupt handler (PO) priorities by semantic importance, just as
you shouldn't do so for task priorities. More important interrupt handlers shouldn't
necessarily be assigned more urgent priorities.
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CHAPTER

TWELVE

REDUCING OBJECT CODE FROM GENERIC PACKAGE
INSTANTIATIONS

12.1 Motivation
Generic unit instantiations are often, but not always, implemented by an Ada compiler as
a form of macro expansion. In this approach, the compiler produces separate, dedicated
object code for every instantiation. The macro expansion approach can produce better
run-time performance but can result in large total object code size for the executable when
there are many instances, especially when the generic packages instantiated contain a
lot of unit declarations. For example, the generic I/O packages contained within package
Ada.Text_IO are themselves relatively large.
The alternative compiler implementation approach is code-sharing, in which distinct in-
stantiations of a given generic unit are implemented with shared object code in a single
module.
Clearly, sharing the object code can reduce the total size, but code-sharing can be very
complicated to implement, depending on the generic unit itself. For a trivial example, con-
sider the following package:

generic
package P is

Error : exception;
end P;

The semantics of the language require that every instantiation of generic package P be a
distinct package, as if each instance was instead written explicitly as a non-generic package
(at the point of instantiation) with the instance name. As a result, each package instance
declares an exception, and these exceptions must be treated as distinct from each other. A
code-sharing implementation must maintain that distinction with one object code module.
In the example above, there are no generic formal parameters, nor other declarations within
the package declarative part besides the exception, because they are not necessary for that
example. However, generic formal parameters can be a problem for code-sharing too. For
example, consider this generic package:

generic
Formal_Object : in out Integer;

package P is
-- ...

end P;

This generic package has a generic formal object parameter with mode in out. (We chose
type Integer purely for convenience.) That specific mode can cause a similar problem as
seen in the exception example, because the mode allows the generic package to update
the generic actual object passed to it. The shared object code must keep track of which
object is updated during execution.
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Therefore, when writing the application source code that instantiates generic packages,
developers should do so in a manner that minimizes the amount of object code that might
result.

12.2 Implementation(s)
The application source code should be written in a manner that shares the instantiations
themselves, when possible, thereby reducing the number of instantiations that exist.
For example, let’s say that several units in the application code require the ability to do
I/O on some floating-point type. For simplicity, let’s say that this is a type named Real,
declared in a package named Common. Here is a declaration for an example package body
that requires the I/O capability:

with Ada.Text_IO, Common;
package body User1 is

package Real_IO is new Ada.Text_IO.Float_IO (Common.Real);
-- ...

end User1;

That’s certainly legal, and works, but we’ve said that several units require I/O for type Real.
Let’s say there are in fact twenty such units. They all do something similar:

with Ada.Text_IO, Common;
package body User20 is

package Real_IO is new Ada.Text_IO.Float_IO (Common.Real);
-- ...

end User20;

As a result, the application has twenty instantiations (at least) of Ada.Text_IO.Float_IO.
There will be instances named User1.Real_IO, User2.Real_IO, and so on, up to User20.
Real_IO. The fact that the local names are all Real_IO is irrelevant.
If the compiler happens to use the macro-expansion implementation, that means the ap-
plication executable will have twenty copies of the object code defined by the generic
Float_IO. For example, GNAT performs some internal restructuring to avoid this problem
for these specific language-defined generic units, but not for application-defined generics.
Instead, we can simply instantiate the generic at the library level:

with Ada.Text_IO, Common;
package Real_IO is new Ada.Text_IO.Float_IO (Common.Real);

Because the instantiation occurred at the library level, the resulting instance is declared
at the library level, and can therefore be named in a "with_clause" like any other library
package.

with Real_IO;
package body User1 is

-- ...
end User1;

Each client package can use the same instance via the with_clause, and there’s only one
instance so there’s only one copy of the object code.

12.3 Pros
The total object code size is reduced, compared to the alternative of many local instantia-
tions.
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12.4 Cons
What would otherwise be an implementation detail hidden from clients can now become
visible to them because a (public) library unit can be named in with_clause by any other
unit. As a result, this approach should not be used in all cases, not even as a default
design approach. Restricting the visibility of the instance may be more important than the
amount of object code it contributes. Hiding implementation artifacts allows more freedom
to change the implementation without requiring changes to client code.

12.5 Relationship With Other Idioms
None.

12.6 Notes
1. The reader should understand that this issue is not about the number of subprograms

within any given package, whether or not the package is a generic package. In the
past, some linkers included the entire object code for a given package (instance or
not), regardless of the number of subprograms actually used from that package in the
application code. That was an issue with reusable library code, for example packages
providing mathematical functions. Modern linkers can be told not to include those
subprograms not called by the application. For example, with gcc, the compiler can
be told to put each subprogram in a separate section, and then the linker can be told to
only include in the executable those sections actually referenced. (Data declarations
can be reduced that way as well.)
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